// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2017-2019 The Linux Foundation. All rights reserved. */ #include "msm_gem.h" #include "msm_mmu.h" #include "msm_gpu_trace.h" #include "a6xx_gpu.h" #include "a6xx_gmu.xml.h" #include #include #include #include #define GPU_PAS_ID 13 static inline bool _a6xx_check_idle(struct msm_gpu *gpu) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); /* Check that the GMU is idle */ if (!adreno_has_gmu_wrapper(adreno_gpu) && !a6xx_gmu_isidle(&a6xx_gpu->gmu)) return false; /* Check tha the CX master is idle */ if (gpu_read(gpu, REG_A6XX_RBBM_STATUS) & ~A6XX_RBBM_STATUS_CP_AHB_BUSY_CX_MASTER) return false; return !(gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS) & A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT); } static bool a6xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring) { /* wait for CP to drain ringbuffer: */ if (!adreno_idle(gpu, ring)) return false; if (spin_until(_a6xx_check_idle(gpu))) { DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n", gpu->name, __builtin_return_address(0), gpu_read(gpu, REG_A6XX_RBBM_STATUS), gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS), gpu_read(gpu, REG_A6XX_CP_RB_RPTR), gpu_read(gpu, REG_A6XX_CP_RB_WPTR)); return false; } return true; } static void update_shadow_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); /* Expanded APRIV doesn't need to issue the WHERE_AM_I opcode */ if (a6xx_gpu->has_whereami && !adreno_gpu->base.hw_apriv) { OUT_PKT7(ring, CP_WHERE_AM_I, 2); OUT_RING(ring, lower_32_bits(shadowptr(a6xx_gpu, ring))); OUT_RING(ring, upper_32_bits(shadowptr(a6xx_gpu, ring))); } } static void a6xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring) { uint32_t wptr; unsigned long flags; update_shadow_rptr(gpu, ring); spin_lock_irqsave(&ring->preempt_lock, flags); /* Copy the shadow to the actual register */ ring->cur = ring->next; /* Make sure to wrap wptr if we need to */ wptr = get_wptr(ring); spin_unlock_irqrestore(&ring->preempt_lock, flags); /* Make sure everything is posted before making a decision */ mb(); gpu_write(gpu, REG_A6XX_CP_RB_WPTR, wptr); } static void get_stats_counter(struct msm_ringbuffer *ring, u32 counter, u64 iova) { OUT_PKT7(ring, CP_REG_TO_MEM, 3); OUT_RING(ring, CP_REG_TO_MEM_0_REG(counter) | CP_REG_TO_MEM_0_CNT(2) | CP_REG_TO_MEM_0_64B); OUT_RING(ring, lower_32_bits(iova)); OUT_RING(ring, upper_32_bits(iova)); } static void a6xx_set_pagetable(struct a6xx_gpu *a6xx_gpu, struct msm_ringbuffer *ring, struct msm_file_private *ctx) { bool sysprof = refcount_read(&a6xx_gpu->base.base.sysprof_active) > 1; phys_addr_t ttbr; u32 asid; u64 memptr = rbmemptr(ring, ttbr0); if (ctx->seqno == a6xx_gpu->base.base.cur_ctx_seqno) return; if (msm_iommu_pagetable_params(ctx->aspace->mmu, &ttbr, &asid)) return; if (!sysprof) { /* Turn off protected mode to write to special registers */ OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1); OUT_RING(ring, 0); OUT_PKT4(ring, REG_A6XX_RBBM_PERFCTR_SRAM_INIT_CMD, 1); OUT_RING(ring, 1); } /* Execute the table update */ OUT_PKT7(ring, CP_SMMU_TABLE_UPDATE, 4); OUT_RING(ring, CP_SMMU_TABLE_UPDATE_0_TTBR0_LO(lower_32_bits(ttbr))); OUT_RING(ring, CP_SMMU_TABLE_UPDATE_1_TTBR0_HI(upper_32_bits(ttbr)) | CP_SMMU_TABLE_UPDATE_1_ASID(asid)); OUT_RING(ring, CP_SMMU_TABLE_UPDATE_2_CONTEXTIDR(0)); OUT_RING(ring, CP_SMMU_TABLE_UPDATE_3_CONTEXTBANK(0)); /* * Write the new TTBR0 to the memstore. This is good for debugging. */ OUT_PKT7(ring, CP_MEM_WRITE, 4); OUT_RING(ring, CP_MEM_WRITE_0_ADDR_LO(lower_32_bits(memptr))); OUT_RING(ring, CP_MEM_WRITE_1_ADDR_HI(upper_32_bits(memptr))); OUT_RING(ring, lower_32_bits(ttbr)); OUT_RING(ring, (asid << 16) | upper_32_bits(ttbr)); /* * And finally, trigger a uche flush to be sure there isn't anything * lingering in that part of the GPU */ OUT_PKT7(ring, CP_EVENT_WRITE, 1); OUT_RING(ring, CACHE_INVALIDATE); if (!sysprof) { /* * Wait for SRAM clear after the pgtable update, so the * two can happen in parallel: */ OUT_PKT7(ring, CP_WAIT_REG_MEM, 6); OUT_RING(ring, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ)); OUT_RING(ring, CP_WAIT_REG_MEM_1_POLL_ADDR_LO( REG_A6XX_RBBM_PERFCTR_SRAM_INIT_STATUS)); OUT_RING(ring, CP_WAIT_REG_MEM_2_POLL_ADDR_HI(0)); OUT_RING(ring, CP_WAIT_REG_MEM_3_REF(0x1)); OUT_RING(ring, CP_WAIT_REG_MEM_4_MASK(0x1)); OUT_RING(ring, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(0)); /* Re-enable protected mode: */ OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1); OUT_RING(ring, 1); } } static void a6xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit) { unsigned int index = submit->seqno % MSM_GPU_SUBMIT_STATS_COUNT; struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); struct msm_ringbuffer *ring = submit->ring; unsigned int i, ibs = 0; a6xx_set_pagetable(a6xx_gpu, ring, submit->queue->ctx); get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0), rbmemptr_stats(ring, index, cpcycles_start)); /* * For PM4 the GMU register offsets are calculated from the base of the * GPU registers so we need to add 0x1a800 to the register value on A630 * to get the right value from PM4. */ get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER, rbmemptr_stats(ring, index, alwayson_start)); /* Invalidate CCU depth and color */ OUT_PKT7(ring, CP_EVENT_WRITE, 1); OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_DEPTH)); OUT_PKT7(ring, CP_EVENT_WRITE, 1); OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_COLOR)); /* Submit the commands */ for (i = 0; i < submit->nr_cmds; i++) { switch (submit->cmd[i].type) { case MSM_SUBMIT_CMD_IB_TARGET_BUF: break; case MSM_SUBMIT_CMD_CTX_RESTORE_BUF: if (gpu->cur_ctx_seqno == submit->queue->ctx->seqno) break; fallthrough; case MSM_SUBMIT_CMD_BUF: OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3); OUT_RING(ring, lower_32_bits(submit->cmd[i].iova)); OUT_RING(ring, upper_32_bits(submit->cmd[i].iova)); OUT_RING(ring, submit->cmd[i].size); ibs++; break; } /* * Periodically update shadow-wptr if needed, so that we * can see partial progress of submits with large # of * cmds.. otherwise we could needlessly stall waiting for * ringbuffer state, simply due to looking at a shadow * rptr value that has not been updated */ if ((ibs % 32) == 0) update_shadow_rptr(gpu, ring); } get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0), rbmemptr_stats(ring, index, cpcycles_end)); get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER, rbmemptr_stats(ring, index, alwayson_end)); /* Write the fence to the scratch register */ OUT_PKT4(ring, REG_A6XX_CP_SCRATCH_REG(2), 1); OUT_RING(ring, submit->seqno); /* * Execute a CACHE_FLUSH_TS event. This will ensure that the * timestamp is written to the memory and then triggers the interrupt */ OUT_PKT7(ring, CP_EVENT_WRITE, 4); OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(CACHE_FLUSH_TS) | CP_EVENT_WRITE_0_IRQ); OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence))); OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence))); OUT_RING(ring, submit->seqno); trace_msm_gpu_submit_flush(submit, gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER)); a6xx_flush(gpu, ring); } const struct adreno_reglist a612_hwcg[] = { {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000081}, {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf}, {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01202222}, {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00}, {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05522022}, {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x02222222}, {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000}, {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, {REG_A6XX_RBBM_ISDB_CNT, 0x00000182}, {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000}, {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000}, {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, {}, }; /* For a615 family (a615, a616, a618 and a619) */ const struct adreno_reglist a615_hwcg[] = { {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222}, {REG_A6XX_RBBM_CLOCK_CNTL_TP1, 0x02222222}, {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, {REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222}, {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, {REG_A6XX_RBBM_CLOCK_HYST_TP1, 0x77777777}, {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, {REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777}, {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, {REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777}, {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, {REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777}, {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, {REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111}, {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, {REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111}, {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, {REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111}, {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, {REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111}, {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222}, {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222}, {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002020}, {REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220}, {REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220}, {REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220}, {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00}, {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040F00}, {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040F00}, {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040F00}, {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022}, {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, {}, }; const struct adreno_reglist a630_hwcg[] = { {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL_SP1, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL_SP2, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL_SP3, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02022220}, {REG_A6XX_RBBM_CLOCK_CNTL2_SP1, 0x02022220}, {REG_A6XX_RBBM_CLOCK_CNTL2_SP2, 0x02022220}, {REG_A6XX_RBBM_CLOCK_CNTL2_SP3, 0x02022220}, {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, {REG_A6XX_RBBM_CLOCK_DELAY_SP1, 0x00000080}, {REG_A6XX_RBBM_CLOCK_DELAY_SP2, 0x00000080}, {REG_A6XX_RBBM_CLOCK_DELAY_SP3, 0x00000080}, {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf}, {REG_A6XX_RBBM_CLOCK_HYST_SP1, 0x0000f3cf}, {REG_A6XX_RBBM_CLOCK_HYST_SP2, 0x0000f3cf}, {REG_A6XX_RBBM_CLOCK_HYST_SP3, 0x0000f3cf}, {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222}, {REG_A6XX_RBBM_CLOCK_CNTL_TP1, 0x02222222}, {REG_A6XX_RBBM_CLOCK_CNTL_TP2, 0x02222222}, {REG_A6XX_RBBM_CLOCK_CNTL_TP3, 0x02222222}, {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL2_TP2, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL2_TP3, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL3_TP2, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL3_TP3, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, {REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222}, {REG_A6XX_RBBM_CLOCK_CNTL4_TP2, 0x00022222}, {REG_A6XX_RBBM_CLOCK_CNTL4_TP3, 0x00022222}, {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, {REG_A6XX_RBBM_CLOCK_HYST_TP1, 0x77777777}, {REG_A6XX_RBBM_CLOCK_HYST_TP2, 0x77777777}, {REG_A6XX_RBBM_CLOCK_HYST_TP3, 0x77777777}, {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, {REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777}, {REG_A6XX_RBBM_CLOCK_HYST2_TP2, 0x77777777}, {REG_A6XX_RBBM_CLOCK_HYST2_TP3, 0x77777777}, {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, {REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777}, {REG_A6XX_RBBM_CLOCK_HYST3_TP2, 0x77777777}, {REG_A6XX_RBBM_CLOCK_HYST3_TP3, 0x77777777}, {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, {REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777}, {REG_A6XX_RBBM_CLOCK_HYST4_TP2, 0x00077777}, {REG_A6XX_RBBM_CLOCK_HYST4_TP3, 0x00077777}, {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, {REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111}, {REG_A6XX_RBBM_CLOCK_DELAY_TP2, 0x11111111}, {REG_A6XX_RBBM_CLOCK_DELAY_TP3, 0x11111111}, {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, {REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111}, {REG_A6XX_RBBM_CLOCK_DELAY2_TP2, 0x11111111}, {REG_A6XX_RBBM_CLOCK_DELAY2_TP3, 0x11111111}, {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, {REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111}, {REG_A6XX_RBBM_CLOCK_DELAY3_TP2, 0x11111111}, {REG_A6XX_RBBM_CLOCK_DELAY3_TP3, 0x11111111}, {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, {REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111}, {REG_A6XX_RBBM_CLOCK_DELAY4_TP2, 0x00011111}, {REG_A6XX_RBBM_CLOCK_DELAY4_TP3, 0x00011111}, {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222}, {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL_RB1, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL_RB2, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL_RB3, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222}, {REG_A6XX_RBBM_CLOCK_CNTL2_RB1, 0x00002222}, {REG_A6XX_RBBM_CLOCK_CNTL2_RB2, 0x00002222}, {REG_A6XX_RBBM_CLOCK_CNTL2_RB3, 0x00002222}, {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, {REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220}, {REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220}, {REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220}, {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00}, {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040f00}, {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040f00}, {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040f00}, {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022}, {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, {}, }; const struct adreno_reglist a640_hwcg[] = { {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222}, {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222}, {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00}, {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05222022}, {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000}, {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222}, {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111}, {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000}, {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, {REG_A6XX_RBBM_ISDB_CNT, 0x00000182}, {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000}, {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000}, {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, {}, }; const struct adreno_reglist a650_hwcg[] = { {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222}, {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222}, {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00}, {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022}, {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000}, {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222}, {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111}, {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000777}, {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, {REG_A6XX_RBBM_ISDB_CNT, 0x00000182}, {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000}, {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000}, {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, {}, }; const struct adreno_reglist a660_hwcg[] = { {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222}, {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00}, {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022}, {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000}, {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222}, {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111}, {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000}, {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, {REG_A6XX_RBBM_ISDB_CNT, 0x00000182}, {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000}, {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000}, {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, {}, }; const struct adreno_reglist a690_hwcg[] = { {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222}, {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00}, {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022}, {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000}, {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222}, {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111}, {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000}, {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, {REG_A6XX_RBBM_CLOCK_CNTL, 0x8AA8AA82}, {REG_A6XX_RBBM_ISDB_CNT, 0x00000182}, {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000}, {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000}, {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, {REG_A6XX_GPU_GMU_AO_GMU_CGC_MODE_CNTL, 0x20200}, {REG_A6XX_GPU_GMU_AO_GMU_CGC_DELAY_CNTL, 0x10111}, {REG_A6XX_GPU_GMU_AO_GMU_CGC_HYST_CNTL, 0x5555}, {} }; static void a6xx_set_hwcg(struct msm_gpu *gpu, bool state) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); struct a6xx_gmu *gmu = &a6xx_gpu->gmu; const struct adreno_reglist *reg; unsigned int i; u32 val, clock_cntl_on; if (!adreno_gpu->info->hwcg) return; if (adreno_is_a630(adreno_gpu)) clock_cntl_on = 0x8aa8aa02; else if (adreno_is_a610(adreno_gpu)) clock_cntl_on = 0xaaa8aa82; else clock_cntl_on = 0x8aa8aa82; val = gpu_read(gpu, REG_A6XX_RBBM_CLOCK_CNTL); /* Don't re-program the registers if they are already correct */ if ((!state && !val) || (state && (val == clock_cntl_on))) return; /* Disable SP clock before programming HWCG registers */ if (!adreno_is_a610(adreno_gpu)) gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 1, 0); for (i = 0; (reg = &adreno_gpu->info->hwcg[i], reg->offset); i++) gpu_write(gpu, reg->offset, state ? reg->value : 0); /* Enable SP clock */ if (!adreno_is_a610(adreno_gpu)) gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 0, 1); gpu_write(gpu, REG_A6XX_RBBM_CLOCK_CNTL, state ? clock_cntl_on : 0); } /* For a615, a616, a618, a619, a630, a640 and a680 */ static const u32 a6xx_protect[] = { A6XX_PROTECT_RDONLY(0x00000, 0x04ff), A6XX_PROTECT_RDONLY(0x00501, 0x0005), A6XX_PROTECT_RDONLY(0x0050b, 0x02f4), A6XX_PROTECT_NORDWR(0x0050e, 0x0000), A6XX_PROTECT_NORDWR(0x00510, 0x0000), A6XX_PROTECT_NORDWR(0x00534, 0x0000), A6XX_PROTECT_NORDWR(0x00800, 0x0082), A6XX_PROTECT_NORDWR(0x008a0, 0x0008), A6XX_PROTECT_NORDWR(0x008ab, 0x0024), A6XX_PROTECT_RDONLY(0x008de, 0x00ae), A6XX_PROTECT_NORDWR(0x00900, 0x004d), A6XX_PROTECT_NORDWR(0x0098d, 0x0272), A6XX_PROTECT_NORDWR(0x00e00, 0x0001), A6XX_PROTECT_NORDWR(0x00e03, 0x000c), A6XX_PROTECT_NORDWR(0x03c00, 0x00c3), A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff), A6XX_PROTECT_NORDWR(0x08630, 0x01cf), A6XX_PROTECT_NORDWR(0x08e00, 0x0000), A6XX_PROTECT_NORDWR(0x08e08, 0x0000), A6XX_PROTECT_NORDWR(0x08e50, 0x001f), A6XX_PROTECT_NORDWR(0x09624, 0x01db), A6XX_PROTECT_NORDWR(0x09e70, 0x0001), A6XX_PROTECT_NORDWR(0x09e78, 0x0187), A6XX_PROTECT_NORDWR(0x0a630, 0x01cf), A6XX_PROTECT_NORDWR(0x0ae02, 0x0000), A6XX_PROTECT_NORDWR(0x0ae50, 0x032f), A6XX_PROTECT_NORDWR(0x0b604, 0x0000), A6XX_PROTECT_NORDWR(0x0be02, 0x0001), A6XX_PROTECT_NORDWR(0x0be20, 0x17df), A6XX_PROTECT_NORDWR(0x0f000, 0x0bff), A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff), A6XX_PROTECT_NORDWR(0x11c00, 0x0000), /* note: infinite range */ }; /* These are for a620 and a650 */ static const u32 a650_protect[] = { A6XX_PROTECT_RDONLY(0x00000, 0x04ff), A6XX_PROTECT_RDONLY(0x00501, 0x0005), A6XX_PROTECT_RDONLY(0x0050b, 0x02f4), A6XX_PROTECT_NORDWR(0x0050e, 0x0000), A6XX_PROTECT_NORDWR(0x00510, 0x0000), A6XX_PROTECT_NORDWR(0x00534, 0x0000), A6XX_PROTECT_NORDWR(0x00800, 0x0082), A6XX_PROTECT_NORDWR(0x008a0, 0x0008), A6XX_PROTECT_NORDWR(0x008ab, 0x0024), A6XX_PROTECT_RDONLY(0x008de, 0x00ae), A6XX_PROTECT_NORDWR(0x00900, 0x004d), A6XX_PROTECT_NORDWR(0x0098d, 0x0272), A6XX_PROTECT_NORDWR(0x00e00, 0x0001), A6XX_PROTECT_NORDWR(0x00e03, 0x000c), A6XX_PROTECT_NORDWR(0x03c00, 0x00c3), A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff), A6XX_PROTECT_NORDWR(0x08630, 0x01cf), A6XX_PROTECT_NORDWR(0x08e00, 0x0000), A6XX_PROTECT_NORDWR(0x08e08, 0x0000), A6XX_PROTECT_NORDWR(0x08e50, 0x001f), A6XX_PROTECT_NORDWR(0x08e80, 0x027f), A6XX_PROTECT_NORDWR(0x09624, 0x01db), A6XX_PROTECT_NORDWR(0x09e60, 0x0011), A6XX_PROTECT_NORDWR(0x09e78, 0x0187), A6XX_PROTECT_NORDWR(0x0a630, 0x01cf), A6XX_PROTECT_NORDWR(0x0ae02, 0x0000), A6XX_PROTECT_NORDWR(0x0ae50, 0x032f), A6XX_PROTECT_NORDWR(0x0b604, 0x0000), A6XX_PROTECT_NORDWR(0x0b608, 0x0007), A6XX_PROTECT_NORDWR(0x0be02, 0x0001), A6XX_PROTECT_NORDWR(0x0be20, 0x17df), A6XX_PROTECT_NORDWR(0x0f000, 0x0bff), A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff), A6XX_PROTECT_NORDWR(0x18400, 0x1fff), A6XX_PROTECT_NORDWR(0x1a800, 0x1fff), A6XX_PROTECT_NORDWR(0x1f400, 0x0443), A6XX_PROTECT_RDONLY(0x1f844, 0x007b), A6XX_PROTECT_NORDWR(0x1f887, 0x001b), A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */ }; /* These are for a635 and a660 */ static const u32 a660_protect[] = { A6XX_PROTECT_RDONLY(0x00000, 0x04ff), A6XX_PROTECT_RDONLY(0x00501, 0x0005), A6XX_PROTECT_RDONLY(0x0050b, 0x02f4), A6XX_PROTECT_NORDWR(0x0050e, 0x0000), A6XX_PROTECT_NORDWR(0x00510, 0x0000), A6XX_PROTECT_NORDWR(0x00534, 0x0000), A6XX_PROTECT_NORDWR(0x00800, 0x0082), A6XX_PROTECT_NORDWR(0x008a0, 0x0008), A6XX_PROTECT_NORDWR(0x008ab, 0x0024), A6XX_PROTECT_RDONLY(0x008de, 0x00ae), A6XX_PROTECT_NORDWR(0x00900, 0x004d), A6XX_PROTECT_NORDWR(0x0098d, 0x0272), A6XX_PROTECT_NORDWR(0x00e00, 0x0001), A6XX_PROTECT_NORDWR(0x00e03, 0x000c), A6XX_PROTECT_NORDWR(0x03c00, 0x00c3), A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff), A6XX_PROTECT_NORDWR(0x08630, 0x01cf), A6XX_PROTECT_NORDWR(0x08e00, 0x0000), A6XX_PROTECT_NORDWR(0x08e08, 0x0000), A6XX_PROTECT_NORDWR(0x08e50, 0x001f), A6XX_PROTECT_NORDWR(0x08e80, 0x027f), A6XX_PROTECT_NORDWR(0x09624, 0x01db), A6XX_PROTECT_NORDWR(0x09e60, 0x0011), A6XX_PROTECT_NORDWR(0x09e78, 0x0187), A6XX_PROTECT_NORDWR(0x0a630, 0x01cf), A6XX_PROTECT_NORDWR(0x0ae02, 0x0000), A6XX_PROTECT_NORDWR(0x0ae50, 0x012f), A6XX_PROTECT_NORDWR(0x0b604, 0x0000), A6XX_PROTECT_NORDWR(0x0b608, 0x0006), A6XX_PROTECT_NORDWR(0x0be02, 0x0001), A6XX_PROTECT_NORDWR(0x0be20, 0x015f), A6XX_PROTECT_NORDWR(0x0d000, 0x05ff), A6XX_PROTECT_NORDWR(0x0f000, 0x0bff), A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff), A6XX_PROTECT_NORDWR(0x18400, 0x1fff), A6XX_PROTECT_NORDWR(0x1a400, 0x1fff), A6XX_PROTECT_NORDWR(0x1f400, 0x0443), A6XX_PROTECT_RDONLY(0x1f844, 0x007b), A6XX_PROTECT_NORDWR(0x1f860, 0x0000), A6XX_PROTECT_NORDWR(0x1f887, 0x001b), A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */ }; /* These are for a690 */ static const u32 a690_protect[] = { A6XX_PROTECT_RDONLY(0x00000, 0x004ff), A6XX_PROTECT_RDONLY(0x00501, 0x00001), A6XX_PROTECT_RDONLY(0x0050b, 0x002f4), A6XX_PROTECT_NORDWR(0x0050e, 0x00000), A6XX_PROTECT_NORDWR(0x00510, 0x00000), A6XX_PROTECT_NORDWR(0x00534, 0x00000), A6XX_PROTECT_NORDWR(0x00800, 0x00082), A6XX_PROTECT_NORDWR(0x008a0, 0x00008), A6XX_PROTECT_NORDWR(0x008ab, 0x00024), A6XX_PROTECT_RDONLY(0x008de, 0x000ae), A6XX_PROTECT_NORDWR(0x00900, 0x0004d), A6XX_PROTECT_NORDWR(0x0098d, 0x00272), A6XX_PROTECT_NORDWR(0x00e00, 0x00001), A6XX_PROTECT_NORDWR(0x00e03, 0x0000c), A6XX_PROTECT_NORDWR(0x03c00, 0x000c3), A6XX_PROTECT_RDONLY(0x03cc4, 0x01fff), A6XX_PROTECT_NORDWR(0x08630, 0x001cf), A6XX_PROTECT_NORDWR(0x08e00, 0x00000), A6XX_PROTECT_NORDWR(0x08e08, 0x00007), A6XX_PROTECT_NORDWR(0x08e50, 0x0001f), A6XX_PROTECT_NORDWR(0x08e80, 0x0027f), A6XX_PROTECT_NORDWR(0x09624, 0x001db), A6XX_PROTECT_NORDWR(0x09e60, 0x00011), A6XX_PROTECT_NORDWR(0x09e78, 0x00187), A6XX_PROTECT_NORDWR(0x0a630, 0x001cf), A6XX_PROTECT_NORDWR(0x0ae02, 0x00000), A6XX_PROTECT_NORDWR(0x0ae50, 0x0012f), A6XX_PROTECT_NORDWR(0x0b604, 0x00000), A6XX_PROTECT_NORDWR(0x0b608, 0x00006), A6XX_PROTECT_NORDWR(0x0be02, 0x00001), A6XX_PROTECT_NORDWR(0x0be20, 0x0015f), A6XX_PROTECT_NORDWR(0x0d000, 0x005ff), A6XX_PROTECT_NORDWR(0x0f000, 0x00bff), A6XX_PROTECT_RDONLY(0x0fc00, 0x01fff), A6XX_PROTECT_NORDWR(0x11c00, 0x00000), /*note: infiite range */ }; static void a6xx_set_cp_protect(struct msm_gpu *gpu) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); const u32 *regs = a6xx_protect; unsigned i, count, count_max; if (adreno_is_a650(adreno_gpu)) { regs = a650_protect; count = ARRAY_SIZE(a650_protect); count_max = 48; BUILD_BUG_ON(ARRAY_SIZE(a650_protect) > 48); } else if (adreno_is_a690(adreno_gpu)) { regs = a690_protect; count = ARRAY_SIZE(a690_protect); count_max = 48; BUILD_BUG_ON(ARRAY_SIZE(a690_protect) > 48); } else if (adreno_is_a660_family(adreno_gpu)) { regs = a660_protect; count = ARRAY_SIZE(a660_protect); count_max = 48; BUILD_BUG_ON(ARRAY_SIZE(a660_protect) > 48); } else { regs = a6xx_protect; count = ARRAY_SIZE(a6xx_protect); count_max = 32; BUILD_BUG_ON(ARRAY_SIZE(a6xx_protect) > 32); } /* * Enable access protection to privileged registers, fault on an access * protect violation and select the last span to protect from the start * address all the way to the end of the register address space */ gpu_write(gpu, REG_A6XX_CP_PROTECT_CNTL, BIT(0) | BIT(1) | BIT(3)); for (i = 0; i < count - 1; i++) gpu_write(gpu, REG_A6XX_CP_PROTECT(i), regs[i]); /* last CP_PROTECT to have "infinite" length on the last entry */ gpu_write(gpu, REG_A6XX_CP_PROTECT(count_max - 1), regs[i]); } static void a6xx_set_ubwc_config(struct msm_gpu *gpu) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); /* Unknown, introduced with A650 family, related to UBWC mode/ver 4 */ u32 rgb565_predicator = 0; /* Unknown, introduced with A650 family */ u32 uavflagprd_inv = 0; /* Whether the minimum access length is 64 bits */ u32 min_acc_len = 0; /* Entirely magic, per-GPU-gen value */ u32 ubwc_mode = 0; /* * The Highest Bank Bit value represents the bit of the highest DDR bank. * We then subtract 13 from it (13 is the minimum value allowed by hw) and * write the lowest two bits of the remaining value as hbb_lo and the * one above it as hbb_hi to the hardware. This should ideally use DRAM * type detection. */ u32 hbb_hi = 0; u32 hbb_lo = 2; /* Unknown, introduced with A640/680 */ u32 amsbc = 0; if (adreno_is_a610(adreno_gpu)) { /* HBB = 14 */ hbb_lo = 1; min_acc_len = 1; ubwc_mode = 1; } /* a618 is using the hw default values */ if (adreno_is_a618(adreno_gpu)) return; if (adreno_is_a619_holi(adreno_gpu)) hbb_lo = 0; if (adreno_is_a640_family(adreno_gpu)) amsbc = 1; if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu)) { /* TODO: get ddr type from bootloader and use 2 for LPDDR4 */ hbb_lo = 3; amsbc = 1; rgb565_predicator = 1; uavflagprd_inv = 2; } if (adreno_is_a690(adreno_gpu)) { hbb_lo = 2; amsbc = 1; rgb565_predicator = 1; uavflagprd_inv = 2; } if (adreno_is_7c3(adreno_gpu)) { hbb_lo = 1; amsbc = 1; rgb565_predicator = 1; uavflagprd_inv = 2; } gpu_write(gpu, REG_A6XX_RB_NC_MODE_CNTL, rgb565_predicator << 11 | hbb_hi << 10 | amsbc << 4 | min_acc_len << 3 | hbb_lo << 1 | ubwc_mode); gpu_write(gpu, REG_A6XX_TPL1_NC_MODE_CNTL, hbb_hi << 4 | min_acc_len << 3 | hbb_lo << 1 | ubwc_mode); gpu_write(gpu, REG_A6XX_SP_NC_MODE_CNTL, hbb_hi << 10 | uavflagprd_inv << 4 | min_acc_len << 3 | hbb_lo << 1 | ubwc_mode); gpu_write(gpu, REG_A6XX_UCHE_MODE_CNTL, min_acc_len << 23 | hbb_lo << 21); } static int a6xx_cp_init(struct msm_gpu *gpu) { struct msm_ringbuffer *ring = gpu->rb[0]; OUT_PKT7(ring, CP_ME_INIT, 8); OUT_RING(ring, 0x0000002f); /* Enable multiple hardware contexts */ OUT_RING(ring, 0x00000003); /* Enable error detection */ OUT_RING(ring, 0x20000000); /* Don't enable header dump */ OUT_RING(ring, 0x00000000); OUT_RING(ring, 0x00000000); /* No workarounds enabled */ OUT_RING(ring, 0x00000000); /* Pad rest of the cmds with 0's */ OUT_RING(ring, 0x00000000); OUT_RING(ring, 0x00000000); a6xx_flush(gpu, ring); return a6xx_idle(gpu, ring) ? 0 : -EINVAL; } /* * Check that the microcode version is new enough to include several key * security fixes. Return true if the ucode is safe. */ static bool a6xx_ucode_check_version(struct a6xx_gpu *a6xx_gpu, struct drm_gem_object *obj) { struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; struct msm_gpu *gpu = &adreno_gpu->base; const char *sqe_name = adreno_gpu->info->fw[ADRENO_FW_SQE]; u32 *buf = msm_gem_get_vaddr(obj); bool ret = false; if (IS_ERR(buf)) return false; /* * Targets up to a640 (a618, a630 and a640) need to check for a * microcode version that is patched to support the whereami opcode or * one that is new enough to include it by default. * * a650 tier targets don't need whereami but still need to be * equal to or newer than 0.95 for other security fixes * * a660 targets have all the critical security fixes from the start */ if (!strcmp(sqe_name, "a630_sqe.fw")) { /* * If the lowest nibble is 0xa that is an indication that this * microcode has been patched. The actual version is in dword * [3] but we only care about the patchlevel which is the lowest * nibble of dword [3] * * Otherwise check that the firmware is greater than or equal * to 1.90 which was the first version that had this fix built * in */ if ((((buf[0] & 0xf) == 0xa) && (buf[2] & 0xf) >= 1) || (buf[0] & 0xfff) >= 0x190) { a6xx_gpu->has_whereami = true; ret = true; goto out; } DRM_DEV_ERROR(&gpu->pdev->dev, "a630 SQE ucode is too old. Have version %x need at least %x\n", buf[0] & 0xfff, 0x190); } else if (!strcmp(sqe_name, "a650_sqe.fw")) { if ((buf[0] & 0xfff) >= 0x095) { ret = true; goto out; } DRM_DEV_ERROR(&gpu->pdev->dev, "a650 SQE ucode is too old. Have version %x need at least %x\n", buf[0] & 0xfff, 0x095); } else if (!strcmp(sqe_name, "a660_sqe.fw")) { ret = true; } else { DRM_DEV_ERROR(&gpu->pdev->dev, "unknown GPU, add it to a6xx_ucode_check_version()!!\n"); } out: msm_gem_put_vaddr(obj); return ret; } static int a6xx_ucode_load(struct msm_gpu *gpu) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); if (!a6xx_gpu->sqe_bo) { a6xx_gpu->sqe_bo = adreno_fw_create_bo(gpu, adreno_gpu->fw[ADRENO_FW_SQE], &a6xx_gpu->sqe_iova); if (IS_ERR(a6xx_gpu->sqe_bo)) { int ret = PTR_ERR(a6xx_gpu->sqe_bo); a6xx_gpu->sqe_bo = NULL; DRM_DEV_ERROR(&gpu->pdev->dev, "Could not allocate SQE ucode: %d\n", ret); return ret; } msm_gem_object_set_name(a6xx_gpu->sqe_bo, "sqefw"); if (!a6xx_ucode_check_version(a6xx_gpu, a6xx_gpu->sqe_bo)) { msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace); drm_gem_object_put(a6xx_gpu->sqe_bo); a6xx_gpu->sqe_bo = NULL; return -EPERM; } } /* * Expanded APRIV and targets that support WHERE_AM_I both need a * privileged buffer to store the RPTR shadow */ if ((adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami) && !a6xx_gpu->shadow_bo) { a6xx_gpu->shadow = msm_gem_kernel_new(gpu->dev, sizeof(u32) * gpu->nr_rings, MSM_BO_WC | MSM_BO_MAP_PRIV, gpu->aspace, &a6xx_gpu->shadow_bo, &a6xx_gpu->shadow_iova); if (IS_ERR(a6xx_gpu->shadow)) return PTR_ERR(a6xx_gpu->shadow); msm_gem_object_set_name(a6xx_gpu->shadow_bo, "shadow"); } return 0; } static int a6xx_zap_shader_init(struct msm_gpu *gpu) { static bool loaded; int ret; if (loaded) return 0; ret = adreno_zap_shader_load(gpu, GPU_PAS_ID); loaded = !ret; return ret; } #define A6XX_INT_MASK (A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR | \ A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW | \ A6XX_RBBM_INT_0_MASK_CP_HW_ERROR | \ A6XX_RBBM_INT_0_MASK_CP_IB2 | \ A6XX_RBBM_INT_0_MASK_CP_IB1 | \ A6XX_RBBM_INT_0_MASK_CP_RB | \ A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \ A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW | \ A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT | \ A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \ A6XX_RBBM_INT_0_MASK_UCHE_TRAP_INTR) static int hw_init(struct msm_gpu *gpu) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); struct a6xx_gmu *gmu = &a6xx_gpu->gmu; int ret; if (!adreno_has_gmu_wrapper(adreno_gpu)) { /* Make sure the GMU keeps the GPU on while we set it up */ a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET); } /* Clear GBIF halt in case GX domain was not collapsed */ if (adreno_is_a619_holi(adreno_gpu)) { gpu_write(gpu, REG_A6XX_GBIF_HALT, 0); gpu_write(gpu, REG_A6XX_RBBM_GPR0_CNTL, 0); /* Let's make extra sure that the GPU can access the memory.. */ mb(); } else if (a6xx_has_gbif(adreno_gpu)) { gpu_write(gpu, REG_A6XX_GBIF_HALT, 0); gpu_write(gpu, REG_A6XX_RBBM_GBIF_HALT, 0); /* Let's make extra sure that the GPU can access the memory.. */ mb(); } gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_CNTL, 0); if (adreno_is_a619_holi(adreno_gpu)) a6xx_sptprac_enable(gmu); /* * Disable the trusted memory range - we don't actually supported secure * memory rendering at this point in time and we don't want to block off * part of the virtual memory space. */ gpu_write64(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE, 0x00000000); gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_SIZE, 0x00000000); /* Turn on 64 bit addressing for all blocks */ gpu_write(gpu, REG_A6XX_CP_ADDR_MODE_CNTL, 0x1); gpu_write(gpu, REG_A6XX_VSC_ADDR_MODE_CNTL, 0x1); gpu_write(gpu, REG_A6XX_GRAS_ADDR_MODE_CNTL, 0x1); gpu_write(gpu, REG_A6XX_RB_ADDR_MODE_CNTL, 0x1); gpu_write(gpu, REG_A6XX_PC_ADDR_MODE_CNTL, 0x1); gpu_write(gpu, REG_A6XX_HLSQ_ADDR_MODE_CNTL, 0x1); gpu_write(gpu, REG_A6XX_VFD_ADDR_MODE_CNTL, 0x1); gpu_write(gpu, REG_A6XX_VPC_ADDR_MODE_CNTL, 0x1); gpu_write(gpu, REG_A6XX_UCHE_ADDR_MODE_CNTL, 0x1); gpu_write(gpu, REG_A6XX_SP_ADDR_MODE_CNTL, 0x1); gpu_write(gpu, REG_A6XX_TPL1_ADDR_MODE_CNTL, 0x1); gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_ADDR_MODE_CNTL, 0x1); /* enable hardware clockgating */ a6xx_set_hwcg(gpu, true); /* VBIF/GBIF start*/ if (adreno_is_a610(adreno_gpu) || adreno_is_a640_family(adreno_gpu) || adreno_is_a650_family(adreno_gpu)) { gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE0, 0x00071620); gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE1, 0x00071620); gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE2, 0x00071620); gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620); gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x3); } else { gpu_write(gpu, REG_A6XX_RBBM_VBIF_CLIENT_QOS_CNTL, 0x3); } if (adreno_is_a630(adreno_gpu)) gpu_write(gpu, REG_A6XX_VBIF_GATE_OFF_WRREQ_EN, 0x00000009); /* Make all blocks contribute to the GPU BUSY perf counter */ gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xffffffff); /* Disable L2 bypass in the UCHE */ gpu_write64(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX, 0x0001ffffffffffc0llu); gpu_write64(gpu, REG_A6XX_UCHE_TRAP_BASE, 0x0001fffffffff000llu); gpu_write64(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE, 0x0001fffffffff000llu); if (!adreno_is_a650_family(adreno_gpu)) { /* Set the GMEM VA range [0x100000:0x100000 + gpu->gmem - 1] */ gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MIN, 0x00100000); gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MAX, 0x00100000 + adreno_gpu->gmem - 1); } gpu_write(gpu, REG_A6XX_UCHE_FILTER_CNTL, 0x804); gpu_write(gpu, REG_A6XX_UCHE_CACHE_WAYS, 0x4); if (adreno_is_a640_family(adreno_gpu) || adreno_is_a650_family(adreno_gpu)) { gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x02000140); gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362c); } else if (adreno_is_a610(adreno_gpu)) { gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x00800060); gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x40201b16); } else { gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x010000c0); gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362c); } if (adreno_is_a660_family(adreno_gpu)) gpu_write(gpu, REG_A6XX_CP_LPAC_PROG_FIFO_SIZE, 0x00000020); /* Setting the mem pool size */ if (adreno_is_a610(adreno_gpu)) { gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 48); gpu_write(gpu, REG_A6XX_CP_MEM_POOL_DBG_ADDR, 47); } else gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 128); /* Setting the primFifo thresholds default values, * and vccCacheSkipDis=1 bit (0x200) for A640 and newer */ if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu) || adreno_is_a690(adreno_gpu)) gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200); else if (adreno_is_a640_family(adreno_gpu) || adreno_is_7c3(adreno_gpu)) gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00200200); else if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu)) gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200); else if (adreno_is_a619(adreno_gpu)) gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00018000); else if (adreno_is_a610(adreno_gpu)) gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00080000); else gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00180000); /* Set the AHB default slave response to "ERROR" */ gpu_write(gpu, REG_A6XX_CP_AHB_CNTL, 0x1); /* Turn on performance counters */ gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_CNTL, 0x1); /* Select CP0 to always count cycles */ gpu_write(gpu, REG_A6XX_CP_PERFCTR_CP_SEL(0), PERF_CP_ALWAYS_COUNT); a6xx_set_ubwc_config(gpu); /* Enable fault detection */ if (adreno_is_a619(adreno_gpu)) gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL, (1 << 30) | 0x3fffff); else if (adreno_is_a610(adreno_gpu)) gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL, (1 << 30) | 0x3ffff); else gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL, (1 << 30) | 0x1fffff); gpu_write(gpu, REG_A6XX_UCHE_CLIENT_PF, 1); /* Set weights for bicubic filtering */ if (adreno_is_a650_family(adreno_gpu)) { gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_0, 0); gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_1, 0x3fe05ff4); gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_2, 0x3fa0ebee); gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_3, 0x3f5193ed); gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_4, 0x3f0243f0); } /* Set up the CX GMU counter 0 to count busy ticks */ gmu_write(gmu, REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_MASK, 0xff000000); /* Enable the power counter */ gmu_rmw(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_SELECT_0, 0xff, BIT(5)); gmu_write(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_ENABLE, 1); /* Protect registers from the CP */ a6xx_set_cp_protect(gpu); if (adreno_is_a660_family(adreno_gpu)) { gpu_write(gpu, REG_A6XX_CP_CHICKEN_DBG, 0x1); gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x0); } /* Set dualQ + disable afull for A660 GPU */ if (adreno_is_a660(adreno_gpu)) gpu_write(gpu, REG_A6XX_UCHE_CMDQ_CONFIG, 0x66906); /* Enable expanded apriv for targets that support it */ if (gpu->hw_apriv) { gpu_write(gpu, REG_A6XX_CP_APRIV_CNTL, (1 << 6) | (1 << 5) | (1 << 3) | (1 << 2) | (1 << 1)); } /* Enable interrupts */ gpu_write(gpu, REG_A6XX_RBBM_INT_0_MASK, A6XX_INT_MASK); ret = adreno_hw_init(gpu); if (ret) goto out; gpu_write64(gpu, REG_A6XX_CP_SQE_INSTR_BASE, a6xx_gpu->sqe_iova); /* Set the ringbuffer address */ gpu_write64(gpu, REG_A6XX_CP_RB_BASE, gpu->rb[0]->iova); /* Targets that support extended APRIV can use the RPTR shadow from * hardware but all the other ones need to disable the feature. Targets * that support the WHERE_AM_I opcode can use that instead */ if (adreno_gpu->base.hw_apriv) gpu_write(gpu, REG_A6XX_CP_RB_CNTL, MSM_GPU_RB_CNTL_DEFAULT); else gpu_write(gpu, REG_A6XX_CP_RB_CNTL, MSM_GPU_RB_CNTL_DEFAULT | AXXX_CP_RB_CNTL_NO_UPDATE); /* Configure the RPTR shadow if needed: */ if (a6xx_gpu->shadow_bo) { gpu_write64(gpu, REG_A6XX_CP_RB_RPTR_ADDR, shadowptr(a6xx_gpu, gpu->rb[0])); } /* Always come up on rb 0 */ a6xx_gpu->cur_ring = gpu->rb[0]; gpu->cur_ctx_seqno = 0; /* Enable the SQE_to start the CP engine */ gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 1); ret = a6xx_cp_init(gpu); if (ret) goto out; /* * Try to load a zap shader into the secure world. If successful * we can use the CP to switch out of secure mode. If not then we * have no resource but to try to switch ourselves out manually. If we * guessed wrong then access to the RBBM_SECVID_TRUST_CNTL register will * be blocked and a permissions violation will soon follow. */ ret = a6xx_zap_shader_init(gpu); if (!ret) { OUT_PKT7(gpu->rb[0], CP_SET_SECURE_MODE, 1); OUT_RING(gpu->rb[0], 0x00000000); a6xx_flush(gpu, gpu->rb[0]); if (!a6xx_idle(gpu, gpu->rb[0])) return -EINVAL; } else if (ret == -ENODEV) { /* * This device does not use zap shader (but print a warning * just in case someone got their dt wrong.. hopefully they * have a debug UART to realize the error of their ways... * if you mess this up you are about to crash horribly) */ dev_warn_once(gpu->dev->dev, "Zap shader not enabled - using SECVID_TRUST_CNTL instead\n"); gpu_write(gpu, REG_A6XX_RBBM_SECVID_TRUST_CNTL, 0x0); ret = 0; } else { return ret; } out: if (adreno_has_gmu_wrapper(adreno_gpu)) return ret; /* * Tell the GMU that we are done touching the GPU and it can start power * management */ a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET); if (a6xx_gpu->gmu.legacy) { /* Take the GMU out of its special boot mode */ a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_BOOT_SLUMBER); } return ret; } static int a6xx_hw_init(struct msm_gpu *gpu) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); int ret; mutex_lock(&a6xx_gpu->gmu.lock); ret = hw_init(gpu); mutex_unlock(&a6xx_gpu->gmu.lock); return ret; } static void a6xx_dump(struct msm_gpu *gpu) { DRM_DEV_INFO(&gpu->pdev->dev, "status: %08x\n", gpu_read(gpu, REG_A6XX_RBBM_STATUS)); adreno_dump(gpu); } static void a6xx_recover(struct msm_gpu *gpu) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); struct a6xx_gmu *gmu = &a6xx_gpu->gmu; int i, active_submits; adreno_dump_info(gpu); for (i = 0; i < 8; i++) DRM_DEV_INFO(&gpu->pdev->dev, "CP_SCRATCH_REG%d: %u\n", i, gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(i))); if (hang_debug) a6xx_dump(gpu); /* * To handle recovery specific sequences during the rpm suspend we are * about to trigger */ a6xx_gpu->hung = true; /* Halt SQE first */ gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 3); pm_runtime_dont_use_autosuspend(&gpu->pdev->dev); /* active_submit won't change until we make a submission */ mutex_lock(&gpu->active_lock); active_submits = gpu->active_submits; /* * Temporarily clear active_submits count to silence a WARN() in the * runtime suspend cb */ gpu->active_submits = 0; if (adreno_has_gmu_wrapper(adreno_gpu)) { /* Drain the outstanding traffic on memory buses */ a6xx_bus_clear_pending_transactions(adreno_gpu, true); /* Reset the GPU to a clean state */ a6xx_gpu_sw_reset(gpu, true); a6xx_gpu_sw_reset(gpu, false); } reinit_completion(&gmu->pd_gate); dev_pm_genpd_add_notifier(gmu->cxpd, &gmu->pd_nb); dev_pm_genpd_synced_poweroff(gmu->cxpd); /* Drop the rpm refcount from active submits */ if (active_submits) pm_runtime_put(&gpu->pdev->dev); /* And the final one from recover worker */ pm_runtime_put_sync(&gpu->pdev->dev); if (!wait_for_completion_timeout(&gmu->pd_gate, msecs_to_jiffies(1000))) DRM_DEV_ERROR(&gpu->pdev->dev, "cx gdsc didn't collapse\n"); dev_pm_genpd_remove_notifier(gmu->cxpd); pm_runtime_use_autosuspend(&gpu->pdev->dev); if (active_submits) pm_runtime_get(&gpu->pdev->dev); pm_runtime_get_sync(&gpu->pdev->dev); gpu->active_submits = active_submits; mutex_unlock(&gpu->active_lock); msm_gpu_hw_init(gpu); a6xx_gpu->hung = false; } static const char *a6xx_uche_fault_block(struct msm_gpu *gpu, u32 mid) { static const char *uche_clients[7] = { "VFD", "SP", "VSC", "VPC", "HLSQ", "PC", "LRZ", }; u32 val; if (mid < 1 || mid > 3) return "UNKNOWN"; /* * The source of the data depends on the mid ID read from FSYNR1. * and the client ID read from the UCHE block */ val = gpu_read(gpu, REG_A6XX_UCHE_CLIENT_PF); /* mid = 3 is most precise and refers to only one block per client */ if (mid == 3) return uche_clients[val & 7]; /* For mid=2 the source is TP or VFD except when the client id is 0 */ if (mid == 2) return ((val & 7) == 0) ? "TP" : "TP|VFD"; /* For mid=1 just return "UCHE" as a catchall for everything else */ return "UCHE"; } static const char *a6xx_fault_block(struct msm_gpu *gpu, u32 id) { if (id == 0) return "CP"; else if (id == 4) return "CCU"; else if (id == 6) return "CDP Prefetch"; return a6xx_uche_fault_block(gpu, id); } static int a6xx_fault_handler(void *arg, unsigned long iova, int flags, void *data) { struct msm_gpu *gpu = arg; struct adreno_smmu_fault_info *info = data; const char *block = "unknown"; u32 scratch[] = { gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)), gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)), gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)), gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7)), }; if (info) block = a6xx_fault_block(gpu, info->fsynr1 & 0xff); return adreno_fault_handler(gpu, iova, flags, info, block, scratch); } static void a6xx_cp_hw_err_irq(struct msm_gpu *gpu) { u32 status = gpu_read(gpu, REG_A6XX_CP_INTERRUPT_STATUS); if (status & A6XX_CP_INT_CP_OPCODE_ERROR) { u32 val; gpu_write(gpu, REG_A6XX_CP_SQE_STAT_ADDR, 1); val = gpu_read(gpu, REG_A6XX_CP_SQE_STAT_DATA); dev_err_ratelimited(&gpu->pdev->dev, "CP | opcode error | possible opcode=0x%8.8X\n", val); } if (status & A6XX_CP_INT_CP_UCODE_ERROR) dev_err_ratelimited(&gpu->pdev->dev, "CP ucode error interrupt\n"); if (status & A6XX_CP_INT_CP_HW_FAULT_ERROR) dev_err_ratelimited(&gpu->pdev->dev, "CP | HW fault | status=0x%8.8X\n", gpu_read(gpu, REG_A6XX_CP_HW_FAULT)); if (status & A6XX_CP_INT_CP_REGISTER_PROTECTION_ERROR) { u32 val = gpu_read(gpu, REG_A6XX_CP_PROTECT_STATUS); dev_err_ratelimited(&gpu->pdev->dev, "CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n", val & (1 << 20) ? "READ" : "WRITE", (val & 0x3ffff), val); } if (status & A6XX_CP_INT_CP_AHB_ERROR) dev_err_ratelimited(&gpu->pdev->dev, "CP AHB error interrupt\n"); if (status & A6XX_CP_INT_CP_VSD_PARITY_ERROR) dev_err_ratelimited(&gpu->pdev->dev, "CP VSD decoder parity error\n"); if (status & A6XX_CP_INT_CP_ILLEGAL_INSTR_ERROR) dev_err_ratelimited(&gpu->pdev->dev, "CP illegal instruction error\n"); } static void a6xx_fault_detect_irq(struct msm_gpu *gpu) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu); /* * If stalled on SMMU fault, we could trip the GPU's hang detection, * but the fault handler will trigger the devcore dump, and we want * to otherwise resume normally rather than killing the submit, so * just bail. */ if (gpu_read(gpu, REG_A6XX_RBBM_STATUS3) & A6XX_RBBM_STATUS3_SMMU_STALLED_ON_FAULT) return; /* * Force the GPU to stay on until after we finish * collecting information */ if (!adreno_has_gmu_wrapper(adreno_gpu)) gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 1); DRM_DEV_ERROR(&gpu->pdev->dev, "gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n", ring ? ring->id : -1, ring ? ring->fctx->last_fence : 0, gpu_read(gpu, REG_A6XX_RBBM_STATUS), gpu_read(gpu, REG_A6XX_CP_RB_RPTR), gpu_read(gpu, REG_A6XX_CP_RB_WPTR), gpu_read64(gpu, REG_A6XX_CP_IB1_BASE), gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE), gpu_read64(gpu, REG_A6XX_CP_IB2_BASE), gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE)); /* Turn off the hangcheck timer to keep it from bothering us */ del_timer(&gpu->hangcheck_timer); kthread_queue_work(gpu->worker, &gpu->recover_work); } static irqreturn_t a6xx_irq(struct msm_gpu *gpu) { struct msm_drm_private *priv = gpu->dev->dev_private; u32 status = gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS); gpu_write(gpu, REG_A6XX_RBBM_INT_CLEAR_CMD, status); if (priv->disable_err_irq) status &= A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS; if (status & A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT) a6xx_fault_detect_irq(gpu); if (status & A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR) dev_err_ratelimited(&gpu->pdev->dev, "CP | AHB bus error\n"); if (status & A6XX_RBBM_INT_0_MASK_CP_HW_ERROR) a6xx_cp_hw_err_irq(gpu); if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW) dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB ASYNC overflow\n"); if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW) dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB bus overflow\n"); if (status & A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS) dev_err_ratelimited(&gpu->pdev->dev, "UCHE | Out of bounds access\n"); if (status & A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS) msm_gpu_retire(gpu); return IRQ_HANDLED; } static void a6xx_llc_rmw(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 mask, u32 or) { return msm_rmw(a6xx_gpu->llc_mmio + (reg << 2), mask, or); } static void a6xx_llc_write(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 value) { msm_writel(value, a6xx_gpu->llc_mmio + (reg << 2)); } static void a6xx_llc_deactivate(struct a6xx_gpu *a6xx_gpu) { llcc_slice_deactivate(a6xx_gpu->llc_slice); llcc_slice_deactivate(a6xx_gpu->htw_llc_slice); } static void a6xx_llc_activate(struct a6xx_gpu *a6xx_gpu) { struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; struct msm_gpu *gpu = &adreno_gpu->base; u32 cntl1_regval = 0; if (IS_ERR(a6xx_gpu->llc_mmio)) return; if (!llcc_slice_activate(a6xx_gpu->llc_slice)) { u32 gpu_scid = llcc_get_slice_id(a6xx_gpu->llc_slice); gpu_scid &= 0x1f; cntl1_regval = (gpu_scid << 0) | (gpu_scid << 5) | (gpu_scid << 10) | (gpu_scid << 15) | (gpu_scid << 20); /* On A660, the SCID programming for UCHE traffic is done in * A6XX_GBIF_SCACHE_CNTL0[14:10] */ if (adreno_is_a660_family(adreno_gpu)) gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL0, (0x1f << 10) | (1 << 8), (gpu_scid << 10) | (1 << 8)); } /* * For targets with a MMU500, activate the slice but don't program the * register. The XBL will take care of that. */ if (!llcc_slice_activate(a6xx_gpu->htw_llc_slice)) { if (!a6xx_gpu->have_mmu500) { u32 gpuhtw_scid = llcc_get_slice_id(a6xx_gpu->htw_llc_slice); gpuhtw_scid &= 0x1f; cntl1_regval |= FIELD_PREP(GENMASK(29, 25), gpuhtw_scid); } } if (!cntl1_regval) return; /* * Program the slice IDs for the various GPU blocks and GPU MMU * pagetables */ if (!a6xx_gpu->have_mmu500) { a6xx_llc_write(a6xx_gpu, REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_1, cntl1_regval); /* * Program cacheability overrides to not allocate cache * lines on a write miss */ a6xx_llc_rmw(a6xx_gpu, REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_0, 0xF, 0x03); return; } gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL1, GENMASK(24, 0), cntl1_regval); } static void a6xx_llc_slices_destroy(struct a6xx_gpu *a6xx_gpu) { /* No LLCC on non-RPMh (and by extension, non-GMU) SoCs */ if (adreno_has_gmu_wrapper(&a6xx_gpu->base)) return; llcc_slice_putd(a6xx_gpu->llc_slice); llcc_slice_putd(a6xx_gpu->htw_llc_slice); } static void a6xx_llc_slices_init(struct platform_device *pdev, struct a6xx_gpu *a6xx_gpu) { struct device_node *phandle; /* No LLCC on non-RPMh (and by extension, non-GMU) SoCs */ if (adreno_has_gmu_wrapper(&a6xx_gpu->base)) return; /* * There is a different programming path for targets with an mmu500 * attached, so detect if that is the case */ phandle = of_parse_phandle(pdev->dev.of_node, "iommus", 0); a6xx_gpu->have_mmu500 = (phandle && of_device_is_compatible(phandle, "arm,mmu-500")); of_node_put(phandle); if (a6xx_gpu->have_mmu500) a6xx_gpu->llc_mmio = NULL; else a6xx_gpu->llc_mmio = msm_ioremap(pdev, "cx_mem"); a6xx_gpu->llc_slice = llcc_slice_getd(LLCC_GPU); a6xx_gpu->htw_llc_slice = llcc_slice_getd(LLCC_GPUHTW); if (IS_ERR_OR_NULL(a6xx_gpu->llc_slice) && IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice)) a6xx_gpu->llc_mmio = ERR_PTR(-EINVAL); } #define GBIF_CLIENT_HALT_MASK BIT(0) #define GBIF_ARB_HALT_MASK BIT(1) #define VBIF_XIN_HALT_CTRL0_MASK GENMASK(3, 0) #define VBIF_RESET_ACK_MASK 0xF0 #define GPR0_GBIF_HALT_REQUEST 0x1E0 void a6xx_bus_clear_pending_transactions(struct adreno_gpu *adreno_gpu, bool gx_off) { struct msm_gpu *gpu = &adreno_gpu->base; if (adreno_is_a619_holi(adreno_gpu)) { gpu_write(gpu, REG_A6XX_RBBM_GPR0_CNTL, GPR0_GBIF_HALT_REQUEST); spin_until((gpu_read(gpu, REG_A6XX_RBBM_VBIF_GX_RESET_STATUS) & (VBIF_RESET_ACK_MASK)) == VBIF_RESET_ACK_MASK); } else if (!a6xx_has_gbif(adreno_gpu)) { gpu_write(gpu, REG_A6XX_VBIF_XIN_HALT_CTRL0, VBIF_XIN_HALT_CTRL0_MASK); spin_until((gpu_read(gpu, REG_A6XX_VBIF_XIN_HALT_CTRL1) & (VBIF_XIN_HALT_CTRL0_MASK)) == VBIF_XIN_HALT_CTRL0_MASK); gpu_write(gpu, REG_A6XX_VBIF_XIN_HALT_CTRL0, 0); return; } if (gx_off) { /* Halt the gx side of GBIF */ gpu_write(gpu, REG_A6XX_RBBM_GBIF_HALT, 1); spin_until(gpu_read(gpu, REG_A6XX_RBBM_GBIF_HALT_ACK) & 1); } /* Halt new client requests on GBIF */ gpu_write(gpu, REG_A6XX_GBIF_HALT, GBIF_CLIENT_HALT_MASK); spin_until((gpu_read(gpu, REG_A6XX_GBIF_HALT_ACK) & (GBIF_CLIENT_HALT_MASK)) == GBIF_CLIENT_HALT_MASK); /* Halt all AXI requests on GBIF */ gpu_write(gpu, REG_A6XX_GBIF_HALT, GBIF_ARB_HALT_MASK); spin_until((gpu_read(gpu, REG_A6XX_GBIF_HALT_ACK) & (GBIF_ARB_HALT_MASK)) == GBIF_ARB_HALT_MASK); /* The GBIF halt needs to be explicitly cleared */ gpu_write(gpu, REG_A6XX_GBIF_HALT, 0x0); } void a6xx_gpu_sw_reset(struct msm_gpu *gpu, bool assert) { /* 11nm chips (e.g. ones with A610) have hw issues with the reset line! */ if (adreno_is_a610(to_adreno_gpu(gpu))) return; gpu_write(gpu, REG_A6XX_RBBM_SW_RESET_CMD, assert); /* Perform a bogus read and add a brief delay to ensure ordering. */ gpu_read(gpu, REG_A6XX_RBBM_SW_RESET_CMD); udelay(1); /* The reset line needs to be asserted for at least 100 us */ if (assert) udelay(100); } static int a6xx_gmu_pm_resume(struct msm_gpu *gpu) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); int ret; gpu->needs_hw_init = true; trace_msm_gpu_resume(0); mutex_lock(&a6xx_gpu->gmu.lock); ret = a6xx_gmu_resume(a6xx_gpu); mutex_unlock(&a6xx_gpu->gmu.lock); if (ret) return ret; msm_devfreq_resume(gpu); a6xx_llc_activate(a6xx_gpu); return ret; } static int a6xx_pm_resume(struct msm_gpu *gpu) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); struct a6xx_gmu *gmu = &a6xx_gpu->gmu; unsigned long freq = gpu->fast_rate; struct dev_pm_opp *opp; int ret; gpu->needs_hw_init = true; trace_msm_gpu_resume(0); mutex_lock(&a6xx_gpu->gmu.lock); opp = dev_pm_opp_find_freq_ceil(&gpu->pdev->dev, &freq); if (IS_ERR(opp)) { ret = PTR_ERR(opp); goto err_set_opp; } dev_pm_opp_put(opp); /* Set the core clock and bus bw, having VDD scaling in mind */ dev_pm_opp_set_opp(&gpu->pdev->dev, opp); pm_runtime_resume_and_get(gmu->dev); pm_runtime_resume_and_get(gmu->gxpd); ret = clk_bulk_prepare_enable(gpu->nr_clocks, gpu->grp_clks); if (ret) goto err_bulk_clk; if (adreno_is_a619_holi(adreno_gpu)) a6xx_sptprac_enable(gmu); /* If anything goes south, tear the GPU down piece by piece.. */ if (ret) { err_bulk_clk: pm_runtime_put(gmu->gxpd); pm_runtime_put(gmu->dev); dev_pm_opp_set_opp(&gpu->pdev->dev, NULL); } err_set_opp: mutex_unlock(&a6xx_gpu->gmu.lock); if (!ret) msm_devfreq_resume(gpu); return ret; } static int a6xx_gmu_pm_suspend(struct msm_gpu *gpu) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); int i, ret; trace_msm_gpu_suspend(0); a6xx_llc_deactivate(a6xx_gpu); msm_devfreq_suspend(gpu); mutex_lock(&a6xx_gpu->gmu.lock); ret = a6xx_gmu_stop(a6xx_gpu); mutex_unlock(&a6xx_gpu->gmu.lock); if (ret) return ret; if (a6xx_gpu->shadow_bo) for (i = 0; i < gpu->nr_rings; i++) a6xx_gpu->shadow[i] = 0; gpu->suspend_count++; return 0; } static int a6xx_pm_suspend(struct msm_gpu *gpu) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); struct a6xx_gmu *gmu = &a6xx_gpu->gmu; int i; trace_msm_gpu_suspend(0); msm_devfreq_suspend(gpu); mutex_lock(&a6xx_gpu->gmu.lock); /* Drain the outstanding traffic on memory buses */ a6xx_bus_clear_pending_transactions(adreno_gpu, true); if (adreno_is_a619_holi(adreno_gpu)) a6xx_sptprac_disable(gmu); clk_bulk_disable_unprepare(gpu->nr_clocks, gpu->grp_clks); pm_runtime_put_sync(gmu->gxpd); dev_pm_opp_set_opp(&gpu->pdev->dev, NULL); pm_runtime_put_sync(gmu->dev); mutex_unlock(&a6xx_gpu->gmu.lock); if (a6xx_gpu->shadow_bo) for (i = 0; i < gpu->nr_rings; i++) a6xx_gpu->shadow[i] = 0; gpu->suspend_count++; return 0; } static int a6xx_gmu_get_timestamp(struct msm_gpu *gpu, uint64_t *value) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); mutex_lock(&a6xx_gpu->gmu.lock); /* Force the GPU power on so we can read this register */ a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET); *value = gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER); a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET); mutex_unlock(&a6xx_gpu->gmu.lock); return 0; } static int a6xx_get_timestamp(struct msm_gpu *gpu, uint64_t *value) { *value = gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER); return 0; } static struct msm_ringbuffer *a6xx_active_ring(struct msm_gpu *gpu) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); return a6xx_gpu->cur_ring; } static void a6xx_destroy(struct msm_gpu *gpu) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); if (a6xx_gpu->sqe_bo) { msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace); drm_gem_object_put(a6xx_gpu->sqe_bo); } if (a6xx_gpu->shadow_bo) { msm_gem_unpin_iova(a6xx_gpu->shadow_bo, gpu->aspace); drm_gem_object_put(a6xx_gpu->shadow_bo); } a6xx_llc_slices_destroy(a6xx_gpu); a6xx_gmu_remove(a6xx_gpu); adreno_gpu_cleanup(adreno_gpu); kfree(a6xx_gpu); } static u64 a6xx_gpu_busy(struct msm_gpu *gpu, unsigned long *out_sample_rate) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); u64 busy_cycles; /* 19.2MHz */ *out_sample_rate = 19200000; busy_cycles = gmu_read64(&a6xx_gpu->gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_L, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_H); return busy_cycles; } static void a6xx_gpu_set_freq(struct msm_gpu *gpu, struct dev_pm_opp *opp, bool suspended) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); mutex_lock(&a6xx_gpu->gmu.lock); a6xx_gmu_set_freq(gpu, opp, suspended); mutex_unlock(&a6xx_gpu->gmu.lock); } static struct msm_gem_address_space * a6xx_create_address_space(struct msm_gpu *gpu, struct platform_device *pdev) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); unsigned long quirks = 0; /* * This allows GPU to set the bus attributes required to use system * cache on behalf of the iommu page table walker. */ if (!IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice) && !device_iommu_capable(&pdev->dev, IOMMU_CAP_CACHE_COHERENCY)) quirks |= IO_PGTABLE_QUIRK_ARM_OUTER_WBWA; return adreno_iommu_create_address_space(gpu, pdev, quirks); } static struct msm_gem_address_space * a6xx_create_private_address_space(struct msm_gpu *gpu) { struct msm_mmu *mmu; mmu = msm_iommu_pagetable_create(gpu->aspace->mmu); if (IS_ERR(mmu)) return ERR_CAST(mmu); return msm_gem_address_space_create(mmu, "gpu", 0x100000000ULL, adreno_private_address_space_size(gpu)); } static uint32_t a6xx_get_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami) return a6xx_gpu->shadow[ring->id]; return ring->memptrs->rptr = gpu_read(gpu, REG_A6XX_CP_RB_RPTR); } static bool a6xx_progress(struct msm_gpu *gpu, struct msm_ringbuffer *ring) { struct msm_cp_state cp_state = { .ib1_base = gpu_read64(gpu, REG_A6XX_CP_IB1_BASE), .ib2_base = gpu_read64(gpu, REG_A6XX_CP_IB2_BASE), .ib1_rem = gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE), .ib2_rem = gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE), }; bool progress; /* * Adjust the remaining data to account for what has already been * fetched from memory, but not yet consumed by the SQE. * * This is not *technically* correct, the amount buffered could * exceed the IB size due to hw prefetching ahead, but: * * (1) We aren't trying to find the exact position, just whether * progress has been made * (2) The CP_REG_TO_MEM at the end of a submit should be enough * to prevent prefetching into an unrelated submit. (And * either way, at some point the ROQ will be full.) */ cp_state.ib1_rem += gpu_read(gpu, REG_A6XX_CP_ROQ_AVAIL_IB1) >> 16; cp_state.ib2_rem += gpu_read(gpu, REG_A6XX_CP_ROQ_AVAIL_IB2) >> 16; progress = !!memcmp(&cp_state, &ring->last_cp_state, sizeof(cp_state)); ring->last_cp_state = cp_state; return progress; } static u32 a610_get_speed_bin(u32 fuse) { /* * There are (at least) three SoCs implementing A610: SM6125 (trinket), * SM6115 (bengal) and SM6225 (khaje). Trinket does not have speedbinning, * as only a single SKU exists and we don't support khaje upstream yet. * Hence, this matching table is only valid for bengal and can be easily * expanded if need be. */ if (fuse == 0) return 0; else if (fuse == 206) return 1; else if (fuse == 200) return 2; else if (fuse == 157) return 3; else if (fuse == 127) return 4; return UINT_MAX; } static u32 a618_get_speed_bin(u32 fuse) { if (fuse == 0) return 0; else if (fuse == 169) return 1; else if (fuse == 174) return 2; return UINT_MAX; } static u32 a619_holi_get_speed_bin(u32 fuse) { /* * There are (at least) two SoCs implementing A619_holi: SM4350 (holi) * and SM6375 (blair). Limit the fuse matching to the corresponding * SoC to prevent bogus frequency setting (as improbable as it may be, * given unexpected fuse values are.. unexpected! But still possible.) */ if (fuse == 0) return 0; if (of_machine_is_compatible("qcom,sm4350")) { if (fuse == 138) return 1; else if (fuse == 92) return 2; } else if (of_machine_is_compatible("qcom,sm6375")) { if (fuse == 190) return 1; else if (fuse == 177) return 2; } else pr_warn("Unknown SoC implementing A619_holi!\n"); return UINT_MAX; } static u32 a619_get_speed_bin(u32 fuse) { if (fuse == 0) return 0; else if (fuse == 120) return 4; else if (fuse == 138) return 3; else if (fuse == 169) return 2; else if (fuse == 180) return 1; return UINT_MAX; } static u32 a640_get_speed_bin(u32 fuse) { if (fuse == 0) return 0; else if (fuse == 1) return 1; return UINT_MAX; } static u32 a650_get_speed_bin(u32 fuse) { if (fuse == 0) return 0; else if (fuse == 1) return 1; /* Yep, 2 and 3 are swapped! :/ */ else if (fuse == 2) return 3; else if (fuse == 3) return 2; return UINT_MAX; } static u32 adreno_7c3_get_speed_bin(u32 fuse) { if (fuse == 0) return 0; else if (fuse == 117) return 0; else if (fuse == 190) return 1; return UINT_MAX; } static u32 fuse_to_supp_hw(struct device *dev, struct adreno_gpu *adreno_gpu, u32 fuse) { u32 val = UINT_MAX; if (adreno_is_a610(adreno_gpu)) val = a610_get_speed_bin(fuse); if (adreno_is_a618(adreno_gpu)) val = a618_get_speed_bin(fuse); else if (adreno_is_a619_holi(adreno_gpu)) val = a619_holi_get_speed_bin(fuse); else if (adreno_is_a619(adreno_gpu)) val = a619_get_speed_bin(fuse); else if (adreno_is_7c3(adreno_gpu)) val = adreno_7c3_get_speed_bin(fuse); else if (adreno_is_a640(adreno_gpu)) val = a640_get_speed_bin(fuse); else if (adreno_is_a650(adreno_gpu)) val = a650_get_speed_bin(fuse); if (val == UINT_MAX) { DRM_DEV_ERROR(dev, "missing support for speed-bin: %u. Some OPPs may not be supported by hardware\n", fuse); return UINT_MAX; } return (1 << val); } static int a6xx_set_supported_hw(struct device *dev, struct adreno_gpu *adreno_gpu) { u32 supp_hw; u32 speedbin; int ret; ret = adreno_read_speedbin(dev, &speedbin); /* * -ENOENT means that the platform doesn't support speedbin which is * fine */ if (ret == -ENOENT) { return 0; } else if (ret) { dev_err_probe(dev, ret, "failed to read speed-bin. Some OPPs may not be supported by hardware\n"); return ret; } supp_hw = fuse_to_supp_hw(dev, adreno_gpu, speedbin); ret = devm_pm_opp_set_supported_hw(dev, &supp_hw, 1); if (ret) return ret; return 0; } static const struct adreno_gpu_funcs funcs = { .base = { .get_param = adreno_get_param, .set_param = adreno_set_param, .hw_init = a6xx_hw_init, .ucode_load = a6xx_ucode_load, .pm_suspend = a6xx_gmu_pm_suspend, .pm_resume = a6xx_gmu_pm_resume, .recover = a6xx_recover, .submit = a6xx_submit, .active_ring = a6xx_active_ring, .irq = a6xx_irq, .destroy = a6xx_destroy, #if defined(CONFIG_DRM_MSM_GPU_STATE) .show = a6xx_show, #endif .gpu_busy = a6xx_gpu_busy, .gpu_get_freq = a6xx_gmu_get_freq, .gpu_set_freq = a6xx_gpu_set_freq, #if defined(CONFIG_DRM_MSM_GPU_STATE) .gpu_state_get = a6xx_gpu_state_get, .gpu_state_put = a6xx_gpu_state_put, #endif .create_address_space = a6xx_create_address_space, .create_private_address_space = a6xx_create_private_address_space, .get_rptr = a6xx_get_rptr, .progress = a6xx_progress, }, .get_timestamp = a6xx_gmu_get_timestamp, }; static const struct adreno_gpu_funcs funcs_gmuwrapper = { .base = { .get_param = adreno_get_param, .set_param = adreno_set_param, .hw_init = a6xx_hw_init, .ucode_load = a6xx_ucode_load, .pm_suspend = a6xx_pm_suspend, .pm_resume = a6xx_pm_resume, .recover = a6xx_recover, .submit = a6xx_submit, .active_ring = a6xx_active_ring, .irq = a6xx_irq, .destroy = a6xx_destroy, #if defined(CONFIG_DRM_MSM_GPU_STATE) .show = a6xx_show, #endif .gpu_busy = a6xx_gpu_busy, #if defined(CONFIG_DRM_MSM_GPU_STATE) .gpu_state_get = a6xx_gpu_state_get, .gpu_state_put = a6xx_gpu_state_put, #endif .create_address_space = a6xx_create_address_space, .create_private_address_space = a6xx_create_private_address_space, .get_rptr = a6xx_get_rptr, .progress = a6xx_progress, }, .get_timestamp = a6xx_get_timestamp, }; struct msm_gpu *a6xx_gpu_init(struct drm_device *dev) { struct msm_drm_private *priv = dev->dev_private; struct platform_device *pdev = priv->gpu_pdev; struct adreno_platform_config *config = pdev->dev.platform_data; const struct adreno_info *info; struct device_node *node; struct a6xx_gpu *a6xx_gpu; struct adreno_gpu *adreno_gpu; struct msm_gpu *gpu; int ret; a6xx_gpu = kzalloc(sizeof(*a6xx_gpu), GFP_KERNEL); if (!a6xx_gpu) return ERR_PTR(-ENOMEM); adreno_gpu = &a6xx_gpu->base; gpu = &adreno_gpu->base; mutex_init(&a6xx_gpu->gmu.lock); adreno_gpu->registers = NULL; /* Check if there is a GMU phandle and set it up */ node = of_parse_phandle(pdev->dev.of_node, "qcom,gmu", 0); /* FIXME: How do we gracefully handle this? */ BUG_ON(!node); adreno_gpu->gmu_is_wrapper = of_device_is_compatible(node, "qcom,adreno-gmu-wrapper"); /* * We need to know the platform type before calling into adreno_gpu_init * so that the hw_apriv flag can be correctly set. Snoop into the info * and grab the revision number */ info = adreno_info(config->rev); if (!info) return ERR_PTR(-EINVAL); /* Assign these early so that we can use the is_aXYZ helpers */ /* Numeric revision IDs (e.g. 630) */ adreno_gpu->revn = info->revn; /* New-style ADRENO_REV()-only */ adreno_gpu->rev = info->rev; /* Quirk data */ adreno_gpu->info = info; adreno_gpu->base.hw_apriv = !!(info->quirks & ADRENO_QUIRK_HAS_HW_APRIV); a6xx_llc_slices_init(pdev, a6xx_gpu); ret = a6xx_set_supported_hw(&pdev->dev, adreno_gpu); if (ret) { a6xx_destroy(&(a6xx_gpu->base.base)); return ERR_PTR(ret); } if (adreno_has_gmu_wrapper(adreno_gpu)) ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs_gmuwrapper, 1); else ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs, 1); if (ret) { a6xx_destroy(&(a6xx_gpu->base.base)); return ERR_PTR(ret); } /* * For now only clamp to idle freq for devices where this is known not * to cause power supply issues: */ if (adreno_is_a618(adreno_gpu) || adreno_is_7c3(adreno_gpu)) priv->gpu_clamp_to_idle = true; if (adreno_has_gmu_wrapper(adreno_gpu)) ret = a6xx_gmu_wrapper_init(a6xx_gpu, node); else ret = a6xx_gmu_init(a6xx_gpu, node); of_node_put(node); if (ret) { a6xx_destroy(&(a6xx_gpu->base.base)); return ERR_PTR(ret); } if (gpu->aspace) msm_mmu_set_fault_handler(gpu->aspace->mmu, gpu, a6xx_fault_handler); return gpu; }