linux-zen-desktop/drivers/scsi/isci/phy.c

1485 lines
46 KiB
C
Raw Normal View History

2023-08-30 17:31:07 +02:00
/*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
* The full GNU General Public License is included in this distribution
* in the file called LICENSE.GPL.
*
* BSD LICENSE
*
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "isci.h"
#include "host.h"
#include "phy.h"
#include "scu_event_codes.h"
#include "probe_roms.h"
#undef C
#define C(a) (#a)
static const char *phy_state_name(enum sci_phy_states state)
{
static const char * const strings[] = PHY_STATES;
return strings[state];
}
#undef C
/* Maximum arbitration wait time in micro-seconds */
#define SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME (700)
enum sas_linkrate sci_phy_linkrate(struct isci_phy *iphy)
{
return iphy->max_negotiated_speed;
}
static struct isci_host *phy_to_host(struct isci_phy *iphy)
{
struct isci_phy *table = iphy - iphy->phy_index;
struct isci_host *ihost = container_of(table, typeof(*ihost), phys[0]);
return ihost;
}
static struct device *sciphy_to_dev(struct isci_phy *iphy)
{
return &phy_to_host(iphy)->pdev->dev;
}
static enum sci_status
sci_phy_transport_layer_initialization(struct isci_phy *iphy,
struct scu_transport_layer_registers __iomem *reg)
{
u32 tl_control;
iphy->transport_layer_registers = reg;
writel(SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX,
&iphy->transport_layer_registers->stp_rni);
/*
* Hardware team recommends that we enable the STP prefetch for all
* transports
*/
tl_control = readl(&iphy->transport_layer_registers->control);
tl_control |= SCU_TLCR_GEN_BIT(STP_WRITE_DATA_PREFETCH);
writel(tl_control, &iphy->transport_layer_registers->control);
return SCI_SUCCESS;
}
static enum sci_status
sci_phy_link_layer_initialization(struct isci_phy *iphy,
struct scu_link_layer_registers __iomem *llr)
{
struct isci_host *ihost = iphy->owning_port->owning_controller;
struct sci_phy_user_params *phy_user;
struct sci_phy_oem_params *phy_oem;
int phy_idx = iphy->phy_index;
struct sci_phy_cap phy_cap;
u32 phy_configuration;
u32 parity_check = 0;
u32 parity_count = 0;
u32 llctl, link_rate;
u32 clksm_value = 0;
u32 sp_timeouts = 0;
phy_user = &ihost->user_parameters.phys[phy_idx];
phy_oem = &ihost->oem_parameters.phys[phy_idx];
iphy->link_layer_registers = llr;
/* Set our IDENTIFY frame data */
#define SCI_END_DEVICE 0x01
writel(SCU_SAS_TIID_GEN_BIT(SMP_INITIATOR) |
SCU_SAS_TIID_GEN_BIT(SSP_INITIATOR) |
SCU_SAS_TIID_GEN_BIT(STP_INITIATOR) |
SCU_SAS_TIID_GEN_BIT(DA_SATA_HOST) |
SCU_SAS_TIID_GEN_VAL(DEVICE_TYPE, SCI_END_DEVICE),
&llr->transmit_identification);
/* Write the device SAS Address */
writel(0xFEDCBA98, &llr->sas_device_name_high);
writel(phy_idx, &llr->sas_device_name_low);
/* Write the source SAS Address */
writel(phy_oem->sas_address.high, &llr->source_sas_address_high);
writel(phy_oem->sas_address.low, &llr->source_sas_address_low);
/* Clear and Set the PHY Identifier */
writel(0, &llr->identify_frame_phy_id);
writel(SCU_SAS_TIPID_GEN_VALUE(ID, phy_idx), &llr->identify_frame_phy_id);
/* Change the initial state of the phy configuration register */
phy_configuration = readl(&llr->phy_configuration);
/* Hold OOB state machine in reset */
phy_configuration |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
writel(phy_configuration, &llr->phy_configuration);
/* Configure the SNW capabilities */
phy_cap.all = 0;
phy_cap.start = 1;
phy_cap.gen3_no_ssc = 1;
phy_cap.gen2_no_ssc = 1;
phy_cap.gen1_no_ssc = 1;
if (ihost->oem_parameters.controller.do_enable_ssc) {
struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe;
struct scu_afe_transceiver __iomem *xcvr = &afe->scu_afe_xcvr[phy_idx];
struct isci_pci_info *pci_info = to_pci_info(ihost->pdev);
bool en_sas = false;
bool en_sata = false;
u32 sas_type = 0;
u32 sata_spread = 0x2;
u32 sas_spread = 0x2;
phy_cap.gen3_ssc = 1;
phy_cap.gen2_ssc = 1;
phy_cap.gen1_ssc = 1;
if (pci_info->orom->hdr.version < ISCI_ROM_VER_1_1)
en_sas = en_sata = true;
else {
sata_spread = ihost->oem_parameters.controller.ssc_sata_tx_spread_level;
sas_spread = ihost->oem_parameters.controller.ssc_sas_tx_spread_level;
if (sata_spread)
en_sata = true;
if (sas_spread) {
en_sas = true;
sas_type = ihost->oem_parameters.controller.ssc_sas_tx_type;
}
}
if (en_sas) {
u32 reg;
reg = readl(&xcvr->afe_xcvr_control0);
reg |= (0x00100000 | (sas_type << 19));
writel(reg, &xcvr->afe_xcvr_control0);
reg = readl(&xcvr->afe_tx_ssc_control);
reg |= sas_spread << 8;
writel(reg, &xcvr->afe_tx_ssc_control);
}
if (en_sata) {
u32 reg;
reg = readl(&xcvr->afe_tx_ssc_control);
reg |= sata_spread;
writel(reg, &xcvr->afe_tx_ssc_control);
reg = readl(&llr->stp_control);
reg |= 1 << 12;
writel(reg, &llr->stp_control);
}
}
/* The SAS specification indicates that the phy_capabilities that
* are transmitted shall have an even parity. Calculate the parity.
*/
parity_check = phy_cap.all;
while (parity_check != 0) {
if (parity_check & 0x1)
parity_count++;
parity_check >>= 1;
}
/* If parity indicates there are an odd number of bits set, then
* set the parity bit to 1 in the phy capabilities.
*/
if ((parity_count % 2) != 0)
phy_cap.parity = 1;
writel(phy_cap.all, &llr->phy_capabilities);
/* Set the enable spinup period but disable the ability to send
* notify enable spinup
*/
writel(SCU_ENSPINUP_GEN_VAL(COUNT,
phy_user->notify_enable_spin_up_insertion_frequency),
&llr->notify_enable_spinup_control);
/* Write the ALIGN Insertion Ferequency for connected phy and
* inpendent of connected state
*/
clksm_value = SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(CONNECTED,
phy_user->in_connection_align_insertion_frequency);
clksm_value |= SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(GENERAL,
phy_user->align_insertion_frequency);
writel(clksm_value, &llr->clock_skew_management);
if (is_c0(ihost->pdev) || is_c1(ihost->pdev)) {
writel(0x04210400, &llr->afe_lookup_table_control);
writel(0x020A7C05, &llr->sas_primitive_timeout);
} else
writel(0x02108421, &llr->afe_lookup_table_control);
llctl = SCU_SAS_LLCTL_GEN_VAL(NO_OUTBOUND_TASK_TIMEOUT,
(u8)ihost->user_parameters.no_outbound_task_timeout);
switch (phy_user->max_speed_generation) {
case SCIC_SDS_PARM_GEN3_SPEED:
link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN3;
break;
case SCIC_SDS_PARM_GEN2_SPEED:
link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN2;
break;
default:
link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN1;
break;
}
llctl |= SCU_SAS_LLCTL_GEN_VAL(MAX_LINK_RATE, link_rate);
writel(llctl, &llr->link_layer_control);
sp_timeouts = readl(&llr->sas_phy_timeouts);
/* Clear the default 0x36 (54us) RATE_CHANGE timeout value. */
sp_timeouts &= ~SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0xFF);
/* Set RATE_CHANGE timeout value to 0x3B (59us). This ensures SCU can
* lock with 3Gb drive when SCU max rate is set to 1.5Gb.
*/
sp_timeouts |= SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0x3B);
writel(sp_timeouts, &llr->sas_phy_timeouts);
if (is_a2(ihost->pdev)) {
/* Program the max ARB time for the PHY to 700us so we
* inter-operate with the PMC expander which shuts down
* PHYs if the expander PHY generates too many breaks.
* This time value will guarantee that the initiator PHY
* will generate the break.
*/
writel(SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME,
&llr->maximum_arbitration_wait_timer_timeout);
}
/* Disable link layer hang detection, rely on the OS timeout for
* I/O timeouts.
*/
writel(0, &llr->link_layer_hang_detection_timeout);
/* We can exit the initial state to the stopped state */
sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
return SCI_SUCCESS;
}
static void phy_sata_timeout(struct timer_list *t)
{
struct sci_timer *tmr = from_timer(tmr, t, timer);
struct isci_phy *iphy = container_of(tmr, typeof(*iphy), sata_timer);
struct isci_host *ihost = iphy->owning_port->owning_controller;
unsigned long flags;
spin_lock_irqsave(&ihost->scic_lock, flags);
if (tmr->cancel)
goto done;
dev_dbg(sciphy_to_dev(iphy),
"%s: SCIC SDS Phy 0x%p did not receive signature fis before "
"timeout.\n",
__func__,
iphy);
sci_change_state(&iphy->sm, SCI_PHY_STARTING);
done:
spin_unlock_irqrestore(&ihost->scic_lock, flags);
}
/**
* phy_get_non_dummy_port() - This method returns the port currently containing
* this phy. If the phy is currently contained by the dummy port, then the phy
* is considered to not be part of a port.
*
* @iphy: This parameter specifies the phy for which to retrieve the
* containing port.
*
* This method returns a handle to a port that contains the supplied phy.
* NULL This value is returned if the phy is not part of a real
* port (i.e. it's contained in the dummy port). !NULL All other
* values indicate a handle/pointer to the port containing the phy.
*/
struct isci_port *phy_get_non_dummy_port(struct isci_phy *iphy)
{
struct isci_port *iport = iphy->owning_port;
if (iport->physical_port_index == SCIC_SDS_DUMMY_PORT)
return NULL;
return iphy->owning_port;
}
/*
* sci_phy_set_port() - This method will assign a port to the phy object.
*/
void sci_phy_set_port(
struct isci_phy *iphy,
struct isci_port *iport)
{
iphy->owning_port = iport;
if (iphy->bcn_received_while_port_unassigned) {
iphy->bcn_received_while_port_unassigned = false;
sci_port_broadcast_change_received(iphy->owning_port, iphy);
}
}
enum sci_status sci_phy_initialize(struct isci_phy *iphy,
struct scu_transport_layer_registers __iomem *tl,
struct scu_link_layer_registers __iomem *ll)
{
/* Perfrom the initialization of the TL hardware */
sci_phy_transport_layer_initialization(iphy, tl);
/* Perofrm the initialization of the PE hardware */
sci_phy_link_layer_initialization(iphy, ll);
/* There is nothing that needs to be done in this state just
* transition to the stopped state
*/
sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
return SCI_SUCCESS;
}
/**
* sci_phy_setup_transport() - This method assigns the direct attached device ID for this phy.
*
* @iphy: The phy for which the direct attached device id is to
* be assigned.
* @device_id: The direct attached device ID to assign to the phy.
* This will either be the RNi for the device or an invalid RNi if there
* is no current device assigned to the phy.
*/
void sci_phy_setup_transport(struct isci_phy *iphy, u32 device_id)
{
u32 tl_control;
writel(device_id, &iphy->transport_layer_registers->stp_rni);
/*
* The read should guarantee that the first write gets posted
* before the next write
*/
tl_control = readl(&iphy->transport_layer_registers->control);
tl_control |= SCU_TLCR_GEN_BIT(CLEAR_TCI_NCQ_MAPPING_TABLE);
writel(tl_control, &iphy->transport_layer_registers->control);
}
static void sci_phy_suspend(struct isci_phy *iphy)
{
u32 scu_sas_pcfg_value;
scu_sas_pcfg_value =
readl(&iphy->link_layer_registers->phy_configuration);
scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
writel(scu_sas_pcfg_value,
&iphy->link_layer_registers->phy_configuration);
sci_phy_setup_transport(iphy, SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX);
}
void sci_phy_resume(struct isci_phy *iphy)
{
u32 scu_sas_pcfg_value;
scu_sas_pcfg_value =
readl(&iphy->link_layer_registers->phy_configuration);
scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
writel(scu_sas_pcfg_value,
&iphy->link_layer_registers->phy_configuration);
}
void sci_phy_get_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas)
{
sas->high = readl(&iphy->link_layer_registers->source_sas_address_high);
sas->low = readl(&iphy->link_layer_registers->source_sas_address_low);
}
void sci_phy_get_attached_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas)
{
struct sas_identify_frame *iaf;
iaf = &iphy->frame_rcvd.iaf;
memcpy(sas, iaf->sas_addr, SAS_ADDR_SIZE);
}
void sci_phy_get_protocols(struct isci_phy *iphy, struct sci_phy_proto *proto)
{
proto->all = readl(&iphy->link_layer_registers->transmit_identification);
}
enum sci_status sci_phy_start(struct isci_phy *iphy)
{
enum sci_phy_states state = iphy->sm.current_state_id;
if (state != SCI_PHY_STOPPED) {
dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
__func__, phy_state_name(state));
return SCI_FAILURE_INVALID_STATE;
}
sci_change_state(&iphy->sm, SCI_PHY_STARTING);
return SCI_SUCCESS;
}
enum sci_status sci_phy_stop(struct isci_phy *iphy)
{
enum sci_phy_states state = iphy->sm.current_state_id;
switch (state) {
case SCI_PHY_SUB_INITIAL:
case SCI_PHY_SUB_AWAIT_OSSP_EN:
case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
case SCI_PHY_SUB_AWAIT_SAS_POWER:
case SCI_PHY_SUB_AWAIT_SATA_POWER:
case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
case SCI_PHY_SUB_FINAL:
case SCI_PHY_READY:
break;
default:
dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
__func__, phy_state_name(state));
return SCI_FAILURE_INVALID_STATE;
}
sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
return SCI_SUCCESS;
}
enum sci_status sci_phy_reset(struct isci_phy *iphy)
{
enum sci_phy_states state = iphy->sm.current_state_id;
if (state != SCI_PHY_READY) {
dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
__func__, phy_state_name(state));
return SCI_FAILURE_INVALID_STATE;
}
sci_change_state(&iphy->sm, SCI_PHY_RESETTING);
return SCI_SUCCESS;
}
enum sci_status sci_phy_consume_power_handler(struct isci_phy *iphy)
{
enum sci_phy_states state = iphy->sm.current_state_id;
switch (state) {
case SCI_PHY_SUB_AWAIT_SAS_POWER: {
u32 enable_spinup;
enable_spinup = readl(&iphy->link_layer_registers->notify_enable_spinup_control);
enable_spinup |= SCU_ENSPINUP_GEN_BIT(ENABLE);
writel(enable_spinup, &iphy->link_layer_registers->notify_enable_spinup_control);
/* Change state to the final state this substate machine has run to completion */
sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL);
return SCI_SUCCESS;
}
case SCI_PHY_SUB_AWAIT_SATA_POWER: {
u32 scu_sas_pcfg_value;
/* Release the spinup hold state and reset the OOB state machine */
scu_sas_pcfg_value =
readl(&iphy->link_layer_registers->phy_configuration);
scu_sas_pcfg_value &=
~(SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD) | SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE));
scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
writel(scu_sas_pcfg_value,
&iphy->link_layer_registers->phy_configuration);
/* Now restart the OOB operation */
scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
writel(scu_sas_pcfg_value,
&iphy->link_layer_registers->phy_configuration);
/* Change state to the final state this substate machine has run to completion */
sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_PHY_EN);
return SCI_SUCCESS;
}
default:
dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
__func__, phy_state_name(state));
return SCI_FAILURE_INVALID_STATE;
}
}
static void sci_phy_start_sas_link_training(struct isci_phy *iphy)
{
/* continue the link training for the phy as if it were a SAS PHY
* instead of a SATA PHY. This is done because the completion queue had a SAS
* PHY DETECTED event when the state machine was expecting a SATA PHY event.
*/
u32 phy_control;
phy_control = readl(&iphy->link_layer_registers->phy_configuration);
phy_control |= SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD);
writel(phy_control,
&iphy->link_layer_registers->phy_configuration);
sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SAS_SPEED_EN);
iphy->protocol = SAS_PROTOCOL_SSP;
}
static void sci_phy_start_sata_link_training(struct isci_phy *iphy)
{
/* This method continues the link training for the phy as if it were a SATA PHY
* instead of a SAS PHY. This is done because the completion queue had a SATA
* SPINUP HOLD event when the state machine was expecting a SAS PHY event. none
*/
sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_POWER);
iphy->protocol = SAS_PROTOCOL_SATA;
}
/**
* sci_phy_complete_link_training - perform processing common to
* all protocols upon completion of link training.
* @iphy: This parameter specifies the phy object for which link training
* has completed.
* @max_link_rate: This parameter specifies the maximum link rate to be
* associated with this phy.
* @next_state: This parameter specifies the next state for the phy's starting
* sub-state machine.
*
*/
static void sci_phy_complete_link_training(struct isci_phy *iphy,
enum sas_linkrate max_link_rate,
u32 next_state)
{
iphy->max_negotiated_speed = max_link_rate;
sci_change_state(&iphy->sm, next_state);
}
static const char *phy_event_name(u32 event_code)
{
switch (scu_get_event_code(event_code)) {
case SCU_EVENT_PORT_SELECTOR_DETECTED:
return "port selector";
case SCU_EVENT_SENT_PORT_SELECTION:
return "port selection";
case SCU_EVENT_HARD_RESET_TRANSMITTED:
return "tx hard reset";
case SCU_EVENT_HARD_RESET_RECEIVED:
return "rx hard reset";
case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
return "identify timeout";
case SCU_EVENT_LINK_FAILURE:
return "link fail";
case SCU_EVENT_SATA_SPINUP_HOLD:
return "sata spinup hold";
case SCU_EVENT_SAS_15_SSC:
case SCU_EVENT_SAS_15:
return "sas 1.5";
case SCU_EVENT_SAS_30_SSC:
case SCU_EVENT_SAS_30:
return "sas 3.0";
case SCU_EVENT_SAS_60_SSC:
case SCU_EVENT_SAS_60:
return "sas 6.0";
case SCU_EVENT_SATA_15_SSC:
case SCU_EVENT_SATA_15:
return "sata 1.5";
case SCU_EVENT_SATA_30_SSC:
case SCU_EVENT_SATA_30:
return "sata 3.0";
case SCU_EVENT_SATA_60_SSC:
case SCU_EVENT_SATA_60:
return "sata 6.0";
case SCU_EVENT_SAS_PHY_DETECTED:
return "sas detect";
case SCU_EVENT_SATA_PHY_DETECTED:
return "sata detect";
default:
return "unknown";
}
}
#define phy_event_dbg(iphy, state, code) \
dev_dbg(sciphy_to_dev(iphy), "phy-%d:%d: %s event: %s (%x)\n", \
phy_to_host(iphy)->id, iphy->phy_index, \
phy_state_name(state), phy_event_name(code), code)
#define phy_event_warn(iphy, state, code) \
dev_warn(sciphy_to_dev(iphy), "phy-%d:%d: %s event: %s (%x)\n", \
phy_to_host(iphy)->id, iphy->phy_index, \
phy_state_name(state), phy_event_name(code), code)
static void scu_link_layer_set_txcomsas_timeout(struct isci_phy *iphy, u32 timeout)
{
u32 val;
/* Extend timeout */
val = readl(&iphy->link_layer_registers->transmit_comsas_signal);
val &= ~SCU_SAS_LLTXCOMSAS_GEN_VAL(NEGTIME, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_MASK);
val |= SCU_SAS_LLTXCOMSAS_GEN_VAL(NEGTIME, timeout);
writel(val, &iphy->link_layer_registers->transmit_comsas_signal);
}
enum sci_status sci_phy_event_handler(struct isci_phy *iphy, u32 event_code)
{
enum sci_phy_states state = iphy->sm.current_state_id;
switch (state) {
case SCI_PHY_SUB_AWAIT_OSSP_EN:
switch (scu_get_event_code(event_code)) {
case SCU_EVENT_SAS_PHY_DETECTED:
sci_phy_start_sas_link_training(iphy);
iphy->is_in_link_training = true;
break;
case SCU_EVENT_SATA_SPINUP_HOLD:
sci_phy_start_sata_link_training(iphy);
iphy->is_in_link_training = true;
break;
case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
/* Extend timeout value */
scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED);
/* Start the oob/sn state machine over again */
sci_change_state(&iphy->sm, SCI_PHY_STARTING);
break;
default:
phy_event_dbg(iphy, state, event_code);
return SCI_FAILURE;
}
return SCI_SUCCESS;
case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
switch (scu_get_event_code(event_code)) {
case SCU_EVENT_SAS_PHY_DETECTED:
/*
* Why is this being reported again by the controller?
* We would re-enter this state so just stay here */
break;
case SCU_EVENT_SAS_15:
case SCU_EVENT_SAS_15_SSC:
sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS,
SCI_PHY_SUB_AWAIT_IAF_UF);
break;
case SCU_EVENT_SAS_30:
case SCU_EVENT_SAS_30_SSC:
sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS,
SCI_PHY_SUB_AWAIT_IAF_UF);
break;
case SCU_EVENT_SAS_60:
case SCU_EVENT_SAS_60_SSC:
sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS,
SCI_PHY_SUB_AWAIT_IAF_UF);
break;
case SCU_EVENT_SATA_SPINUP_HOLD:
/*
* We were doing SAS PHY link training and received a SATA PHY event
* continue OOB/SN as if this were a SATA PHY */
sci_phy_start_sata_link_training(iphy);
break;
case SCU_EVENT_LINK_FAILURE:
/* Change the timeout value to default */
scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
/* Link failure change state back to the starting state */
sci_change_state(&iphy->sm, SCI_PHY_STARTING);
break;
case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
/* Extend the timeout value */
scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED);
/* Start the oob/sn state machine over again */
sci_change_state(&iphy->sm, SCI_PHY_STARTING);
break;
default:
phy_event_warn(iphy, state, event_code);
return SCI_FAILURE;
}
return SCI_SUCCESS;
case SCI_PHY_SUB_AWAIT_IAF_UF:
switch (scu_get_event_code(event_code)) {
case SCU_EVENT_SAS_PHY_DETECTED:
/* Backup the state machine */
sci_phy_start_sas_link_training(iphy);
break;
case SCU_EVENT_SATA_SPINUP_HOLD:
/* We were doing SAS PHY link training and received a
* SATA PHY event continue OOB/SN as if this were a
* SATA PHY
*/
sci_phy_start_sata_link_training(iphy);
break;
case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
/* Extend the timeout value */
scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED);
/* Start the oob/sn state machine over again */
sci_change_state(&iphy->sm, SCI_PHY_STARTING);
break;
case SCU_EVENT_LINK_FAILURE:
scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
fallthrough;
case SCU_EVENT_HARD_RESET_RECEIVED:
/* Start the oob/sn state machine over again */
sci_change_state(&iphy->sm, SCI_PHY_STARTING);
break;
default:
phy_event_warn(iphy, state, event_code);
return SCI_FAILURE;
}
return SCI_SUCCESS;
case SCI_PHY_SUB_AWAIT_SAS_POWER:
switch (scu_get_event_code(event_code)) {
case SCU_EVENT_LINK_FAILURE:
/* Change the timeout value to default */
scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
/* Link failure change state back to the starting state */
sci_change_state(&iphy->sm, SCI_PHY_STARTING);
break;
default:
phy_event_warn(iphy, state, event_code);
return SCI_FAILURE;
}
return SCI_SUCCESS;
case SCI_PHY_SUB_AWAIT_SATA_POWER:
switch (scu_get_event_code(event_code)) {
case SCU_EVENT_LINK_FAILURE:
/* Change the timeout value to default */
scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
/* Link failure change state back to the starting state */
sci_change_state(&iphy->sm, SCI_PHY_STARTING);
break;
case SCU_EVENT_SATA_SPINUP_HOLD:
/* These events are received every 10ms and are
* expected while in this state
*/
break;
case SCU_EVENT_SAS_PHY_DETECTED:
/* There has been a change in the phy type before OOB/SN for the
* SATA finished start down the SAS link traning path.
*/
sci_phy_start_sas_link_training(iphy);
break;
default:
phy_event_warn(iphy, state, event_code);
return SCI_FAILURE;
}
return SCI_SUCCESS;
case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
switch (scu_get_event_code(event_code)) {
case SCU_EVENT_LINK_FAILURE:
/* Change the timeout value to default */
scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
/* Link failure change state back to the starting state */
sci_change_state(&iphy->sm, SCI_PHY_STARTING);
break;
case SCU_EVENT_SATA_SPINUP_HOLD:
/* These events might be received since we dont know how many may be in
* the completion queue while waiting for power
*/
break;
case SCU_EVENT_SATA_PHY_DETECTED:
iphy->protocol = SAS_PROTOCOL_SATA;
/* We have received the SATA PHY notification change state */
sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN);
break;
case SCU_EVENT_SAS_PHY_DETECTED:
/* There has been a change in the phy type before OOB/SN for the
* SATA finished start down the SAS link traning path.
*/
sci_phy_start_sas_link_training(iphy);
break;
default:
phy_event_warn(iphy, state, event_code);
return SCI_FAILURE;
}
return SCI_SUCCESS;
case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
switch (scu_get_event_code(event_code)) {
case SCU_EVENT_SATA_PHY_DETECTED:
/*
* The hardware reports multiple SATA PHY detected events
* ignore the extras */
break;
case SCU_EVENT_SATA_15:
case SCU_EVENT_SATA_15_SSC:
sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS,
SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
break;
case SCU_EVENT_SATA_30:
case SCU_EVENT_SATA_30_SSC:
sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS,
SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
break;
case SCU_EVENT_SATA_60:
case SCU_EVENT_SATA_60_SSC:
sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS,
SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
break;
case SCU_EVENT_LINK_FAILURE:
/* Change the timeout value to default */
scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
/* Link failure change state back to the starting state */
sci_change_state(&iphy->sm, SCI_PHY_STARTING);
break;
case SCU_EVENT_SAS_PHY_DETECTED:
/*
* There has been a change in the phy type before OOB/SN for the
* SATA finished start down the SAS link traning path. */
sci_phy_start_sas_link_training(iphy);
break;
default:
phy_event_warn(iphy, state, event_code);
return SCI_FAILURE;
}
return SCI_SUCCESS;
case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
switch (scu_get_event_code(event_code)) {
case SCU_EVENT_SATA_PHY_DETECTED:
/* Backup the state machine */
sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN);
break;
case SCU_EVENT_LINK_FAILURE:
/* Change the timeout value to default */
scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
/* Link failure change state back to the starting state */
sci_change_state(&iphy->sm, SCI_PHY_STARTING);
break;
default:
phy_event_warn(iphy, state, event_code);
return SCI_FAILURE;
}
return SCI_SUCCESS;
case SCI_PHY_READY:
switch (scu_get_event_code(event_code)) {
case SCU_EVENT_LINK_FAILURE:
/* Set default timeout */
scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
/* Link failure change state back to the starting state */
sci_change_state(&iphy->sm, SCI_PHY_STARTING);
break;
case SCU_EVENT_BROADCAST_CHANGE:
case SCU_EVENT_BROADCAST_SES:
case SCU_EVENT_BROADCAST_RESERVED0:
case SCU_EVENT_BROADCAST_RESERVED1:
case SCU_EVENT_BROADCAST_EXPANDER:
case SCU_EVENT_BROADCAST_AEN:
/* Broadcast change received. Notify the port. */
if (phy_get_non_dummy_port(iphy) != NULL)
sci_port_broadcast_change_received(iphy->owning_port, iphy);
else
iphy->bcn_received_while_port_unassigned = true;
break;
case SCU_EVENT_BROADCAST_RESERVED3:
case SCU_EVENT_BROADCAST_RESERVED4:
default:
phy_event_warn(iphy, state, event_code);
return SCI_FAILURE_INVALID_STATE;
}
return SCI_SUCCESS;
case SCI_PHY_RESETTING:
switch (scu_get_event_code(event_code)) {
case SCU_EVENT_HARD_RESET_TRANSMITTED:
/* Link failure change state back to the starting state */
sci_change_state(&iphy->sm, SCI_PHY_STARTING);
break;
default:
phy_event_warn(iphy, state, event_code);
return SCI_FAILURE_INVALID_STATE;
}
return SCI_SUCCESS;
default:
dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
__func__, phy_state_name(state));
return SCI_FAILURE_INVALID_STATE;
}
}
enum sci_status sci_phy_frame_handler(struct isci_phy *iphy, u32 frame_index)
{
enum sci_phy_states state = iphy->sm.current_state_id;
struct isci_host *ihost = iphy->owning_port->owning_controller;
enum sci_status result;
unsigned long flags;
switch (state) {
case SCI_PHY_SUB_AWAIT_IAF_UF: {
u32 *frame_words;
struct sas_identify_frame iaf;
result = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
frame_index,
(void **)&frame_words);
if (result != SCI_SUCCESS)
return result;
sci_swab32_cpy(&iaf, frame_words, sizeof(iaf) / sizeof(u32));
if (iaf.frame_type == 0) {
u32 state;
spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags);
memcpy(&iphy->frame_rcvd.iaf, &iaf, sizeof(iaf));
spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags);
if (iaf.smp_tport) {
/* We got the IAF for an expander PHY go to the final
* state since there are no power requirements for
* expander phys.
*/
state = SCI_PHY_SUB_FINAL;
} else {
/* We got the IAF we can now go to the await spinup
* semaphore state
*/
state = SCI_PHY_SUB_AWAIT_SAS_POWER;
}
sci_change_state(&iphy->sm, state);
result = SCI_SUCCESS;
} else
dev_warn(sciphy_to_dev(iphy),
"%s: PHY starting substate machine received "
"unexpected frame id %x\n",
__func__, frame_index);
sci_controller_release_frame(ihost, frame_index);
return result;
}
case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: {
struct dev_to_host_fis *frame_header;
u32 *fis_frame_data;
result = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
frame_index,
(void **)&frame_header);
if (result != SCI_SUCCESS)
return result;
if ((frame_header->fis_type == FIS_REGD2H) &&
!(frame_header->status & ATA_BUSY)) {
sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
frame_index,
(void **)&fis_frame_data);
spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags);
sci_controller_copy_sata_response(&iphy->frame_rcvd.fis,
frame_header,
fis_frame_data);
spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags);
/* got IAF we can now go to the await spinup semaphore state */
sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL);
result = SCI_SUCCESS;
} else
dev_warn(sciphy_to_dev(iphy),
"%s: PHY starting substate machine received "
"unexpected frame id %x\n",
__func__, frame_index);
/* Regardless of the result we are done with this frame with it */
sci_controller_release_frame(ihost, frame_index);
return result;
}
default:
dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
__func__, phy_state_name(state));
return SCI_FAILURE_INVALID_STATE;
}
}
static void sci_phy_starting_initial_substate_enter(struct sci_base_state_machine *sm)
{
struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
/* This is just an temporary state go off to the starting state */
sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_OSSP_EN);
}
static void sci_phy_starting_await_sas_power_substate_enter(struct sci_base_state_machine *sm)
{
struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
struct isci_host *ihost = iphy->owning_port->owning_controller;
sci_controller_power_control_queue_insert(ihost, iphy);
}
static void sci_phy_starting_await_sas_power_substate_exit(struct sci_base_state_machine *sm)
{
struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
struct isci_host *ihost = iphy->owning_port->owning_controller;
sci_controller_power_control_queue_remove(ihost, iphy);
}
static void sci_phy_starting_await_sata_power_substate_enter(struct sci_base_state_machine *sm)
{
struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
struct isci_host *ihost = iphy->owning_port->owning_controller;
sci_controller_power_control_queue_insert(ihost, iphy);
}
static void sci_phy_starting_await_sata_power_substate_exit(struct sci_base_state_machine *sm)
{
struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
struct isci_host *ihost = iphy->owning_port->owning_controller;
sci_controller_power_control_queue_remove(ihost, iphy);
}
static void sci_phy_starting_await_sata_phy_substate_enter(struct sci_base_state_machine *sm)
{
struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT);
}
static void sci_phy_starting_await_sata_phy_substate_exit(struct sci_base_state_machine *sm)
{
struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
sci_del_timer(&iphy->sata_timer);
}
static void sci_phy_starting_await_sata_speed_substate_enter(struct sci_base_state_machine *sm)
{
struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT);
}
static void sci_phy_starting_await_sata_speed_substate_exit(struct sci_base_state_machine *sm)
{
struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
sci_del_timer(&iphy->sata_timer);
}
static void sci_phy_starting_await_sig_fis_uf_substate_enter(struct sci_base_state_machine *sm)
{
struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
if (sci_port_link_detected(iphy->owning_port, iphy)) {
/*
* Clear the PE suspend condition so we can actually
* receive SIG FIS
* The hardware will not respond to the XRDY until the PE
* suspend condition is cleared.
*/
sci_phy_resume(iphy);
sci_mod_timer(&iphy->sata_timer,
SCIC_SDS_SIGNATURE_FIS_TIMEOUT);
} else
iphy->is_in_link_training = false;
}
static void sci_phy_starting_await_sig_fis_uf_substate_exit(struct sci_base_state_machine *sm)
{
struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
sci_del_timer(&iphy->sata_timer);
}
static void sci_phy_starting_final_substate_enter(struct sci_base_state_machine *sm)
{
struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
/* State machine has run to completion so exit out and change
* the base state machine to the ready state
*/
sci_change_state(&iphy->sm, SCI_PHY_READY);
}
/**
* scu_link_layer_stop_protocol_engine()
* @iphy: This is the struct isci_phy object to stop.
*
* This method will stop the struct isci_phy object. This does not reset the
* protocol engine it just suspends it and places it in a state where it will
* not cause the end device to power up. none
*/
static void scu_link_layer_stop_protocol_engine(
struct isci_phy *iphy)
{
u32 scu_sas_pcfg_value;
u32 enable_spinup_value;
/* Suspend the protocol engine and place it in a sata spinup hold state */
scu_sas_pcfg_value =
readl(&iphy->link_layer_registers->phy_configuration);
scu_sas_pcfg_value |=
(SCU_SAS_PCFG_GEN_BIT(OOB_RESET) |
SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE) |
SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD));
writel(scu_sas_pcfg_value,
&iphy->link_layer_registers->phy_configuration);
/* Disable the notify enable spinup primitives */
enable_spinup_value = readl(&iphy->link_layer_registers->notify_enable_spinup_control);
enable_spinup_value &= ~SCU_ENSPINUP_GEN_BIT(ENABLE);
writel(enable_spinup_value, &iphy->link_layer_registers->notify_enable_spinup_control);
}
static void scu_link_layer_start_oob(struct isci_phy *iphy)
{
struct scu_link_layer_registers __iomem *ll = iphy->link_layer_registers;
u32 val;
/** Reset OOB sequence - start */
val = readl(&ll->phy_configuration);
val &= ~(SCU_SAS_PCFG_GEN_BIT(OOB_RESET) |
SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE) |
SCU_SAS_PCFG_GEN_BIT(HARD_RESET));
writel(val, &ll->phy_configuration);
readl(&ll->phy_configuration); /* flush */
/** Reset OOB sequence - end */
/** Start OOB sequence - start */
val = readl(&ll->phy_configuration);
val |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
writel(val, &ll->phy_configuration);
readl(&ll->phy_configuration); /* flush */
/** Start OOB sequence - end */
}
/**
* scu_link_layer_tx_hard_reset()
* @iphy: This is the struct isci_phy object to stop.
*
* This method will transmit a hard reset request on the specified phy. The SCU
* hardware requires that we reset the OOB state machine and set the hard reset
* bit in the phy configuration register. We then must start OOB over with the
* hard reset bit set.
*/
static void scu_link_layer_tx_hard_reset(
struct isci_phy *iphy)
{
u32 phy_configuration_value;
/*
* SAS Phys must wait for the HARD_RESET_TX event notification to transition
* to the starting state. */
phy_configuration_value =
readl(&iphy->link_layer_registers->phy_configuration);
phy_configuration_value &= ~(SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE));
phy_configuration_value |=
(SCU_SAS_PCFG_GEN_BIT(HARD_RESET) |
SCU_SAS_PCFG_GEN_BIT(OOB_RESET));
writel(phy_configuration_value,
&iphy->link_layer_registers->phy_configuration);
/* Now take the OOB state machine out of reset */
phy_configuration_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
phy_configuration_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
writel(phy_configuration_value,
&iphy->link_layer_registers->phy_configuration);
}
static void sci_phy_stopped_state_enter(struct sci_base_state_machine *sm)
{
struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
struct isci_port *iport = iphy->owning_port;
struct isci_host *ihost = iport->owning_controller;
/*
* @todo We need to get to the controller to place this PE in a
* reset state
*/
sci_del_timer(&iphy->sata_timer);
scu_link_layer_stop_protocol_engine(iphy);
if (iphy->sm.previous_state_id != SCI_PHY_INITIAL)
sci_controller_link_down(ihost, phy_get_non_dummy_port(iphy), iphy);
}
static void sci_phy_starting_state_enter(struct sci_base_state_machine *sm)
{
struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
struct isci_port *iport = iphy->owning_port;
struct isci_host *ihost = iport->owning_controller;
scu_link_layer_stop_protocol_engine(iphy);
scu_link_layer_start_oob(iphy);
/* We don't know what kind of phy we are going to be just yet */
iphy->protocol = SAS_PROTOCOL_NONE;
iphy->bcn_received_while_port_unassigned = false;
if (iphy->sm.previous_state_id == SCI_PHY_READY)
sci_controller_link_down(ihost, phy_get_non_dummy_port(iphy), iphy);
sci_change_state(&iphy->sm, SCI_PHY_SUB_INITIAL);
}
static void sci_phy_ready_state_enter(struct sci_base_state_machine *sm)
{
struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
struct isci_port *iport = iphy->owning_port;
struct isci_host *ihost = iport->owning_controller;
sci_controller_link_up(ihost, phy_get_non_dummy_port(iphy), iphy);
}
static void sci_phy_ready_state_exit(struct sci_base_state_machine *sm)
{
struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
sci_phy_suspend(iphy);
}
static void sci_phy_resetting_state_enter(struct sci_base_state_machine *sm)
{
struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
/* The phy is being reset, therefore deactivate it from the port. In
* the resetting state we don't notify the user regarding link up and
* link down notifications
*/
sci_port_deactivate_phy(iphy->owning_port, iphy, false);
if (iphy->protocol == SAS_PROTOCOL_SSP) {
scu_link_layer_tx_hard_reset(iphy);
} else {
/* The SCU does not need to have a discrete reset state so
* just go back to the starting state.
*/
sci_change_state(&iphy->sm, SCI_PHY_STARTING);
}
}
static const struct sci_base_state sci_phy_state_table[] = {
[SCI_PHY_INITIAL] = { },
[SCI_PHY_STOPPED] = {
.enter_state = sci_phy_stopped_state_enter,
},
[SCI_PHY_STARTING] = {
.enter_state = sci_phy_starting_state_enter,
},
[SCI_PHY_SUB_INITIAL] = {
.enter_state = sci_phy_starting_initial_substate_enter,
},
[SCI_PHY_SUB_AWAIT_OSSP_EN] = { },
[SCI_PHY_SUB_AWAIT_SAS_SPEED_EN] = { },
[SCI_PHY_SUB_AWAIT_IAF_UF] = { },
[SCI_PHY_SUB_AWAIT_SAS_POWER] = {
.enter_state = sci_phy_starting_await_sas_power_substate_enter,
.exit_state = sci_phy_starting_await_sas_power_substate_exit,
},
[SCI_PHY_SUB_AWAIT_SATA_POWER] = {
.enter_state = sci_phy_starting_await_sata_power_substate_enter,
.exit_state = sci_phy_starting_await_sata_power_substate_exit
},
[SCI_PHY_SUB_AWAIT_SATA_PHY_EN] = {
.enter_state = sci_phy_starting_await_sata_phy_substate_enter,
.exit_state = sci_phy_starting_await_sata_phy_substate_exit
},
[SCI_PHY_SUB_AWAIT_SATA_SPEED_EN] = {
.enter_state = sci_phy_starting_await_sata_speed_substate_enter,
.exit_state = sci_phy_starting_await_sata_speed_substate_exit
},
[SCI_PHY_SUB_AWAIT_SIG_FIS_UF] = {
.enter_state = sci_phy_starting_await_sig_fis_uf_substate_enter,
.exit_state = sci_phy_starting_await_sig_fis_uf_substate_exit
},
[SCI_PHY_SUB_FINAL] = {
.enter_state = sci_phy_starting_final_substate_enter,
},
[SCI_PHY_READY] = {
.enter_state = sci_phy_ready_state_enter,
.exit_state = sci_phy_ready_state_exit,
},
[SCI_PHY_RESETTING] = {
.enter_state = sci_phy_resetting_state_enter,
},
[SCI_PHY_FINAL] = { },
};
void sci_phy_construct(struct isci_phy *iphy,
struct isci_port *iport, u8 phy_index)
{
sci_init_sm(&iphy->sm, sci_phy_state_table, SCI_PHY_INITIAL);
/* Copy the rest of the input data to our locals */
iphy->owning_port = iport;
iphy->phy_index = phy_index;
iphy->bcn_received_while_port_unassigned = false;
iphy->protocol = SAS_PROTOCOL_NONE;
iphy->link_layer_registers = NULL;
iphy->max_negotiated_speed = SAS_LINK_RATE_UNKNOWN;
/* Create the SIGNATURE FIS Timeout timer for this phy */
sci_init_timer(&iphy->sata_timer, phy_sata_timeout);
}
void isci_phy_init(struct isci_phy *iphy, struct isci_host *ihost, int index)
{
struct sci_oem_params *oem = &ihost->oem_parameters;
u64 sci_sas_addr;
__be64 sas_addr;
sci_sas_addr = oem->phys[index].sas_address.high;
sci_sas_addr <<= 32;
sci_sas_addr |= oem->phys[index].sas_address.low;
sas_addr = cpu_to_be64(sci_sas_addr);
memcpy(iphy->sas_addr, &sas_addr, sizeof(sas_addr));
iphy->sas_phy.enabled = 0;
iphy->sas_phy.id = index;
iphy->sas_phy.sas_addr = &iphy->sas_addr[0];
iphy->sas_phy.frame_rcvd = (u8 *)&iphy->frame_rcvd;
iphy->sas_phy.ha = &ihost->sas_ha;
iphy->sas_phy.lldd_phy = iphy;
iphy->sas_phy.enabled = 1;
iphy->sas_phy.class = SAS;
iphy->sas_phy.iproto = SAS_PROTOCOL_ALL;
iphy->sas_phy.tproto = 0;
iphy->sas_phy.type = PHY_TYPE_PHYSICAL;
iphy->sas_phy.role = PHY_ROLE_INITIATOR;
iphy->sas_phy.oob_mode = OOB_NOT_CONNECTED;
iphy->sas_phy.linkrate = SAS_LINK_RATE_UNKNOWN;
memset(&iphy->frame_rcvd, 0, sizeof(iphy->frame_rcvd));
}
/**
* isci_phy_control() - This function is one of the SAS Domain Template
* functions. This is a phy management function.
* @sas_phy: This parameter specifies the sphy being controlled.
* @func: This parameter specifies the phy control function being invoked.
* @buf: This parameter is specific to the phy function being invoked.
*
* status, zero indicates success.
*/
int isci_phy_control(struct asd_sas_phy *sas_phy,
enum phy_func func,
void *buf)
{
int ret = 0;
struct isci_phy *iphy = sas_phy->lldd_phy;
struct asd_sas_port *port = sas_phy->port;
struct isci_host *ihost = sas_phy->ha->lldd_ha;
unsigned long flags;
dev_dbg(&ihost->pdev->dev,
"%s: phy %p; func %d; buf %p; isci phy %p, port %p\n",
__func__, sas_phy, func, buf, iphy, port);
switch (func) {
case PHY_FUNC_DISABLE:
spin_lock_irqsave(&ihost->scic_lock, flags);
scu_link_layer_start_oob(iphy);
sci_phy_stop(iphy);
spin_unlock_irqrestore(&ihost->scic_lock, flags);
break;
case PHY_FUNC_LINK_RESET:
spin_lock_irqsave(&ihost->scic_lock, flags);
scu_link_layer_start_oob(iphy);
sci_phy_stop(iphy);
sci_phy_start(iphy);
spin_unlock_irqrestore(&ihost->scic_lock, flags);
break;
case PHY_FUNC_HARD_RESET:
if (!port)
return -ENODEV;
ret = isci_port_perform_hard_reset(ihost, port->lldd_port, iphy);
break;
case PHY_FUNC_GET_EVENTS: {
struct scu_link_layer_registers __iomem *r;
struct sas_phy *phy = sas_phy->phy;
r = iphy->link_layer_registers;
phy->running_disparity_error_count = readl(&r->running_disparity_error_count);
phy->loss_of_dword_sync_count = readl(&r->loss_of_sync_error_count);
phy->phy_reset_problem_count = readl(&r->phy_reset_problem_count);
phy->invalid_dword_count = readl(&r->invalid_dword_counter);
break;
}
default:
dev_dbg(&ihost->pdev->dev,
"%s: phy %p; func %d NOT IMPLEMENTED!\n",
__func__, sas_phy, func);
ret = -ENOSYS;
break;
}
return ret;
}