linux-zen-desktop/fs/f2fs/compress.c

2019 lines
47 KiB
C
Raw Normal View History

2023-08-30 17:31:07 +02:00
// SPDX-License-Identifier: GPL-2.0
/*
* f2fs compress support
*
* Copyright (c) 2019 Chao Yu <chao@kernel.org>
*/
#include <linux/fs.h>
#include <linux/f2fs_fs.h>
#include <linux/moduleparam.h>
#include <linux/writeback.h>
#include <linux/backing-dev.h>
#include <linux/lzo.h>
#include <linux/lz4.h>
#include <linux/zstd.h>
#include <linux/pagevec.h>
#include "f2fs.h"
#include "node.h"
#include "segment.h"
#include <trace/events/f2fs.h>
static struct kmem_cache *cic_entry_slab;
static struct kmem_cache *dic_entry_slab;
static void *page_array_alloc(struct inode *inode, int nr)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
unsigned int size = sizeof(struct page *) * nr;
if (likely(size <= sbi->page_array_slab_size))
return f2fs_kmem_cache_alloc(sbi->page_array_slab,
GFP_F2FS_ZERO, false, F2FS_I_SB(inode));
return f2fs_kzalloc(sbi, size, GFP_NOFS);
}
static void page_array_free(struct inode *inode, void *pages, int nr)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
unsigned int size = sizeof(struct page *) * nr;
if (!pages)
return;
if (likely(size <= sbi->page_array_slab_size))
kmem_cache_free(sbi->page_array_slab, pages);
else
kfree(pages);
}
struct f2fs_compress_ops {
int (*init_compress_ctx)(struct compress_ctx *cc);
void (*destroy_compress_ctx)(struct compress_ctx *cc);
int (*compress_pages)(struct compress_ctx *cc);
int (*init_decompress_ctx)(struct decompress_io_ctx *dic);
void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic);
int (*decompress_pages)(struct decompress_io_ctx *dic);
};
static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index)
{
return index & (cc->cluster_size - 1);
}
static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index)
{
return index >> cc->log_cluster_size;
}
static pgoff_t start_idx_of_cluster(struct compress_ctx *cc)
{
return cc->cluster_idx << cc->log_cluster_size;
}
bool f2fs_is_compressed_page(struct page *page)
{
if (!PagePrivate(page))
return false;
if (!page_private(page))
return false;
if (page_private_nonpointer(page))
return false;
f2fs_bug_on(F2FS_M_SB(page->mapping),
*((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC);
return true;
}
static void f2fs_set_compressed_page(struct page *page,
struct inode *inode, pgoff_t index, void *data)
{
attach_page_private(page, (void *)data);
/* i_crypto_info and iv index */
page->index = index;
page->mapping = inode->i_mapping;
}
static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock)
{
int i;
for (i = 0; i < len; i++) {
if (!cc->rpages[i])
continue;
if (unlock)
unlock_page(cc->rpages[i]);
else
put_page(cc->rpages[i]);
}
}
static void f2fs_put_rpages(struct compress_ctx *cc)
{
f2fs_drop_rpages(cc, cc->cluster_size, false);
}
static void f2fs_unlock_rpages(struct compress_ctx *cc, int len)
{
f2fs_drop_rpages(cc, len, true);
}
static void f2fs_put_rpages_wbc(struct compress_ctx *cc,
struct writeback_control *wbc, bool redirty, int unlock)
{
unsigned int i;
for (i = 0; i < cc->cluster_size; i++) {
if (!cc->rpages[i])
continue;
if (redirty)
redirty_page_for_writepage(wbc, cc->rpages[i]);
f2fs_put_page(cc->rpages[i], unlock);
}
}
struct page *f2fs_compress_control_page(struct page *page)
{
return ((struct compress_io_ctx *)page_private(page))->rpages[0];
}
int f2fs_init_compress_ctx(struct compress_ctx *cc)
{
if (cc->rpages)
return 0;
cc->rpages = page_array_alloc(cc->inode, cc->cluster_size);
return cc->rpages ? 0 : -ENOMEM;
}
void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse)
{
page_array_free(cc->inode, cc->rpages, cc->cluster_size);
cc->rpages = NULL;
cc->nr_rpages = 0;
cc->nr_cpages = 0;
cc->valid_nr_cpages = 0;
if (!reuse)
cc->cluster_idx = NULL_CLUSTER;
}
void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page)
{
unsigned int cluster_ofs;
if (!f2fs_cluster_can_merge_page(cc, page->index))
f2fs_bug_on(F2FS_I_SB(cc->inode), 1);
cluster_ofs = offset_in_cluster(cc, page->index);
cc->rpages[cluster_ofs] = page;
cc->nr_rpages++;
cc->cluster_idx = cluster_idx(cc, page->index);
}
#ifdef CONFIG_F2FS_FS_LZO
static int lzo_init_compress_ctx(struct compress_ctx *cc)
{
cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
LZO1X_MEM_COMPRESS, GFP_NOFS);
if (!cc->private)
return -ENOMEM;
cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size);
return 0;
}
static void lzo_destroy_compress_ctx(struct compress_ctx *cc)
{
kvfree(cc->private);
cc->private = NULL;
}
static int lzo_compress_pages(struct compress_ctx *cc)
{
int ret;
ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
&cc->clen, cc->private);
if (ret != LZO_E_OK) {
printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n",
KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
return -EIO;
}
return 0;
}
static int lzo_decompress_pages(struct decompress_io_ctx *dic)
{
int ret;
ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen,
dic->rbuf, &dic->rlen);
if (ret != LZO_E_OK) {
printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n",
KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
return -EIO;
}
if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) {
printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, "
"expected:%lu\n", KERN_ERR,
F2FS_I_SB(dic->inode)->sb->s_id,
dic->rlen,
PAGE_SIZE << dic->log_cluster_size);
return -EIO;
}
return 0;
}
static const struct f2fs_compress_ops f2fs_lzo_ops = {
.init_compress_ctx = lzo_init_compress_ctx,
.destroy_compress_ctx = lzo_destroy_compress_ctx,
.compress_pages = lzo_compress_pages,
.decompress_pages = lzo_decompress_pages,
};
#endif
#ifdef CONFIG_F2FS_FS_LZ4
static int lz4_init_compress_ctx(struct compress_ctx *cc)
{
unsigned int size = LZ4_MEM_COMPRESS;
#ifdef CONFIG_F2FS_FS_LZ4HC
if (F2FS_I(cc->inode)->i_compress_level)
size = LZ4HC_MEM_COMPRESS;
#endif
cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS);
if (!cc->private)
return -ENOMEM;
/*
* we do not change cc->clen to LZ4_compressBound(inputsize) to
* adapt worst compress case, because lz4 compressor can handle
* output budget properly.
*/
cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
return 0;
}
static void lz4_destroy_compress_ctx(struct compress_ctx *cc)
{
kvfree(cc->private);
cc->private = NULL;
}
#ifdef CONFIG_F2FS_FS_LZ4HC
static int lz4hc_compress_pages(struct compress_ctx *cc)
{
unsigned char level = F2FS_I(cc->inode)->i_compress_level;
int len;
if (level)
len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen,
cc->clen, level, cc->private);
else
len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
cc->clen, cc->private);
if (!len)
return -EAGAIN;
cc->clen = len;
return 0;
}
#endif
static int lz4_compress_pages(struct compress_ctx *cc)
{
int len;
#ifdef CONFIG_F2FS_FS_LZ4HC
return lz4hc_compress_pages(cc);
#endif
len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
cc->clen, cc->private);
if (!len)
return -EAGAIN;
cc->clen = len;
return 0;
}
static int lz4_decompress_pages(struct decompress_io_ctx *dic)
{
int ret;
ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf,
dic->clen, dic->rlen);
if (ret < 0) {
printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n",
KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
return -EIO;
}
if (ret != PAGE_SIZE << dic->log_cluster_size) {
printk_ratelimited("%sF2FS-fs (%s): lz4 invalid ret:%d, "
"expected:%lu\n", KERN_ERR,
F2FS_I_SB(dic->inode)->sb->s_id, ret,
PAGE_SIZE << dic->log_cluster_size);
return -EIO;
}
return 0;
}
static const struct f2fs_compress_ops f2fs_lz4_ops = {
.init_compress_ctx = lz4_init_compress_ctx,
.destroy_compress_ctx = lz4_destroy_compress_ctx,
.compress_pages = lz4_compress_pages,
.decompress_pages = lz4_decompress_pages,
};
#endif
#ifdef CONFIG_F2FS_FS_ZSTD
#define F2FS_ZSTD_DEFAULT_CLEVEL 1
static int zstd_init_compress_ctx(struct compress_ctx *cc)
{
zstd_parameters params;
zstd_cstream *stream;
void *workspace;
unsigned int workspace_size;
unsigned char level = F2FS_I(cc->inode)->i_compress_level;
if (!level)
level = F2FS_ZSTD_DEFAULT_CLEVEL;
params = zstd_get_params(level, cc->rlen);
workspace_size = zstd_cstream_workspace_bound(&params.cParams);
workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
workspace_size, GFP_NOFS);
if (!workspace)
return -ENOMEM;
stream = zstd_init_cstream(&params, 0, workspace, workspace_size);
if (!stream) {
printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_cstream failed\n",
KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
__func__);
kvfree(workspace);
return -EIO;
}
cc->private = workspace;
cc->private2 = stream;
cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
return 0;
}
static void zstd_destroy_compress_ctx(struct compress_ctx *cc)
{
kvfree(cc->private);
cc->private = NULL;
cc->private2 = NULL;
}
static int zstd_compress_pages(struct compress_ctx *cc)
{
zstd_cstream *stream = cc->private2;
zstd_in_buffer inbuf;
zstd_out_buffer outbuf;
int src_size = cc->rlen;
int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE;
int ret;
inbuf.pos = 0;
inbuf.src = cc->rbuf;
inbuf.size = src_size;
outbuf.pos = 0;
outbuf.dst = cc->cbuf->cdata;
outbuf.size = dst_size;
ret = zstd_compress_stream(stream, &outbuf, &inbuf);
if (zstd_is_error(ret)) {
printk_ratelimited("%sF2FS-fs (%s): %s zstd_compress_stream failed, ret: %d\n",
KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
__func__, zstd_get_error_code(ret));
return -EIO;
}
ret = zstd_end_stream(stream, &outbuf);
if (zstd_is_error(ret)) {
printk_ratelimited("%sF2FS-fs (%s): %s zstd_end_stream returned %d\n",
KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
__func__, zstd_get_error_code(ret));
return -EIO;
}
/*
* there is compressed data remained in intermediate buffer due to
* no more space in cbuf.cdata
*/
if (ret)
return -EAGAIN;
cc->clen = outbuf.pos;
return 0;
}
static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic)
{
zstd_dstream *stream;
void *workspace;
unsigned int workspace_size;
unsigned int max_window_size =
MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size);
workspace_size = zstd_dstream_workspace_bound(max_window_size);
workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode),
workspace_size, GFP_NOFS);
if (!workspace)
return -ENOMEM;
stream = zstd_init_dstream(max_window_size, workspace, workspace_size);
if (!stream) {
printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_dstream failed\n",
KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
__func__);
kvfree(workspace);
return -EIO;
}
dic->private = workspace;
dic->private2 = stream;
return 0;
}
static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic)
{
kvfree(dic->private);
dic->private = NULL;
dic->private2 = NULL;
}
static int zstd_decompress_pages(struct decompress_io_ctx *dic)
{
zstd_dstream *stream = dic->private2;
zstd_in_buffer inbuf;
zstd_out_buffer outbuf;
int ret;
inbuf.pos = 0;
inbuf.src = dic->cbuf->cdata;
inbuf.size = dic->clen;
outbuf.pos = 0;
outbuf.dst = dic->rbuf;
outbuf.size = dic->rlen;
ret = zstd_decompress_stream(stream, &outbuf, &inbuf);
if (zstd_is_error(ret)) {
printk_ratelimited("%sF2FS-fs (%s): %s zstd_decompress_stream failed, ret: %d\n",
KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
__func__, zstd_get_error_code(ret));
return -EIO;
}
if (dic->rlen != outbuf.pos) {
printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, "
"expected:%lu\n", KERN_ERR,
F2FS_I_SB(dic->inode)->sb->s_id,
__func__, dic->rlen,
PAGE_SIZE << dic->log_cluster_size);
return -EIO;
}
return 0;
}
static const struct f2fs_compress_ops f2fs_zstd_ops = {
.init_compress_ctx = zstd_init_compress_ctx,
.destroy_compress_ctx = zstd_destroy_compress_ctx,
.compress_pages = zstd_compress_pages,
.init_decompress_ctx = zstd_init_decompress_ctx,
.destroy_decompress_ctx = zstd_destroy_decompress_ctx,
.decompress_pages = zstd_decompress_pages,
};
#endif
#ifdef CONFIG_F2FS_FS_LZO
#ifdef CONFIG_F2FS_FS_LZORLE
static int lzorle_compress_pages(struct compress_ctx *cc)
{
int ret;
ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
&cc->clen, cc->private);
if (ret != LZO_E_OK) {
printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n",
KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
return -EIO;
}
return 0;
}
static const struct f2fs_compress_ops f2fs_lzorle_ops = {
.init_compress_ctx = lzo_init_compress_ctx,
.destroy_compress_ctx = lzo_destroy_compress_ctx,
.compress_pages = lzorle_compress_pages,
.decompress_pages = lzo_decompress_pages,
};
#endif
#endif
static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = {
#ifdef CONFIG_F2FS_FS_LZO
&f2fs_lzo_ops,
#else
NULL,
#endif
#ifdef CONFIG_F2FS_FS_LZ4
&f2fs_lz4_ops,
#else
NULL,
#endif
#ifdef CONFIG_F2FS_FS_ZSTD
&f2fs_zstd_ops,
#else
NULL,
#endif
#if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE)
&f2fs_lzorle_ops,
#else
NULL,
#endif
};
bool f2fs_is_compress_backend_ready(struct inode *inode)
{
if (!f2fs_compressed_file(inode))
return true;
return f2fs_cops[F2FS_I(inode)->i_compress_algorithm];
}
static mempool_t *compress_page_pool;
static int num_compress_pages = 512;
module_param(num_compress_pages, uint, 0444);
MODULE_PARM_DESC(num_compress_pages,
"Number of intermediate compress pages to preallocate");
int __init f2fs_init_compress_mempool(void)
{
compress_page_pool = mempool_create_page_pool(num_compress_pages, 0);
return compress_page_pool ? 0 : -ENOMEM;
}
void f2fs_destroy_compress_mempool(void)
{
mempool_destroy(compress_page_pool);
}
static struct page *f2fs_compress_alloc_page(void)
{
struct page *page;
page = mempool_alloc(compress_page_pool, GFP_NOFS);
lock_page(page);
return page;
}
static void f2fs_compress_free_page(struct page *page)
{
if (!page)
return;
detach_page_private(page);
page->mapping = NULL;
unlock_page(page);
mempool_free(page, compress_page_pool);
}
#define MAX_VMAP_RETRIES 3
static void *f2fs_vmap(struct page **pages, unsigned int count)
{
int i;
void *buf = NULL;
for (i = 0; i < MAX_VMAP_RETRIES; i++) {
buf = vm_map_ram(pages, count, -1);
if (buf)
break;
vm_unmap_aliases();
}
return buf;
}
static int f2fs_compress_pages(struct compress_ctx *cc)
{
struct f2fs_inode_info *fi = F2FS_I(cc->inode);
const struct f2fs_compress_ops *cops =
f2fs_cops[fi->i_compress_algorithm];
unsigned int max_len, new_nr_cpages;
u32 chksum = 0;
int i, ret;
trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx,
cc->cluster_size, fi->i_compress_algorithm);
if (cops->init_compress_ctx) {
ret = cops->init_compress_ctx(cc);
if (ret)
goto out;
}
max_len = COMPRESS_HEADER_SIZE + cc->clen;
cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE);
cc->valid_nr_cpages = cc->nr_cpages;
cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages);
if (!cc->cpages) {
ret = -ENOMEM;
goto destroy_compress_ctx;
}
for (i = 0; i < cc->nr_cpages; i++) {
cc->cpages[i] = f2fs_compress_alloc_page();
if (!cc->cpages[i]) {
ret = -ENOMEM;
goto out_free_cpages;
}
}
cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size);
if (!cc->rbuf) {
ret = -ENOMEM;
goto out_free_cpages;
}
cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages);
if (!cc->cbuf) {
ret = -ENOMEM;
goto out_vunmap_rbuf;
}
ret = cops->compress_pages(cc);
if (ret)
goto out_vunmap_cbuf;
max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE;
if (cc->clen > max_len) {
ret = -EAGAIN;
goto out_vunmap_cbuf;
}
cc->cbuf->clen = cpu_to_le32(cc->clen);
if (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)
chksum = f2fs_crc32(F2FS_I_SB(cc->inode),
cc->cbuf->cdata, cc->clen);
cc->cbuf->chksum = cpu_to_le32(chksum);
for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++)
cc->cbuf->reserved[i] = cpu_to_le32(0);
new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE);
/* zero out any unused part of the last page */
memset(&cc->cbuf->cdata[cc->clen], 0,
(new_nr_cpages * PAGE_SIZE) -
(cc->clen + COMPRESS_HEADER_SIZE));
vm_unmap_ram(cc->cbuf, cc->nr_cpages);
vm_unmap_ram(cc->rbuf, cc->cluster_size);
for (i = new_nr_cpages; i < cc->nr_cpages; i++) {
f2fs_compress_free_page(cc->cpages[i]);
cc->cpages[i] = NULL;
}
if (cops->destroy_compress_ctx)
cops->destroy_compress_ctx(cc);
cc->valid_nr_cpages = new_nr_cpages;
trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
cc->clen, ret);
return 0;
out_vunmap_cbuf:
vm_unmap_ram(cc->cbuf, cc->nr_cpages);
out_vunmap_rbuf:
vm_unmap_ram(cc->rbuf, cc->cluster_size);
out_free_cpages:
for (i = 0; i < cc->nr_cpages; i++) {
if (cc->cpages[i])
f2fs_compress_free_page(cc->cpages[i]);
}
page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
cc->cpages = NULL;
destroy_compress_ctx:
if (cops->destroy_compress_ctx)
cops->destroy_compress_ctx(cc);
out:
trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
cc->clen, ret);
return ret;
}
static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
bool pre_alloc);
static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
bool bypass_destroy_callback, bool pre_alloc);
void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
struct f2fs_inode_info *fi = F2FS_I(dic->inode);
const struct f2fs_compress_ops *cops =
f2fs_cops[fi->i_compress_algorithm];
bool bypass_callback = false;
int ret;
trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx,
dic->cluster_size, fi->i_compress_algorithm);
if (dic->failed) {
ret = -EIO;
goto out_end_io;
}
ret = f2fs_prepare_decomp_mem(dic, false);
if (ret) {
bypass_callback = true;
goto out_release;
}
dic->clen = le32_to_cpu(dic->cbuf->clen);
dic->rlen = PAGE_SIZE << dic->log_cluster_size;
if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) {
ret = -EFSCORRUPTED;
/* Avoid f2fs_commit_super in irq context */
if (in_task)
f2fs_save_errors(sbi, ERROR_FAIL_DECOMPRESSION);
else
f2fs_handle_error(sbi, ERROR_FAIL_DECOMPRESSION);
goto out_release;
}
ret = cops->decompress_pages(dic);
if (!ret && (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)) {
u32 provided = le32_to_cpu(dic->cbuf->chksum);
u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen);
if (provided != calculated) {
if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) {
set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT);
printk_ratelimited(
"%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x",
KERN_INFO, sbi->sb->s_id, dic->inode->i_ino,
provided, calculated);
}
set_sbi_flag(sbi, SBI_NEED_FSCK);
}
}
out_release:
f2fs_release_decomp_mem(dic, bypass_callback, false);
out_end_io:
trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx,
dic->clen, ret);
f2fs_decompress_end_io(dic, ret, in_task);
}
/*
* This is called when a page of a compressed cluster has been read from disk
* (or failed to be read from disk). It checks whether this page was the last
* page being waited on in the cluster, and if so, it decompresses the cluster
* (or in the case of a failure, cleans up without actually decompressing).
*/
void f2fs_end_read_compressed_page(struct page *page, bool failed,
block_t blkaddr, bool in_task)
{
struct decompress_io_ctx *dic =
(struct decompress_io_ctx *)page_private(page);
struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
dec_page_count(sbi, F2FS_RD_DATA);
if (failed)
WRITE_ONCE(dic->failed, true);
else if (blkaddr && in_task)
f2fs_cache_compressed_page(sbi, page,
dic->inode->i_ino, blkaddr);
if (atomic_dec_and_test(&dic->remaining_pages))
f2fs_decompress_cluster(dic, in_task);
}
static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index)
{
if (cc->cluster_idx == NULL_CLUSTER)
return true;
return cc->cluster_idx == cluster_idx(cc, index);
}
bool f2fs_cluster_is_empty(struct compress_ctx *cc)
{
return cc->nr_rpages == 0;
}
static bool f2fs_cluster_is_full(struct compress_ctx *cc)
{
return cc->cluster_size == cc->nr_rpages;
}
bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index)
{
if (f2fs_cluster_is_empty(cc))
return true;
return is_page_in_cluster(cc, index);
}
bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
int index, int nr_pages, bool uptodate)
{
unsigned long pgidx = pages[index]->index;
int i = uptodate ? 0 : 1;
/*
* when uptodate set to true, try to check all pages in cluster is
* uptodate or not.
*/
if (uptodate && (pgidx % cc->cluster_size))
return false;
if (nr_pages - index < cc->cluster_size)
return false;
for (; i < cc->cluster_size; i++) {
if (pages[index + i]->index != pgidx + i)
return false;
if (uptodate && !PageUptodate(pages[index + i]))
return false;
}
return true;
}
static bool cluster_has_invalid_data(struct compress_ctx *cc)
{
loff_t i_size = i_size_read(cc->inode);
unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE);
int i;
for (i = 0; i < cc->cluster_size; i++) {
struct page *page = cc->rpages[i];
f2fs_bug_on(F2FS_I_SB(cc->inode), !page);
/* beyond EOF */
if (page->index >= nr_pages)
return true;
}
return false;
}
bool f2fs_sanity_check_cluster(struct dnode_of_data *dn)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
bool compressed = dn->data_blkaddr == COMPRESS_ADDR;
int cluster_end = 0;
int i;
char *reason = "";
if (!compressed)
return false;
/* [..., COMPR_ADDR, ...] */
if (dn->ofs_in_node % cluster_size) {
reason = "[*|C|*|*]";
goto out;
}
for (i = 1; i < cluster_size; i++) {
block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
dn->ofs_in_node + i);
/* [COMPR_ADDR, ..., COMPR_ADDR] */
if (blkaddr == COMPRESS_ADDR) {
reason = "[C|*|C|*]";
goto out;
}
if (!__is_valid_data_blkaddr(blkaddr)) {
if (!cluster_end)
cluster_end = i;
continue;
}
/* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */
if (cluster_end) {
reason = "[C|N|N|V]";
goto out;
}
}
return false;
out:
f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s",
dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason);
set_sbi_flag(sbi, SBI_NEED_FSCK);
return true;
}
static int __f2fs_cluster_blocks(struct inode *inode,
unsigned int cluster_idx, bool compr)
{
struct dnode_of_data dn;
unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
unsigned int start_idx = cluster_idx <<
F2FS_I(inode)->i_log_cluster_size;
int ret;
set_new_dnode(&dn, inode, NULL, NULL, 0);
ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
if (ret) {
if (ret == -ENOENT)
ret = 0;
goto fail;
}
if (f2fs_sanity_check_cluster(&dn)) {
ret = -EFSCORRUPTED;
f2fs_handle_error(F2FS_I_SB(inode), ERROR_CORRUPTED_CLUSTER);
goto fail;
}
if (dn.data_blkaddr == COMPRESS_ADDR) {
int i;
ret = 1;
for (i = 1; i < cluster_size; i++) {
block_t blkaddr;
blkaddr = data_blkaddr(dn.inode,
dn.node_page, dn.ofs_in_node + i);
if (compr) {
if (__is_valid_data_blkaddr(blkaddr))
ret++;
} else {
if (blkaddr != NULL_ADDR)
ret++;
}
}
f2fs_bug_on(F2FS_I_SB(inode),
!compr && ret != cluster_size &&
!is_inode_flag_set(inode, FI_COMPRESS_RELEASED));
}
fail:
f2fs_put_dnode(&dn);
return ret;
}
/* return # of compressed blocks in compressed cluster */
static int f2fs_compressed_blocks(struct compress_ctx *cc)
{
return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true);
}
/* return # of valid blocks in compressed cluster */
int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index)
{
return __f2fs_cluster_blocks(inode,
index >> F2FS_I(inode)->i_log_cluster_size,
false);
}
static bool cluster_may_compress(struct compress_ctx *cc)
{
if (!f2fs_need_compress_data(cc->inode))
return false;
if (f2fs_is_atomic_file(cc->inode))
return false;
if (!f2fs_cluster_is_full(cc))
return false;
if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode))))
return false;
return !cluster_has_invalid_data(cc);
}
static void set_cluster_writeback(struct compress_ctx *cc)
{
int i;
for (i = 0; i < cc->cluster_size; i++) {
if (cc->rpages[i])
set_page_writeback(cc->rpages[i]);
}
}
static void set_cluster_dirty(struct compress_ctx *cc)
{
int i;
for (i = 0; i < cc->cluster_size; i++)
if (cc->rpages[i])
set_page_dirty(cc->rpages[i]);
}
static int prepare_compress_overwrite(struct compress_ctx *cc,
struct page **pagep, pgoff_t index, void **fsdata)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
struct address_space *mapping = cc->inode->i_mapping;
struct page *page;
sector_t last_block_in_bio;
unsigned fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT;
pgoff_t start_idx = start_idx_of_cluster(cc);
int i, ret;
retry:
ret = f2fs_is_compressed_cluster(cc->inode, start_idx);
if (ret <= 0)
return ret;
ret = f2fs_init_compress_ctx(cc);
if (ret)
return ret;
/* keep page reference to avoid page reclaim */
for (i = 0; i < cc->cluster_size; i++) {
page = f2fs_pagecache_get_page(mapping, start_idx + i,
fgp_flag, GFP_NOFS);
if (!page) {
ret = -ENOMEM;
goto unlock_pages;
}
if (PageUptodate(page))
f2fs_put_page(page, 1);
else
f2fs_compress_ctx_add_page(cc, page);
}
if (!f2fs_cluster_is_empty(cc)) {
struct bio *bio = NULL;
ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size,
&last_block_in_bio, false, true);
f2fs_put_rpages(cc);
f2fs_destroy_compress_ctx(cc, true);
if (ret)
goto out;
if (bio)
f2fs_submit_read_bio(sbi, bio, DATA);
ret = f2fs_init_compress_ctx(cc);
if (ret)
goto out;
}
for (i = 0; i < cc->cluster_size; i++) {
f2fs_bug_on(sbi, cc->rpages[i]);
page = find_lock_page(mapping, start_idx + i);
if (!page) {
/* page can be truncated */
goto release_and_retry;
}
f2fs_wait_on_page_writeback(page, DATA, true, true);
f2fs_compress_ctx_add_page(cc, page);
if (!PageUptodate(page)) {
release_and_retry:
f2fs_put_rpages(cc);
f2fs_unlock_rpages(cc, i + 1);
f2fs_destroy_compress_ctx(cc, true);
goto retry;
}
}
if (likely(!ret)) {
*fsdata = cc->rpages;
*pagep = cc->rpages[offset_in_cluster(cc, index)];
return cc->cluster_size;
}
unlock_pages:
f2fs_put_rpages(cc);
f2fs_unlock_rpages(cc, i);
f2fs_destroy_compress_ctx(cc, true);
out:
return ret;
}
int f2fs_prepare_compress_overwrite(struct inode *inode,
struct page **pagep, pgoff_t index, void **fsdata)
{
struct compress_ctx cc = {
.inode = inode,
.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
.cluster_size = F2FS_I(inode)->i_cluster_size,
.cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size,
.rpages = NULL,
.nr_rpages = 0,
};
return prepare_compress_overwrite(&cc, pagep, index, fsdata);
}
bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
pgoff_t index, unsigned copied)
{
struct compress_ctx cc = {
.inode = inode,
.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
.cluster_size = F2FS_I(inode)->i_cluster_size,
.rpages = fsdata,
};
bool first_index = (index == cc.rpages[0]->index);
if (copied)
set_cluster_dirty(&cc);
f2fs_put_rpages_wbc(&cc, NULL, false, 1);
f2fs_destroy_compress_ctx(&cc, false);
return first_index;
}
int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock)
{
void *fsdata = NULL;
struct page *pagep;
int log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) <<
log_cluster_size;
int err;
err = f2fs_is_compressed_cluster(inode, start_idx);
if (err < 0)
return err;
/* truncate normal cluster */
if (!err)
return f2fs_do_truncate_blocks(inode, from, lock);
/* truncate compressed cluster */
err = f2fs_prepare_compress_overwrite(inode, &pagep,
start_idx, &fsdata);
/* should not be a normal cluster */
f2fs_bug_on(F2FS_I_SB(inode), err == 0);
if (err <= 0)
return err;
if (err > 0) {
struct page **rpages = fsdata;
int cluster_size = F2FS_I(inode)->i_cluster_size;
int i;
for (i = cluster_size - 1; i >= 0; i--) {
loff_t start = rpages[i]->index << PAGE_SHIFT;
if (from <= start) {
zero_user_segment(rpages[i], 0, PAGE_SIZE);
} else {
zero_user_segment(rpages[i], from - start,
PAGE_SIZE);
break;
}
}
f2fs_compress_write_end(inode, fsdata, start_idx, true);
}
return 0;
}
static int f2fs_write_compressed_pages(struct compress_ctx *cc,
int *submitted,
struct writeback_control *wbc,
enum iostat_type io_type)
{
struct inode *inode = cc->inode;
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct f2fs_inode_info *fi = F2FS_I(inode);
struct f2fs_io_info fio = {
.sbi = sbi,
.ino = cc->inode->i_ino,
.type = DATA,
.op = REQ_OP_WRITE,
.op_flags = wbc_to_write_flags(wbc),
.old_blkaddr = NEW_ADDR,
.page = NULL,
.encrypted_page = NULL,
.compressed_page = NULL,
.submitted = 0,
.io_type = io_type,
.io_wbc = wbc,
.encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode) ?
1 : 0,
};
struct dnode_of_data dn;
struct node_info ni;
struct compress_io_ctx *cic;
pgoff_t start_idx = start_idx_of_cluster(cc);
unsigned int last_index = cc->cluster_size - 1;
loff_t psize;
int i, err;
/* we should bypass data pages to proceed the kworker jobs */
if (unlikely(f2fs_cp_error(sbi))) {
mapping_set_error(cc->rpages[0]->mapping, -EIO);
goto out_free;
}
if (IS_NOQUOTA(inode)) {
/*
* We need to wait for node_write to avoid block allocation during
* checkpoint. This can only happen to quota writes which can cause
* the below discard race condition.
*/
f2fs_down_read(&sbi->node_write);
} else if (!f2fs_trylock_op(sbi)) {
goto out_free;
}
set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
if (err)
goto out_unlock_op;
for (i = 0; i < cc->cluster_size; i++) {
if (data_blkaddr(dn.inode, dn.node_page,
dn.ofs_in_node + i) == NULL_ADDR)
goto out_put_dnode;
}
psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT;
err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
if (err)
goto out_put_dnode;
fio.version = ni.version;
cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi);
if (!cic)
goto out_put_dnode;
cic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
cic->inode = inode;
atomic_set(&cic->pending_pages, cc->valid_nr_cpages);
cic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
if (!cic->rpages)
goto out_put_cic;
cic->nr_rpages = cc->cluster_size;
for (i = 0; i < cc->valid_nr_cpages; i++) {
f2fs_set_compressed_page(cc->cpages[i], inode,
cc->rpages[i + 1]->index, cic);
fio.compressed_page = cc->cpages[i];
fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page,
dn.ofs_in_node + i + 1);
/* wait for GCed page writeback via META_MAPPING */
f2fs_wait_on_block_writeback(inode, fio.old_blkaddr);
if (fio.encrypted) {
fio.page = cc->rpages[i + 1];
err = f2fs_encrypt_one_page(&fio);
if (err)
goto out_destroy_crypt;
cc->cpages[i] = fio.encrypted_page;
}
}
set_cluster_writeback(cc);
for (i = 0; i < cc->cluster_size; i++)
cic->rpages[i] = cc->rpages[i];
for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) {
block_t blkaddr;
blkaddr = f2fs_data_blkaddr(&dn);
fio.page = cc->rpages[i];
fio.old_blkaddr = blkaddr;
/* cluster header */
if (i == 0) {
if (blkaddr == COMPRESS_ADDR)
fio.compr_blocks++;
if (__is_valid_data_blkaddr(blkaddr))
f2fs_invalidate_blocks(sbi, blkaddr);
f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR);
goto unlock_continue;
}
if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr))
fio.compr_blocks++;
if (i > cc->valid_nr_cpages) {
if (__is_valid_data_blkaddr(blkaddr)) {
f2fs_invalidate_blocks(sbi, blkaddr);
f2fs_update_data_blkaddr(&dn, NEW_ADDR);
}
goto unlock_continue;
}
f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR);
if (fio.encrypted)
fio.encrypted_page = cc->cpages[i - 1];
else
fio.compressed_page = cc->cpages[i - 1];
cc->cpages[i - 1] = NULL;
f2fs_outplace_write_data(&dn, &fio);
(*submitted)++;
unlock_continue:
inode_dec_dirty_pages(cc->inode);
unlock_page(fio.page);
}
if (fio.compr_blocks)
f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false);
f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true);
add_compr_block_stat(inode, cc->valid_nr_cpages);
set_inode_flag(cc->inode, FI_APPEND_WRITE);
if (cc->cluster_idx == 0)
set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
f2fs_put_dnode(&dn);
if (IS_NOQUOTA(inode))
f2fs_up_read(&sbi->node_write);
else
f2fs_unlock_op(sbi);
spin_lock(&fi->i_size_lock);
if (fi->last_disk_size < psize)
fi->last_disk_size = psize;
spin_unlock(&fi->i_size_lock);
f2fs_put_rpages(cc);
page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
cc->cpages = NULL;
f2fs_destroy_compress_ctx(cc, false);
return 0;
out_destroy_crypt:
page_array_free(cc->inode, cic->rpages, cc->cluster_size);
for (--i; i >= 0; i--)
fscrypt_finalize_bounce_page(&cc->cpages[i]);
out_put_cic:
kmem_cache_free(cic_entry_slab, cic);
out_put_dnode:
f2fs_put_dnode(&dn);
out_unlock_op:
if (IS_NOQUOTA(inode))
f2fs_up_read(&sbi->node_write);
else
f2fs_unlock_op(sbi);
out_free:
for (i = 0; i < cc->valid_nr_cpages; i++) {
f2fs_compress_free_page(cc->cpages[i]);
cc->cpages[i] = NULL;
}
page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
cc->cpages = NULL;
return -EAGAIN;
}
void f2fs_compress_write_end_io(struct bio *bio, struct page *page)
{
struct f2fs_sb_info *sbi = bio->bi_private;
struct compress_io_ctx *cic =
(struct compress_io_ctx *)page_private(page);
int i;
if (unlikely(bio->bi_status))
mapping_set_error(cic->inode->i_mapping, -EIO);
f2fs_compress_free_page(page);
dec_page_count(sbi, F2FS_WB_DATA);
if (atomic_dec_return(&cic->pending_pages))
return;
for (i = 0; i < cic->nr_rpages; i++) {
WARN_ON(!cic->rpages[i]);
clear_page_private_gcing(cic->rpages[i]);
end_page_writeback(cic->rpages[i]);
}
page_array_free(cic->inode, cic->rpages, cic->nr_rpages);
kmem_cache_free(cic_entry_slab, cic);
}
static int f2fs_write_raw_pages(struct compress_ctx *cc,
int *submitted,
struct writeback_control *wbc,
enum iostat_type io_type)
{
struct address_space *mapping = cc->inode->i_mapping;
int _submitted, compr_blocks, ret, i;
compr_blocks = f2fs_compressed_blocks(cc);
for (i = 0; i < cc->cluster_size; i++) {
if (!cc->rpages[i])
continue;
redirty_page_for_writepage(wbc, cc->rpages[i]);
unlock_page(cc->rpages[i]);
}
if (compr_blocks < 0)
return compr_blocks;
for (i = 0; i < cc->cluster_size; i++) {
if (!cc->rpages[i])
continue;
retry_write:
lock_page(cc->rpages[i]);
if (cc->rpages[i]->mapping != mapping) {
continue_unlock:
unlock_page(cc->rpages[i]);
continue;
}
if (!PageDirty(cc->rpages[i]))
goto continue_unlock;
if (PageWriteback(cc->rpages[i])) {
if (wbc->sync_mode == WB_SYNC_NONE)
goto continue_unlock;
f2fs_wait_on_page_writeback(cc->rpages[i], DATA, true, true);
}
if (!clear_page_dirty_for_io(cc->rpages[i]))
goto continue_unlock;
ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted,
NULL, NULL, wbc, io_type,
compr_blocks, false);
if (ret) {
if (ret == AOP_WRITEPAGE_ACTIVATE) {
unlock_page(cc->rpages[i]);
ret = 0;
} else if (ret == -EAGAIN) {
/*
* for quota file, just redirty left pages to
* avoid deadlock caused by cluster update race
* from foreground operation.
*/
if (IS_NOQUOTA(cc->inode))
return 0;
ret = 0;
f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
goto retry_write;
}
return ret;
}
*submitted += _submitted;
}
f2fs_balance_fs(F2FS_M_SB(mapping), true);
return 0;
}
int f2fs_write_multi_pages(struct compress_ctx *cc,
int *submitted,
struct writeback_control *wbc,
enum iostat_type io_type)
{
int err;
*submitted = 0;
if (cluster_may_compress(cc)) {
err = f2fs_compress_pages(cc);
if (err == -EAGAIN) {
add_compr_block_stat(cc->inode, cc->cluster_size);
goto write;
} else if (err) {
f2fs_put_rpages_wbc(cc, wbc, true, 1);
goto destroy_out;
}
err = f2fs_write_compressed_pages(cc, submitted,
wbc, io_type);
if (!err)
return 0;
f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN);
}
write:
f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted);
err = f2fs_write_raw_pages(cc, submitted, wbc, io_type);
f2fs_put_rpages_wbc(cc, wbc, false, 0);
destroy_out:
f2fs_destroy_compress_ctx(cc, false);
return err;
}
static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi,
bool pre_alloc)
{
return pre_alloc ^ f2fs_low_mem_mode(sbi);
}
static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
bool pre_alloc)
{
const struct f2fs_compress_ops *cops =
f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
int i;
if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
return 0;
dic->tpages = page_array_alloc(dic->inode, dic->cluster_size);
if (!dic->tpages)
return -ENOMEM;
for (i = 0; i < dic->cluster_size; i++) {
if (dic->rpages[i]) {
dic->tpages[i] = dic->rpages[i];
continue;
}
dic->tpages[i] = f2fs_compress_alloc_page();
if (!dic->tpages[i])
return -ENOMEM;
}
dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size);
if (!dic->rbuf)
return -ENOMEM;
dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages);
if (!dic->cbuf)
return -ENOMEM;
if (cops->init_decompress_ctx)
return cops->init_decompress_ctx(dic);
return 0;
}
static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
bool bypass_destroy_callback, bool pre_alloc)
{
const struct f2fs_compress_ops *cops =
f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
return;
if (!bypass_destroy_callback && cops->destroy_decompress_ctx)
cops->destroy_decompress_ctx(dic);
if (dic->cbuf)
vm_unmap_ram(dic->cbuf, dic->nr_cpages);
if (dic->rbuf)
vm_unmap_ram(dic->rbuf, dic->cluster_size);
}
static void f2fs_free_dic(struct decompress_io_ctx *dic,
bool bypass_destroy_callback);
struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc)
{
struct decompress_io_ctx *dic;
pgoff_t start_idx = start_idx_of_cluster(cc);
struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
int i, ret;
dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, false, sbi);
if (!dic)
return ERR_PTR(-ENOMEM);
dic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
if (!dic->rpages) {
kmem_cache_free(dic_entry_slab, dic);
return ERR_PTR(-ENOMEM);
}
dic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
dic->inode = cc->inode;
atomic_set(&dic->remaining_pages, cc->nr_cpages);
dic->cluster_idx = cc->cluster_idx;
dic->cluster_size = cc->cluster_size;
dic->log_cluster_size = cc->log_cluster_size;
dic->nr_cpages = cc->nr_cpages;
refcount_set(&dic->refcnt, 1);
dic->failed = false;
dic->need_verity = f2fs_need_verity(cc->inode, start_idx);
for (i = 0; i < dic->cluster_size; i++)
dic->rpages[i] = cc->rpages[i];
dic->nr_rpages = cc->cluster_size;
dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages);
if (!dic->cpages) {
ret = -ENOMEM;
goto out_free;
}
for (i = 0; i < dic->nr_cpages; i++) {
struct page *page;
page = f2fs_compress_alloc_page();
if (!page) {
ret = -ENOMEM;
goto out_free;
}
f2fs_set_compressed_page(page, cc->inode,
start_idx + i + 1, dic);
dic->cpages[i] = page;
}
ret = f2fs_prepare_decomp_mem(dic, true);
if (ret)
goto out_free;
return dic;
out_free:
f2fs_free_dic(dic, true);
return ERR_PTR(ret);
}
static void f2fs_free_dic(struct decompress_io_ctx *dic,
bool bypass_destroy_callback)
{
int i;
f2fs_release_decomp_mem(dic, bypass_destroy_callback, true);
if (dic->tpages) {
for (i = 0; i < dic->cluster_size; i++) {
if (dic->rpages[i])
continue;
if (!dic->tpages[i])
continue;
f2fs_compress_free_page(dic->tpages[i]);
}
page_array_free(dic->inode, dic->tpages, dic->cluster_size);
}
if (dic->cpages) {
for (i = 0; i < dic->nr_cpages; i++) {
if (!dic->cpages[i])
continue;
f2fs_compress_free_page(dic->cpages[i]);
}
page_array_free(dic->inode, dic->cpages, dic->nr_cpages);
}
page_array_free(dic->inode, dic->rpages, dic->nr_rpages);
kmem_cache_free(dic_entry_slab, dic);
}
static void f2fs_late_free_dic(struct work_struct *work)
{
struct decompress_io_ctx *dic =
container_of(work, struct decompress_io_ctx, free_work);
f2fs_free_dic(dic, false);
}
static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task)
{
if (refcount_dec_and_test(&dic->refcnt)) {
if (in_task) {
f2fs_free_dic(dic, false);
} else {
INIT_WORK(&dic->free_work, f2fs_late_free_dic);
queue_work(F2FS_I_SB(dic->inode)->post_read_wq,
&dic->free_work);
}
}
}
static void f2fs_verify_cluster(struct work_struct *work)
{
struct decompress_io_ctx *dic =
container_of(work, struct decompress_io_ctx, verity_work);
int i;
/* Verify, update, and unlock the decompressed pages. */
for (i = 0; i < dic->cluster_size; i++) {
struct page *rpage = dic->rpages[i];
if (!rpage)
continue;
if (fsverity_verify_page(rpage))
SetPageUptodate(rpage);
else
ClearPageUptodate(rpage);
unlock_page(rpage);
}
f2fs_put_dic(dic, true);
}
/*
* This is called when a compressed cluster has been decompressed
* (or failed to be read and/or decompressed).
*/
void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
bool in_task)
{
int i;
if (!failed && dic->need_verity) {
/*
* Note that to avoid deadlocks, the verity work can't be done
* on the decompression workqueue. This is because verifying
* the data pages can involve reading metadata pages from the
* file, and these metadata pages may be compressed.
*/
INIT_WORK(&dic->verity_work, f2fs_verify_cluster);
fsverity_enqueue_verify_work(&dic->verity_work);
return;
}
/* Update and unlock the cluster's pagecache pages. */
for (i = 0; i < dic->cluster_size; i++) {
struct page *rpage = dic->rpages[i];
if (!rpage)
continue;
if (failed)
ClearPageUptodate(rpage);
else
SetPageUptodate(rpage);
unlock_page(rpage);
}
/*
* Release the reference to the decompress_io_ctx that was being held
* for I/O completion.
*/
f2fs_put_dic(dic, in_task);
}
/*
* Put a reference to a compressed page's decompress_io_ctx.
*
* This is called when the page is no longer needed and can be freed.
*/
void f2fs_put_page_dic(struct page *page, bool in_task)
{
struct decompress_io_ctx *dic =
(struct decompress_io_ctx *)page_private(page);
f2fs_put_dic(dic, in_task);
}
/*
* check whether cluster blocks are contiguous, and add extent cache entry
* only if cluster blocks are logically and physically contiguous.
*/
unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn)
{
bool compressed = f2fs_data_blkaddr(dn) == COMPRESS_ADDR;
int i = compressed ? 1 : 0;
block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
dn->ofs_in_node + i);
for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) {
block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
dn->ofs_in_node + i);
if (!__is_valid_data_blkaddr(blkaddr))
break;
if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr)
return 0;
}
return compressed ? i - 1 : i;
}
const struct address_space_operations f2fs_compress_aops = {
.release_folio = f2fs_release_folio,
.invalidate_folio = f2fs_invalidate_folio,
.migrate_folio = filemap_migrate_folio,
};
struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi)
{
return sbi->compress_inode->i_mapping;
}
void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr)
{
if (!sbi->compress_inode)
return;
invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr);
}
void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
nid_t ino, block_t blkaddr)
{
struct page *cpage;
int ret;
if (!test_opt(sbi, COMPRESS_CACHE))
return;
if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
return;
if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE))
return;
cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr);
if (cpage) {
f2fs_put_page(cpage, 0);
return;
}
cpage = alloc_page(__GFP_NOWARN | __GFP_IO);
if (!cpage)
return;
ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi),
blkaddr, GFP_NOFS);
if (ret) {
f2fs_put_page(cpage, 0);
return;
}
set_page_private_data(cpage, ino);
if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
goto out;
memcpy(page_address(cpage), page_address(page), PAGE_SIZE);
SetPageUptodate(cpage);
out:
f2fs_put_page(cpage, 1);
}
bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
block_t blkaddr)
{
struct page *cpage;
bool hitted = false;
if (!test_opt(sbi, COMPRESS_CACHE))
return false;
cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi),
blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS);
if (cpage) {
if (PageUptodate(cpage)) {
atomic_inc(&sbi->compress_page_hit);
memcpy(page_address(page),
page_address(cpage), PAGE_SIZE);
hitted = true;
}
f2fs_put_page(cpage, 1);
}
return hitted;
}
void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino)
{
struct address_space *mapping = COMPRESS_MAPPING(sbi);
struct folio_batch fbatch;
pgoff_t index = 0;
pgoff_t end = MAX_BLKADDR(sbi);
if (!mapping->nrpages)
return;
folio_batch_init(&fbatch);
do {
unsigned int nr, i;
nr = filemap_get_folios(mapping, &index, end - 1, &fbatch);
if (!nr)
break;
for (i = 0; i < nr; i++) {
struct folio *folio = fbatch.folios[i];
folio_lock(folio);
if (folio->mapping != mapping) {
folio_unlock(folio);
continue;
}
if (ino != get_page_private_data(&folio->page)) {
folio_unlock(folio);
continue;
}
generic_error_remove_page(mapping, &folio->page);
folio_unlock(folio);
}
folio_batch_release(&fbatch);
cond_resched();
} while (index < end);
}
int f2fs_init_compress_inode(struct f2fs_sb_info *sbi)
{
struct inode *inode;
if (!test_opt(sbi, COMPRESS_CACHE))
return 0;
inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi));
if (IS_ERR(inode))
return PTR_ERR(inode);
sbi->compress_inode = inode;
sbi->compress_percent = COMPRESS_PERCENT;
sbi->compress_watermark = COMPRESS_WATERMARK;
atomic_set(&sbi->compress_page_hit, 0);
return 0;
}
void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi)
{
if (!sbi->compress_inode)
return;
iput(sbi->compress_inode);
sbi->compress_inode = NULL;
}
int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi)
{
dev_t dev = sbi->sb->s_bdev->bd_dev;
char slab_name[32];
if (!f2fs_sb_has_compression(sbi))
return 0;
sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev));
sbi->page_array_slab_size = sizeof(struct page *) <<
F2FS_OPTION(sbi).compress_log_size;
sbi->page_array_slab = f2fs_kmem_cache_create(slab_name,
sbi->page_array_slab_size);
return sbi->page_array_slab ? 0 : -ENOMEM;
}
void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi)
{
kmem_cache_destroy(sbi->page_array_slab);
}
int __init f2fs_init_compress_cache(void)
{
cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry",
sizeof(struct compress_io_ctx));
if (!cic_entry_slab)
return -ENOMEM;
dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry",
sizeof(struct decompress_io_ctx));
if (!dic_entry_slab)
goto free_cic;
return 0;
free_cic:
kmem_cache_destroy(cic_entry_slab);
return -ENOMEM;
}
void f2fs_destroy_compress_cache(void)
{
kmem_cache_destroy(dic_entry_slab);
kmem_cache_destroy(cic_entry_slab);
}