1312 lines
41 KiB
C
1312 lines
41 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-only
|
||
|
/*
|
||
|
* Landlock LSM - Filesystem management and hooks
|
||
|
*
|
||
|
* Copyright © 2016-2020 Mickaël Salaün <mic@digikod.net>
|
||
|
* Copyright © 2018-2020 ANSSI
|
||
|
* Copyright © 2021-2022 Microsoft Corporation
|
||
|
*/
|
||
|
|
||
|
#include <linux/atomic.h>
|
||
|
#include <linux/bitops.h>
|
||
|
#include <linux/bits.h>
|
||
|
#include <linux/compiler_types.h>
|
||
|
#include <linux/dcache.h>
|
||
|
#include <linux/err.h>
|
||
|
#include <linux/fs.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/limits.h>
|
||
|
#include <linux/list.h>
|
||
|
#include <linux/lsm_hooks.h>
|
||
|
#include <linux/mount.h>
|
||
|
#include <linux/namei.h>
|
||
|
#include <linux/path.h>
|
||
|
#include <linux/rcupdate.h>
|
||
|
#include <linux/spinlock.h>
|
||
|
#include <linux/stat.h>
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/wait_bit.h>
|
||
|
#include <linux/workqueue.h>
|
||
|
#include <uapi/linux/landlock.h>
|
||
|
|
||
|
#include "common.h"
|
||
|
#include "cred.h"
|
||
|
#include "fs.h"
|
||
|
#include "limits.h"
|
||
|
#include "object.h"
|
||
|
#include "ruleset.h"
|
||
|
#include "setup.h"
|
||
|
|
||
|
/* Underlying object management */
|
||
|
|
||
|
static void release_inode(struct landlock_object *const object)
|
||
|
__releases(object->lock)
|
||
|
{
|
||
|
struct inode *const inode = object->underobj;
|
||
|
struct super_block *sb;
|
||
|
|
||
|
if (!inode) {
|
||
|
spin_unlock(&object->lock);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Protects against concurrent use by hook_sb_delete() of the reference
|
||
|
* to the underlying inode.
|
||
|
*/
|
||
|
object->underobj = NULL;
|
||
|
/*
|
||
|
* Makes sure that if the filesystem is concurrently unmounted,
|
||
|
* hook_sb_delete() will wait for us to finish iput().
|
||
|
*/
|
||
|
sb = inode->i_sb;
|
||
|
atomic_long_inc(&landlock_superblock(sb)->inode_refs);
|
||
|
spin_unlock(&object->lock);
|
||
|
/*
|
||
|
* Because object->underobj was not NULL, hook_sb_delete() and
|
||
|
* get_inode_object() guarantee that it is safe to reset
|
||
|
* landlock_inode(inode)->object while it is not NULL. It is therefore
|
||
|
* not necessary to lock inode->i_lock.
|
||
|
*/
|
||
|
rcu_assign_pointer(landlock_inode(inode)->object, NULL);
|
||
|
/*
|
||
|
* Now, new rules can safely be tied to @inode with get_inode_object().
|
||
|
*/
|
||
|
|
||
|
iput(inode);
|
||
|
if (atomic_long_dec_and_test(&landlock_superblock(sb)->inode_refs))
|
||
|
wake_up_var(&landlock_superblock(sb)->inode_refs);
|
||
|
}
|
||
|
|
||
|
static const struct landlock_object_underops landlock_fs_underops = {
|
||
|
.release = release_inode
|
||
|
};
|
||
|
|
||
|
/* Ruleset management */
|
||
|
|
||
|
static struct landlock_object *get_inode_object(struct inode *const inode)
|
||
|
{
|
||
|
struct landlock_object *object, *new_object;
|
||
|
struct landlock_inode_security *inode_sec = landlock_inode(inode);
|
||
|
|
||
|
rcu_read_lock();
|
||
|
retry:
|
||
|
object = rcu_dereference(inode_sec->object);
|
||
|
if (object) {
|
||
|
if (likely(refcount_inc_not_zero(&object->usage))) {
|
||
|
rcu_read_unlock();
|
||
|
return object;
|
||
|
}
|
||
|
/*
|
||
|
* We are racing with release_inode(), the object is going
|
||
|
* away. Wait for release_inode(), then retry.
|
||
|
*/
|
||
|
spin_lock(&object->lock);
|
||
|
spin_unlock(&object->lock);
|
||
|
goto retry;
|
||
|
}
|
||
|
rcu_read_unlock();
|
||
|
|
||
|
/*
|
||
|
* If there is no object tied to @inode, then create a new one (without
|
||
|
* holding any locks).
|
||
|
*/
|
||
|
new_object = landlock_create_object(&landlock_fs_underops, inode);
|
||
|
if (IS_ERR(new_object))
|
||
|
return new_object;
|
||
|
|
||
|
/*
|
||
|
* Protects against concurrent calls to get_inode_object() or
|
||
|
* hook_sb_delete().
|
||
|
*/
|
||
|
spin_lock(&inode->i_lock);
|
||
|
if (unlikely(rcu_access_pointer(inode_sec->object))) {
|
||
|
/* Someone else just created the object, bail out and retry. */
|
||
|
spin_unlock(&inode->i_lock);
|
||
|
kfree(new_object);
|
||
|
|
||
|
rcu_read_lock();
|
||
|
goto retry;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* @inode will be released by hook_sb_delete() on its superblock
|
||
|
* shutdown, or by release_inode() when no more ruleset references the
|
||
|
* related object.
|
||
|
*/
|
||
|
ihold(inode);
|
||
|
rcu_assign_pointer(inode_sec->object, new_object);
|
||
|
spin_unlock(&inode->i_lock);
|
||
|
return new_object;
|
||
|
}
|
||
|
|
||
|
/* All access rights that can be tied to files. */
|
||
|
/* clang-format off */
|
||
|
#define ACCESS_FILE ( \
|
||
|
LANDLOCK_ACCESS_FS_EXECUTE | \
|
||
|
LANDLOCK_ACCESS_FS_WRITE_FILE | \
|
||
|
LANDLOCK_ACCESS_FS_READ_FILE | \
|
||
|
LANDLOCK_ACCESS_FS_TRUNCATE)
|
||
|
/* clang-format on */
|
||
|
|
||
|
/*
|
||
|
* All access rights that are denied by default whether they are handled or not
|
||
|
* by a ruleset/layer. This must be ORed with all ruleset->fs_access_masks[]
|
||
|
* entries when we need to get the absolute handled access masks.
|
||
|
*/
|
||
|
/* clang-format off */
|
||
|
#define ACCESS_INITIALLY_DENIED ( \
|
||
|
LANDLOCK_ACCESS_FS_REFER)
|
||
|
/* clang-format on */
|
||
|
|
||
|
/*
|
||
|
* @path: Should have been checked by get_path_from_fd().
|
||
|
*/
|
||
|
int landlock_append_fs_rule(struct landlock_ruleset *const ruleset,
|
||
|
const struct path *const path,
|
||
|
access_mask_t access_rights)
|
||
|
{
|
||
|
int err;
|
||
|
struct landlock_object *object;
|
||
|
|
||
|
/* Files only get access rights that make sense. */
|
||
|
if (!d_is_dir(path->dentry) &&
|
||
|
(access_rights | ACCESS_FILE) != ACCESS_FILE)
|
||
|
return -EINVAL;
|
||
|
if (WARN_ON_ONCE(ruleset->num_layers != 1))
|
||
|
return -EINVAL;
|
||
|
|
||
|
/* Transforms relative access rights to absolute ones. */
|
||
|
access_rights |=
|
||
|
LANDLOCK_MASK_ACCESS_FS &
|
||
|
~(ruleset->fs_access_masks[0] | ACCESS_INITIALLY_DENIED);
|
||
|
object = get_inode_object(d_backing_inode(path->dentry));
|
||
|
if (IS_ERR(object))
|
||
|
return PTR_ERR(object);
|
||
|
mutex_lock(&ruleset->lock);
|
||
|
err = landlock_insert_rule(ruleset, object, access_rights);
|
||
|
mutex_unlock(&ruleset->lock);
|
||
|
/*
|
||
|
* No need to check for an error because landlock_insert_rule()
|
||
|
* increments the refcount for the new object if needed.
|
||
|
*/
|
||
|
landlock_put_object(object);
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
/* Access-control management */
|
||
|
|
||
|
/*
|
||
|
* The lifetime of the returned rule is tied to @domain.
|
||
|
*
|
||
|
* Returns NULL if no rule is found or if @dentry is negative.
|
||
|
*/
|
||
|
static inline const struct landlock_rule *
|
||
|
find_rule(const struct landlock_ruleset *const domain,
|
||
|
const struct dentry *const dentry)
|
||
|
{
|
||
|
const struct landlock_rule *rule;
|
||
|
const struct inode *inode;
|
||
|
|
||
|
/* Ignores nonexistent leafs. */
|
||
|
if (d_is_negative(dentry))
|
||
|
return NULL;
|
||
|
|
||
|
inode = d_backing_inode(dentry);
|
||
|
rcu_read_lock();
|
||
|
rule = landlock_find_rule(
|
||
|
domain, rcu_dereference(landlock_inode(inode)->object));
|
||
|
rcu_read_unlock();
|
||
|
return rule;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* @layer_masks is read and may be updated according to the access request and
|
||
|
* the matching rule.
|
||
|
*
|
||
|
* Returns true if the request is allowed (i.e. relevant layer masks for the
|
||
|
* request are empty).
|
||
|
*/
|
||
|
static inline bool
|
||
|
unmask_layers(const struct landlock_rule *const rule,
|
||
|
const access_mask_t access_request,
|
||
|
layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS])
|
||
|
{
|
||
|
size_t layer_level;
|
||
|
|
||
|
if (!access_request || !layer_masks)
|
||
|
return true;
|
||
|
if (!rule)
|
||
|
return false;
|
||
|
|
||
|
/*
|
||
|
* An access is granted if, for each policy layer, at least one rule
|
||
|
* encountered on the pathwalk grants the requested access,
|
||
|
* regardless of its position in the layer stack. We must then check
|
||
|
* the remaining layers for each inode, from the first added layer to
|
||
|
* the last one. When there is multiple requested accesses, for each
|
||
|
* policy layer, the full set of requested accesses may not be granted
|
||
|
* by only one rule, but by the union (binary OR) of multiple rules.
|
||
|
* E.g. /a/b <execute> + /a <read> => /a/b <execute + read>
|
||
|
*/
|
||
|
for (layer_level = 0; layer_level < rule->num_layers; layer_level++) {
|
||
|
const struct landlock_layer *const layer =
|
||
|
&rule->layers[layer_level];
|
||
|
const layer_mask_t layer_bit = BIT_ULL(layer->level - 1);
|
||
|
const unsigned long access_req = access_request;
|
||
|
unsigned long access_bit;
|
||
|
bool is_empty;
|
||
|
|
||
|
/*
|
||
|
* Records in @layer_masks which layer grants access to each
|
||
|
* requested access.
|
||
|
*/
|
||
|
is_empty = true;
|
||
|
for_each_set_bit(access_bit, &access_req,
|
||
|
ARRAY_SIZE(*layer_masks)) {
|
||
|
if (layer->access & BIT_ULL(access_bit))
|
||
|
(*layer_masks)[access_bit] &= ~layer_bit;
|
||
|
is_empty = is_empty && !(*layer_masks)[access_bit];
|
||
|
}
|
||
|
if (is_empty)
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Allows access to pseudo filesystems that will never be mountable (e.g.
|
||
|
* sockfs, pipefs), but can still be reachable through
|
||
|
* /proc/<pid>/fd/<file-descriptor>
|
||
|
*/
|
||
|
static inline bool is_nouser_or_private(const struct dentry *dentry)
|
||
|
{
|
||
|
return (dentry->d_sb->s_flags & SB_NOUSER) ||
|
||
|
(d_is_positive(dentry) &&
|
||
|
unlikely(IS_PRIVATE(d_backing_inode(dentry))));
|
||
|
}
|
||
|
|
||
|
static inline access_mask_t
|
||
|
get_handled_accesses(const struct landlock_ruleset *const domain)
|
||
|
{
|
||
|
access_mask_t access_dom = ACCESS_INITIALLY_DENIED;
|
||
|
size_t layer_level;
|
||
|
|
||
|
for (layer_level = 0; layer_level < domain->num_layers; layer_level++)
|
||
|
access_dom |= domain->fs_access_masks[layer_level];
|
||
|
return access_dom & LANDLOCK_MASK_ACCESS_FS;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* init_layer_masks - Initialize layer masks from an access request
|
||
|
*
|
||
|
* Populates @layer_masks such that for each access right in @access_request,
|
||
|
* the bits for all the layers are set where this access right is handled.
|
||
|
*
|
||
|
* @domain: The domain that defines the current restrictions.
|
||
|
* @access_request: The requested access rights to check.
|
||
|
* @layer_masks: The layer masks to populate.
|
||
|
*
|
||
|
* Returns: An access mask where each access right bit is set which is handled
|
||
|
* in any of the active layers in @domain.
|
||
|
*/
|
||
|
static inline access_mask_t
|
||
|
init_layer_masks(const struct landlock_ruleset *const domain,
|
||
|
const access_mask_t access_request,
|
||
|
layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS])
|
||
|
{
|
||
|
access_mask_t handled_accesses = 0;
|
||
|
size_t layer_level;
|
||
|
|
||
|
memset(layer_masks, 0, sizeof(*layer_masks));
|
||
|
/* An empty access request can happen because of O_WRONLY | O_RDWR. */
|
||
|
if (!access_request)
|
||
|
return 0;
|
||
|
|
||
|
/* Saves all handled accesses per layer. */
|
||
|
for (layer_level = 0; layer_level < domain->num_layers; layer_level++) {
|
||
|
const unsigned long access_req = access_request;
|
||
|
unsigned long access_bit;
|
||
|
|
||
|
for_each_set_bit(access_bit, &access_req,
|
||
|
ARRAY_SIZE(*layer_masks)) {
|
||
|
/*
|
||
|
* Artificially handles all initially denied by default
|
||
|
* access rights.
|
||
|
*/
|
||
|
if (BIT_ULL(access_bit) &
|
||
|
(domain->fs_access_masks[layer_level] |
|
||
|
ACCESS_INITIALLY_DENIED)) {
|
||
|
(*layer_masks)[access_bit] |=
|
||
|
BIT_ULL(layer_level);
|
||
|
handled_accesses |= BIT_ULL(access_bit);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return handled_accesses;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check that a destination file hierarchy has more restrictions than a source
|
||
|
* file hierarchy. This is only used for link and rename actions.
|
||
|
*
|
||
|
* @layer_masks_child2: Optional child masks.
|
||
|
*/
|
||
|
static inline bool no_more_access(
|
||
|
const layer_mask_t (*const layer_masks_parent1)[LANDLOCK_NUM_ACCESS_FS],
|
||
|
const layer_mask_t (*const layer_masks_child1)[LANDLOCK_NUM_ACCESS_FS],
|
||
|
const bool child1_is_directory,
|
||
|
const layer_mask_t (*const layer_masks_parent2)[LANDLOCK_NUM_ACCESS_FS],
|
||
|
const layer_mask_t (*const layer_masks_child2)[LANDLOCK_NUM_ACCESS_FS],
|
||
|
const bool child2_is_directory)
|
||
|
{
|
||
|
unsigned long access_bit;
|
||
|
|
||
|
for (access_bit = 0; access_bit < ARRAY_SIZE(*layer_masks_parent2);
|
||
|
access_bit++) {
|
||
|
/* Ignores accesses that only make sense for directories. */
|
||
|
const bool is_file_access =
|
||
|
!!(BIT_ULL(access_bit) & ACCESS_FILE);
|
||
|
|
||
|
if (child1_is_directory || is_file_access) {
|
||
|
/*
|
||
|
* Checks if the destination restrictions are a
|
||
|
* superset of the source ones (i.e. inherited access
|
||
|
* rights without child exceptions):
|
||
|
* restrictions(parent2) >= restrictions(child1)
|
||
|
*/
|
||
|
if ((((*layer_masks_parent1)[access_bit] &
|
||
|
(*layer_masks_child1)[access_bit]) |
|
||
|
(*layer_masks_parent2)[access_bit]) !=
|
||
|
(*layer_masks_parent2)[access_bit])
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
if (!layer_masks_child2)
|
||
|
continue;
|
||
|
if (child2_is_directory || is_file_access) {
|
||
|
/*
|
||
|
* Checks inverted restrictions for RENAME_EXCHANGE:
|
||
|
* restrictions(parent1) >= restrictions(child2)
|
||
|
*/
|
||
|
if ((((*layer_masks_parent2)[access_bit] &
|
||
|
(*layer_masks_child2)[access_bit]) |
|
||
|
(*layer_masks_parent1)[access_bit]) !=
|
||
|
(*layer_masks_parent1)[access_bit])
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Removes @layer_masks accesses that are not requested.
|
||
|
*
|
||
|
* Returns true if the request is allowed, false otherwise.
|
||
|
*/
|
||
|
static inline bool
|
||
|
scope_to_request(const access_mask_t access_request,
|
||
|
layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS])
|
||
|
{
|
||
|
const unsigned long access_req = access_request;
|
||
|
unsigned long access_bit;
|
||
|
|
||
|
if (WARN_ON_ONCE(!layer_masks))
|
||
|
return true;
|
||
|
|
||
|
for_each_clear_bit(access_bit, &access_req, ARRAY_SIZE(*layer_masks))
|
||
|
(*layer_masks)[access_bit] = 0;
|
||
|
return !memchr_inv(layer_masks, 0, sizeof(*layer_masks));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Returns true if there is at least one access right different than
|
||
|
* LANDLOCK_ACCESS_FS_REFER.
|
||
|
*/
|
||
|
static inline bool
|
||
|
is_eacces(const layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS],
|
||
|
const access_mask_t access_request)
|
||
|
{
|
||
|
unsigned long access_bit;
|
||
|
/* LANDLOCK_ACCESS_FS_REFER alone must return -EXDEV. */
|
||
|
const unsigned long access_check = access_request &
|
||
|
~LANDLOCK_ACCESS_FS_REFER;
|
||
|
|
||
|
if (!layer_masks)
|
||
|
return false;
|
||
|
|
||
|
for_each_set_bit(access_bit, &access_check, ARRAY_SIZE(*layer_masks)) {
|
||
|
if ((*layer_masks)[access_bit])
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* is_access_to_paths_allowed - Check accesses for requests with a common path
|
||
|
*
|
||
|
* @domain: Domain to check against.
|
||
|
* @path: File hierarchy to walk through.
|
||
|
* @access_request_parent1: Accesses to check, once @layer_masks_parent1 is
|
||
|
* equal to @layer_masks_parent2 (if any). This is tied to the unique
|
||
|
* requested path for most actions, or the source in case of a refer action
|
||
|
* (i.e. rename or link), or the source and destination in case of
|
||
|
* RENAME_EXCHANGE.
|
||
|
* @layer_masks_parent1: Pointer to a matrix of layer masks per access
|
||
|
* masks, identifying the layers that forbid a specific access. Bits from
|
||
|
* this matrix can be unset according to the @path walk. An empty matrix
|
||
|
* means that @domain allows all possible Landlock accesses (i.e. not only
|
||
|
* those identified by @access_request_parent1). This matrix can
|
||
|
* initially refer to domain layer masks and, when the accesses for the
|
||
|
* destination and source are the same, to requested layer masks.
|
||
|
* @dentry_child1: Dentry to the initial child of the parent1 path. This
|
||
|
* pointer must be NULL for non-refer actions (i.e. not link nor rename).
|
||
|
* @access_request_parent2: Similar to @access_request_parent1 but for a
|
||
|
* request involving a source and a destination. This refers to the
|
||
|
* destination, except in case of RENAME_EXCHANGE where it also refers to
|
||
|
* the source. Must be set to 0 when using a simple path request.
|
||
|
* @layer_masks_parent2: Similar to @layer_masks_parent1 but for a refer
|
||
|
* action. This must be NULL otherwise.
|
||
|
* @dentry_child2: Dentry to the initial child of the parent2 path. This
|
||
|
* pointer is only set for RENAME_EXCHANGE actions and must be NULL
|
||
|
* otherwise.
|
||
|
*
|
||
|
* This helper first checks that the destination has a superset of restrictions
|
||
|
* compared to the source (if any) for a common path. Because of
|
||
|
* RENAME_EXCHANGE actions, source and destinations may be swapped. It then
|
||
|
* checks that the collected accesses and the remaining ones are enough to
|
||
|
* allow the request.
|
||
|
*
|
||
|
* Returns:
|
||
|
* - true if the access request is granted;
|
||
|
* - false otherwise.
|
||
|
*/
|
||
|
static bool is_access_to_paths_allowed(
|
||
|
const struct landlock_ruleset *const domain,
|
||
|
const struct path *const path,
|
||
|
const access_mask_t access_request_parent1,
|
||
|
layer_mask_t (*const layer_masks_parent1)[LANDLOCK_NUM_ACCESS_FS],
|
||
|
const struct dentry *const dentry_child1,
|
||
|
const access_mask_t access_request_parent2,
|
||
|
layer_mask_t (*const layer_masks_parent2)[LANDLOCK_NUM_ACCESS_FS],
|
||
|
const struct dentry *const dentry_child2)
|
||
|
{
|
||
|
bool allowed_parent1 = false, allowed_parent2 = false, is_dom_check,
|
||
|
child1_is_directory = true, child2_is_directory = true;
|
||
|
struct path walker_path;
|
||
|
access_mask_t access_masked_parent1, access_masked_parent2;
|
||
|
layer_mask_t _layer_masks_child1[LANDLOCK_NUM_ACCESS_FS],
|
||
|
_layer_masks_child2[LANDLOCK_NUM_ACCESS_FS];
|
||
|
layer_mask_t(*layer_masks_child1)[LANDLOCK_NUM_ACCESS_FS] = NULL,
|
||
|
(*layer_masks_child2)[LANDLOCK_NUM_ACCESS_FS] = NULL;
|
||
|
|
||
|
if (!access_request_parent1 && !access_request_parent2)
|
||
|
return true;
|
||
|
if (WARN_ON_ONCE(!domain || !path))
|
||
|
return true;
|
||
|
if (is_nouser_or_private(path->dentry))
|
||
|
return true;
|
||
|
if (WARN_ON_ONCE(domain->num_layers < 1 || !layer_masks_parent1))
|
||
|
return false;
|
||
|
|
||
|
if (unlikely(layer_masks_parent2)) {
|
||
|
if (WARN_ON_ONCE(!dentry_child1))
|
||
|
return false;
|
||
|
/*
|
||
|
* For a double request, first check for potential privilege
|
||
|
* escalation by looking at domain handled accesses (which are
|
||
|
* a superset of the meaningful requested accesses).
|
||
|
*/
|
||
|
access_masked_parent1 = access_masked_parent2 =
|
||
|
get_handled_accesses(domain);
|
||
|
is_dom_check = true;
|
||
|
} else {
|
||
|
if (WARN_ON_ONCE(dentry_child1 || dentry_child2))
|
||
|
return false;
|
||
|
/* For a simple request, only check for requested accesses. */
|
||
|
access_masked_parent1 = access_request_parent1;
|
||
|
access_masked_parent2 = access_request_parent2;
|
||
|
is_dom_check = false;
|
||
|
}
|
||
|
|
||
|
if (unlikely(dentry_child1)) {
|
||
|
unmask_layers(find_rule(domain, dentry_child1),
|
||
|
init_layer_masks(domain, LANDLOCK_MASK_ACCESS_FS,
|
||
|
&_layer_masks_child1),
|
||
|
&_layer_masks_child1);
|
||
|
layer_masks_child1 = &_layer_masks_child1;
|
||
|
child1_is_directory = d_is_dir(dentry_child1);
|
||
|
}
|
||
|
if (unlikely(dentry_child2)) {
|
||
|
unmask_layers(find_rule(domain, dentry_child2),
|
||
|
init_layer_masks(domain, LANDLOCK_MASK_ACCESS_FS,
|
||
|
&_layer_masks_child2),
|
||
|
&_layer_masks_child2);
|
||
|
layer_masks_child2 = &_layer_masks_child2;
|
||
|
child2_is_directory = d_is_dir(dentry_child2);
|
||
|
}
|
||
|
|
||
|
walker_path = *path;
|
||
|
path_get(&walker_path);
|
||
|
/*
|
||
|
* We need to walk through all the hierarchy to not miss any relevant
|
||
|
* restriction.
|
||
|
*/
|
||
|
while (true) {
|
||
|
struct dentry *parent_dentry;
|
||
|
const struct landlock_rule *rule;
|
||
|
|
||
|
/*
|
||
|
* If at least all accesses allowed on the destination are
|
||
|
* already allowed on the source, respectively if there is at
|
||
|
* least as much as restrictions on the destination than on the
|
||
|
* source, then we can safely refer files from the source to
|
||
|
* the destination without risking a privilege escalation.
|
||
|
* This also applies in the case of RENAME_EXCHANGE, which
|
||
|
* implies checks on both direction. This is crucial for
|
||
|
* standalone multilayered security policies. Furthermore,
|
||
|
* this helps avoid policy writers to shoot themselves in the
|
||
|
* foot.
|
||
|
*/
|
||
|
if (unlikely(is_dom_check &&
|
||
|
no_more_access(
|
||
|
layer_masks_parent1, layer_masks_child1,
|
||
|
child1_is_directory, layer_masks_parent2,
|
||
|
layer_masks_child2,
|
||
|
child2_is_directory))) {
|
||
|
allowed_parent1 = scope_to_request(
|
||
|
access_request_parent1, layer_masks_parent1);
|
||
|
allowed_parent2 = scope_to_request(
|
||
|
access_request_parent2, layer_masks_parent2);
|
||
|
|
||
|
/* Stops when all accesses are granted. */
|
||
|
if (allowed_parent1 && allowed_parent2)
|
||
|
break;
|
||
|
|
||
|
/*
|
||
|
* Now, downgrades the remaining checks from domain
|
||
|
* handled accesses to requested accesses.
|
||
|
*/
|
||
|
is_dom_check = false;
|
||
|
access_masked_parent1 = access_request_parent1;
|
||
|
access_masked_parent2 = access_request_parent2;
|
||
|
}
|
||
|
|
||
|
rule = find_rule(domain, walker_path.dentry);
|
||
|
allowed_parent1 = unmask_layers(rule, access_masked_parent1,
|
||
|
layer_masks_parent1);
|
||
|
allowed_parent2 = unmask_layers(rule, access_masked_parent2,
|
||
|
layer_masks_parent2);
|
||
|
|
||
|
/* Stops when a rule from each layer grants access. */
|
||
|
if (allowed_parent1 && allowed_parent2)
|
||
|
break;
|
||
|
|
||
|
jump_up:
|
||
|
if (walker_path.dentry == walker_path.mnt->mnt_root) {
|
||
|
if (follow_up(&walker_path)) {
|
||
|
/* Ignores hidden mount points. */
|
||
|
goto jump_up;
|
||
|
} else {
|
||
|
/*
|
||
|
* Stops at the real root. Denies access
|
||
|
* because not all layers have granted access.
|
||
|
*/
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (unlikely(IS_ROOT(walker_path.dentry))) {
|
||
|
/*
|
||
|
* Stops at disconnected root directories. Only allows
|
||
|
* access to internal filesystems (e.g. nsfs, which is
|
||
|
* reachable through /proc/<pid>/ns/<namespace>).
|
||
|
*/
|
||
|
allowed_parent1 = allowed_parent2 =
|
||
|
!!(walker_path.mnt->mnt_flags & MNT_INTERNAL);
|
||
|
break;
|
||
|
}
|
||
|
parent_dentry = dget_parent(walker_path.dentry);
|
||
|
dput(walker_path.dentry);
|
||
|
walker_path.dentry = parent_dentry;
|
||
|
}
|
||
|
path_put(&walker_path);
|
||
|
|
||
|
return allowed_parent1 && allowed_parent2;
|
||
|
}
|
||
|
|
||
|
static inline int check_access_path(const struct landlock_ruleset *const domain,
|
||
|
const struct path *const path,
|
||
|
access_mask_t access_request)
|
||
|
{
|
||
|
layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {};
|
||
|
|
||
|
access_request = init_layer_masks(domain, access_request, &layer_masks);
|
||
|
if (is_access_to_paths_allowed(domain, path, access_request,
|
||
|
&layer_masks, NULL, 0, NULL, NULL))
|
||
|
return 0;
|
||
|
return -EACCES;
|
||
|
}
|
||
|
|
||
|
static inline int current_check_access_path(const struct path *const path,
|
||
|
const access_mask_t access_request)
|
||
|
{
|
||
|
const struct landlock_ruleset *const dom =
|
||
|
landlock_get_current_domain();
|
||
|
|
||
|
if (!dom)
|
||
|
return 0;
|
||
|
return check_access_path(dom, path, access_request);
|
||
|
}
|
||
|
|
||
|
static inline access_mask_t get_mode_access(const umode_t mode)
|
||
|
{
|
||
|
switch (mode & S_IFMT) {
|
||
|
case S_IFLNK:
|
||
|
return LANDLOCK_ACCESS_FS_MAKE_SYM;
|
||
|
case 0:
|
||
|
/* A zero mode translates to S_IFREG. */
|
||
|
case S_IFREG:
|
||
|
return LANDLOCK_ACCESS_FS_MAKE_REG;
|
||
|
case S_IFDIR:
|
||
|
return LANDLOCK_ACCESS_FS_MAKE_DIR;
|
||
|
case S_IFCHR:
|
||
|
return LANDLOCK_ACCESS_FS_MAKE_CHAR;
|
||
|
case S_IFBLK:
|
||
|
return LANDLOCK_ACCESS_FS_MAKE_BLOCK;
|
||
|
case S_IFIFO:
|
||
|
return LANDLOCK_ACCESS_FS_MAKE_FIFO;
|
||
|
case S_IFSOCK:
|
||
|
return LANDLOCK_ACCESS_FS_MAKE_SOCK;
|
||
|
default:
|
||
|
WARN_ON_ONCE(1);
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static inline access_mask_t maybe_remove(const struct dentry *const dentry)
|
||
|
{
|
||
|
if (d_is_negative(dentry))
|
||
|
return 0;
|
||
|
return d_is_dir(dentry) ? LANDLOCK_ACCESS_FS_REMOVE_DIR :
|
||
|
LANDLOCK_ACCESS_FS_REMOVE_FILE;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* collect_domain_accesses - Walk through a file path and collect accesses
|
||
|
*
|
||
|
* @domain: Domain to check against.
|
||
|
* @mnt_root: Last directory to check.
|
||
|
* @dir: Directory to start the walk from.
|
||
|
* @layer_masks_dom: Where to store the collected accesses.
|
||
|
*
|
||
|
* This helper is useful to begin a path walk from the @dir directory to a
|
||
|
* @mnt_root directory used as a mount point. This mount point is the common
|
||
|
* ancestor between the source and the destination of a renamed and linked
|
||
|
* file. While walking from @dir to @mnt_root, we record all the domain's
|
||
|
* allowed accesses in @layer_masks_dom.
|
||
|
*
|
||
|
* This is similar to is_access_to_paths_allowed() but much simpler because it
|
||
|
* only handles walking on the same mount point and only checks one set of
|
||
|
* accesses.
|
||
|
*
|
||
|
* Returns:
|
||
|
* - true if all the domain access rights are allowed for @dir;
|
||
|
* - false if the walk reached @mnt_root.
|
||
|
*/
|
||
|
static bool collect_domain_accesses(
|
||
|
const struct landlock_ruleset *const domain,
|
||
|
const struct dentry *const mnt_root, struct dentry *dir,
|
||
|
layer_mask_t (*const layer_masks_dom)[LANDLOCK_NUM_ACCESS_FS])
|
||
|
{
|
||
|
unsigned long access_dom;
|
||
|
bool ret = false;
|
||
|
|
||
|
if (WARN_ON_ONCE(!domain || !mnt_root || !dir || !layer_masks_dom))
|
||
|
return true;
|
||
|
if (is_nouser_or_private(dir))
|
||
|
return true;
|
||
|
|
||
|
access_dom = init_layer_masks(domain, LANDLOCK_MASK_ACCESS_FS,
|
||
|
layer_masks_dom);
|
||
|
|
||
|
dget(dir);
|
||
|
while (true) {
|
||
|
struct dentry *parent_dentry;
|
||
|
|
||
|
/* Gets all layers allowing all domain accesses. */
|
||
|
if (unmask_layers(find_rule(domain, dir), access_dom,
|
||
|
layer_masks_dom)) {
|
||
|
/*
|
||
|
* Stops when all handled accesses are allowed by at
|
||
|
* least one rule in each layer.
|
||
|
*/
|
||
|
ret = true;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* We should not reach a root other than @mnt_root. */
|
||
|
if (dir == mnt_root || WARN_ON_ONCE(IS_ROOT(dir)))
|
||
|
break;
|
||
|
|
||
|
parent_dentry = dget_parent(dir);
|
||
|
dput(dir);
|
||
|
dir = parent_dentry;
|
||
|
}
|
||
|
dput(dir);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* current_check_refer_path - Check if a rename or link action is allowed
|
||
|
*
|
||
|
* @old_dentry: File or directory requested to be moved or linked.
|
||
|
* @new_dir: Destination parent directory.
|
||
|
* @new_dentry: Destination file or directory.
|
||
|
* @removable: Sets to true if it is a rename operation.
|
||
|
* @exchange: Sets to true if it is a rename operation with RENAME_EXCHANGE.
|
||
|
*
|
||
|
* Because of its unprivileged constraints, Landlock relies on file hierarchies
|
||
|
* (and not only inodes) to tie access rights to files. Being able to link or
|
||
|
* rename a file hierarchy brings some challenges. Indeed, moving or linking a
|
||
|
* file (i.e. creating a new reference to an inode) can have an impact on the
|
||
|
* actions allowed for a set of files if it would change its parent directory
|
||
|
* (i.e. reparenting).
|
||
|
*
|
||
|
* To avoid trivial access right bypasses, Landlock first checks if the file or
|
||
|
* directory requested to be moved would gain new access rights inherited from
|
||
|
* its new hierarchy. Before returning any error, Landlock then checks that
|
||
|
* the parent source hierarchy and the destination hierarchy would allow the
|
||
|
* link or rename action. If it is not the case, an error with EACCES is
|
||
|
* returned to inform user space that there is no way to remove or create the
|
||
|
* requested source file type. If it should be allowed but the new inherited
|
||
|
* access rights would be greater than the source access rights, then the
|
||
|
* kernel returns an error with EXDEV. Prioritizing EACCES over EXDEV enables
|
||
|
* user space to abort the whole operation if there is no way to do it, or to
|
||
|
* manually copy the source to the destination if this remains allowed, e.g.
|
||
|
* because file creation is allowed on the destination directory but not direct
|
||
|
* linking.
|
||
|
*
|
||
|
* To achieve this goal, the kernel needs to compare two file hierarchies: the
|
||
|
* one identifying the source file or directory (including itself), and the
|
||
|
* destination one. This can be seen as a multilayer partial ordering problem.
|
||
|
* The kernel walks through these paths and collects in a matrix the access
|
||
|
* rights that are denied per layer. These matrices are then compared to see
|
||
|
* if the destination one has more (or the same) restrictions as the source
|
||
|
* one. If this is the case, the requested action will not return EXDEV, which
|
||
|
* doesn't mean the action is allowed. The parent hierarchy of the source
|
||
|
* (i.e. parent directory), and the destination hierarchy must also be checked
|
||
|
* to verify that they explicitly allow such action (i.e. referencing,
|
||
|
* creation and potentially removal rights). The kernel implementation is then
|
||
|
* required to rely on potentially four matrices of access rights: one for the
|
||
|
* source file or directory (i.e. the child), a potentially other one for the
|
||
|
* other source/destination (in case of RENAME_EXCHANGE), one for the source
|
||
|
* parent hierarchy and a last one for the destination hierarchy. These
|
||
|
* ephemeral matrices take some space on the stack, which limits the number of
|
||
|
* layers to a deemed reasonable number: 16.
|
||
|
*
|
||
|
* Returns:
|
||
|
* - 0 if access is allowed;
|
||
|
* - -EXDEV if @old_dentry would inherit new access rights from @new_dir;
|
||
|
* - -EACCES if file removal or creation is denied.
|
||
|
*/
|
||
|
static int current_check_refer_path(struct dentry *const old_dentry,
|
||
|
const struct path *const new_dir,
|
||
|
struct dentry *const new_dentry,
|
||
|
const bool removable, const bool exchange)
|
||
|
{
|
||
|
const struct landlock_ruleset *const dom =
|
||
|
landlock_get_current_domain();
|
||
|
bool allow_parent1, allow_parent2;
|
||
|
access_mask_t access_request_parent1, access_request_parent2;
|
||
|
struct path mnt_dir;
|
||
|
layer_mask_t layer_masks_parent1[LANDLOCK_NUM_ACCESS_FS],
|
||
|
layer_masks_parent2[LANDLOCK_NUM_ACCESS_FS];
|
||
|
|
||
|
if (!dom)
|
||
|
return 0;
|
||
|
if (WARN_ON_ONCE(dom->num_layers < 1))
|
||
|
return -EACCES;
|
||
|
if (unlikely(d_is_negative(old_dentry)))
|
||
|
return -ENOENT;
|
||
|
if (exchange) {
|
||
|
if (unlikely(d_is_negative(new_dentry)))
|
||
|
return -ENOENT;
|
||
|
access_request_parent1 =
|
||
|
get_mode_access(d_backing_inode(new_dentry)->i_mode);
|
||
|
} else {
|
||
|
access_request_parent1 = 0;
|
||
|
}
|
||
|
access_request_parent2 =
|
||
|
get_mode_access(d_backing_inode(old_dentry)->i_mode);
|
||
|
if (removable) {
|
||
|
access_request_parent1 |= maybe_remove(old_dentry);
|
||
|
access_request_parent2 |= maybe_remove(new_dentry);
|
||
|
}
|
||
|
|
||
|
/* The mount points are the same for old and new paths, cf. EXDEV. */
|
||
|
if (old_dentry->d_parent == new_dir->dentry) {
|
||
|
/*
|
||
|
* The LANDLOCK_ACCESS_FS_REFER access right is not required
|
||
|
* for same-directory referer (i.e. no reparenting).
|
||
|
*/
|
||
|
access_request_parent1 = init_layer_masks(
|
||
|
dom, access_request_parent1 | access_request_parent2,
|
||
|
&layer_masks_parent1);
|
||
|
if (is_access_to_paths_allowed(
|
||
|
dom, new_dir, access_request_parent1,
|
||
|
&layer_masks_parent1, NULL, 0, NULL, NULL))
|
||
|
return 0;
|
||
|
return -EACCES;
|
||
|
}
|
||
|
|
||
|
access_request_parent1 |= LANDLOCK_ACCESS_FS_REFER;
|
||
|
access_request_parent2 |= LANDLOCK_ACCESS_FS_REFER;
|
||
|
|
||
|
/* Saves the common mount point. */
|
||
|
mnt_dir.mnt = new_dir->mnt;
|
||
|
mnt_dir.dentry = new_dir->mnt->mnt_root;
|
||
|
|
||
|
/* new_dir->dentry is equal to new_dentry->d_parent */
|
||
|
allow_parent1 = collect_domain_accesses(dom, mnt_dir.dentry,
|
||
|
old_dentry->d_parent,
|
||
|
&layer_masks_parent1);
|
||
|
allow_parent2 = collect_domain_accesses(
|
||
|
dom, mnt_dir.dentry, new_dir->dentry, &layer_masks_parent2);
|
||
|
|
||
|
if (allow_parent1 && allow_parent2)
|
||
|
return 0;
|
||
|
|
||
|
/*
|
||
|
* To be able to compare source and destination domain access rights,
|
||
|
* take into account the @old_dentry access rights aggregated with its
|
||
|
* parent access rights. This will be useful to compare with the
|
||
|
* destination parent access rights.
|
||
|
*/
|
||
|
if (is_access_to_paths_allowed(
|
||
|
dom, &mnt_dir, access_request_parent1, &layer_masks_parent1,
|
||
|
old_dentry, access_request_parent2, &layer_masks_parent2,
|
||
|
exchange ? new_dentry : NULL))
|
||
|
return 0;
|
||
|
|
||
|
/*
|
||
|
* This prioritizes EACCES over EXDEV for all actions, including
|
||
|
* renames with RENAME_EXCHANGE.
|
||
|
*/
|
||
|
if (likely(is_eacces(&layer_masks_parent1, access_request_parent1) ||
|
||
|
is_eacces(&layer_masks_parent2, access_request_parent2)))
|
||
|
return -EACCES;
|
||
|
|
||
|
/*
|
||
|
* Gracefully forbids reparenting if the destination directory
|
||
|
* hierarchy is not a superset of restrictions of the source directory
|
||
|
* hierarchy, or if LANDLOCK_ACCESS_FS_REFER is not allowed by the
|
||
|
* source or the destination.
|
||
|
*/
|
||
|
return -EXDEV;
|
||
|
}
|
||
|
|
||
|
/* Inode hooks */
|
||
|
|
||
|
static void hook_inode_free_security(struct inode *const inode)
|
||
|
{
|
||
|
/*
|
||
|
* All inodes must already have been untied from their object by
|
||
|
* release_inode() or hook_sb_delete().
|
||
|
*/
|
||
|
WARN_ON_ONCE(landlock_inode(inode)->object);
|
||
|
}
|
||
|
|
||
|
/* Super-block hooks */
|
||
|
|
||
|
/*
|
||
|
* Release the inodes used in a security policy.
|
||
|
*
|
||
|
* Cf. fsnotify_unmount_inodes() and invalidate_inodes()
|
||
|
*/
|
||
|
static void hook_sb_delete(struct super_block *const sb)
|
||
|
{
|
||
|
struct inode *inode, *prev_inode = NULL;
|
||
|
|
||
|
if (!landlock_initialized)
|
||
|
return;
|
||
|
|
||
|
spin_lock(&sb->s_inode_list_lock);
|
||
|
list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
|
||
|
struct landlock_object *object;
|
||
|
|
||
|
/* Only handles referenced inodes. */
|
||
|
if (!atomic_read(&inode->i_count))
|
||
|
continue;
|
||
|
|
||
|
/*
|
||
|
* Protects against concurrent modification of inode (e.g.
|
||
|
* from get_inode_object()).
|
||
|
*/
|
||
|
spin_lock(&inode->i_lock);
|
||
|
/*
|
||
|
* Checks I_FREEING and I_WILL_FREE to protect against a race
|
||
|
* condition when release_inode() just called iput(), which
|
||
|
* could lead to a NULL dereference of inode->security or a
|
||
|
* second call to iput() for the same Landlock object. Also
|
||
|
* checks I_NEW because such inode cannot be tied to an object.
|
||
|
*/
|
||
|
if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
|
||
|
spin_unlock(&inode->i_lock);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
rcu_read_lock();
|
||
|
object = rcu_dereference(landlock_inode(inode)->object);
|
||
|
if (!object) {
|
||
|
rcu_read_unlock();
|
||
|
spin_unlock(&inode->i_lock);
|
||
|
continue;
|
||
|
}
|
||
|
/* Keeps a reference to this inode until the next loop walk. */
|
||
|
__iget(inode);
|
||
|
spin_unlock(&inode->i_lock);
|
||
|
|
||
|
/*
|
||
|
* If there is no concurrent release_inode() ongoing, then we
|
||
|
* are in charge of calling iput() on this inode, otherwise we
|
||
|
* will just wait for it to finish.
|
||
|
*/
|
||
|
spin_lock(&object->lock);
|
||
|
if (object->underobj == inode) {
|
||
|
object->underobj = NULL;
|
||
|
spin_unlock(&object->lock);
|
||
|
rcu_read_unlock();
|
||
|
|
||
|
/*
|
||
|
* Because object->underobj was not NULL,
|
||
|
* release_inode() and get_inode_object() guarantee
|
||
|
* that it is safe to reset
|
||
|
* landlock_inode(inode)->object while it is not NULL.
|
||
|
* It is therefore not necessary to lock inode->i_lock.
|
||
|
*/
|
||
|
rcu_assign_pointer(landlock_inode(inode)->object, NULL);
|
||
|
/*
|
||
|
* At this point, we own the ihold() reference that was
|
||
|
* originally set up by get_inode_object() and the
|
||
|
* __iget() reference that we just set in this loop
|
||
|
* walk. Therefore the following call to iput() will
|
||
|
* not sleep nor drop the inode because there is now at
|
||
|
* least two references to it.
|
||
|
*/
|
||
|
iput(inode);
|
||
|
} else {
|
||
|
spin_unlock(&object->lock);
|
||
|
rcu_read_unlock();
|
||
|
}
|
||
|
|
||
|
if (prev_inode) {
|
||
|
/*
|
||
|
* At this point, we still own the __iget() reference
|
||
|
* that we just set in this loop walk. Therefore we
|
||
|
* can drop the list lock and know that the inode won't
|
||
|
* disappear from under us until the next loop walk.
|
||
|
*/
|
||
|
spin_unlock(&sb->s_inode_list_lock);
|
||
|
/*
|
||
|
* We can now actually put the inode reference from the
|
||
|
* previous loop walk, which is not needed anymore.
|
||
|
*/
|
||
|
iput(prev_inode);
|
||
|
cond_resched();
|
||
|
spin_lock(&sb->s_inode_list_lock);
|
||
|
}
|
||
|
prev_inode = inode;
|
||
|
}
|
||
|
spin_unlock(&sb->s_inode_list_lock);
|
||
|
|
||
|
/* Puts the inode reference from the last loop walk, if any. */
|
||
|
if (prev_inode)
|
||
|
iput(prev_inode);
|
||
|
/* Waits for pending iput() in release_inode(). */
|
||
|
wait_var_event(&landlock_superblock(sb)->inode_refs,
|
||
|
!atomic_long_read(&landlock_superblock(sb)->inode_refs));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Because a Landlock security policy is defined according to the filesystem
|
||
|
* topology (i.e. the mount namespace), changing it may grant access to files
|
||
|
* not previously allowed.
|
||
|
*
|
||
|
* To make it simple, deny any filesystem topology modification by landlocked
|
||
|
* processes. Non-landlocked processes may still change the namespace of a
|
||
|
* landlocked process, but this kind of threat must be handled by a system-wide
|
||
|
* access-control security policy.
|
||
|
*
|
||
|
* This could be lifted in the future if Landlock can safely handle mount
|
||
|
* namespace updates requested by a landlocked process. Indeed, we could
|
||
|
* update the current domain (which is currently read-only) by taking into
|
||
|
* account the accesses of the source and the destination of a new mount point.
|
||
|
* However, it would also require to make all the child domains dynamically
|
||
|
* inherit these new constraints. Anyway, for backward compatibility reasons,
|
||
|
* a dedicated user space option would be required (e.g. as a ruleset flag).
|
||
|
*/
|
||
|
static int hook_sb_mount(const char *const dev_name,
|
||
|
const struct path *const path, const char *const type,
|
||
|
const unsigned long flags, void *const data)
|
||
|
{
|
||
|
if (!landlock_get_current_domain())
|
||
|
return 0;
|
||
|
return -EPERM;
|
||
|
}
|
||
|
|
||
|
static int hook_move_mount(const struct path *const from_path,
|
||
|
const struct path *const to_path)
|
||
|
{
|
||
|
if (!landlock_get_current_domain())
|
||
|
return 0;
|
||
|
return -EPERM;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Removing a mount point may reveal a previously hidden file hierarchy, which
|
||
|
* may then grant access to files, which may have previously been forbidden.
|
||
|
*/
|
||
|
static int hook_sb_umount(struct vfsmount *const mnt, const int flags)
|
||
|
{
|
||
|
if (!landlock_get_current_domain())
|
||
|
return 0;
|
||
|
return -EPERM;
|
||
|
}
|
||
|
|
||
|
static int hook_sb_remount(struct super_block *const sb, void *const mnt_opts)
|
||
|
{
|
||
|
if (!landlock_get_current_domain())
|
||
|
return 0;
|
||
|
return -EPERM;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* pivot_root(2), like mount(2), changes the current mount namespace. It must
|
||
|
* then be forbidden for a landlocked process.
|
||
|
*
|
||
|
* However, chroot(2) may be allowed because it only changes the relative root
|
||
|
* directory of the current process. Moreover, it can be used to restrict the
|
||
|
* view of the filesystem.
|
||
|
*/
|
||
|
static int hook_sb_pivotroot(const struct path *const old_path,
|
||
|
const struct path *const new_path)
|
||
|
{
|
||
|
if (!landlock_get_current_domain())
|
||
|
return 0;
|
||
|
return -EPERM;
|
||
|
}
|
||
|
|
||
|
/* Path hooks */
|
||
|
|
||
|
static int hook_path_link(struct dentry *const old_dentry,
|
||
|
const struct path *const new_dir,
|
||
|
struct dentry *const new_dentry)
|
||
|
{
|
||
|
return current_check_refer_path(old_dentry, new_dir, new_dentry, false,
|
||
|
false);
|
||
|
}
|
||
|
|
||
|
static int hook_path_rename(const struct path *const old_dir,
|
||
|
struct dentry *const old_dentry,
|
||
|
const struct path *const new_dir,
|
||
|
struct dentry *const new_dentry,
|
||
|
const unsigned int flags)
|
||
|
{
|
||
|
/* old_dir refers to old_dentry->d_parent and new_dir->mnt */
|
||
|
return current_check_refer_path(old_dentry, new_dir, new_dentry, true,
|
||
|
!!(flags & RENAME_EXCHANGE));
|
||
|
}
|
||
|
|
||
|
static int hook_path_mkdir(const struct path *const dir,
|
||
|
struct dentry *const dentry, const umode_t mode)
|
||
|
{
|
||
|
return current_check_access_path(dir, LANDLOCK_ACCESS_FS_MAKE_DIR);
|
||
|
}
|
||
|
|
||
|
static int hook_path_mknod(const struct path *const dir,
|
||
|
struct dentry *const dentry, const umode_t mode,
|
||
|
const unsigned int dev)
|
||
|
{
|
||
|
const struct landlock_ruleset *const dom =
|
||
|
landlock_get_current_domain();
|
||
|
|
||
|
if (!dom)
|
||
|
return 0;
|
||
|
return check_access_path(dom, dir, get_mode_access(mode));
|
||
|
}
|
||
|
|
||
|
static int hook_path_symlink(const struct path *const dir,
|
||
|
struct dentry *const dentry,
|
||
|
const char *const old_name)
|
||
|
{
|
||
|
return current_check_access_path(dir, LANDLOCK_ACCESS_FS_MAKE_SYM);
|
||
|
}
|
||
|
|
||
|
static int hook_path_unlink(const struct path *const dir,
|
||
|
struct dentry *const dentry)
|
||
|
{
|
||
|
return current_check_access_path(dir, LANDLOCK_ACCESS_FS_REMOVE_FILE);
|
||
|
}
|
||
|
|
||
|
static int hook_path_rmdir(const struct path *const dir,
|
||
|
struct dentry *const dentry)
|
||
|
{
|
||
|
return current_check_access_path(dir, LANDLOCK_ACCESS_FS_REMOVE_DIR);
|
||
|
}
|
||
|
|
||
|
static int hook_path_truncate(const struct path *const path)
|
||
|
{
|
||
|
return current_check_access_path(path, LANDLOCK_ACCESS_FS_TRUNCATE);
|
||
|
}
|
||
|
|
||
|
/* File hooks */
|
||
|
|
||
|
/**
|
||
|
* get_required_file_open_access - Get access needed to open a file
|
||
|
*
|
||
|
* @file: File being opened.
|
||
|
*
|
||
|
* Returns the access rights that are required for opening the given file,
|
||
|
* depending on the file type and open mode.
|
||
|
*/
|
||
|
static inline access_mask_t
|
||
|
get_required_file_open_access(const struct file *const file)
|
||
|
{
|
||
|
access_mask_t access = 0;
|
||
|
|
||
|
if (file->f_mode & FMODE_READ) {
|
||
|
/* A directory can only be opened in read mode. */
|
||
|
if (S_ISDIR(file_inode(file)->i_mode))
|
||
|
return LANDLOCK_ACCESS_FS_READ_DIR;
|
||
|
access = LANDLOCK_ACCESS_FS_READ_FILE;
|
||
|
}
|
||
|
if (file->f_mode & FMODE_WRITE)
|
||
|
access |= LANDLOCK_ACCESS_FS_WRITE_FILE;
|
||
|
/* __FMODE_EXEC is indeed part of f_flags, not f_mode. */
|
||
|
if (file->f_flags & __FMODE_EXEC)
|
||
|
access |= LANDLOCK_ACCESS_FS_EXECUTE;
|
||
|
return access;
|
||
|
}
|
||
|
|
||
|
static int hook_file_alloc_security(struct file *const file)
|
||
|
{
|
||
|
/*
|
||
|
* Grants all access rights, even if most of them are not checked later
|
||
|
* on. It is more consistent.
|
||
|
*
|
||
|
* Notably, file descriptors for regular files can also be acquired
|
||
|
* without going through the file_open hook, for example when using
|
||
|
* memfd_create(2).
|
||
|
*/
|
||
|
landlock_file(file)->allowed_access = LANDLOCK_MASK_ACCESS_FS;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int hook_file_open(struct file *const file)
|
||
|
{
|
||
|
layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {};
|
||
|
access_mask_t open_access_request, full_access_request, allowed_access;
|
||
|
const access_mask_t optional_access = LANDLOCK_ACCESS_FS_TRUNCATE;
|
||
|
const struct landlock_ruleset *const dom =
|
||
|
landlock_get_current_domain();
|
||
|
|
||
|
if (!dom)
|
||
|
return 0;
|
||
|
|
||
|
/*
|
||
|
* Because a file may be opened with O_PATH, get_required_file_open_access()
|
||
|
* may return 0. This case will be handled with a future Landlock
|
||
|
* evolution.
|
||
|
*/
|
||
|
open_access_request = get_required_file_open_access(file);
|
||
|
|
||
|
/*
|
||
|
* We look up more access than what we immediately need for open(), so
|
||
|
* that we can later authorize operations on opened files.
|
||
|
*/
|
||
|
full_access_request = open_access_request | optional_access;
|
||
|
|
||
|
if (is_access_to_paths_allowed(
|
||
|
dom, &file->f_path,
|
||
|
init_layer_masks(dom, full_access_request, &layer_masks),
|
||
|
&layer_masks, NULL, 0, NULL, NULL)) {
|
||
|
allowed_access = full_access_request;
|
||
|
} else {
|
||
|
unsigned long access_bit;
|
||
|
const unsigned long access_req = full_access_request;
|
||
|
|
||
|
/*
|
||
|
* Calculate the actual allowed access rights from layer_masks.
|
||
|
* Add each access right to allowed_access which has not been
|
||
|
* vetoed by any layer.
|
||
|
*/
|
||
|
allowed_access = 0;
|
||
|
for_each_set_bit(access_bit, &access_req,
|
||
|
ARRAY_SIZE(layer_masks)) {
|
||
|
if (!layer_masks[access_bit])
|
||
|
allowed_access |= BIT_ULL(access_bit);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* For operations on already opened files (i.e. ftruncate()), it is the
|
||
|
* access rights at the time of open() which decide whether the
|
||
|
* operation is permitted. Therefore, we record the relevant subset of
|
||
|
* file access rights in the opened struct file.
|
||
|
*/
|
||
|
landlock_file(file)->allowed_access = allowed_access;
|
||
|
|
||
|
if ((open_access_request & allowed_access) == open_access_request)
|
||
|
return 0;
|
||
|
|
||
|
return -EACCES;
|
||
|
}
|
||
|
|
||
|
static int hook_file_truncate(struct file *const file)
|
||
|
{
|
||
|
/*
|
||
|
* Allows truncation if the truncate right was available at the time of
|
||
|
* opening the file, to get a consistent access check as for read, write
|
||
|
* and execute operations.
|
||
|
*
|
||
|
* Note: For checks done based on the file's Landlock allowed access, we
|
||
|
* enforce them independently of whether the current thread is in a
|
||
|
* Landlock domain, so that open files passed between independent
|
||
|
* processes retain their behaviour.
|
||
|
*/
|
||
|
if (landlock_file(file)->allowed_access & LANDLOCK_ACCESS_FS_TRUNCATE)
|
||
|
return 0;
|
||
|
return -EACCES;
|
||
|
}
|
||
|
|
||
|
static struct security_hook_list landlock_hooks[] __lsm_ro_after_init = {
|
||
|
LSM_HOOK_INIT(inode_free_security, hook_inode_free_security),
|
||
|
|
||
|
LSM_HOOK_INIT(sb_delete, hook_sb_delete),
|
||
|
LSM_HOOK_INIT(sb_mount, hook_sb_mount),
|
||
|
LSM_HOOK_INIT(move_mount, hook_move_mount),
|
||
|
LSM_HOOK_INIT(sb_umount, hook_sb_umount),
|
||
|
LSM_HOOK_INIT(sb_remount, hook_sb_remount),
|
||
|
LSM_HOOK_INIT(sb_pivotroot, hook_sb_pivotroot),
|
||
|
|
||
|
LSM_HOOK_INIT(path_link, hook_path_link),
|
||
|
LSM_HOOK_INIT(path_rename, hook_path_rename),
|
||
|
LSM_HOOK_INIT(path_mkdir, hook_path_mkdir),
|
||
|
LSM_HOOK_INIT(path_mknod, hook_path_mknod),
|
||
|
LSM_HOOK_INIT(path_symlink, hook_path_symlink),
|
||
|
LSM_HOOK_INIT(path_unlink, hook_path_unlink),
|
||
|
LSM_HOOK_INIT(path_rmdir, hook_path_rmdir),
|
||
|
LSM_HOOK_INIT(path_truncate, hook_path_truncate),
|
||
|
|
||
|
LSM_HOOK_INIT(file_alloc_security, hook_file_alloc_security),
|
||
|
LSM_HOOK_INIT(file_open, hook_file_open),
|
||
|
LSM_HOOK_INIT(file_truncate, hook_file_truncate),
|
||
|
};
|
||
|
|
||
|
__init void landlock_add_fs_hooks(void)
|
||
|
{
|
||
|
security_add_hooks(landlock_hooks, ARRAY_SIZE(landlock_hooks),
|
||
|
LANDLOCK_NAME);
|
||
|
}
|