547 lines
16 KiB
C
547 lines
16 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
|
||
|
#include "misc.h"
|
||
|
#include "ctree.h"
|
||
|
#include "block-rsv.h"
|
||
|
#include "space-info.h"
|
||
|
#include "transaction.h"
|
||
|
#include "block-group.h"
|
||
|
#include "disk-io.h"
|
||
|
#include "fs.h"
|
||
|
#include "accessors.h"
|
||
|
|
||
|
/*
|
||
|
* HOW DO BLOCK RESERVES WORK
|
||
|
*
|
||
|
* Think of block_rsv's as buckets for logically grouped metadata
|
||
|
* reservations. Each block_rsv has a ->size and a ->reserved. ->size is
|
||
|
* how large we want our block rsv to be, ->reserved is how much space is
|
||
|
* currently reserved for this block reserve.
|
||
|
*
|
||
|
* ->failfast exists for the truncate case, and is described below.
|
||
|
*
|
||
|
* NORMAL OPERATION
|
||
|
*
|
||
|
* -> Reserve
|
||
|
* Entrance: btrfs_block_rsv_add, btrfs_block_rsv_refill
|
||
|
*
|
||
|
* We call into btrfs_reserve_metadata_bytes() with our bytes, which is
|
||
|
* accounted for in space_info->bytes_may_use, and then add the bytes to
|
||
|
* ->reserved, and ->size in the case of btrfs_block_rsv_add.
|
||
|
*
|
||
|
* ->size is an over-estimation of how much we may use for a particular
|
||
|
* operation.
|
||
|
*
|
||
|
* -> Use
|
||
|
* Entrance: btrfs_use_block_rsv
|
||
|
*
|
||
|
* When we do a btrfs_alloc_tree_block() we call into btrfs_use_block_rsv()
|
||
|
* to determine the appropriate block_rsv to use, and then verify that
|
||
|
* ->reserved has enough space for our tree block allocation. Once
|
||
|
* successful we subtract fs_info->nodesize from ->reserved.
|
||
|
*
|
||
|
* -> Finish
|
||
|
* Entrance: btrfs_block_rsv_release
|
||
|
*
|
||
|
* We are finished with our operation, subtract our individual reservation
|
||
|
* from ->size, and then subtract ->size from ->reserved and free up the
|
||
|
* excess if there is any.
|
||
|
*
|
||
|
* There is some logic here to refill the delayed refs rsv or the global rsv
|
||
|
* as needed, otherwise the excess is subtracted from
|
||
|
* space_info->bytes_may_use.
|
||
|
*
|
||
|
* TYPES OF BLOCK RESERVES
|
||
|
*
|
||
|
* BLOCK_RSV_TRANS, BLOCK_RSV_DELOPS, BLOCK_RSV_CHUNK
|
||
|
* These behave normally, as described above, just within the confines of the
|
||
|
* lifetime of their particular operation (transaction for the whole trans
|
||
|
* handle lifetime, for example).
|
||
|
*
|
||
|
* BLOCK_RSV_GLOBAL
|
||
|
* It is impossible to properly account for all the space that may be required
|
||
|
* to make our extent tree updates. This block reserve acts as an overflow
|
||
|
* buffer in case our delayed refs reserve does not reserve enough space to
|
||
|
* update the extent tree.
|
||
|
*
|
||
|
* We can steal from this in some cases as well, notably on evict() or
|
||
|
* truncate() in order to help users recover from ENOSPC conditions.
|
||
|
*
|
||
|
* BLOCK_RSV_DELALLOC
|
||
|
* The individual item sizes are determined by the per-inode size
|
||
|
* calculations, which are described with the delalloc code. This is pretty
|
||
|
* straightforward, it's just the calculation of ->size encodes a lot of
|
||
|
* different items, and thus it gets used when updating inodes, inserting file
|
||
|
* extents, and inserting checksums.
|
||
|
*
|
||
|
* BLOCK_RSV_DELREFS
|
||
|
* We keep a running tally of how many delayed refs we have on the system.
|
||
|
* We assume each one of these delayed refs are going to use a full
|
||
|
* reservation. We use the transaction items and pre-reserve space for every
|
||
|
* operation, and use this reservation to refill any gap between ->size and
|
||
|
* ->reserved that may exist.
|
||
|
*
|
||
|
* From there it's straightforward, removing a delayed ref means we remove its
|
||
|
* count from ->size and free up reservations as necessary. Since this is
|
||
|
* the most dynamic block reserve in the system, we will try to refill this
|
||
|
* block reserve first with any excess returned by any other block reserve.
|
||
|
*
|
||
|
* BLOCK_RSV_EMPTY
|
||
|
* This is the fallback block reserve to make us try to reserve space if we
|
||
|
* don't have a specific bucket for this allocation. It is mostly used for
|
||
|
* updating the device tree and such, since that is a separate pool we're
|
||
|
* content to just reserve space from the space_info on demand.
|
||
|
*
|
||
|
* BLOCK_RSV_TEMP
|
||
|
* This is used by things like truncate and iput. We will temporarily
|
||
|
* allocate a block reserve, set it to some size, and then truncate bytes
|
||
|
* until we have no space left. With ->failfast set we'll simply return
|
||
|
* ENOSPC from btrfs_use_block_rsv() to signal that we need to unwind and try
|
||
|
* to make a new reservation. This is because these operations are
|
||
|
* unbounded, so we want to do as much work as we can, and then back off and
|
||
|
* re-reserve.
|
||
|
*/
|
||
|
|
||
|
static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
|
||
|
struct btrfs_block_rsv *block_rsv,
|
||
|
struct btrfs_block_rsv *dest, u64 num_bytes,
|
||
|
u64 *qgroup_to_release_ret)
|
||
|
{
|
||
|
struct btrfs_space_info *space_info = block_rsv->space_info;
|
||
|
u64 qgroup_to_release = 0;
|
||
|
u64 ret;
|
||
|
|
||
|
spin_lock(&block_rsv->lock);
|
||
|
if (num_bytes == (u64)-1) {
|
||
|
num_bytes = block_rsv->size;
|
||
|
qgroup_to_release = block_rsv->qgroup_rsv_size;
|
||
|
}
|
||
|
block_rsv->size -= num_bytes;
|
||
|
if (block_rsv->reserved >= block_rsv->size) {
|
||
|
num_bytes = block_rsv->reserved - block_rsv->size;
|
||
|
block_rsv->reserved = block_rsv->size;
|
||
|
block_rsv->full = true;
|
||
|
} else {
|
||
|
num_bytes = 0;
|
||
|
}
|
||
|
if (qgroup_to_release_ret &&
|
||
|
block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
|
||
|
qgroup_to_release = block_rsv->qgroup_rsv_reserved -
|
||
|
block_rsv->qgroup_rsv_size;
|
||
|
block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
|
||
|
} else {
|
||
|
qgroup_to_release = 0;
|
||
|
}
|
||
|
spin_unlock(&block_rsv->lock);
|
||
|
|
||
|
ret = num_bytes;
|
||
|
if (num_bytes > 0) {
|
||
|
if (dest) {
|
||
|
spin_lock(&dest->lock);
|
||
|
if (!dest->full) {
|
||
|
u64 bytes_to_add;
|
||
|
|
||
|
bytes_to_add = dest->size - dest->reserved;
|
||
|
bytes_to_add = min(num_bytes, bytes_to_add);
|
||
|
dest->reserved += bytes_to_add;
|
||
|
if (dest->reserved >= dest->size)
|
||
|
dest->full = true;
|
||
|
num_bytes -= bytes_to_add;
|
||
|
}
|
||
|
spin_unlock(&dest->lock);
|
||
|
}
|
||
|
if (num_bytes)
|
||
|
btrfs_space_info_free_bytes_may_use(fs_info,
|
||
|
space_info,
|
||
|
num_bytes);
|
||
|
}
|
||
|
if (qgroup_to_release_ret)
|
||
|
*qgroup_to_release_ret = qgroup_to_release;
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
|
||
|
struct btrfs_block_rsv *dst, u64 num_bytes,
|
||
|
bool update_size)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
ret = btrfs_block_rsv_use_bytes(src, num_bytes);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
btrfs_block_rsv_add_bytes(dst, num_bytes, update_size);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, enum btrfs_rsv_type type)
|
||
|
{
|
||
|
memset(rsv, 0, sizeof(*rsv));
|
||
|
spin_lock_init(&rsv->lock);
|
||
|
rsv->type = type;
|
||
|
}
|
||
|
|
||
|
void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
|
||
|
struct btrfs_block_rsv *rsv,
|
||
|
enum btrfs_rsv_type type)
|
||
|
{
|
||
|
btrfs_init_block_rsv(rsv, type);
|
||
|
rsv->space_info = btrfs_find_space_info(fs_info,
|
||
|
BTRFS_BLOCK_GROUP_METADATA);
|
||
|
}
|
||
|
|
||
|
struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
|
||
|
enum btrfs_rsv_type type)
|
||
|
{
|
||
|
struct btrfs_block_rsv *block_rsv;
|
||
|
|
||
|
block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
|
||
|
if (!block_rsv)
|
||
|
return NULL;
|
||
|
|
||
|
btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
|
||
|
return block_rsv;
|
||
|
}
|
||
|
|
||
|
void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
|
||
|
struct btrfs_block_rsv *rsv)
|
||
|
{
|
||
|
if (!rsv)
|
||
|
return;
|
||
|
btrfs_block_rsv_release(fs_info, rsv, (u64)-1, NULL);
|
||
|
kfree(rsv);
|
||
|
}
|
||
|
|
||
|
int btrfs_block_rsv_add(struct btrfs_fs_info *fs_info,
|
||
|
struct btrfs_block_rsv *block_rsv, u64 num_bytes,
|
||
|
enum btrfs_reserve_flush_enum flush)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
if (num_bytes == 0)
|
||
|
return 0;
|
||
|
|
||
|
ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush);
|
||
|
if (!ret)
|
||
|
btrfs_block_rsv_add_bytes(block_rsv, num_bytes, true);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_percent)
|
||
|
{
|
||
|
u64 num_bytes = 0;
|
||
|
int ret = -ENOSPC;
|
||
|
|
||
|
if (!block_rsv)
|
||
|
return 0;
|
||
|
|
||
|
spin_lock(&block_rsv->lock);
|
||
|
num_bytes = mult_perc(block_rsv->size, min_percent);
|
||
|
if (block_rsv->reserved >= num_bytes)
|
||
|
ret = 0;
|
||
|
spin_unlock(&block_rsv->lock);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
int btrfs_block_rsv_refill(struct btrfs_fs_info *fs_info,
|
||
|
struct btrfs_block_rsv *block_rsv, u64 min_reserved,
|
||
|
enum btrfs_reserve_flush_enum flush)
|
||
|
{
|
||
|
u64 num_bytes = 0;
|
||
|
int ret = -ENOSPC;
|
||
|
|
||
|
if (!block_rsv)
|
||
|
return 0;
|
||
|
|
||
|
spin_lock(&block_rsv->lock);
|
||
|
num_bytes = min_reserved;
|
||
|
if (block_rsv->reserved >= num_bytes)
|
||
|
ret = 0;
|
||
|
else
|
||
|
num_bytes -= block_rsv->reserved;
|
||
|
spin_unlock(&block_rsv->lock);
|
||
|
|
||
|
if (!ret)
|
||
|
return 0;
|
||
|
|
||
|
ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush);
|
||
|
if (!ret) {
|
||
|
btrfs_block_rsv_add_bytes(block_rsv, num_bytes, false);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
u64 btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
|
||
|
struct btrfs_block_rsv *block_rsv, u64 num_bytes,
|
||
|
u64 *qgroup_to_release)
|
||
|
{
|
||
|
struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
|
||
|
struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
|
||
|
struct btrfs_block_rsv *target = NULL;
|
||
|
|
||
|
/*
|
||
|
* If we are the delayed_rsv then push to the global rsv, otherwise dump
|
||
|
* into the delayed rsv if it is not full.
|
||
|
*/
|
||
|
if (block_rsv == delayed_rsv)
|
||
|
target = global_rsv;
|
||
|
else if (block_rsv != global_rsv && !btrfs_block_rsv_full(delayed_rsv))
|
||
|
target = delayed_rsv;
|
||
|
|
||
|
if (target && block_rsv->space_info != target->space_info)
|
||
|
target = NULL;
|
||
|
|
||
|
return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes,
|
||
|
qgroup_to_release);
|
||
|
}
|
||
|
|
||
|
int btrfs_block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, u64 num_bytes)
|
||
|
{
|
||
|
int ret = -ENOSPC;
|
||
|
|
||
|
spin_lock(&block_rsv->lock);
|
||
|
if (block_rsv->reserved >= num_bytes) {
|
||
|
block_rsv->reserved -= num_bytes;
|
||
|
if (block_rsv->reserved < block_rsv->size)
|
||
|
block_rsv->full = false;
|
||
|
ret = 0;
|
||
|
}
|
||
|
spin_unlock(&block_rsv->lock);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
void btrfs_block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
|
||
|
u64 num_bytes, bool update_size)
|
||
|
{
|
||
|
spin_lock(&block_rsv->lock);
|
||
|
block_rsv->reserved += num_bytes;
|
||
|
if (update_size)
|
||
|
block_rsv->size += num_bytes;
|
||
|
else if (block_rsv->reserved >= block_rsv->size)
|
||
|
block_rsv->full = true;
|
||
|
spin_unlock(&block_rsv->lock);
|
||
|
}
|
||
|
|
||
|
void btrfs_update_global_block_rsv(struct btrfs_fs_info *fs_info)
|
||
|
{
|
||
|
struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
|
||
|
struct btrfs_space_info *sinfo = block_rsv->space_info;
|
||
|
struct btrfs_root *root, *tmp;
|
||
|
u64 num_bytes = btrfs_root_used(&fs_info->tree_root->root_item);
|
||
|
unsigned int min_items = 1;
|
||
|
|
||
|
/*
|
||
|
* The global block rsv is based on the size of the extent tree, the
|
||
|
* checksum tree and the root tree. If the fs is empty we want to set
|
||
|
* it to a minimal amount for safety.
|
||
|
*
|
||
|
* We also are going to need to modify the minimum of the tree root and
|
||
|
* any global roots we could touch.
|
||
|
*/
|
||
|
read_lock(&fs_info->global_root_lock);
|
||
|
rbtree_postorder_for_each_entry_safe(root, tmp, &fs_info->global_root_tree,
|
||
|
rb_node) {
|
||
|
if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID ||
|
||
|
root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID ||
|
||
|
root->root_key.objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
|
||
|
num_bytes += btrfs_root_used(&root->root_item);
|
||
|
min_items++;
|
||
|
}
|
||
|
}
|
||
|
read_unlock(&fs_info->global_root_lock);
|
||
|
|
||
|
/*
|
||
|
* But we also want to reserve enough space so we can do the fallback
|
||
|
* global reserve for an unlink, which is an additional 5 items (see the
|
||
|
* comment in __unlink_start_trans for what we're modifying.)
|
||
|
*
|
||
|
* But we also need space for the delayed ref updates from the unlink,
|
||
|
* so its 10, 5 for the actual operation, and 5 for the delayed ref
|
||
|
* updates.
|
||
|
*/
|
||
|
min_items += 10;
|
||
|
|
||
|
num_bytes = max_t(u64, num_bytes,
|
||
|
btrfs_calc_insert_metadata_size(fs_info, min_items));
|
||
|
|
||
|
spin_lock(&sinfo->lock);
|
||
|
spin_lock(&block_rsv->lock);
|
||
|
|
||
|
block_rsv->size = min_t(u64, num_bytes, SZ_512M);
|
||
|
|
||
|
if (block_rsv->reserved < block_rsv->size) {
|
||
|
num_bytes = block_rsv->size - block_rsv->reserved;
|
||
|
btrfs_space_info_update_bytes_may_use(fs_info, sinfo,
|
||
|
num_bytes);
|
||
|
block_rsv->reserved = block_rsv->size;
|
||
|
} else if (block_rsv->reserved > block_rsv->size) {
|
||
|
num_bytes = block_rsv->reserved - block_rsv->size;
|
||
|
btrfs_space_info_update_bytes_may_use(fs_info, sinfo,
|
||
|
-num_bytes);
|
||
|
block_rsv->reserved = block_rsv->size;
|
||
|
btrfs_try_granting_tickets(fs_info, sinfo);
|
||
|
}
|
||
|
|
||
|
block_rsv->full = (block_rsv->reserved == block_rsv->size);
|
||
|
|
||
|
if (block_rsv->size >= sinfo->total_bytes)
|
||
|
sinfo->force_alloc = CHUNK_ALLOC_FORCE;
|
||
|
spin_unlock(&block_rsv->lock);
|
||
|
spin_unlock(&sinfo->lock);
|
||
|
}
|
||
|
|
||
|
void btrfs_init_root_block_rsv(struct btrfs_root *root)
|
||
|
{
|
||
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
||
|
|
||
|
switch (root->root_key.objectid) {
|
||
|
case BTRFS_CSUM_TREE_OBJECTID:
|
||
|
case BTRFS_EXTENT_TREE_OBJECTID:
|
||
|
case BTRFS_FREE_SPACE_TREE_OBJECTID:
|
||
|
case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
|
||
|
root->block_rsv = &fs_info->delayed_refs_rsv;
|
||
|
break;
|
||
|
case BTRFS_ROOT_TREE_OBJECTID:
|
||
|
case BTRFS_DEV_TREE_OBJECTID:
|
||
|
case BTRFS_QUOTA_TREE_OBJECTID:
|
||
|
root->block_rsv = &fs_info->global_block_rsv;
|
||
|
break;
|
||
|
case BTRFS_CHUNK_TREE_OBJECTID:
|
||
|
root->block_rsv = &fs_info->chunk_block_rsv;
|
||
|
break;
|
||
|
default:
|
||
|
root->block_rsv = NULL;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void btrfs_init_global_block_rsv(struct btrfs_fs_info *fs_info)
|
||
|
{
|
||
|
struct btrfs_space_info *space_info;
|
||
|
|
||
|
space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
|
||
|
fs_info->chunk_block_rsv.space_info = space_info;
|
||
|
|
||
|
space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
|
||
|
fs_info->global_block_rsv.space_info = space_info;
|
||
|
fs_info->trans_block_rsv.space_info = space_info;
|
||
|
fs_info->empty_block_rsv.space_info = space_info;
|
||
|
fs_info->delayed_block_rsv.space_info = space_info;
|
||
|
fs_info->delayed_refs_rsv.space_info = space_info;
|
||
|
|
||
|
btrfs_update_global_block_rsv(fs_info);
|
||
|
}
|
||
|
|
||
|
void btrfs_release_global_block_rsv(struct btrfs_fs_info *fs_info)
|
||
|
{
|
||
|
btrfs_block_rsv_release(fs_info, &fs_info->global_block_rsv, (u64)-1,
|
||
|
NULL);
|
||
|
WARN_ON(fs_info->trans_block_rsv.size > 0);
|
||
|
WARN_ON(fs_info->trans_block_rsv.reserved > 0);
|
||
|
WARN_ON(fs_info->chunk_block_rsv.size > 0);
|
||
|
WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
|
||
|
WARN_ON(fs_info->delayed_block_rsv.size > 0);
|
||
|
WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
|
||
|
WARN_ON(fs_info->delayed_refs_rsv.reserved > 0);
|
||
|
WARN_ON(fs_info->delayed_refs_rsv.size > 0);
|
||
|
}
|
||
|
|
||
|
static struct btrfs_block_rsv *get_block_rsv(
|
||
|
const struct btrfs_trans_handle *trans,
|
||
|
const struct btrfs_root *root)
|
||
|
{
|
||
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
||
|
struct btrfs_block_rsv *block_rsv = NULL;
|
||
|
|
||
|
if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
|
||
|
(root == fs_info->uuid_root) ||
|
||
|
(trans->adding_csums &&
|
||
|
root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID))
|
||
|
block_rsv = trans->block_rsv;
|
||
|
|
||
|
if (!block_rsv)
|
||
|
block_rsv = root->block_rsv;
|
||
|
|
||
|
if (!block_rsv)
|
||
|
block_rsv = &fs_info->empty_block_rsv;
|
||
|
|
||
|
return block_rsv;
|
||
|
}
|
||
|
|
||
|
struct btrfs_block_rsv *btrfs_use_block_rsv(struct btrfs_trans_handle *trans,
|
||
|
struct btrfs_root *root,
|
||
|
u32 blocksize)
|
||
|
{
|
||
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
||
|
struct btrfs_block_rsv *block_rsv;
|
||
|
struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
|
||
|
int ret;
|
||
|
bool global_updated = false;
|
||
|
|
||
|
block_rsv = get_block_rsv(trans, root);
|
||
|
|
||
|
if (unlikely(block_rsv->size == 0))
|
||
|
goto try_reserve;
|
||
|
again:
|
||
|
ret = btrfs_block_rsv_use_bytes(block_rsv, blocksize);
|
||
|
if (!ret)
|
||
|
return block_rsv;
|
||
|
|
||
|
if (block_rsv->failfast)
|
||
|
return ERR_PTR(ret);
|
||
|
|
||
|
if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
|
||
|
global_updated = true;
|
||
|
btrfs_update_global_block_rsv(fs_info);
|
||
|
goto again;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The global reserve still exists to save us from ourselves, so don't
|
||
|
* warn_on if we are short on our delayed refs reserve.
|
||
|
*/
|
||
|
if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS &&
|
||
|
btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
|
||
|
static DEFINE_RATELIMIT_STATE(_rs,
|
||
|
DEFAULT_RATELIMIT_INTERVAL * 10,
|
||
|
/*DEFAULT_RATELIMIT_BURST*/ 1);
|
||
|
if (__ratelimit(&_rs))
|
||
|
WARN(1, KERN_DEBUG
|
||
|
"BTRFS: block rsv %d returned %d\n",
|
||
|
block_rsv->type, ret);
|
||
|
}
|
||
|
try_reserve:
|
||
|
ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, blocksize,
|
||
|
BTRFS_RESERVE_NO_FLUSH);
|
||
|
if (!ret)
|
||
|
return block_rsv;
|
||
|
/*
|
||
|
* If we couldn't reserve metadata bytes try and use some from
|
||
|
* the global reserve if its space type is the same as the global
|
||
|
* reservation.
|
||
|
*/
|
||
|
if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
|
||
|
block_rsv->space_info == global_rsv->space_info) {
|
||
|
ret = btrfs_block_rsv_use_bytes(global_rsv, blocksize);
|
||
|
if (!ret)
|
||
|
return global_rsv;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* All hope is lost, but of course our reservations are overly
|
||
|
* pessimistic, so instead of possibly having an ENOSPC abort here, try
|
||
|
* one last time to force a reservation if there's enough actual space
|
||
|
* on disk to make the reservation.
|
||
|
*/
|
||
|
ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, blocksize,
|
||
|
BTRFS_RESERVE_FLUSH_EMERGENCY);
|
||
|
if (!ret)
|
||
|
return block_rsv;
|
||
|
|
||
|
return ERR_PTR(ret);
|
||
|
}
|