/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_TASK_H #define _LINUX_SCHED_TASK_H /* * Interface between the scheduler and various task lifetime (fork()/exit()) * functionality: */ #include #include struct task_struct; struct rusage; union thread_union; struct css_set; /* All the bits taken by the old clone syscall. */ #define CLONE_LEGACY_FLAGS 0xffffffffULL struct kernel_clone_args { u64 flags; int __user *pidfd; int __user *child_tid; int __user *parent_tid; const char *name; int exit_signal; u32 kthread:1; u32 io_thread:1; u32 user_worker:1; u32 no_files:1; unsigned long stack; unsigned long stack_size; unsigned long tls; pid_t *set_tid; /* Number of elements in *set_tid */ size_t set_tid_size; int cgroup; int idle; int (*fn)(void *); void *fn_arg; struct cgroup *cgrp; struct css_set *cset; }; /* * This serializes "schedule()" and also protects * the run-queue from deletions/modifications (but * _adding_ to the beginning of the run-queue has * a separate lock). */ extern rwlock_t tasklist_lock; extern spinlock_t mmlist_lock; extern union thread_union init_thread_union; extern struct task_struct init_task; extern int lockdep_tasklist_lock_is_held(void); extern asmlinkage void schedule_tail(struct task_struct *prev); extern void init_idle(struct task_struct *idle, int cpu); extern int sched_fork(unsigned long clone_flags, struct task_struct *p); extern void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs); extern void sched_post_fork(struct task_struct *p); extern void sched_dead(struct task_struct *p); void __noreturn do_task_dead(void); void __noreturn make_task_dead(int signr); extern void mm_cache_init(void); extern void proc_caches_init(void); extern void fork_init(void); extern void release_task(struct task_struct * p); extern int copy_thread(struct task_struct *, const struct kernel_clone_args *); extern void flush_thread(void); #ifdef CONFIG_HAVE_EXIT_THREAD extern void exit_thread(struct task_struct *tsk); #else static inline void exit_thread(struct task_struct *tsk) { } #endif extern __noreturn void do_group_exit(int); extern void exit_files(struct task_struct *); extern void exit_itimers(struct task_struct *); extern pid_t kernel_clone(struct kernel_clone_args *kargs); struct task_struct *copy_process(struct pid *pid, int trace, int node, struct kernel_clone_args *args); struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node); struct task_struct *fork_idle(int); extern pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, unsigned long flags); extern pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags); extern long kernel_wait4(pid_t, int __user *, int, struct rusage *); int kernel_wait(pid_t pid, int *stat); extern void free_task(struct task_struct *tsk); /* sched_exec is called by processes performing an exec */ #ifdef CONFIG_SMP extern void sched_exec(void); #else #define sched_exec() {} #endif static inline struct task_struct *get_task_struct(struct task_struct *t) { refcount_inc(&t->usage); return t; } extern void __put_task_struct(struct task_struct *t); extern void __put_task_struct_rcu_cb(struct rcu_head *rhp); static inline void put_task_struct(struct task_struct *t) { if (!refcount_dec_and_test(&t->usage)) return; /* * under PREEMPT_RT, we can't call put_task_struct * in atomic context because it will indirectly * acquire sleeping locks. * * call_rcu() will schedule delayed_put_task_struct_rcu() * to be called in process context. * * __put_task_struct() is called when * refcount_dec_and_test(&t->usage) succeeds. * * This means that it can't "conflict" with * put_task_struct_rcu_user() which abuses ->rcu the same * way; rcu_users has a reference so task->usage can't be * zero after rcu_users 1 -> 0 transition. * * delayed_free_task() also uses ->rcu, but it is only called * when it fails to fork a process. Therefore, there is no * way it can conflict with put_task_struct(). */ if (IS_ENABLED(CONFIG_PREEMPT_RT) && !preemptible()) call_rcu(&t->rcu, __put_task_struct_rcu_cb); else __put_task_struct(t); } DEFINE_FREE(put_task, struct task_struct *, if (_T) put_task_struct(_T)) static inline void put_task_struct_many(struct task_struct *t, int nr) { if (refcount_sub_and_test(nr, &t->usage)) __put_task_struct(t); } void put_task_struct_rcu_user(struct task_struct *task); /* Free all architecture-specific resources held by a thread. */ void release_thread(struct task_struct *dead_task); #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT extern int arch_task_struct_size __read_mostly; #else # define arch_task_struct_size (sizeof(struct task_struct)) #endif #ifndef CONFIG_HAVE_ARCH_THREAD_STRUCT_WHITELIST /* * If an architecture has not declared a thread_struct whitelist we * must assume something there may need to be copied to userspace. */ static inline void arch_thread_struct_whitelist(unsigned long *offset, unsigned long *size) { *offset = 0; /* Handle dynamically sized thread_struct. */ *size = arch_task_struct_size - offsetof(struct task_struct, thread); } #endif #ifdef CONFIG_VMAP_STACK static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t) { return t->stack_vm_area; } #else static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t) { return NULL; } #endif /* * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring * subscriptions and synchronises with wait4(). Also used in procfs. Also * pins the final release of task.io_context. Also protects ->cpuset and * ->cgroup.subsys[]. And ->vfork_done. And ->sysvshm.shm_clist. * * Nests both inside and outside of read_lock(&tasklist_lock). * It must not be nested with write_lock_irq(&tasklist_lock), * neither inside nor outside. */ static inline void task_lock(struct task_struct *p) { spin_lock(&p->alloc_lock); } static inline void task_unlock(struct task_struct *p) { spin_unlock(&p->alloc_lock); } #endif /* _LINUX_SCHED_TASK_H */