linux-zen-desktop/drivers/platform/x86/intel/tpmi.c

407 lines
12 KiB
C
Raw Normal View History

2023-08-30 17:31:07 +02:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* intel-tpmi : Driver to enumerate TPMI features and create devices
*
* Copyright (c) 2023, Intel Corporation.
* All Rights Reserved.
*
* The TPMI (Topology Aware Register and PM Capsule Interface) provides a
* flexible, extendable and PCIe enumerable MMIO interface for PM features.
*
* For example Intel RAPL (Running Average Power Limit) provides a MMIO
* interface using TPMI. This has advantage over traditional MSR
* (Model Specific Register) interface, where a thread needs to be scheduled
* on the target CPU to read or write. Also the RAPL features vary between
* CPU models, and hence lot of model specific code. Here TPMI provides an
* architectural interface by providing hierarchical tables and fields,
* which will not need any model specific implementation.
*
* The TPMI interface uses a PCI VSEC structure to expose the location of
* MMIO region.
*
* This VSEC structure is present in the PCI configuration space of the
* Intel Out-of-Band (OOB) device, which is handled by the Intel VSEC
* driver. The Intel VSEC driver parses VSEC structures present in the PCI
* configuration space of the given device and creates an auxiliary device
* object for each of them. In particular, it creates an auxiliary device
* object representing TPMI that can be bound by an auxiliary driver.
*
* This TPMI driver will bind to the TPMI auxiliary device object created
* by the Intel VSEC driver.
*
* The TPMI specification defines a PFS (PM Feature Structure) table.
* This table is present in the TPMI MMIO region. The starting address
* of PFS is derived from the tBIR (Bar Indicator Register) and "Address"
* field from the VSEC header.
*
* Each TPMI PM feature has one entry in the PFS with a unique TPMI
* ID and its access details. The TPMI driver creates device nodes
* for the supported PM features.
*
* The names of the devices created by the TPMI driver start with the
* "intel_vsec.tpmi-" prefix which is followed by a specific name of the
* given PM feature (for example, "intel_vsec.tpmi-rapl.0").
*
* The device nodes are create by using interface "intel_vsec_add_aux()"
* provided by the Intel VSEC driver.
*/
#include <linux/auxiliary_bus.h>
#include <linux/intel_tpmi.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/pci.h>
#include "vsec.h"
/**
* struct intel_tpmi_pfs_entry - TPMI PM Feature Structure (PFS) entry
* @tpmi_id: TPMI feature identifier (what the feature is and its data format).
* @num_entries: Number of feature interface instances present in the PFS.
* This represents the maximum number of Power domains in the SoC.
* @entry_size: Interface instance entry size in 32-bit words.
* @cap_offset: Offset from the PM_Features base address to the base of the PM VSEC
* register bank in KB.
* @attribute: Feature attribute: 0=BIOS. 1=OS. 2-3=Reserved.
* @reserved: Bits for use in the future.
*
* Represents one TPMI feature entry data in the PFS retrieved as is
* from the hardware.
*/
struct intel_tpmi_pfs_entry {
u64 tpmi_id:8;
u64 num_entries:8;
u64 entry_size:16;
u64 cap_offset:16;
u64 attribute:2;
u64 reserved:14;
} __packed;
/**
* struct intel_tpmi_pm_feature - TPMI PM Feature information for a TPMI ID
* @pfs_header: PFS header retireved from the hardware.
* @vsec_offset: Starting MMIO address for this feature in bytes. Essentially
* this offset = "Address" from VSEC header + PFS Capability
* offset for this feature entry.
*
* Represents TPMI instance information for one TPMI ID.
*/
struct intel_tpmi_pm_feature {
struct intel_tpmi_pfs_entry pfs_header;
unsigned int vsec_offset;
};
/**
* struct intel_tpmi_info - TPMI information for all IDs in an instance
* @tpmi_features: Pointer to a list of TPMI feature instances
* @vsec_dev: Pointer to intel_vsec_device structure for this TPMI device
* @feature_count: Number of TPMI of TPMI instances pointed by tpmi_features
* @pfs_start: Start of PFS offset for the TPMI instances in this device
* @plat_info: Stores platform info which can be used by the client drivers
*
* Stores the information for all TPMI devices enumerated from a single PCI device.
*/
struct intel_tpmi_info {
struct intel_tpmi_pm_feature *tpmi_features;
struct intel_vsec_device *vsec_dev;
int feature_count;
u64 pfs_start;
struct intel_tpmi_plat_info plat_info;
};
/**
* struct tpmi_info_header - CPU package ID to PCI device mapping information
* @fn: PCI function number
* @dev: PCI device number
* @bus: PCI bus number
* @pkg: CPU Package id
* @reserved: Reserved for future use
* @lock: When set to 1 the register is locked and becomes read-only
* until next reset. Not for use by the OS driver.
*
* The structure to read hardware provided mapping information.
*/
struct tpmi_info_header {
u64 fn:3;
u64 dev:5;
u64 bus:8;
u64 pkg:8;
u64 reserved:39;
u64 lock:1;
} __packed;
/*
* List of supported TMPI IDs.
* Some TMPI IDs are not used by Linux, so the numbers are not consecutive.
*/
enum intel_tpmi_id {
TPMI_ID_RAPL = 0, /* Running Average Power Limit */
TPMI_ID_PEM = 1, /* Power and Perf excursion Monitor */
TPMI_ID_UNCORE = 2, /* Uncore Frequency Scaling */
TPMI_ID_SST = 5, /* Speed Select Technology */
TPMI_INFO_ID = 0x81, /* Special ID for PCI BDF and Package ID information */
};
/* Used during auxbus device creation */
static DEFINE_IDA(intel_vsec_tpmi_ida);
struct intel_tpmi_plat_info *tpmi_get_platform_data(struct auxiliary_device *auxdev)
{
struct intel_vsec_device *vsec_dev = auxdev_to_ivdev(auxdev);
return vsec_dev->priv_data;
}
EXPORT_SYMBOL_NS_GPL(tpmi_get_platform_data, INTEL_TPMI);
int tpmi_get_resource_count(struct auxiliary_device *auxdev)
{
struct intel_vsec_device *vsec_dev = auxdev_to_ivdev(auxdev);
if (vsec_dev)
return vsec_dev->num_resources;
return 0;
}
EXPORT_SYMBOL_NS_GPL(tpmi_get_resource_count, INTEL_TPMI);
struct resource *tpmi_get_resource_at_index(struct auxiliary_device *auxdev, int index)
{
struct intel_vsec_device *vsec_dev = auxdev_to_ivdev(auxdev);
if (vsec_dev && index < vsec_dev->num_resources)
return &vsec_dev->resource[index];
return NULL;
}
EXPORT_SYMBOL_NS_GPL(tpmi_get_resource_at_index, INTEL_TPMI);
static const char *intel_tpmi_name(enum intel_tpmi_id id)
{
switch (id) {
case TPMI_ID_RAPL:
return "rapl";
case TPMI_ID_PEM:
return "pem";
case TPMI_ID_UNCORE:
return "uncore";
case TPMI_ID_SST:
return "sst";
default:
return NULL;
}
}
/* String Length for tpmi-"feature_name(upto 8 bytes)" */
#define TPMI_FEATURE_NAME_LEN 14
static int tpmi_create_device(struct intel_tpmi_info *tpmi_info,
struct intel_tpmi_pm_feature *pfs,
u64 pfs_start)
{
struct intel_vsec_device *vsec_dev = tpmi_info->vsec_dev;
char feature_id_name[TPMI_FEATURE_NAME_LEN];
struct intel_vsec_device *feature_vsec_dev;
struct resource *res, *tmp;
const char *name;
int i;
name = intel_tpmi_name(pfs->pfs_header.tpmi_id);
if (!name)
return -EOPNOTSUPP;
res = kcalloc(pfs->pfs_header.num_entries, sizeof(*res), GFP_KERNEL);
if (!res)
return -ENOMEM;
feature_vsec_dev = kzalloc(sizeof(*feature_vsec_dev), GFP_KERNEL);
if (!feature_vsec_dev) {
kfree(res);
return -ENOMEM;
}
snprintf(feature_id_name, sizeof(feature_id_name), "tpmi-%s", name);
for (i = 0, tmp = res; i < pfs->pfs_header.num_entries; i++, tmp++) {
u64 entry_size_bytes = pfs->pfs_header.entry_size * 4;
tmp->start = pfs->vsec_offset + entry_size_bytes * i;
tmp->end = tmp->start + entry_size_bytes - 1;
tmp->flags = IORESOURCE_MEM;
}
feature_vsec_dev->pcidev = vsec_dev->pcidev;
feature_vsec_dev->resource = res;
feature_vsec_dev->num_resources = pfs->pfs_header.num_entries;
feature_vsec_dev->priv_data = &tpmi_info->plat_info;
feature_vsec_dev->priv_data_size = sizeof(tpmi_info->plat_info);
feature_vsec_dev->ida = &intel_vsec_tpmi_ida;
/*
* intel_vsec_add_aux() is resource managed, no explicit
* delete is required on error or on module unload.
* feature_vsec_dev and res memory are also freed as part of
* device deletion.
*/
return intel_vsec_add_aux(vsec_dev->pcidev, &vsec_dev->auxdev.dev,
feature_vsec_dev, feature_id_name);
}
static int tpmi_create_devices(struct intel_tpmi_info *tpmi_info)
{
struct intel_vsec_device *vsec_dev = tpmi_info->vsec_dev;
int ret, i;
for (i = 0; i < vsec_dev->num_resources; i++) {
ret = tpmi_create_device(tpmi_info, &tpmi_info->tpmi_features[i],
tpmi_info->pfs_start);
/*
* Fail, if the supported features fails to create device,
* otherwise, continue. Even if one device failed to create,
* fail the loading of driver. Since intel_vsec_add_aux()
* is resource managed, no clean up is required for the
* successfully created devices.
*/
if (ret && ret != -EOPNOTSUPP)
return ret;
}
return 0;
}
#define TPMI_INFO_BUS_INFO_OFFSET 0x08
static int tpmi_process_info(struct intel_tpmi_info *tpmi_info,
struct intel_tpmi_pm_feature *pfs)
{
struct tpmi_info_header header;
void __iomem *info_mem;
info_mem = ioremap(pfs->vsec_offset + TPMI_INFO_BUS_INFO_OFFSET,
pfs->pfs_header.entry_size * 4 - TPMI_INFO_BUS_INFO_OFFSET);
if (!info_mem)
return -ENOMEM;
memcpy_fromio(&header, info_mem, sizeof(header));
tpmi_info->plat_info.package_id = header.pkg;
tpmi_info->plat_info.bus_number = header.bus;
tpmi_info->plat_info.device_number = header.dev;
tpmi_info->plat_info.function_number = header.fn;
iounmap(info_mem);
return 0;
}
static int tpmi_fetch_pfs_header(struct intel_tpmi_pm_feature *pfs, u64 start, int size)
{
void __iomem *pfs_mem;
pfs_mem = ioremap(start, size);
if (!pfs_mem)
return -ENOMEM;
memcpy_fromio(&pfs->pfs_header, pfs_mem, sizeof(pfs->pfs_header));
iounmap(pfs_mem);
return 0;
}
static int intel_vsec_tpmi_init(struct auxiliary_device *auxdev)
{
struct intel_vsec_device *vsec_dev = auxdev_to_ivdev(auxdev);
struct pci_dev *pci_dev = vsec_dev->pcidev;
struct intel_tpmi_info *tpmi_info;
u64 pfs_start = 0;
int i;
tpmi_info = devm_kzalloc(&auxdev->dev, sizeof(*tpmi_info), GFP_KERNEL);
if (!tpmi_info)
return -ENOMEM;
tpmi_info->vsec_dev = vsec_dev;
tpmi_info->feature_count = vsec_dev->num_resources;
tpmi_info->plat_info.bus_number = pci_dev->bus->number;
tpmi_info->tpmi_features = devm_kcalloc(&auxdev->dev, vsec_dev->num_resources,
sizeof(*tpmi_info->tpmi_features),
GFP_KERNEL);
if (!tpmi_info->tpmi_features)
return -ENOMEM;
for (i = 0; i < vsec_dev->num_resources; i++) {
struct intel_tpmi_pm_feature *pfs;
struct resource *res;
u64 res_start;
int size, ret;
pfs = &tpmi_info->tpmi_features[i];
res = &vsec_dev->resource[i];
if (!res)
continue;
res_start = res->start;
size = resource_size(res);
if (size < 0)
continue;
ret = tpmi_fetch_pfs_header(pfs, res_start, size);
if (ret)
continue;
if (!pfs_start)
pfs_start = res_start;
pfs->pfs_header.cap_offset *= 1024;
pfs->vsec_offset = pfs_start + pfs->pfs_header.cap_offset;
/*
* Process TPMI_INFO to get PCI device to CPU package ID.
* Device nodes for TPMI features are not created in this
* for loop. So, the mapping information will be available
* when actual device nodes created outside this
* loop via tpmi_create_devices().
*/
if (pfs->pfs_header.tpmi_id == TPMI_INFO_ID)
tpmi_process_info(tpmi_info, pfs);
}
tpmi_info->pfs_start = pfs_start;
auxiliary_set_drvdata(auxdev, tpmi_info);
return tpmi_create_devices(tpmi_info);
}
static int tpmi_probe(struct auxiliary_device *auxdev,
const struct auxiliary_device_id *id)
{
return intel_vsec_tpmi_init(auxdev);
}
/*
* Remove callback is not needed currently as there is no
* cleanup required. All memory allocs are device managed. All
* devices created by this modules are also device managed.
*/
static const struct auxiliary_device_id tpmi_id_table[] = {
{ .name = "intel_vsec.tpmi" },
{}
};
MODULE_DEVICE_TABLE(auxiliary, tpmi_id_table);
static struct auxiliary_driver tpmi_aux_driver = {
.id_table = tpmi_id_table,
.probe = tpmi_probe,
};
module_auxiliary_driver(tpmi_aux_driver);
MODULE_IMPORT_NS(INTEL_VSEC);
MODULE_DESCRIPTION("Intel TPMI enumeration module");
MODULE_LICENSE("GPL");