linux-zen-desktop/drivers/soc/fsl/dpio/dpio-service.c

899 lines
24 KiB
C
Raw Normal View History

2023-08-30 17:31:07 +02:00
// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
/*
* Copyright 2014-2016 Freescale Semiconductor Inc.
* Copyright 2016-2019 NXP
*
*/
#include <linux/types.h>
#include <linux/fsl/mc.h>
#include <soc/fsl/dpaa2-io.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/dim.h>
#include <linux/slab.h>
#include "dpio.h"
#include "qbman-portal.h"
struct dpaa2_io {
struct dpaa2_io_desc dpio_desc;
struct qbman_swp_desc swp_desc;
struct qbman_swp *swp;
struct list_head node;
/* protect against multiple management commands */
spinlock_t lock_mgmt_cmd;
/* protect notifications list */
spinlock_t lock_notifications;
struct list_head notifications;
struct device *dev;
/* Net DIM */
struct dim rx_dim;
/* protect against concurrent Net DIM updates */
spinlock_t dim_lock;
u16 event_ctr;
u64 bytes;
u64 frames;
};
struct dpaa2_io_store {
unsigned int max;
dma_addr_t paddr;
struct dpaa2_dq *vaddr;
void *alloced_addr; /* unaligned value from kmalloc() */
unsigned int idx; /* position of the next-to-be-returned entry */
struct qbman_swp *swp; /* portal used to issue VDQCR */
struct device *dev; /* device used for DMA mapping */
};
/* keep a per cpu array of DPIOs for fast access */
static struct dpaa2_io *dpio_by_cpu[NR_CPUS];
static struct list_head dpio_list = LIST_HEAD_INIT(dpio_list);
static DEFINE_SPINLOCK(dpio_list_lock);
static inline struct dpaa2_io *service_select_by_cpu(struct dpaa2_io *d,
int cpu)
{
if (d)
return d;
if (cpu != DPAA2_IO_ANY_CPU && cpu >= num_possible_cpus())
return NULL;
/*
* If cpu == -1, choose the current cpu, with no guarantees about
* potentially being migrated away.
*/
if (cpu < 0)
cpu = raw_smp_processor_id();
/* If a specific cpu was requested, pick it up immediately */
return dpio_by_cpu[cpu];
}
static inline struct dpaa2_io *service_select(struct dpaa2_io *d)
{
if (d)
return d;
d = service_select_by_cpu(d, -1);
if (d)
return d;
spin_lock(&dpio_list_lock);
d = list_entry(dpio_list.next, struct dpaa2_io, node);
list_del(&d->node);
list_add_tail(&d->node, &dpio_list);
spin_unlock(&dpio_list_lock);
return d;
}
/**
* dpaa2_io_service_select() - return a dpaa2_io service affined to this cpu
* @cpu: the cpu id
*
* Return the affine dpaa2_io service, or NULL if there is no service affined
* to the specified cpu. If DPAA2_IO_ANY_CPU is used, return the next available
* service.
*/
struct dpaa2_io *dpaa2_io_service_select(int cpu)
{
if (cpu == DPAA2_IO_ANY_CPU)
return service_select(NULL);
return service_select_by_cpu(NULL, cpu);
}
EXPORT_SYMBOL_GPL(dpaa2_io_service_select);
static void dpaa2_io_dim_work(struct work_struct *w)
{
struct dim *dim = container_of(w, struct dim, work);
struct dim_cq_moder moder =
net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
struct dpaa2_io *d = container_of(dim, struct dpaa2_io, rx_dim);
dpaa2_io_set_irq_coalescing(d, moder.usec);
dim->state = DIM_START_MEASURE;
}
/**
* dpaa2_io_create() - create a dpaa2_io object.
* @desc: the dpaa2_io descriptor
* @dev: the actual DPIO device
*
* Activates a "struct dpaa2_io" corresponding to the given config of an actual
* DPIO object.
*
* Return a valid dpaa2_io object for success, or NULL for failure.
*/
struct dpaa2_io *dpaa2_io_create(const struct dpaa2_io_desc *desc,
struct device *dev)
{
struct dpaa2_io *obj = kmalloc(sizeof(*obj), GFP_KERNEL);
u32 qman_256_cycles_per_ns;
if (!obj)
return NULL;
/* check if CPU is out of range (-1 means any cpu) */
if (desc->cpu != DPAA2_IO_ANY_CPU && desc->cpu >= num_possible_cpus()) {
kfree(obj);
return NULL;
}
obj->dpio_desc = *desc;
obj->swp_desc.cena_bar = obj->dpio_desc.regs_cena;
obj->swp_desc.cinh_bar = obj->dpio_desc.regs_cinh;
obj->swp_desc.qman_clk = obj->dpio_desc.qman_clk;
obj->swp_desc.qman_version = obj->dpio_desc.qman_version;
/* Compute how many 256 QBMAN cycles fit into one ns. This is because
* the interrupt timeout period register needs to be specified in QBMAN
* clock cycles in increments of 256.
*/
qman_256_cycles_per_ns = 256000 / (obj->swp_desc.qman_clk / 1000000);
obj->swp_desc.qman_256_cycles_per_ns = qman_256_cycles_per_ns;
obj->swp = qbman_swp_init(&obj->swp_desc);
if (!obj->swp) {
kfree(obj);
return NULL;
}
INIT_LIST_HEAD(&obj->node);
spin_lock_init(&obj->lock_mgmt_cmd);
spin_lock_init(&obj->lock_notifications);
spin_lock_init(&obj->dim_lock);
INIT_LIST_HEAD(&obj->notifications);
/* For now only enable DQRR interrupts */
qbman_swp_interrupt_set_trigger(obj->swp,
QBMAN_SWP_INTERRUPT_DQRI);
qbman_swp_interrupt_clear_status(obj->swp, 0xffffffff);
if (obj->dpio_desc.receives_notifications)
qbman_swp_push_set(obj->swp, 0, 1);
spin_lock(&dpio_list_lock);
list_add_tail(&obj->node, &dpio_list);
if (desc->cpu >= 0 && !dpio_by_cpu[desc->cpu])
dpio_by_cpu[desc->cpu] = obj;
spin_unlock(&dpio_list_lock);
obj->dev = dev;
memset(&obj->rx_dim, 0, sizeof(obj->rx_dim));
INIT_WORK(&obj->rx_dim.work, dpaa2_io_dim_work);
obj->event_ctr = 0;
obj->bytes = 0;
obj->frames = 0;
return obj;
}
/**
* dpaa2_io_down() - release the dpaa2_io object.
* @d: the dpaa2_io object to be released.
*
* The "struct dpaa2_io" type can represent an individual DPIO object (as
* described by "struct dpaa2_io_desc") or an instance of a "DPIO service",
* which can be used to group/encapsulate multiple DPIO objects. In all cases,
* each handle obtained should be released using this function.
*/
void dpaa2_io_down(struct dpaa2_io *d)
{
spin_lock(&dpio_list_lock);
dpio_by_cpu[d->dpio_desc.cpu] = NULL;
list_del(&d->node);
spin_unlock(&dpio_list_lock);
kfree(d);
}
#define DPAA_POLL_MAX 32
/**
* dpaa2_io_irq() - ISR for DPIO interrupts
*
* @obj: the given DPIO object.
*
* Return IRQ_HANDLED for success or IRQ_NONE if there
* were no pending interrupts.
*/
irqreturn_t dpaa2_io_irq(struct dpaa2_io *obj)
{
const struct dpaa2_dq *dq;
int max = 0;
struct qbman_swp *swp;
u32 status;
obj->event_ctr++;
swp = obj->swp;
status = qbman_swp_interrupt_read_status(swp);
if (!status)
return IRQ_NONE;
dq = qbman_swp_dqrr_next(swp);
while (dq) {
if (qbman_result_is_SCN(dq)) {
struct dpaa2_io_notification_ctx *ctx;
u64 q64;
q64 = qbman_result_SCN_ctx(dq);
ctx = (void *)(uintptr_t)q64;
ctx->cb(ctx);
} else {
pr_crit("fsl-mc-dpio: Unrecognised/ignored DQRR entry\n");
}
qbman_swp_dqrr_consume(swp, dq);
++max;
if (max > DPAA_POLL_MAX)
goto done;
dq = qbman_swp_dqrr_next(swp);
}
done:
qbman_swp_interrupt_clear_status(swp, status);
qbman_swp_interrupt_set_inhibit(swp, 0);
return IRQ_HANDLED;
}
/**
* dpaa2_io_get_cpu() - get the cpu associated with a given DPIO object
*
* @d: the given DPIO object.
*
* Return the cpu associated with the DPIO object
*/
int dpaa2_io_get_cpu(struct dpaa2_io *d)
{
return d->dpio_desc.cpu;
}
EXPORT_SYMBOL(dpaa2_io_get_cpu);
/**
* dpaa2_io_service_register() - Prepare for servicing of FQDAN or CDAN
* notifications on the given DPIO service.
* @d: the given DPIO service.
* @ctx: the notification context.
* @dev: the device that requests the register
*
* The caller should make the MC command to attach a DPAA2 object to
* a DPIO after this function completes successfully. In that way:
* (a) The DPIO service is "ready" to handle a notification arrival
* (which might happen before the "attach" command to MC has
* returned control of execution back to the caller)
* (b) The DPIO service can provide back to the caller the 'dpio_id' and
* 'qman64' parameters that it should pass along in the MC command
* in order for the object to be configured to produce the right
* notification fields to the DPIO service.
*
* Return 0 for success, or -ENODEV for failure.
*/
int dpaa2_io_service_register(struct dpaa2_io *d,
struct dpaa2_io_notification_ctx *ctx,
struct device *dev)
{
struct device_link *link;
unsigned long irqflags;
d = service_select_by_cpu(d, ctx->desired_cpu);
if (!d)
return -ENODEV;
link = device_link_add(dev, d->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
if (!link)
return -EINVAL;
ctx->dpio_id = d->dpio_desc.dpio_id;
ctx->qman64 = (u64)(uintptr_t)ctx;
ctx->dpio_private = d;
spin_lock_irqsave(&d->lock_notifications, irqflags);
list_add(&ctx->node, &d->notifications);
spin_unlock_irqrestore(&d->lock_notifications, irqflags);
/* Enable the generation of CDAN notifications */
if (ctx->is_cdan)
return qbman_swp_CDAN_set_context_enable(d->swp,
(u16)ctx->id,
ctx->qman64);
return 0;
}
EXPORT_SYMBOL_GPL(dpaa2_io_service_register);
/**
* dpaa2_io_service_deregister - The opposite of 'register'.
* @service: the given DPIO service.
* @ctx: the notification context.
* @dev: the device that requests to be deregistered
*
* This function should be called only after sending the MC command to
* to detach the notification-producing device from the DPIO.
*/
void dpaa2_io_service_deregister(struct dpaa2_io *service,
struct dpaa2_io_notification_ctx *ctx,
struct device *dev)
{
struct dpaa2_io *d = ctx->dpio_private;
unsigned long irqflags;
if (ctx->is_cdan)
qbman_swp_CDAN_disable(d->swp, (u16)ctx->id);
spin_lock_irqsave(&d->lock_notifications, irqflags);
list_del(&ctx->node);
spin_unlock_irqrestore(&d->lock_notifications, irqflags);
}
EXPORT_SYMBOL_GPL(dpaa2_io_service_deregister);
/**
* dpaa2_io_service_rearm() - Rearm the notification for the given DPIO service.
* @d: the given DPIO service.
* @ctx: the notification context.
*
* Once a FQDAN/CDAN has been produced, the corresponding FQ/channel is
* considered "disarmed". Ie. the user can issue pull dequeue operations on that
* traffic source for as long as it likes. Eventually it may wish to "rearm"
* that source to allow it to produce another FQDAN/CDAN, that's what this
* function achieves.
*
* Return 0 for success.
*/
int dpaa2_io_service_rearm(struct dpaa2_io *d,
struct dpaa2_io_notification_ctx *ctx)
{
unsigned long irqflags;
int err;
d = service_select_by_cpu(d, ctx->desired_cpu);
if (!unlikely(d))
return -ENODEV;
spin_lock_irqsave(&d->lock_mgmt_cmd, irqflags);
if (ctx->is_cdan)
err = qbman_swp_CDAN_enable(d->swp, (u16)ctx->id);
else
err = qbman_swp_fq_schedule(d->swp, ctx->id);
spin_unlock_irqrestore(&d->lock_mgmt_cmd, irqflags);
return err;
}
EXPORT_SYMBOL_GPL(dpaa2_io_service_rearm);
/**
* dpaa2_io_service_pull_fq() - pull dequeue functions from a fq.
* @d: the given DPIO service.
* @fqid: the given frame queue id.
* @s: the dpaa2_io_store object for the result.
*
* Return 0 for success, or error code for failure.
*/
int dpaa2_io_service_pull_fq(struct dpaa2_io *d, u32 fqid,
struct dpaa2_io_store *s)
{
struct qbman_pull_desc pd;
int err;
qbman_pull_desc_clear(&pd);
qbman_pull_desc_set_storage(&pd, s->vaddr, s->paddr, 1);
qbman_pull_desc_set_numframes(&pd, (u8)s->max);
qbman_pull_desc_set_fq(&pd, fqid);
d = service_select(d);
if (!d)
return -ENODEV;
s->swp = d->swp;
err = qbman_swp_pull(d->swp, &pd);
if (err)
s->swp = NULL;
return err;
}
EXPORT_SYMBOL(dpaa2_io_service_pull_fq);
/**
* dpaa2_io_service_pull_channel() - pull dequeue functions from a channel.
* @d: the given DPIO service.
* @channelid: the given channel id.
* @s: the dpaa2_io_store object for the result.
*
* Return 0 for success, or error code for failure.
*/
int dpaa2_io_service_pull_channel(struct dpaa2_io *d, u32 channelid,
struct dpaa2_io_store *s)
{
struct qbman_pull_desc pd;
int err;
qbman_pull_desc_clear(&pd);
qbman_pull_desc_set_storage(&pd, s->vaddr, s->paddr, 1);
qbman_pull_desc_set_numframes(&pd, (u8)s->max);
qbman_pull_desc_set_channel(&pd, channelid, qbman_pull_type_prio);
d = service_select(d);
if (!d)
return -ENODEV;
s->swp = d->swp;
err = qbman_swp_pull(d->swp, &pd);
if (err)
s->swp = NULL;
return err;
}
EXPORT_SYMBOL_GPL(dpaa2_io_service_pull_channel);
/**
* dpaa2_io_service_enqueue_fq() - Enqueue a frame to a frame queue.
* @d: the given DPIO service.
* @fqid: the given frame queue id.
* @fd: the frame descriptor which is enqueued.
*
* Return 0 for successful enqueue, -EBUSY if the enqueue ring is not ready,
* or -ENODEV if there is no dpio service.
*/
int dpaa2_io_service_enqueue_fq(struct dpaa2_io *d,
u32 fqid,
const struct dpaa2_fd *fd)
{
struct qbman_eq_desc ed;
d = service_select(d);
if (!d)
return -ENODEV;
qbman_eq_desc_clear(&ed);
qbman_eq_desc_set_no_orp(&ed, 0);
qbman_eq_desc_set_fq(&ed, fqid);
return qbman_swp_enqueue(d->swp, &ed, fd);
}
EXPORT_SYMBOL(dpaa2_io_service_enqueue_fq);
/**
* dpaa2_io_service_enqueue_multiple_fq() - Enqueue multiple frames
* to a frame queue using one fqid.
* @d: the given DPIO service.
* @fqid: the given frame queue id.
* @fd: the frame descriptor which is enqueued.
* @nb: number of frames to be enqueud
*
* Return 0 for successful enqueue, -EBUSY if the enqueue ring is not ready,
* or -ENODEV if there is no dpio service.
*/
int dpaa2_io_service_enqueue_multiple_fq(struct dpaa2_io *d,
u32 fqid,
const struct dpaa2_fd *fd,
int nb)
{
struct qbman_eq_desc ed;
d = service_select(d);
if (!d)
return -ENODEV;
qbman_eq_desc_clear(&ed);
qbman_eq_desc_set_no_orp(&ed, 0);
qbman_eq_desc_set_fq(&ed, fqid);
return qbman_swp_enqueue_multiple(d->swp, &ed, fd, NULL, nb);
}
EXPORT_SYMBOL(dpaa2_io_service_enqueue_multiple_fq);
/**
* dpaa2_io_service_enqueue_multiple_desc_fq() - Enqueue multiple frames
* to different frame queue using a list of fqids.
* @d: the given DPIO service.
* @fqid: the given list of frame queue ids.
* @fd: the frame descriptor which is enqueued.
* @nb: number of frames to be enqueud
*
* Return 0 for successful enqueue, -EBUSY if the enqueue ring is not ready,
* or -ENODEV if there is no dpio service.
*/
int dpaa2_io_service_enqueue_multiple_desc_fq(struct dpaa2_io *d,
u32 *fqid,
const struct dpaa2_fd *fd,
int nb)
{
struct qbman_eq_desc *ed;
int i, ret;
ed = kcalloc(sizeof(struct qbman_eq_desc), 32, GFP_KERNEL);
if (!ed)
return -ENOMEM;
d = service_select(d);
if (!d) {
ret = -ENODEV;
goto out;
}
for (i = 0; i < nb; i++) {
qbman_eq_desc_clear(&ed[i]);
qbman_eq_desc_set_no_orp(&ed[i], 0);
qbman_eq_desc_set_fq(&ed[i], fqid[i]);
}
ret = qbman_swp_enqueue_multiple_desc(d->swp, &ed[0], fd, nb);
out:
kfree(ed);
return ret;
}
EXPORT_SYMBOL(dpaa2_io_service_enqueue_multiple_desc_fq);
/**
* dpaa2_io_service_enqueue_qd() - Enqueue a frame to a QD.
* @d: the given DPIO service.
* @qdid: the given queuing destination id.
* @prio: the given queuing priority.
* @qdbin: the given queuing destination bin.
* @fd: the frame descriptor which is enqueued.
*
* Return 0 for successful enqueue, or -EBUSY if the enqueue ring is not ready,
* or -ENODEV if there is no dpio service.
*/
int dpaa2_io_service_enqueue_qd(struct dpaa2_io *d,
u32 qdid, u8 prio, u16 qdbin,
const struct dpaa2_fd *fd)
{
struct qbman_eq_desc ed;
d = service_select(d);
if (!d)
return -ENODEV;
qbman_eq_desc_clear(&ed);
qbman_eq_desc_set_no_orp(&ed, 0);
qbman_eq_desc_set_qd(&ed, qdid, qdbin, prio);
return qbman_swp_enqueue(d->swp, &ed, fd);
}
EXPORT_SYMBOL_GPL(dpaa2_io_service_enqueue_qd);
/**
* dpaa2_io_service_release() - Release buffers to a buffer pool.
* @d: the given DPIO object.
* @bpid: the buffer pool id.
* @buffers: the buffers to be released.
* @num_buffers: the number of the buffers to be released.
*
* Return 0 for success, and negative error code for failure.
*/
int dpaa2_io_service_release(struct dpaa2_io *d,
u16 bpid,
const u64 *buffers,
unsigned int num_buffers)
{
struct qbman_release_desc rd;
d = service_select(d);
if (!d)
return -ENODEV;
qbman_release_desc_clear(&rd);
qbman_release_desc_set_bpid(&rd, bpid);
return qbman_swp_release(d->swp, &rd, buffers, num_buffers);
}
EXPORT_SYMBOL_GPL(dpaa2_io_service_release);
/**
* dpaa2_io_service_acquire() - Acquire buffers from a buffer pool.
* @d: the given DPIO object.
* @bpid: the buffer pool id.
* @buffers: the buffer addresses for acquired buffers.
* @num_buffers: the expected number of the buffers to acquire.
*
* Return a negative error code if the command failed, otherwise it returns
* the number of buffers acquired, which may be less than the number requested.
* Eg. if the buffer pool is empty, this will return zero.
*/
int dpaa2_io_service_acquire(struct dpaa2_io *d,
u16 bpid,
u64 *buffers,
unsigned int num_buffers)
{
unsigned long irqflags;
int err;
d = service_select(d);
if (!d)
return -ENODEV;
spin_lock_irqsave(&d->lock_mgmt_cmd, irqflags);
err = qbman_swp_acquire(d->swp, bpid, buffers, num_buffers);
spin_unlock_irqrestore(&d->lock_mgmt_cmd, irqflags);
return err;
}
EXPORT_SYMBOL_GPL(dpaa2_io_service_acquire);
/*
* 'Stores' are reusable memory blocks for holding dequeue results, and to
* assist with parsing those results.
*/
/**
* dpaa2_io_store_create() - Create the dma memory storage for dequeue result.
* @max_frames: the maximum number of dequeued result for frames, must be <= 32.
* @dev: the device to allow mapping/unmapping the DMAable region.
*
* The size of the storage is "max_frames*sizeof(struct dpaa2_dq)".
* The 'dpaa2_io_store' returned is a DPIO service managed object.
*
* Return pointer to dpaa2_io_store struct for successfully created storage
* memory, or NULL on error.
*/
struct dpaa2_io_store *dpaa2_io_store_create(unsigned int max_frames,
struct device *dev)
{
struct dpaa2_io_store *ret;
size_t size;
if (!max_frames || (max_frames > 32))
return NULL;
ret = kmalloc(sizeof(*ret), GFP_KERNEL);
if (!ret)
return NULL;
ret->max = max_frames;
size = max_frames * sizeof(struct dpaa2_dq) + 64;
ret->alloced_addr = kzalloc(size, GFP_KERNEL);
if (!ret->alloced_addr) {
kfree(ret);
return NULL;
}
ret->vaddr = PTR_ALIGN(ret->alloced_addr, 64);
ret->paddr = dma_map_single(dev, ret->vaddr,
sizeof(struct dpaa2_dq) * max_frames,
DMA_FROM_DEVICE);
if (dma_mapping_error(dev, ret->paddr)) {
kfree(ret->alloced_addr);
kfree(ret);
return NULL;
}
ret->idx = 0;
ret->dev = dev;
return ret;
}
EXPORT_SYMBOL_GPL(dpaa2_io_store_create);
/**
* dpaa2_io_store_destroy() - Frees the dma memory storage for dequeue
* result.
* @s: the storage memory to be destroyed.
*/
void dpaa2_io_store_destroy(struct dpaa2_io_store *s)
{
dma_unmap_single(s->dev, s->paddr, sizeof(struct dpaa2_dq) * s->max,
DMA_FROM_DEVICE);
kfree(s->alloced_addr);
kfree(s);
}
EXPORT_SYMBOL_GPL(dpaa2_io_store_destroy);
/**
* dpaa2_io_store_next() - Determine when the next dequeue result is available.
* @s: the dpaa2_io_store object.
* @is_last: indicate whether this is the last frame in the pull command.
*
* When an object driver performs dequeues to a dpaa2_io_store, this function
* can be used to determine when the next frame result is available. Once
* this function returns non-NULL, a subsequent call to it will try to find
* the next dequeue result.
*
* Note that if a pull-dequeue has a NULL result because the target FQ/channel
* was empty, then this function will also return NULL (rather than expecting
* the caller to always check for this. As such, "is_last" can be used to
* differentiate between "end-of-empty-dequeue" and "still-waiting".
*
* Return dequeue result for a valid dequeue result, or NULL for empty dequeue.
*/
struct dpaa2_dq *dpaa2_io_store_next(struct dpaa2_io_store *s, int *is_last)
{
int match;
struct dpaa2_dq *ret = &s->vaddr[s->idx];
match = qbman_result_has_new_result(s->swp, ret);
if (!match) {
*is_last = 0;
return NULL;
}
s->idx++;
if (dpaa2_dq_is_pull_complete(ret)) {
*is_last = 1;
s->idx = 0;
/*
* If we get an empty dequeue result to terminate a zero-results
* vdqcr, return NULL to the caller rather than expecting him to
* check non-NULL results every time.
*/
if (!(dpaa2_dq_flags(ret) & DPAA2_DQ_STAT_VALIDFRAME))
ret = NULL;
} else {
prefetch(&s->vaddr[s->idx]);
*is_last = 0;
}
return ret;
}
EXPORT_SYMBOL_GPL(dpaa2_io_store_next);
/**
* dpaa2_io_query_fq_count() - Get the frame and byte count for a given fq.
* @d: the given DPIO object.
* @fqid: the id of frame queue to be queried.
* @fcnt: the queried frame count.
* @bcnt: the queried byte count.
*
* Knowing the FQ count at run-time can be useful in debugging situations.
* The instantaneous frame- and byte-count are hereby returned.
*
* Return 0 for a successful query, and negative error code if query fails.
*/
int dpaa2_io_query_fq_count(struct dpaa2_io *d, u32 fqid,
u32 *fcnt, u32 *bcnt)
{
struct qbman_fq_query_np_rslt state;
struct qbman_swp *swp;
unsigned long irqflags;
int ret;
d = service_select(d);
if (!d)
return -ENODEV;
swp = d->swp;
spin_lock_irqsave(&d->lock_mgmt_cmd, irqflags);
ret = qbman_fq_query_state(swp, fqid, &state);
spin_unlock_irqrestore(&d->lock_mgmt_cmd, irqflags);
if (ret)
return ret;
*fcnt = qbman_fq_state_frame_count(&state);
*bcnt = qbman_fq_state_byte_count(&state);
return 0;
}
EXPORT_SYMBOL_GPL(dpaa2_io_query_fq_count);
/**
* dpaa2_io_query_bp_count() - Query the number of buffers currently in a
* buffer pool.
* @d: the given DPIO object.
* @bpid: the index of buffer pool to be queried.
* @num: the queried number of buffers in the buffer pool.
*
* Return 0 for a successful query, and negative error code if query fails.
*/
int dpaa2_io_query_bp_count(struct dpaa2_io *d, u16 bpid, u32 *num)
{
struct qbman_bp_query_rslt state;
struct qbman_swp *swp;
unsigned long irqflags;
int ret;
d = service_select(d);
if (!d)
return -ENODEV;
swp = d->swp;
spin_lock_irqsave(&d->lock_mgmt_cmd, irqflags);
ret = qbman_bp_query(swp, bpid, &state);
spin_unlock_irqrestore(&d->lock_mgmt_cmd, irqflags);
if (ret)
return ret;
*num = qbman_bp_info_num_free_bufs(&state);
return 0;
}
EXPORT_SYMBOL_GPL(dpaa2_io_query_bp_count);
/**
* dpaa2_io_set_irq_coalescing() - Set new IRQ coalescing values
* @d: the given DPIO object
* @irq_holdoff: interrupt holdoff (timeout) period in us
*
* Return 0 for success, or negative error code on error.
*/
int dpaa2_io_set_irq_coalescing(struct dpaa2_io *d, u32 irq_holdoff)
{
struct qbman_swp *swp = d->swp;
return qbman_swp_set_irq_coalescing(swp, swp->dqrr.dqrr_size - 1,
irq_holdoff);
}
EXPORT_SYMBOL(dpaa2_io_set_irq_coalescing);
/**
* dpaa2_io_get_irq_coalescing() - Get the current IRQ coalescing parameters
* @d: the given DPIO object
* @irq_holdoff: interrupt holdoff (timeout) period in us
*/
void dpaa2_io_get_irq_coalescing(struct dpaa2_io *d, u32 *irq_holdoff)
{
struct qbman_swp *swp = d->swp;
qbman_swp_get_irq_coalescing(swp, NULL, irq_holdoff);
}
EXPORT_SYMBOL(dpaa2_io_get_irq_coalescing);
/**
* dpaa2_io_set_adaptive_coalescing() - Enable/disable adaptive coalescing
* @d: the given DPIO object
* @use_adaptive_rx_coalesce: adaptive coalescing state
*/
void dpaa2_io_set_adaptive_coalescing(struct dpaa2_io *d,
int use_adaptive_rx_coalesce)
{
d->swp->use_adaptive_rx_coalesce = use_adaptive_rx_coalesce;
}
EXPORT_SYMBOL(dpaa2_io_set_adaptive_coalescing);
/**
* dpaa2_io_get_adaptive_coalescing() - Query adaptive coalescing state
* @d: the given DPIO object
*
* Return 1 when adaptive coalescing is enabled on the DPIO object and 0
* otherwise.
*/
int dpaa2_io_get_adaptive_coalescing(struct dpaa2_io *d)
{
return d->swp->use_adaptive_rx_coalesce;
}
EXPORT_SYMBOL(dpaa2_io_get_adaptive_coalescing);
/**
* dpaa2_io_update_net_dim() - Update Net DIM
* @d: the given DPIO object
* @frames: how many frames have been dequeued by the user since the last call
* @bytes: how many bytes have been dequeued by the user since the last call
*/
void dpaa2_io_update_net_dim(struct dpaa2_io *d, __u64 frames, __u64 bytes)
{
struct dim_sample dim_sample = {};
if (!d->swp->use_adaptive_rx_coalesce)
return;
spin_lock(&d->dim_lock);
d->bytes += bytes;
d->frames += frames;
dim_update_sample(d->event_ctr, d->frames, d->bytes, &dim_sample);
net_dim(&d->rx_dim, dim_sample);
spin_unlock(&d->dim_lock);
}
EXPORT_SYMBOL(dpaa2_io_update_net_dim);