// SPDX-License-Identifier: GPL-2.0+ #include #include #include #include "amdgpu.h" #ifdef CONFIG_DRM_AMDGPU_SI #include "dce_v6_0.h" #endif #ifdef CONFIG_DRM_AMDGPU_CIK #include "dce_v8_0.h" #endif #include "dce_v10_0.h" #include "dce_v11_0.h" #include "ivsrcid/ivsrcid_vislands30.h" #include "amdgpu_vkms.h" #include "amdgpu_display.h" #include "atom.h" #include "amdgpu_irq.h" /** * DOC: amdgpu_vkms * * The amdgpu vkms interface provides a virtual KMS interface for several use * cases: devices without display hardware, platforms where the actual display * hardware is not useful (e.g., servers), SR-IOV virtual functions, device * emulation/simulation, and device bring up prior to display hardware being * usable. We previously emulated a legacy KMS interface, but there was a desire * to move to the atomic KMS interface. The vkms driver did everything we * needed, but we wanted KMS support natively in the driver without buffer * sharing and the ability to support an instance of VKMS per device. We first * looked at splitting vkms into a stub driver and a helper module that other * drivers could use to implement a virtual display, but this strategy ended up * being messy due to driver specific callbacks needed for buffer management. * Ultimately, it proved easier to import the vkms code as it mostly used core * drm helpers anyway. */ static const u32 amdgpu_vkms_formats[] = { DRM_FORMAT_XRGB8888, }; static enum hrtimer_restart amdgpu_vkms_vblank_simulate(struct hrtimer *timer) { struct amdgpu_crtc *amdgpu_crtc = container_of(timer, struct amdgpu_crtc, vblank_timer); struct drm_crtc *crtc = &amdgpu_crtc->base; struct amdgpu_vkms_output *output = drm_crtc_to_amdgpu_vkms_output(crtc); u64 ret_overrun; bool ret; ret_overrun = hrtimer_forward_now(&amdgpu_crtc->vblank_timer, output->period_ns); if (ret_overrun != 1) DRM_WARN("%s: vblank timer overrun\n", __func__); ret = drm_crtc_handle_vblank(crtc); /* Don't queue timer again when vblank is disabled. */ if (!ret) return HRTIMER_NORESTART; return HRTIMER_RESTART; } static int amdgpu_vkms_enable_vblank(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; unsigned int pipe = drm_crtc_index(crtc); struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; struct amdgpu_vkms_output *out = drm_crtc_to_amdgpu_vkms_output(crtc); struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); drm_calc_timestamping_constants(crtc, &crtc->mode); out->period_ns = ktime_set(0, vblank->framedur_ns); hrtimer_start(&amdgpu_crtc->vblank_timer, out->period_ns, HRTIMER_MODE_REL); return 0; } static void amdgpu_vkms_disable_vblank(struct drm_crtc *crtc) { struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); hrtimer_try_to_cancel(&amdgpu_crtc->vblank_timer); } static bool amdgpu_vkms_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error, ktime_t *vblank_time, bool in_vblank_irq) { struct drm_device *dev = crtc->dev; unsigned int pipe = crtc->index; struct amdgpu_vkms_output *output = drm_crtc_to_amdgpu_vkms_output(crtc); struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); if (!READ_ONCE(vblank->enabled)) { *vblank_time = ktime_get(); return true; } *vblank_time = READ_ONCE(amdgpu_crtc->vblank_timer.node.expires); if (WARN_ON(*vblank_time == vblank->time)) return true; /* * To prevent races we roll the hrtimer forward before we do any * interrupt processing - this is how real hw works (the interrupt is * only generated after all the vblank registers are updated) and what * the vblank core expects. Therefore we need to always correct the * timestampe by one frame. */ *vblank_time -= output->period_ns; return true; } static const struct drm_crtc_funcs amdgpu_vkms_crtc_funcs = { .set_config = drm_atomic_helper_set_config, .destroy = drm_crtc_cleanup, .page_flip = drm_atomic_helper_page_flip, .reset = drm_atomic_helper_crtc_reset, .atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state, .atomic_destroy_state = drm_atomic_helper_crtc_destroy_state, .enable_vblank = amdgpu_vkms_enable_vblank, .disable_vblank = amdgpu_vkms_disable_vblank, .get_vblank_timestamp = amdgpu_vkms_get_vblank_timestamp, }; static void amdgpu_vkms_crtc_atomic_enable(struct drm_crtc *crtc, struct drm_atomic_state *state) { drm_crtc_vblank_on(crtc); } static void amdgpu_vkms_crtc_atomic_disable(struct drm_crtc *crtc, struct drm_atomic_state *state) { drm_crtc_vblank_off(crtc); } static void amdgpu_vkms_crtc_atomic_flush(struct drm_crtc *crtc, struct drm_atomic_state *state) { unsigned long flags; if (crtc->state->event) { spin_lock_irqsave(&crtc->dev->event_lock, flags); if (drm_crtc_vblank_get(crtc) != 0) drm_crtc_send_vblank_event(crtc, crtc->state->event); else drm_crtc_arm_vblank_event(crtc, crtc->state->event); spin_unlock_irqrestore(&crtc->dev->event_lock, flags); crtc->state->event = NULL; } } static const struct drm_crtc_helper_funcs amdgpu_vkms_crtc_helper_funcs = { .atomic_flush = amdgpu_vkms_crtc_atomic_flush, .atomic_enable = amdgpu_vkms_crtc_atomic_enable, .atomic_disable = amdgpu_vkms_crtc_atomic_disable, }; static int amdgpu_vkms_crtc_init(struct drm_device *dev, struct drm_crtc *crtc, struct drm_plane *primary, struct drm_plane *cursor) { struct amdgpu_device *adev = drm_to_adev(dev); struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); int ret; ret = drm_crtc_init_with_planes(dev, crtc, primary, cursor, &amdgpu_vkms_crtc_funcs, NULL); if (ret) { DRM_ERROR("Failed to init CRTC\n"); return ret; } drm_crtc_helper_add(crtc, &amdgpu_vkms_crtc_helper_funcs); amdgpu_crtc->crtc_id = drm_crtc_index(crtc); adev->mode_info.crtcs[drm_crtc_index(crtc)] = amdgpu_crtc; amdgpu_crtc->pll_id = ATOM_PPLL_INVALID; amdgpu_crtc->encoder = NULL; amdgpu_crtc->connector = NULL; amdgpu_crtc->vsync_timer_enabled = AMDGPU_IRQ_STATE_DISABLE; hrtimer_init(&amdgpu_crtc->vblank_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); amdgpu_crtc->vblank_timer.function = &amdgpu_vkms_vblank_simulate; return ret; } static const struct drm_connector_funcs amdgpu_vkms_connector_funcs = { .fill_modes = drm_helper_probe_single_connector_modes, .destroy = drm_connector_cleanup, .reset = drm_atomic_helper_connector_reset, .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, }; static int amdgpu_vkms_conn_get_modes(struct drm_connector *connector) { struct drm_device *dev = connector->dev; struct drm_display_mode *mode = NULL; unsigned i; static const struct mode_size { int w; int h; } common_modes[] = { { 640, 480}, { 720, 480}, { 800, 600}, { 848, 480}, {1024, 768}, {1152, 768}, {1280, 720}, {1280, 800}, {1280, 854}, {1280, 960}, {1280, 1024}, {1440, 900}, {1400, 1050}, {1680, 1050}, {1600, 1200}, {1920, 1080}, {1920, 1200}, {2560, 1440}, {4096, 3112}, {3656, 2664}, {3840, 2160}, {4096, 2160}, }; for (i = 0; i < ARRAY_SIZE(common_modes); i++) { mode = drm_cvt_mode(dev, common_modes[i].w, common_modes[i].h, 60, false, false, false); drm_mode_probed_add(connector, mode); } drm_set_preferred_mode(connector, XRES_DEF, YRES_DEF); return ARRAY_SIZE(common_modes); } static const struct drm_connector_helper_funcs amdgpu_vkms_conn_helper_funcs = { .get_modes = amdgpu_vkms_conn_get_modes, }; static const struct drm_plane_funcs amdgpu_vkms_plane_funcs = { .update_plane = drm_atomic_helper_update_plane, .disable_plane = drm_atomic_helper_disable_plane, .destroy = drm_plane_cleanup, .reset = drm_atomic_helper_plane_reset, .atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state, .atomic_destroy_state = drm_atomic_helper_plane_destroy_state, }; static void amdgpu_vkms_plane_atomic_update(struct drm_plane *plane, struct drm_atomic_state *old_state) { return; } static int amdgpu_vkms_plane_atomic_check(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state, plane); struct drm_crtc_state *crtc_state; int ret; if (!new_plane_state->fb || WARN_ON(!new_plane_state->crtc)) return 0; crtc_state = drm_atomic_get_crtc_state(state, new_plane_state->crtc); if (IS_ERR(crtc_state)) return PTR_ERR(crtc_state); ret = drm_atomic_helper_check_plane_state(new_plane_state, crtc_state, DRM_PLANE_NO_SCALING, DRM_PLANE_NO_SCALING, false, true); if (ret != 0) return ret; /* for now primary plane must be visible and full screen */ if (!new_plane_state->visible) return -EINVAL; return 0; } static int amdgpu_vkms_prepare_fb(struct drm_plane *plane, struct drm_plane_state *new_state) { struct amdgpu_framebuffer *afb; struct drm_gem_object *obj; struct amdgpu_device *adev; struct amdgpu_bo *rbo; uint32_t domain; int r; if (!new_state->fb) { DRM_DEBUG_KMS("No FB bound\n"); return 0; } afb = to_amdgpu_framebuffer(new_state->fb); obj = new_state->fb->obj[0]; rbo = gem_to_amdgpu_bo(obj); adev = amdgpu_ttm_adev(rbo->tbo.bdev); r = amdgpu_bo_reserve(rbo, true); if (r) { dev_err(adev->dev, "fail to reserve bo (%d)\n", r); return r; } r = dma_resv_reserve_fences(rbo->tbo.base.resv, 1); if (r) { dev_err(adev->dev, "allocating fence slot failed (%d)\n", r); goto error_unlock; } if (plane->type != DRM_PLANE_TYPE_CURSOR) domain = amdgpu_display_supported_domains(adev, rbo->flags); else domain = AMDGPU_GEM_DOMAIN_VRAM; r = amdgpu_bo_pin(rbo, domain); if (unlikely(r != 0)) { if (r != -ERESTARTSYS) DRM_ERROR("Failed to pin framebuffer with error %d\n", r); goto error_unlock; } r = amdgpu_ttm_alloc_gart(&rbo->tbo); if (unlikely(r != 0)) { DRM_ERROR("%p bind failed\n", rbo); goto error_unpin; } amdgpu_bo_unreserve(rbo); afb->address = amdgpu_bo_gpu_offset(rbo); amdgpu_bo_ref(rbo); return 0; error_unpin: amdgpu_bo_unpin(rbo); error_unlock: amdgpu_bo_unreserve(rbo); return r; } static void amdgpu_vkms_cleanup_fb(struct drm_plane *plane, struct drm_plane_state *old_state) { struct amdgpu_bo *rbo; int r; if (!old_state->fb) return; rbo = gem_to_amdgpu_bo(old_state->fb->obj[0]); r = amdgpu_bo_reserve(rbo, false); if (unlikely(r)) { DRM_ERROR("failed to reserve rbo before unpin\n"); return; } amdgpu_bo_unpin(rbo); amdgpu_bo_unreserve(rbo); amdgpu_bo_unref(&rbo); } static const struct drm_plane_helper_funcs amdgpu_vkms_primary_helper_funcs = { .atomic_update = amdgpu_vkms_plane_atomic_update, .atomic_check = amdgpu_vkms_plane_atomic_check, .prepare_fb = amdgpu_vkms_prepare_fb, .cleanup_fb = amdgpu_vkms_cleanup_fb, }; static struct drm_plane *amdgpu_vkms_plane_init(struct drm_device *dev, enum drm_plane_type type, int index) { struct drm_plane *plane; int ret; plane = kzalloc(sizeof(*plane), GFP_KERNEL); if (!plane) return ERR_PTR(-ENOMEM); ret = drm_universal_plane_init(dev, plane, 1 << index, &amdgpu_vkms_plane_funcs, amdgpu_vkms_formats, ARRAY_SIZE(amdgpu_vkms_formats), NULL, type, NULL); if (ret) { kfree(plane); return ERR_PTR(ret); } drm_plane_helper_add(plane, &amdgpu_vkms_primary_helper_funcs); return plane; } static int amdgpu_vkms_output_init(struct drm_device *dev, struct amdgpu_vkms_output *output, int index) { struct drm_connector *connector = &output->connector; struct drm_encoder *encoder = &output->encoder; struct drm_crtc *crtc = &output->crtc.base; struct drm_plane *primary, *cursor = NULL; int ret; primary = amdgpu_vkms_plane_init(dev, DRM_PLANE_TYPE_PRIMARY, index); if (IS_ERR(primary)) return PTR_ERR(primary); ret = amdgpu_vkms_crtc_init(dev, crtc, primary, cursor); if (ret) goto err_crtc; ret = drm_connector_init(dev, connector, &amdgpu_vkms_connector_funcs, DRM_MODE_CONNECTOR_VIRTUAL); if (ret) { DRM_ERROR("Failed to init connector\n"); goto err_connector; } drm_connector_helper_add(connector, &amdgpu_vkms_conn_helper_funcs); ret = drm_simple_encoder_init(dev, encoder, DRM_MODE_ENCODER_VIRTUAL); if (ret) { DRM_ERROR("Failed to init encoder\n"); goto err_encoder; } encoder->possible_crtcs = 1 << index; ret = drm_connector_attach_encoder(connector, encoder); if (ret) { DRM_ERROR("Failed to attach connector to encoder\n"); goto err_attach; } drm_mode_config_reset(dev); return 0; err_attach: drm_encoder_cleanup(encoder); err_encoder: drm_connector_cleanup(connector); err_connector: drm_crtc_cleanup(crtc); err_crtc: drm_plane_cleanup(primary); return ret; } const struct drm_mode_config_funcs amdgpu_vkms_mode_funcs = { .fb_create = amdgpu_display_user_framebuffer_create, .atomic_check = drm_atomic_helper_check, .atomic_commit = drm_atomic_helper_commit, }; static int amdgpu_vkms_sw_init(void *handle) { int r, i; struct amdgpu_device *adev = (struct amdgpu_device *)handle; adev->amdgpu_vkms_output = kcalloc(adev->mode_info.num_crtc, sizeof(struct amdgpu_vkms_output), GFP_KERNEL); if (!adev->amdgpu_vkms_output) return -ENOMEM; adev_to_drm(adev)->max_vblank_count = 0; adev_to_drm(adev)->mode_config.funcs = &amdgpu_vkms_mode_funcs; adev_to_drm(adev)->mode_config.max_width = XRES_MAX; adev_to_drm(adev)->mode_config.max_height = YRES_MAX; adev_to_drm(adev)->mode_config.preferred_depth = 24; adev_to_drm(adev)->mode_config.prefer_shadow = 1; adev_to_drm(adev)->mode_config.fb_modifiers_not_supported = true; adev_to_drm(adev)->mode_config.fb_modifiers_not_supported = true; r = amdgpu_display_modeset_create_props(adev); if (r) return r; /* allocate crtcs, encoders, connectors */ for (i = 0; i < adev->mode_info.num_crtc; i++) { r = amdgpu_vkms_output_init(adev_to_drm(adev), &adev->amdgpu_vkms_output[i], i); if (r) return r; } r = drm_vblank_init(adev_to_drm(adev), adev->mode_info.num_crtc); if (r) return r; drm_kms_helper_poll_init(adev_to_drm(adev)); adev->mode_info.mode_config_initialized = true; return 0; } static int amdgpu_vkms_sw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int i = 0; for (i = 0; i < adev->mode_info.num_crtc; i++) if (adev->mode_info.crtcs[i]) hrtimer_cancel(&adev->mode_info.crtcs[i]->vblank_timer); drm_kms_helper_poll_fini(adev_to_drm(adev)); drm_mode_config_cleanup(adev_to_drm(adev)); adev->mode_info.mode_config_initialized = false; kfree(adev->mode_info.bios_hardcoded_edid); kfree(adev->amdgpu_vkms_output); return 0; } static int amdgpu_vkms_hw_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; switch (adev->asic_type) { #ifdef CONFIG_DRM_AMDGPU_SI case CHIP_TAHITI: case CHIP_PITCAIRN: case CHIP_VERDE: case CHIP_OLAND: dce_v6_0_disable_dce(adev); break; #endif #ifdef CONFIG_DRM_AMDGPU_CIK case CHIP_BONAIRE: case CHIP_HAWAII: case CHIP_KAVERI: case CHIP_KABINI: case CHIP_MULLINS: dce_v8_0_disable_dce(adev); break; #endif case CHIP_FIJI: case CHIP_TONGA: dce_v10_0_disable_dce(adev); break; case CHIP_CARRIZO: case CHIP_STONEY: case CHIP_POLARIS10: case CHIP_POLARIS11: case CHIP_VEGAM: dce_v11_0_disable_dce(adev); break; case CHIP_TOPAZ: #ifdef CONFIG_DRM_AMDGPU_SI case CHIP_HAINAN: #endif /* no DCE */ break; default: break; } return 0; } static int amdgpu_vkms_hw_fini(void *handle) { return 0; } static int amdgpu_vkms_suspend(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int r; r = drm_mode_config_helper_suspend(adev_to_drm(adev)); if (r) return r; return amdgpu_vkms_hw_fini(handle); } static int amdgpu_vkms_resume(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int r; r = amdgpu_vkms_hw_init(handle); if (r) return r; return drm_mode_config_helper_resume(adev_to_drm(adev)); } static bool amdgpu_vkms_is_idle(void *handle) { return true; } static int amdgpu_vkms_wait_for_idle(void *handle) { return 0; } static int amdgpu_vkms_soft_reset(void *handle) { return 0; } static int amdgpu_vkms_set_clockgating_state(void *handle, enum amd_clockgating_state state) { return 0; } static int amdgpu_vkms_set_powergating_state(void *handle, enum amd_powergating_state state) { return 0; } static const struct amd_ip_funcs amdgpu_vkms_ip_funcs = { .name = "amdgpu_vkms", .early_init = NULL, .late_init = NULL, .sw_init = amdgpu_vkms_sw_init, .sw_fini = amdgpu_vkms_sw_fini, .hw_init = amdgpu_vkms_hw_init, .hw_fini = amdgpu_vkms_hw_fini, .suspend = amdgpu_vkms_suspend, .resume = amdgpu_vkms_resume, .is_idle = amdgpu_vkms_is_idle, .wait_for_idle = amdgpu_vkms_wait_for_idle, .soft_reset = amdgpu_vkms_soft_reset, .set_clockgating_state = amdgpu_vkms_set_clockgating_state, .set_powergating_state = amdgpu_vkms_set_powergating_state, }; const struct amdgpu_ip_block_version amdgpu_vkms_ip_block = { .type = AMD_IP_BLOCK_TYPE_DCE, .major = 1, .minor = 0, .rev = 0, .funcs = &amdgpu_vkms_ip_funcs, };