linux-zen-desktop/drivers/soc/ti/knav_qmss_acc.c

585 lines
15 KiB
C
Raw Normal View History

2023-08-30 17:31:07 +02:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* Keystone accumulator queue manager
*
* Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
* Author: Sandeep Nair <sandeep_n@ti.com>
* Cyril Chemparathy <cyril@ti.com>
* Santosh Shilimkar <santosh.shilimkar@ti.com>
*/
#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/soc/ti/knav_qmss.h>
#include "knav_qmss.h"
#define knav_range_offset_to_inst(kdev, range, q) \
(range->queue_base_inst + (q << kdev->inst_shift))
static void __knav_acc_notify(struct knav_range_info *range,
struct knav_acc_channel *acc)
{
struct knav_device *kdev = range->kdev;
struct knav_queue_inst *inst;
int range_base, queue;
range_base = kdev->base_id + range->queue_base;
if (range->flags & RANGE_MULTI_QUEUE) {
for (queue = 0; queue < range->num_queues; queue++) {
inst = knav_range_offset_to_inst(kdev, range,
queue);
if (inst->notify_needed) {
inst->notify_needed = 0;
dev_dbg(kdev->dev, "acc-irq: notifying %d\n",
range_base + queue);
knav_queue_notify(inst);
}
}
} else {
queue = acc->channel - range->acc_info.start_channel;
inst = knav_range_offset_to_inst(kdev, range, queue);
dev_dbg(kdev->dev, "acc-irq: notifying %d\n",
range_base + queue);
knav_queue_notify(inst);
}
}
static int knav_acc_set_notify(struct knav_range_info *range,
struct knav_queue_inst *kq,
bool enabled)
{
struct knav_pdsp_info *pdsp = range->acc_info.pdsp;
struct knav_device *kdev = range->kdev;
u32 mask, offset;
/*
* when enabling, we need to re-trigger an interrupt if we
* have descriptors pending
*/
if (!enabled || atomic_read(&kq->desc_count) <= 0)
return 0;
kq->notify_needed = 1;
atomic_inc(&kq->acc->retrigger_count);
mask = BIT(kq->acc->channel % 32);
offset = ACC_INTD_OFFSET_STATUS(kq->acc->channel);
dev_dbg(kdev->dev, "setup-notify: re-triggering irq for %s\n",
kq->acc->name);
writel_relaxed(mask, pdsp->intd + offset);
return 0;
}
static irqreturn_t knav_acc_int_handler(int irq, void *_instdata)
{
struct knav_acc_channel *acc;
struct knav_queue_inst *kq = NULL;
struct knav_range_info *range;
struct knav_pdsp_info *pdsp;
struct knav_acc_info *info;
struct knav_device *kdev;
u32 *list, *list_cpu, val, idx, notifies;
int range_base, channel, queue = 0;
dma_addr_t list_dma;
range = _instdata;
info = &range->acc_info;
kdev = range->kdev;
pdsp = range->acc_info.pdsp;
acc = range->acc;
range_base = kdev->base_id + range->queue_base;
if ((range->flags & RANGE_MULTI_QUEUE) == 0) {
for (queue = 0; queue < range->num_irqs; queue++)
if (range->irqs[queue].irq == irq)
break;
kq = knav_range_offset_to_inst(kdev, range, queue);
acc += queue;
}
channel = acc->channel;
list_dma = acc->list_dma[acc->list_index];
list_cpu = acc->list_cpu[acc->list_index];
dev_dbg(kdev->dev, "acc-irq: channel %d, list %d, virt %p, dma %pad\n",
channel, acc->list_index, list_cpu, &list_dma);
if (atomic_read(&acc->retrigger_count)) {
atomic_dec(&acc->retrigger_count);
__knav_acc_notify(range, acc);
writel_relaxed(1, pdsp->intd + ACC_INTD_OFFSET_COUNT(channel));
/* ack the interrupt */
writel_relaxed(ACC_CHANNEL_INT_BASE + channel,
pdsp->intd + ACC_INTD_OFFSET_EOI);
return IRQ_HANDLED;
}
notifies = readl_relaxed(pdsp->intd + ACC_INTD_OFFSET_COUNT(channel));
WARN_ON(!notifies);
dma_sync_single_for_cpu(kdev->dev, list_dma, info->list_size,
DMA_FROM_DEVICE);
for (list = list_cpu; list < list_cpu + (info->list_size / sizeof(u32));
list += ACC_LIST_ENTRY_WORDS) {
if (ACC_LIST_ENTRY_WORDS == 1) {
dev_dbg(kdev->dev,
"acc-irq: list %d, entry @%p, %08x\n",
acc->list_index, list, list[0]);
} else if (ACC_LIST_ENTRY_WORDS == 2) {
dev_dbg(kdev->dev,
"acc-irq: list %d, entry @%p, %08x %08x\n",
acc->list_index, list, list[0], list[1]);
} else if (ACC_LIST_ENTRY_WORDS == 4) {
dev_dbg(kdev->dev,
"acc-irq: list %d, entry @%p, %08x %08x %08x %08x\n",
acc->list_index, list, list[0], list[1],
list[2], list[3]);
}
val = list[ACC_LIST_ENTRY_DESC_IDX];
if (!val)
break;
if (range->flags & RANGE_MULTI_QUEUE) {
queue = list[ACC_LIST_ENTRY_QUEUE_IDX] >> 16;
if (queue < range_base ||
queue >= range_base + range->num_queues) {
dev_err(kdev->dev,
"bad queue %d, expecting %d-%d\n",
queue, range_base,
range_base + range->num_queues);
break;
}
queue -= range_base;
kq = knav_range_offset_to_inst(kdev, range,
queue);
}
if (atomic_inc_return(&kq->desc_count) >= ACC_DESCS_MAX) {
atomic_dec(&kq->desc_count);
dev_err(kdev->dev,
"acc-irq: queue %d full, entry dropped\n",
queue + range_base);
continue;
}
idx = atomic_inc_return(&kq->desc_tail) & ACC_DESCS_MASK;
kq->descs[idx] = val;
kq->notify_needed = 1;
dev_dbg(kdev->dev, "acc-irq: enqueue %08x at %d, queue %d\n",
val, idx, queue + range_base);
}
__knav_acc_notify(range, acc);
memset(list_cpu, 0, info->list_size);
dma_sync_single_for_device(kdev->dev, list_dma, info->list_size,
DMA_TO_DEVICE);
/* flip to the other list */
acc->list_index ^= 1;
/* reset the interrupt counter */
writel_relaxed(1, pdsp->intd + ACC_INTD_OFFSET_COUNT(channel));
/* ack the interrupt */
writel_relaxed(ACC_CHANNEL_INT_BASE + channel,
pdsp->intd + ACC_INTD_OFFSET_EOI);
return IRQ_HANDLED;
}
static int knav_range_setup_acc_irq(struct knav_range_info *range,
int queue, bool enabled)
{
struct knav_device *kdev = range->kdev;
struct knav_acc_channel *acc;
struct cpumask *cpu_mask;
int ret = 0, irq;
u32 old, new;
if (range->flags & RANGE_MULTI_QUEUE) {
acc = range->acc;
irq = range->irqs[0].irq;
cpu_mask = range->irqs[0].cpu_mask;
} else {
acc = range->acc + queue;
irq = range->irqs[queue].irq;
cpu_mask = range->irqs[queue].cpu_mask;
}
old = acc->open_mask;
if (enabled)
new = old | BIT(queue);
else
new = old & ~BIT(queue);
acc->open_mask = new;
dev_dbg(kdev->dev,
"setup-acc-irq: open mask old %08x, new %08x, channel %s\n",
old, new, acc->name);
if (likely(new == old))
return 0;
if (new && !old) {
dev_dbg(kdev->dev,
"setup-acc-irq: requesting %s for channel %s\n",
acc->name, acc->name);
ret = request_irq(irq, knav_acc_int_handler, 0, acc->name,
range);
if (!ret && cpu_mask) {
ret = irq_set_affinity_hint(irq, cpu_mask);
if (ret) {
dev_warn(range->kdev->dev,
"Failed to set IRQ affinity\n");
return ret;
}
}
}
if (old && !new) {
dev_dbg(kdev->dev, "setup-acc-irq: freeing %s for channel %s\n",
acc->name, acc->name);
ret = irq_set_affinity_hint(irq, NULL);
if (ret)
dev_warn(range->kdev->dev,
"Failed to set IRQ affinity\n");
free_irq(irq, range);
}
return ret;
}
static const char *knav_acc_result_str(enum knav_acc_result result)
{
static const char * const result_str[] = {
[ACC_RET_IDLE] = "idle",
[ACC_RET_SUCCESS] = "success",
[ACC_RET_INVALID_COMMAND] = "invalid command",
[ACC_RET_INVALID_CHANNEL] = "invalid channel",
[ACC_RET_INACTIVE_CHANNEL] = "inactive channel",
[ACC_RET_ACTIVE_CHANNEL] = "active channel",
[ACC_RET_INVALID_QUEUE] = "invalid queue",
[ACC_RET_INVALID_RET] = "invalid return code",
};
if (result >= ARRAY_SIZE(result_str))
return result_str[ACC_RET_INVALID_RET];
else
return result_str[result];
}
static enum knav_acc_result
knav_acc_write(struct knav_device *kdev, struct knav_pdsp_info *pdsp,
struct knav_reg_acc_command *cmd)
{
u32 result;
dev_dbg(kdev->dev, "acc command %08x %08x %08x %08x %08x\n",
cmd->command, cmd->queue_mask, cmd->list_dma,
cmd->queue_num, cmd->timer_config);
writel_relaxed(cmd->timer_config, &pdsp->acc_command->timer_config);
writel_relaxed(cmd->queue_num, &pdsp->acc_command->queue_num);
writel_relaxed(cmd->list_dma, &pdsp->acc_command->list_dma);
writel_relaxed(cmd->queue_mask, &pdsp->acc_command->queue_mask);
writel_relaxed(cmd->command, &pdsp->acc_command->command);
/* wait for the command to clear */
do {
result = readl_relaxed(&pdsp->acc_command->command);
} while ((result >> 8) & 0xff);
return (result >> 24) & 0xff;
}
static void knav_acc_setup_cmd(struct knav_device *kdev,
struct knav_range_info *range,
struct knav_reg_acc_command *cmd,
int queue)
{
struct knav_acc_info *info = &range->acc_info;
struct knav_acc_channel *acc;
int queue_base;
u32 queue_mask;
if (range->flags & RANGE_MULTI_QUEUE) {
acc = range->acc;
queue_base = range->queue_base;
queue_mask = BIT(range->num_queues) - 1;
} else {
acc = range->acc + queue;
queue_base = range->queue_base + queue;
queue_mask = 0;
}
memset(cmd, 0, sizeof(*cmd));
cmd->command = acc->channel;
cmd->queue_mask = queue_mask;
cmd->list_dma = (u32)acc->list_dma[0];
cmd->queue_num = info->list_entries << 16;
cmd->queue_num |= queue_base;
cmd->timer_config = ACC_LIST_ENTRY_TYPE << 18;
if (range->flags & RANGE_MULTI_QUEUE)
cmd->timer_config |= ACC_CFG_MULTI_QUEUE;
cmd->timer_config |= info->pacing_mode << 16;
cmd->timer_config |= info->timer_count;
}
static void knav_acc_stop(struct knav_device *kdev,
struct knav_range_info *range,
int queue)
{
struct knav_reg_acc_command cmd;
struct knav_acc_channel *acc;
enum knav_acc_result result;
acc = range->acc + queue;
knav_acc_setup_cmd(kdev, range, &cmd, queue);
cmd.command |= ACC_CMD_DISABLE_CHANNEL << 8;
result = knav_acc_write(kdev, range->acc_info.pdsp, &cmd);
dev_dbg(kdev->dev, "stopped acc channel %s, result %s\n",
acc->name, knav_acc_result_str(result));
}
static enum knav_acc_result knav_acc_start(struct knav_device *kdev,
struct knav_range_info *range,
int queue)
{
struct knav_reg_acc_command cmd;
struct knav_acc_channel *acc;
enum knav_acc_result result;
acc = range->acc + queue;
knav_acc_setup_cmd(kdev, range, &cmd, queue);
cmd.command |= ACC_CMD_ENABLE_CHANNEL << 8;
result = knav_acc_write(kdev, range->acc_info.pdsp, &cmd);
dev_dbg(kdev->dev, "started acc channel %s, result %s\n",
acc->name, knav_acc_result_str(result));
return result;
}
static int knav_acc_init_range(struct knav_range_info *range)
{
struct knav_device *kdev = range->kdev;
struct knav_acc_channel *acc;
enum knav_acc_result result;
int queue;
for (queue = 0; queue < range->num_queues; queue++) {
acc = range->acc + queue;
knav_acc_stop(kdev, range, queue);
acc->list_index = 0;
result = knav_acc_start(kdev, range, queue);
if (result != ACC_RET_SUCCESS)
return -EIO;
if (range->flags & RANGE_MULTI_QUEUE)
return 0;
}
return 0;
}
static int knav_acc_init_queue(struct knav_range_info *range,
struct knav_queue_inst *kq)
{
unsigned id = kq->id - range->queue_base;
kq->descs = devm_kcalloc(range->kdev->dev,
ACC_DESCS_MAX, sizeof(u32), GFP_KERNEL);
if (!kq->descs)
return -ENOMEM;
kq->acc = range->acc;
if ((range->flags & RANGE_MULTI_QUEUE) == 0)
kq->acc += id;
return 0;
}
static int knav_acc_open_queue(struct knav_range_info *range,
struct knav_queue_inst *inst, unsigned flags)
{
unsigned id = inst->id - range->queue_base;
return knav_range_setup_acc_irq(range, id, true);
}
static int knav_acc_close_queue(struct knav_range_info *range,
struct knav_queue_inst *inst)
{
unsigned id = inst->id - range->queue_base;
return knav_range_setup_acc_irq(range, id, false);
}
static int knav_acc_free_range(struct knav_range_info *range)
{
struct knav_device *kdev = range->kdev;
struct knav_acc_channel *acc;
struct knav_acc_info *info;
int channel, channels;
info = &range->acc_info;
if (range->flags & RANGE_MULTI_QUEUE)
channels = 1;
else
channels = range->num_queues;
for (channel = 0; channel < channels; channel++) {
acc = range->acc + channel;
if (!acc->list_cpu[0])
continue;
dma_unmap_single(kdev->dev, acc->list_dma[0],
info->mem_size, DMA_BIDIRECTIONAL);
free_pages_exact(acc->list_cpu[0], info->mem_size);
}
devm_kfree(range->kdev->dev, range->acc);
return 0;
}
static struct knav_range_ops knav_acc_range_ops = {
.set_notify = knav_acc_set_notify,
.init_queue = knav_acc_init_queue,
.open_queue = knav_acc_open_queue,
.close_queue = knav_acc_close_queue,
.init_range = knav_acc_init_range,
.free_range = knav_acc_free_range,
};
/**
* knav_init_acc_range: Initialise accumulator ranges
*
* @kdev: qmss device
* @node: device node
* @range: qmms range information
*
* Return 0 on success or error
*/
int knav_init_acc_range(struct knav_device *kdev,
struct device_node *node,
struct knav_range_info *range)
{
struct knav_acc_channel *acc;
struct knav_pdsp_info *pdsp;
struct knav_acc_info *info;
int ret, channel, channels;
int list_size, mem_size;
dma_addr_t list_dma;
void *list_mem;
u32 config[5];
range->flags |= RANGE_HAS_ACCUMULATOR;
info = &range->acc_info;
ret = of_property_read_u32_array(node, "accumulator", config, 5);
if (ret)
return ret;
info->pdsp_id = config[0];
info->start_channel = config[1];
info->list_entries = config[2];
info->pacing_mode = config[3];
info->timer_count = config[4] / ACC_DEFAULT_PERIOD;
if (info->start_channel > ACC_MAX_CHANNEL) {
dev_err(kdev->dev, "channel %d invalid for range %s\n",
info->start_channel, range->name);
return -EINVAL;
}
if (info->pacing_mode > 3) {
dev_err(kdev->dev, "pacing mode %d invalid for range %s\n",
info->pacing_mode, range->name);
return -EINVAL;
}
pdsp = knav_find_pdsp(kdev, info->pdsp_id);
if (!pdsp) {
dev_err(kdev->dev, "pdsp id %d not found for range %s\n",
info->pdsp_id, range->name);
return -EINVAL;
}
if (!pdsp->started) {
dev_err(kdev->dev, "pdsp id %d not started for range %s\n",
info->pdsp_id, range->name);
return -ENODEV;
}
info->pdsp = pdsp;
channels = range->num_queues;
if (of_get_property(node, "multi-queue", NULL)) {
range->flags |= RANGE_MULTI_QUEUE;
channels = 1;
if (range->queue_base & (32 - 1)) {
dev_err(kdev->dev,
"misaligned multi-queue accumulator range %s\n",
range->name);
return -EINVAL;
}
if (range->num_queues > 32) {
dev_err(kdev->dev,
"too many queues in accumulator range %s\n",
range->name);
return -EINVAL;
}
}
/* figure out list size */
list_size = info->list_entries;
list_size *= ACC_LIST_ENTRY_WORDS * sizeof(u32);
info->list_size = list_size;
mem_size = PAGE_ALIGN(list_size * 2);
info->mem_size = mem_size;
range->acc = devm_kcalloc(kdev->dev, channels, sizeof(*range->acc),
GFP_KERNEL);
if (!range->acc)
return -ENOMEM;
for (channel = 0; channel < channels; channel++) {
acc = range->acc + channel;
acc->channel = info->start_channel + channel;
/* allocate memory for the two lists */
list_mem = alloc_pages_exact(mem_size, GFP_KERNEL | GFP_DMA);
if (!list_mem)
return -ENOMEM;
list_dma = dma_map_single(kdev->dev, list_mem, mem_size,
DMA_BIDIRECTIONAL);
if (dma_mapping_error(kdev->dev, list_dma)) {
free_pages_exact(list_mem, mem_size);
return -ENOMEM;
}
memset(list_mem, 0, mem_size);
dma_sync_single_for_device(kdev->dev, list_dma, mem_size,
DMA_TO_DEVICE);
scnprintf(acc->name, sizeof(acc->name), "hwqueue-acc-%d",
acc->channel);
acc->list_cpu[0] = list_mem;
acc->list_cpu[1] = list_mem + list_size;
acc->list_dma[0] = list_dma;
acc->list_dma[1] = list_dma + list_size;
dev_dbg(kdev->dev, "%s: channel %d, dma %pad, virt %8p\n",
acc->name, acc->channel, &list_dma, list_mem);
}
range->ops = &knav_acc_range_ops;
return 0;
}
EXPORT_SYMBOL_GPL(knav_init_acc_range);