// SPDX-License-Identifier: GPL-2.0+ /* * ipmi_ssif.c * * The interface to the IPMI driver for SMBus access to a SMBus * compliant device. Called SSIF by the IPMI spec. * * Author: Intel Corporation * Todd Davis * * Rewritten by Corey Minyard to support the * non-blocking I2C interface, add support for multi-part * transactions, add PEC support, and general clenaup. * * Copyright 2003 Intel Corporation * Copyright 2005 MontaVista Software */ /* * This file holds the "policy" for the interface to the SSIF state * machine. It does the configuration, handles timers and interrupts, * and drives the real SSIF state machine. */ #define pr_fmt(fmt) "ipmi_ssif: " fmt #define dev_fmt(fmt) "ipmi_ssif: " fmt #if defined(MODVERSIONS) #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ipmi_dmi.h" #define DEVICE_NAME "ipmi_ssif" #define IPMI_GET_SYSTEM_INTERFACE_CAPABILITIES_CMD 0x57 #define SSIF_IPMI_REQUEST 2 #define SSIF_IPMI_MULTI_PART_REQUEST_START 6 #define SSIF_IPMI_MULTI_PART_REQUEST_MIDDLE 7 #define SSIF_IPMI_MULTI_PART_REQUEST_END 8 #define SSIF_IPMI_RESPONSE 3 #define SSIF_IPMI_MULTI_PART_RESPONSE_MIDDLE 9 /* ssif_debug is a bit-field * SSIF_DEBUG_MSG - commands and their responses * SSIF_DEBUG_STATES - message states * SSIF_DEBUG_TIMING - Measure times between events in the driver */ #define SSIF_DEBUG_TIMING 4 #define SSIF_DEBUG_STATE 2 #define SSIF_DEBUG_MSG 1 #define SSIF_NODEBUG 0 #define SSIF_DEFAULT_DEBUG (SSIF_NODEBUG) /* * Timer values */ #define SSIF_MSG_USEC 60000 /* 60ms between message tries (T3). */ #define SSIF_REQ_RETRY_USEC 60000 /* 60ms between send retries (T6). */ #define SSIF_MSG_PART_USEC 5000 /* 5ms for a message part */ /* How many times to we retry sending/receiving the message. */ #define SSIF_SEND_RETRIES 5 #define SSIF_RECV_RETRIES 250 #define SSIF_MSG_MSEC (SSIF_MSG_USEC / 1000) #define SSIF_REQ_RETRY_MSEC (SSIF_REQ_RETRY_USEC / 1000) #define SSIF_MSG_JIFFIES ((SSIF_MSG_USEC * 1000) / TICK_NSEC) #define SSIF_REQ_RETRY_JIFFIES ((SSIF_REQ_RETRY_USEC * 1000) / TICK_NSEC) #define SSIF_MSG_PART_JIFFIES ((SSIF_MSG_PART_USEC * 1000) / TICK_NSEC) /* * Timeout for the watch, only used for get flag timer. */ #define SSIF_WATCH_MSG_TIMEOUT msecs_to_jiffies(10) #define SSIF_WATCH_WATCHDOG_TIMEOUT msecs_to_jiffies(250) enum ssif_intf_state { SSIF_IDLE, SSIF_GETTING_FLAGS, SSIF_GETTING_EVENTS, SSIF_CLEARING_FLAGS, SSIF_GETTING_MESSAGES, /* FIXME - add watchdog stuff. */ }; #define IS_SSIF_IDLE(ssif) ((ssif)->ssif_state == SSIF_IDLE \ && (ssif)->curr_msg == NULL) /* * Indexes into stats[] in ssif_info below. */ enum ssif_stat_indexes { /* Number of total messages sent. */ SSIF_STAT_sent_messages = 0, /* * Number of message parts sent. Messages may be broken into * parts if they are long. */ SSIF_STAT_sent_messages_parts, /* * Number of time a message was retried. */ SSIF_STAT_send_retries, /* * Number of times the send of a message failed. */ SSIF_STAT_send_errors, /* * Number of message responses received. */ SSIF_STAT_received_messages, /* * Number of message fragments received. */ SSIF_STAT_received_message_parts, /* * Number of times the receive of a message was retried. */ SSIF_STAT_receive_retries, /* * Number of errors receiving messages. */ SSIF_STAT_receive_errors, /* * Number of times a flag fetch was requested. */ SSIF_STAT_flag_fetches, /* * Number of times the hardware didn't follow the state machine. */ SSIF_STAT_hosed, /* * Number of received events. */ SSIF_STAT_events, /* Number of asyncronous messages received. */ SSIF_STAT_incoming_messages, /* Number of watchdog pretimeouts. */ SSIF_STAT_watchdog_pretimeouts, /* Number of alers received. */ SSIF_STAT_alerts, /* Always add statistics before this value, it must be last. */ SSIF_NUM_STATS }; struct ssif_addr_info { struct i2c_board_info binfo; char *adapter_name; int debug; int slave_addr; enum ipmi_addr_src addr_src; union ipmi_smi_info_union addr_info; struct device *dev; struct i2c_client *client; struct mutex clients_mutex; struct list_head clients; struct list_head link; }; struct ssif_info; typedef void (*ssif_i2c_done)(struct ssif_info *ssif_info, int result, unsigned char *data, unsigned int len); struct ssif_info { struct ipmi_smi *intf; spinlock_t lock; struct ipmi_smi_msg *waiting_msg; struct ipmi_smi_msg *curr_msg; enum ssif_intf_state ssif_state; unsigned long ssif_debug; struct ipmi_smi_handlers handlers; enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */ union ipmi_smi_info_union addr_info; /* * Flags from the last GET_MSG_FLAGS command, used when an ATTN * is set to hold the flags until we are done handling everything * from the flags. */ #define RECEIVE_MSG_AVAIL 0x01 #define EVENT_MSG_BUFFER_FULL 0x02 #define WDT_PRE_TIMEOUT_INT 0x08 unsigned char msg_flags; u8 global_enables; bool has_event_buffer; bool supports_alert; /* * Used to tell what we should do with alerts. If we are * waiting on a response, read the data immediately. */ bool got_alert; bool waiting_alert; /* Used to inform the timeout that it should do a resend. */ bool do_resend; /* * If set to true, this will request events the next time the * state machine is idle. */ bool req_events; /* * If set to true, this will request flags the next time the * state machine is idle. */ bool req_flags; /* Used for sending/receiving data. +1 for the length. */ unsigned char data[IPMI_MAX_MSG_LENGTH + 1]; unsigned int data_len; /* Temp receive buffer, gets copied into data. */ unsigned char recv[I2C_SMBUS_BLOCK_MAX]; struct i2c_client *client; ssif_i2c_done done_handler; /* Thread interface handling */ struct task_struct *thread; struct completion wake_thread; bool stopping; int i2c_read_write; int i2c_command; unsigned char *i2c_data; unsigned int i2c_size; struct timer_list retry_timer; int retries_left; long watch_timeout; /* Timeout for flags check, 0 if off. */ struct timer_list watch_timer; /* Flag fetch timer. */ /* Info from SSIF cmd */ unsigned char max_xmit_msg_size; unsigned char max_recv_msg_size; bool cmd8_works; /* See test_multipart_messages() for details. */ unsigned int multi_support; int supports_pec; #define SSIF_NO_MULTI 0 #define SSIF_MULTI_2_PART 1 #define SSIF_MULTI_n_PART 2 unsigned char *multi_data; unsigned int multi_len; unsigned int multi_pos; atomic_t stats[SSIF_NUM_STATS]; }; #define ssif_inc_stat(ssif, stat) \ atomic_inc(&(ssif)->stats[SSIF_STAT_ ## stat]) #define ssif_get_stat(ssif, stat) \ ((unsigned int) atomic_read(&(ssif)->stats[SSIF_STAT_ ## stat])) static bool initialized; static bool platform_registered; static void return_hosed_msg(struct ssif_info *ssif_info, struct ipmi_smi_msg *msg); static void start_next_msg(struct ssif_info *ssif_info, unsigned long *flags); static int start_send(struct ssif_info *ssif_info, unsigned char *data, unsigned int len); static unsigned long *ipmi_ssif_lock_cond(struct ssif_info *ssif_info, unsigned long *flags) __acquires(&ssif_info->lock) { spin_lock_irqsave(&ssif_info->lock, *flags); return flags; } static void ipmi_ssif_unlock_cond(struct ssif_info *ssif_info, unsigned long *flags) __releases(&ssif_info->lock) { spin_unlock_irqrestore(&ssif_info->lock, *flags); } static void deliver_recv_msg(struct ssif_info *ssif_info, struct ipmi_smi_msg *msg) { if (msg->rsp_size < 0) { return_hosed_msg(ssif_info, msg); dev_err(&ssif_info->client->dev, "%s: Malformed message: rsp_size = %d\n", __func__, msg->rsp_size); } else { ipmi_smi_msg_received(ssif_info->intf, msg); } } static void return_hosed_msg(struct ssif_info *ssif_info, struct ipmi_smi_msg *msg) { ssif_inc_stat(ssif_info, hosed); /* Make it a response */ msg->rsp[0] = msg->data[0] | 4; msg->rsp[1] = msg->data[1]; msg->rsp[2] = 0xFF; /* Unknown error. */ msg->rsp_size = 3; deliver_recv_msg(ssif_info, msg); } /* * Must be called with the message lock held. This will release the * message lock. Note that the caller will check IS_SSIF_IDLE and * start a new operation, so there is no need to check for new * messages to start in here. */ static void start_clear_flags(struct ssif_info *ssif_info, unsigned long *flags) { unsigned char msg[3]; ssif_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; ssif_info->ssif_state = SSIF_CLEARING_FLAGS; ipmi_ssif_unlock_cond(ssif_info, flags); /* Make sure the watchdog pre-timeout flag is not set at startup. */ msg[0] = (IPMI_NETFN_APP_REQUEST << 2); msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; msg[2] = WDT_PRE_TIMEOUT_INT; if (start_send(ssif_info, msg, 3) != 0) { /* Error, just go to normal state. */ ssif_info->ssif_state = SSIF_IDLE; } } static void start_flag_fetch(struct ssif_info *ssif_info, unsigned long *flags) { unsigned char mb[2]; ssif_info->req_flags = false; ssif_info->ssif_state = SSIF_GETTING_FLAGS; ipmi_ssif_unlock_cond(ssif_info, flags); mb[0] = (IPMI_NETFN_APP_REQUEST << 2); mb[1] = IPMI_GET_MSG_FLAGS_CMD; if (start_send(ssif_info, mb, 2) != 0) ssif_info->ssif_state = SSIF_IDLE; } static void check_start_send(struct ssif_info *ssif_info, unsigned long *flags, struct ipmi_smi_msg *msg) { if (start_send(ssif_info, msg->data, msg->data_size) != 0) { unsigned long oflags; flags = ipmi_ssif_lock_cond(ssif_info, &oflags); ssif_info->curr_msg = NULL; ssif_info->ssif_state = SSIF_IDLE; ipmi_ssif_unlock_cond(ssif_info, flags); ipmi_free_smi_msg(msg); } } static void start_event_fetch(struct ssif_info *ssif_info, unsigned long *flags) { struct ipmi_smi_msg *msg; ssif_info->req_events = false; msg = ipmi_alloc_smi_msg(); if (!msg) { ssif_info->ssif_state = SSIF_IDLE; ipmi_ssif_unlock_cond(ssif_info, flags); return; } ssif_info->curr_msg = msg; ssif_info->ssif_state = SSIF_GETTING_EVENTS; ipmi_ssif_unlock_cond(ssif_info, flags); msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; msg->data_size = 2; check_start_send(ssif_info, flags, msg); } static void start_recv_msg_fetch(struct ssif_info *ssif_info, unsigned long *flags) { struct ipmi_smi_msg *msg; msg = ipmi_alloc_smi_msg(); if (!msg) { ssif_info->ssif_state = SSIF_IDLE; ipmi_ssif_unlock_cond(ssif_info, flags); return; } ssif_info->curr_msg = msg; ssif_info->ssif_state = SSIF_GETTING_MESSAGES; ipmi_ssif_unlock_cond(ssif_info, flags); msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); msg->data[1] = IPMI_GET_MSG_CMD; msg->data_size = 2; check_start_send(ssif_info, flags, msg); } /* * Must be called with the message lock held. This will release the * message lock. Note that the caller will check IS_SSIF_IDLE and * start a new operation, so there is no need to check for new * messages to start in here. */ static void handle_flags(struct ssif_info *ssif_info, unsigned long *flags) { if (ssif_info->msg_flags & WDT_PRE_TIMEOUT_INT) { /* Watchdog pre-timeout */ ssif_inc_stat(ssif_info, watchdog_pretimeouts); start_clear_flags(ssif_info, flags); ipmi_smi_watchdog_pretimeout(ssif_info->intf); } else if (ssif_info->msg_flags & RECEIVE_MSG_AVAIL) /* Messages available. */ start_recv_msg_fetch(ssif_info, flags); else if (ssif_info->msg_flags & EVENT_MSG_BUFFER_FULL) /* Events available. */ start_event_fetch(ssif_info, flags); else { ssif_info->ssif_state = SSIF_IDLE; ipmi_ssif_unlock_cond(ssif_info, flags); } } static int ipmi_ssif_thread(void *data) { struct ssif_info *ssif_info = data; while (!kthread_should_stop()) { int result; /* Wait for something to do */ result = wait_for_completion_interruptible( &ssif_info->wake_thread); if (ssif_info->stopping) break; if (result == -ERESTARTSYS) continue; init_completion(&ssif_info->wake_thread); if (ssif_info->i2c_read_write == I2C_SMBUS_WRITE) { result = i2c_smbus_write_block_data( ssif_info->client, ssif_info->i2c_command, ssif_info->i2c_data[0], ssif_info->i2c_data + 1); ssif_info->done_handler(ssif_info, result, NULL, 0); } else { result = i2c_smbus_read_block_data( ssif_info->client, ssif_info->i2c_command, ssif_info->i2c_data); if (result < 0) ssif_info->done_handler(ssif_info, result, NULL, 0); else ssif_info->done_handler(ssif_info, 0, ssif_info->i2c_data, result); } } return 0; } static void ssif_i2c_send(struct ssif_info *ssif_info, ssif_i2c_done handler, int read_write, int command, unsigned char *data, unsigned int size) { ssif_info->done_handler = handler; ssif_info->i2c_read_write = read_write; ssif_info->i2c_command = command; ssif_info->i2c_data = data; ssif_info->i2c_size = size; complete(&ssif_info->wake_thread); } static void msg_done_handler(struct ssif_info *ssif_info, int result, unsigned char *data, unsigned int len); static void start_get(struct ssif_info *ssif_info) { ssif_info->multi_pos = 0; ssif_i2c_send(ssif_info, msg_done_handler, I2C_SMBUS_READ, SSIF_IPMI_RESPONSE, ssif_info->recv, I2C_SMBUS_BLOCK_DATA); } static void start_resend(struct ssif_info *ssif_info); static void retry_timeout(struct timer_list *t) { struct ssif_info *ssif_info = from_timer(ssif_info, t, retry_timer); unsigned long oflags, *flags; bool waiting, resend; if (ssif_info->stopping) return; flags = ipmi_ssif_lock_cond(ssif_info, &oflags); resend = ssif_info->do_resend; ssif_info->do_resend = false; waiting = ssif_info->waiting_alert; ssif_info->waiting_alert = false; ipmi_ssif_unlock_cond(ssif_info, flags); if (waiting) start_get(ssif_info); if (resend) { start_resend(ssif_info); ssif_inc_stat(ssif_info, send_retries); } } static void watch_timeout(struct timer_list *t) { struct ssif_info *ssif_info = from_timer(ssif_info, t, watch_timer); unsigned long oflags, *flags; if (ssif_info->stopping) return; flags = ipmi_ssif_lock_cond(ssif_info, &oflags); if (ssif_info->watch_timeout) { mod_timer(&ssif_info->watch_timer, jiffies + ssif_info->watch_timeout); if (IS_SSIF_IDLE(ssif_info)) { start_flag_fetch(ssif_info, flags); /* Releases lock */ return; } ssif_info->req_flags = true; } ipmi_ssif_unlock_cond(ssif_info, flags); } static void ssif_alert(struct i2c_client *client, enum i2c_alert_protocol type, unsigned int data) { struct ssif_info *ssif_info = i2c_get_clientdata(client); unsigned long oflags, *flags; bool do_get = false; if (type != I2C_PROTOCOL_SMBUS_ALERT) return; ssif_inc_stat(ssif_info, alerts); flags = ipmi_ssif_lock_cond(ssif_info, &oflags); if (ssif_info->waiting_alert) { ssif_info->waiting_alert = false; del_timer(&ssif_info->retry_timer); do_get = true; } else if (ssif_info->curr_msg) { ssif_info->got_alert = true; } ipmi_ssif_unlock_cond(ssif_info, flags); if (do_get) start_get(ssif_info); } static void msg_done_handler(struct ssif_info *ssif_info, int result, unsigned char *data, unsigned int len) { struct ipmi_smi_msg *msg; unsigned long oflags, *flags; /* * We are single-threaded here, so no need for a lock until we * start messing with driver states or the queues. */ if (result < 0) { ssif_info->retries_left--; if (ssif_info->retries_left > 0) { ssif_inc_stat(ssif_info, receive_retries); flags = ipmi_ssif_lock_cond(ssif_info, &oflags); ssif_info->waiting_alert = true; if (!ssif_info->stopping) mod_timer(&ssif_info->retry_timer, jiffies + SSIF_MSG_JIFFIES); ipmi_ssif_unlock_cond(ssif_info, flags); return; } ssif_inc_stat(ssif_info, receive_errors); if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) dev_dbg(&ssif_info->client->dev, "%s: Error %d\n", __func__, result); len = 0; goto continue_op; } if ((len > 1) && (ssif_info->multi_pos == 0) && (data[0] == 0x00) && (data[1] == 0x01)) { /* Start of multi-part read. Start the next transaction. */ int i; ssif_inc_stat(ssif_info, received_message_parts); /* Remove the multi-part read marker. */ len -= 2; data += 2; for (i = 0; i < len; i++) ssif_info->data[i] = data[i]; ssif_info->multi_len = len; ssif_info->multi_pos = 1; ssif_i2c_send(ssif_info, msg_done_handler, I2C_SMBUS_READ, SSIF_IPMI_MULTI_PART_RESPONSE_MIDDLE, ssif_info->recv, I2C_SMBUS_BLOCK_DATA); return; } else if (ssif_info->multi_pos) { /* Middle of multi-part read. Start the next transaction. */ int i; unsigned char blocknum; if (len == 0) { result = -EIO; if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) dev_dbg(&ssif_info->client->dev, "Middle message with no data\n"); goto continue_op; } blocknum = data[0]; len--; data++; if (blocknum != 0xff && len != 31) { /* All blocks but the last must have 31 data bytes. */ result = -EIO; if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) dev_dbg(&ssif_info->client->dev, "Received middle message <31\n"); goto continue_op; } if (ssif_info->multi_len + len > IPMI_MAX_MSG_LENGTH) { /* Received message too big, abort the operation. */ result = -E2BIG; if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) dev_dbg(&ssif_info->client->dev, "Received message too big\n"); goto continue_op; } for (i = 0; i < len; i++) ssif_info->data[i + ssif_info->multi_len] = data[i]; ssif_info->multi_len += len; if (blocknum == 0xff) { /* End of read */ len = ssif_info->multi_len; data = ssif_info->data; } else if (blocknum + 1 != ssif_info->multi_pos) { /* * Out of sequence block, just abort. Block * numbers start at zero for the second block, * but multi_pos starts at one, so the +1. */ if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) dev_dbg(&ssif_info->client->dev, "Received message out of sequence, expected %u, got %u\n", ssif_info->multi_pos - 1, blocknum); result = -EIO; } else { ssif_inc_stat(ssif_info, received_message_parts); ssif_info->multi_pos++; ssif_i2c_send(ssif_info, msg_done_handler, I2C_SMBUS_READ, SSIF_IPMI_MULTI_PART_RESPONSE_MIDDLE, ssif_info->recv, I2C_SMBUS_BLOCK_DATA); return; } } continue_op: if (result < 0) { ssif_inc_stat(ssif_info, receive_errors); } else { ssif_inc_stat(ssif_info, received_messages); ssif_inc_stat(ssif_info, received_message_parts); } if (ssif_info->ssif_debug & SSIF_DEBUG_STATE) dev_dbg(&ssif_info->client->dev, "DONE 1: state = %d, result=%d\n", ssif_info->ssif_state, result); flags = ipmi_ssif_lock_cond(ssif_info, &oflags); msg = ssif_info->curr_msg; if (msg) { if (data) { if (len > IPMI_MAX_MSG_LENGTH) len = IPMI_MAX_MSG_LENGTH; memcpy(msg->rsp, data, len); } else { len = 0; } msg->rsp_size = len; ssif_info->curr_msg = NULL; } switch (ssif_info->ssif_state) { case SSIF_IDLE: ipmi_ssif_unlock_cond(ssif_info, flags); if (!msg) break; if (result < 0) return_hosed_msg(ssif_info, msg); else deliver_recv_msg(ssif_info, msg); break; case SSIF_GETTING_FLAGS: /* We got the flags from the SSIF, now handle them. */ if ((result < 0) || (len < 4) || (data[2] != 0)) { /* * Error fetching flags, or invalid length, * just give up for now. */ ssif_info->ssif_state = SSIF_IDLE; ipmi_ssif_unlock_cond(ssif_info, flags); dev_warn(&ssif_info->client->dev, "Error getting flags: %d %d, %x\n", result, len, (len >= 3) ? data[2] : 0); } else if (data[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || data[1] != IPMI_GET_MSG_FLAGS_CMD) { /* * Recv error response, give up. */ ssif_info->ssif_state = SSIF_IDLE; ipmi_ssif_unlock_cond(ssif_info, flags); dev_warn(&ssif_info->client->dev, "Invalid response getting flags: %x %x\n", data[0], data[1]); } else { ssif_inc_stat(ssif_info, flag_fetches); ssif_info->msg_flags = data[3]; handle_flags(ssif_info, flags); } break; case SSIF_CLEARING_FLAGS: /* We cleared the flags. */ if ((result < 0) || (len < 3) || (data[2] != 0)) { /* Error clearing flags */ dev_warn(&ssif_info->client->dev, "Error clearing flags: %d %d, %x\n", result, len, (len >= 3) ? data[2] : 0); } else if (data[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || data[1] != IPMI_CLEAR_MSG_FLAGS_CMD) { dev_warn(&ssif_info->client->dev, "Invalid response clearing flags: %x %x\n", data[0], data[1]); } ssif_info->ssif_state = SSIF_IDLE; ipmi_ssif_unlock_cond(ssif_info, flags); break; case SSIF_GETTING_EVENTS: if (!msg) { /* Should never happen, but just in case. */ dev_warn(&ssif_info->client->dev, "No message set while getting events\n"); ipmi_ssif_unlock_cond(ssif_info, flags); break; } if ((result < 0) || (len < 3) || (msg->rsp[2] != 0)) { /* Error getting event, probably done. */ msg->done(msg); /* Take off the event flag. */ ssif_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; handle_flags(ssif_info, flags); } else if (msg->rsp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || msg->rsp[1] != IPMI_READ_EVENT_MSG_BUFFER_CMD) { dev_warn(&ssif_info->client->dev, "Invalid response getting events: %x %x\n", msg->rsp[0], msg->rsp[1]); msg->done(msg); /* Take off the event flag. */ ssif_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; handle_flags(ssif_info, flags); } else { handle_flags(ssif_info, flags); ssif_inc_stat(ssif_info, events); deliver_recv_msg(ssif_info, msg); } break; case SSIF_GETTING_MESSAGES: if (!msg) { /* Should never happen, but just in case. */ dev_warn(&ssif_info->client->dev, "No message set while getting messages\n"); ipmi_ssif_unlock_cond(ssif_info, flags); break; } if ((result < 0) || (len < 3) || (msg->rsp[2] != 0)) { /* Error getting event, probably done. */ msg->done(msg); /* Take off the msg flag. */ ssif_info->msg_flags &= ~RECEIVE_MSG_AVAIL; handle_flags(ssif_info, flags); } else if (msg->rsp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || msg->rsp[1] != IPMI_GET_MSG_CMD) { dev_warn(&ssif_info->client->dev, "Invalid response clearing flags: %x %x\n", msg->rsp[0], msg->rsp[1]); msg->done(msg); /* Take off the msg flag. */ ssif_info->msg_flags &= ~RECEIVE_MSG_AVAIL; handle_flags(ssif_info, flags); } else { ssif_inc_stat(ssif_info, incoming_messages); handle_flags(ssif_info, flags); deliver_recv_msg(ssif_info, msg); } break; default: /* Should never happen, but just in case. */ dev_warn(&ssif_info->client->dev, "Invalid state in message done handling: %d\n", ssif_info->ssif_state); ipmi_ssif_unlock_cond(ssif_info, flags); } flags = ipmi_ssif_lock_cond(ssif_info, &oflags); if (IS_SSIF_IDLE(ssif_info) && !ssif_info->stopping) { if (ssif_info->req_events) start_event_fetch(ssif_info, flags); else if (ssif_info->req_flags) start_flag_fetch(ssif_info, flags); else start_next_msg(ssif_info, flags); } else ipmi_ssif_unlock_cond(ssif_info, flags); if (ssif_info->ssif_debug & SSIF_DEBUG_STATE) dev_dbg(&ssif_info->client->dev, "DONE 2: state = %d.\n", ssif_info->ssif_state); } static void msg_written_handler(struct ssif_info *ssif_info, int result, unsigned char *data, unsigned int len) { /* We are single-threaded here, so no need for a lock. */ if (result < 0) { ssif_info->retries_left--; if (ssif_info->retries_left > 0) { /* * Wait the retry timeout time per the spec, * then redo the send. */ ssif_info->do_resend = true; mod_timer(&ssif_info->retry_timer, jiffies + SSIF_REQ_RETRY_JIFFIES); return; } ssif_inc_stat(ssif_info, send_errors); if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) dev_dbg(&ssif_info->client->dev, "%s: Out of retries\n", __func__); msg_done_handler(ssif_info, -EIO, NULL, 0); return; } if (ssif_info->multi_data) { /* * In the middle of a multi-data write. See the comment * in the SSIF_MULTI_n_PART case in the probe function * for details on the intricacies of this. */ int left, to_write; unsigned char *data_to_send; unsigned char cmd; ssif_inc_stat(ssif_info, sent_messages_parts); left = ssif_info->multi_len - ssif_info->multi_pos; to_write = left; if (to_write > 32) to_write = 32; /* Length byte. */ ssif_info->multi_data[ssif_info->multi_pos] = to_write; data_to_send = ssif_info->multi_data + ssif_info->multi_pos; ssif_info->multi_pos += to_write; cmd = SSIF_IPMI_MULTI_PART_REQUEST_MIDDLE; if (ssif_info->cmd8_works) { if (left == to_write) { cmd = SSIF_IPMI_MULTI_PART_REQUEST_END; ssif_info->multi_data = NULL; } } else if (to_write < 32) { ssif_info->multi_data = NULL; } ssif_i2c_send(ssif_info, msg_written_handler, I2C_SMBUS_WRITE, cmd, data_to_send, I2C_SMBUS_BLOCK_DATA); } else { /* Ready to request the result. */ unsigned long oflags, *flags; ssif_inc_stat(ssif_info, sent_messages); ssif_inc_stat(ssif_info, sent_messages_parts); flags = ipmi_ssif_lock_cond(ssif_info, &oflags); if (ssif_info->got_alert) { /* The result is already ready, just start it. */ ssif_info->got_alert = false; ipmi_ssif_unlock_cond(ssif_info, flags); start_get(ssif_info); } else { /* Wait a jiffie then request the next message */ ssif_info->waiting_alert = true; ssif_info->retries_left = SSIF_RECV_RETRIES; if (!ssif_info->stopping) mod_timer(&ssif_info->retry_timer, jiffies + SSIF_MSG_PART_JIFFIES); ipmi_ssif_unlock_cond(ssif_info, flags); } } } static void start_resend(struct ssif_info *ssif_info) { int command; ssif_info->got_alert = false; if (ssif_info->data_len > 32) { command = SSIF_IPMI_MULTI_PART_REQUEST_START; ssif_info->multi_data = ssif_info->data; ssif_info->multi_len = ssif_info->data_len; /* * Subtle thing, this is 32, not 33, because we will * overwrite the thing at position 32 (which was just * transmitted) with the new length. */ ssif_info->multi_pos = 32; ssif_info->data[0] = 32; } else { ssif_info->multi_data = NULL; command = SSIF_IPMI_REQUEST; ssif_info->data[0] = ssif_info->data_len; } ssif_i2c_send(ssif_info, msg_written_handler, I2C_SMBUS_WRITE, command, ssif_info->data, I2C_SMBUS_BLOCK_DATA); } static int start_send(struct ssif_info *ssif_info, unsigned char *data, unsigned int len) { if (len > IPMI_MAX_MSG_LENGTH) return -E2BIG; if (len > ssif_info->max_xmit_msg_size) return -E2BIG; ssif_info->retries_left = SSIF_SEND_RETRIES; memcpy(ssif_info->data + 1, data, len); ssif_info->data_len = len; start_resend(ssif_info); return 0; } /* Must be called with the message lock held. */ static void start_next_msg(struct ssif_info *ssif_info, unsigned long *flags) { struct ipmi_smi_msg *msg; unsigned long oflags; restart: if (!IS_SSIF_IDLE(ssif_info)) { ipmi_ssif_unlock_cond(ssif_info, flags); return; } if (!ssif_info->waiting_msg) { ssif_info->curr_msg = NULL; ipmi_ssif_unlock_cond(ssif_info, flags); } else { int rv; ssif_info->curr_msg = ssif_info->waiting_msg; ssif_info->waiting_msg = NULL; ipmi_ssif_unlock_cond(ssif_info, flags); rv = start_send(ssif_info, ssif_info->curr_msg->data, ssif_info->curr_msg->data_size); if (rv) { msg = ssif_info->curr_msg; ssif_info->curr_msg = NULL; return_hosed_msg(ssif_info, msg); flags = ipmi_ssif_lock_cond(ssif_info, &oflags); goto restart; } } } static void sender(void *send_info, struct ipmi_smi_msg *msg) { struct ssif_info *ssif_info = send_info; unsigned long oflags, *flags; BUG_ON(ssif_info->waiting_msg); ssif_info->waiting_msg = msg; flags = ipmi_ssif_lock_cond(ssif_info, &oflags); start_next_msg(ssif_info, flags); if (ssif_info->ssif_debug & SSIF_DEBUG_TIMING) { struct timespec64 t; ktime_get_real_ts64(&t); dev_dbg(&ssif_info->client->dev, "**Enqueue %02x %02x: %lld.%6.6ld\n", msg->data[0], msg->data[1], (long long)t.tv_sec, (long)t.tv_nsec / NSEC_PER_USEC); } } static int get_smi_info(void *send_info, struct ipmi_smi_info *data) { struct ssif_info *ssif_info = send_info; data->addr_src = ssif_info->addr_source; data->dev = &ssif_info->client->dev; data->addr_info = ssif_info->addr_info; get_device(data->dev); return 0; } /* * Upper layer wants us to request events. */ static void request_events(void *send_info) { struct ssif_info *ssif_info = send_info; unsigned long oflags, *flags; if (!ssif_info->has_event_buffer) return; flags = ipmi_ssif_lock_cond(ssif_info, &oflags); ssif_info->req_events = true; ipmi_ssif_unlock_cond(ssif_info, flags); } /* * Upper layer is changing the flag saying whether we need to request * flags periodically or not. */ static void ssif_set_need_watch(void *send_info, unsigned int watch_mask) { struct ssif_info *ssif_info = send_info; unsigned long oflags, *flags; long timeout = 0; if (watch_mask & IPMI_WATCH_MASK_CHECK_MESSAGES) timeout = SSIF_WATCH_MSG_TIMEOUT; else if (watch_mask) timeout = SSIF_WATCH_WATCHDOG_TIMEOUT; flags = ipmi_ssif_lock_cond(ssif_info, &oflags); if (timeout != ssif_info->watch_timeout) { ssif_info->watch_timeout = timeout; if (ssif_info->watch_timeout) mod_timer(&ssif_info->watch_timer, jiffies + ssif_info->watch_timeout); } ipmi_ssif_unlock_cond(ssif_info, flags); } static int ssif_start_processing(void *send_info, struct ipmi_smi *intf) { struct ssif_info *ssif_info = send_info; ssif_info->intf = intf; return 0; } #define MAX_SSIF_BMCS 4 static unsigned short addr[MAX_SSIF_BMCS]; static int num_addrs; module_param_array(addr, ushort, &num_addrs, 0); MODULE_PARM_DESC(addr, "The addresses to scan for IPMI BMCs on the SSIFs."); static char *adapter_name[MAX_SSIF_BMCS]; static int num_adapter_names; module_param_array(adapter_name, charp, &num_adapter_names, 0); MODULE_PARM_DESC(adapter_name, "The string name of the I2C device that has the BMC. By default all devices are scanned."); static int slave_addrs[MAX_SSIF_BMCS]; static int num_slave_addrs; module_param_array(slave_addrs, int, &num_slave_addrs, 0); MODULE_PARM_DESC(slave_addrs, "The default IPMB slave address for the controller."); static bool alerts_broken; module_param(alerts_broken, bool, 0); MODULE_PARM_DESC(alerts_broken, "Don't enable alerts for the controller."); /* * Bit 0 enables message debugging, bit 1 enables state debugging, and * bit 2 enables timing debugging. This is an array indexed by * interface number" */ static int dbg[MAX_SSIF_BMCS]; static int num_dbg; module_param_array(dbg, int, &num_dbg, 0); MODULE_PARM_DESC(dbg, "Turn on debugging."); static bool ssif_dbg_probe; module_param_named(dbg_probe, ssif_dbg_probe, bool, 0); MODULE_PARM_DESC(dbg_probe, "Enable debugging of probing of adapters."); static bool ssif_tryacpi = true; module_param_named(tryacpi, ssif_tryacpi, bool, 0); MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the default scan of the interfaces identified via ACPI"); static bool ssif_trydmi = true; module_param_named(trydmi, ssif_trydmi, bool, 0); MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the default scan of the interfaces identified via DMI (SMBIOS)"); static DEFINE_MUTEX(ssif_infos_mutex); static LIST_HEAD(ssif_infos); #define IPMI_SSIF_ATTR(name) \ static ssize_t ipmi_##name##_show(struct device *dev, \ struct device_attribute *attr, \ char *buf) \ { \ struct ssif_info *ssif_info = dev_get_drvdata(dev); \ \ return sysfs_emit(buf, "%u\n", ssif_get_stat(ssif_info, name));\ } \ static DEVICE_ATTR(name, S_IRUGO, ipmi_##name##_show, NULL) static ssize_t ipmi_type_show(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "ssif\n"); } static DEVICE_ATTR(type, S_IRUGO, ipmi_type_show, NULL); IPMI_SSIF_ATTR(sent_messages); IPMI_SSIF_ATTR(sent_messages_parts); IPMI_SSIF_ATTR(send_retries); IPMI_SSIF_ATTR(send_errors); IPMI_SSIF_ATTR(received_messages); IPMI_SSIF_ATTR(received_message_parts); IPMI_SSIF_ATTR(receive_retries); IPMI_SSIF_ATTR(receive_errors); IPMI_SSIF_ATTR(flag_fetches); IPMI_SSIF_ATTR(hosed); IPMI_SSIF_ATTR(events); IPMI_SSIF_ATTR(watchdog_pretimeouts); IPMI_SSIF_ATTR(alerts); static struct attribute *ipmi_ssif_dev_attrs[] = { &dev_attr_type.attr, &dev_attr_sent_messages.attr, &dev_attr_sent_messages_parts.attr, &dev_attr_send_retries.attr, &dev_attr_send_errors.attr, &dev_attr_received_messages.attr, &dev_attr_received_message_parts.attr, &dev_attr_receive_retries.attr, &dev_attr_receive_errors.attr, &dev_attr_flag_fetches.attr, &dev_attr_hosed.attr, &dev_attr_events.attr, &dev_attr_watchdog_pretimeouts.attr, &dev_attr_alerts.attr, NULL }; static const struct attribute_group ipmi_ssif_dev_attr_group = { .attrs = ipmi_ssif_dev_attrs, }; static void shutdown_ssif(void *send_info) { struct ssif_info *ssif_info = send_info; device_remove_group(&ssif_info->client->dev, &ipmi_ssif_dev_attr_group); dev_set_drvdata(&ssif_info->client->dev, NULL); /* make sure the driver is not looking for flags any more. */ while (ssif_info->ssif_state != SSIF_IDLE) schedule_timeout(1); ssif_info->stopping = true; del_timer_sync(&ssif_info->watch_timer); del_timer_sync(&ssif_info->retry_timer); if (ssif_info->thread) { complete(&ssif_info->wake_thread); kthread_stop(ssif_info->thread); } } static void ssif_remove(struct i2c_client *client) { struct ssif_info *ssif_info = i2c_get_clientdata(client); struct ssif_addr_info *addr_info; /* * After this point, we won't deliver anything asynchronously * to the message handler. We can unregister ourself. */ ipmi_unregister_smi(ssif_info->intf); list_for_each_entry(addr_info, &ssif_infos, link) { if (addr_info->client == client) { addr_info->client = NULL; break; } } kfree(ssif_info); } static int read_response(struct i2c_client *client, unsigned char *resp) { int ret = -ENODEV, retry_cnt = SSIF_RECV_RETRIES; while (retry_cnt > 0) { ret = i2c_smbus_read_block_data(client, SSIF_IPMI_RESPONSE, resp); if (ret > 0) break; msleep(SSIF_MSG_MSEC); retry_cnt--; if (retry_cnt <= 0) break; } return ret; } static int do_cmd(struct i2c_client *client, int len, unsigned char *msg, int *resp_len, unsigned char *resp) { int retry_cnt; int ret; retry_cnt = SSIF_SEND_RETRIES; retry1: ret = i2c_smbus_write_block_data(client, SSIF_IPMI_REQUEST, len, msg); if (ret) { retry_cnt--; if (retry_cnt > 0) { msleep(SSIF_REQ_RETRY_MSEC); goto retry1; } return -ENODEV; } ret = read_response(client, resp); if (ret > 0) { /* Validate that the response is correct. */ if (ret < 3 || (resp[0] != (msg[0] | (1 << 2))) || (resp[1] != msg[1])) ret = -EINVAL; else if (ret > IPMI_MAX_MSG_LENGTH) { ret = -E2BIG; } else { *resp_len = ret; ret = 0; } } return ret; } static int ssif_detect(struct i2c_client *client, struct i2c_board_info *info) { unsigned char *resp; unsigned char msg[3]; int rv; int len; resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); if (!resp) return -ENOMEM; /* Do a Get Device ID command, since it is required. */ msg[0] = IPMI_NETFN_APP_REQUEST << 2; msg[1] = IPMI_GET_DEVICE_ID_CMD; rv = do_cmd(client, 2, msg, &len, resp); if (rv) rv = -ENODEV; else strscpy(info->type, DEVICE_NAME, I2C_NAME_SIZE); kfree(resp); return rv; } static int strcmp_nospace(char *s1, char *s2) { while (*s1 && *s2) { while (isspace(*s1)) s1++; while (isspace(*s2)) s2++; if (*s1 > *s2) return 1; if (*s1 < *s2) return -1; s1++; s2++; } return 0; } static struct ssif_addr_info *ssif_info_find(unsigned short addr, char *adapter_name, bool match_null_name) { struct ssif_addr_info *info, *found = NULL; restart: list_for_each_entry(info, &ssif_infos, link) { if (info->binfo.addr == addr) { if (info->addr_src == SI_SMBIOS && !info->adapter_name) info->adapter_name = kstrdup(adapter_name, GFP_KERNEL); if (info->adapter_name || adapter_name) { if (!info->adapter_name != !adapter_name) { /* One is NULL and one is not */ continue; } if (adapter_name && strcmp_nospace(info->adapter_name, adapter_name)) /* Names do not match */ continue; } found = info; break; } } if (!found && match_null_name) { /* Try to get an exact match first, then try with a NULL name */ adapter_name = NULL; match_null_name = false; goto restart; } return found; } static bool check_acpi(struct ssif_info *ssif_info, struct device *dev) { #ifdef CONFIG_ACPI acpi_handle acpi_handle; acpi_handle = ACPI_HANDLE(dev); if (acpi_handle) { ssif_info->addr_source = SI_ACPI; ssif_info->addr_info.acpi_info.acpi_handle = acpi_handle; request_module("acpi_ipmi"); return true; } #endif return false; } static int find_slave_address(struct i2c_client *client, int slave_addr) { #ifdef CONFIG_IPMI_DMI_DECODE if (!slave_addr) slave_addr = ipmi_dmi_get_slave_addr( SI_TYPE_INVALID, i2c_adapter_id(client->adapter), client->addr); #endif return slave_addr; } static int start_multipart_test(struct i2c_client *client, unsigned char *msg, bool do_middle) { int retry_cnt = SSIF_SEND_RETRIES, ret; retry_write: ret = i2c_smbus_write_block_data(client, SSIF_IPMI_MULTI_PART_REQUEST_START, 32, msg); if (ret) { retry_cnt--; if (retry_cnt > 0) { msleep(SSIF_REQ_RETRY_MSEC); goto retry_write; } dev_err(&client->dev, "Could not write multi-part start, though the BMC said it could handle it. Just limit sends to one part.\n"); return ret; } if (!do_middle) return 0; ret = i2c_smbus_write_block_data(client, SSIF_IPMI_MULTI_PART_REQUEST_MIDDLE, 32, msg + 32); if (ret) { dev_err(&client->dev, "Could not write multi-part middle, though the BMC said it could handle it. Just limit sends to one part.\n"); return ret; } return 0; } static void test_multipart_messages(struct i2c_client *client, struct ssif_info *ssif_info, unsigned char *resp) { unsigned char msg[65]; int ret; bool do_middle; if (ssif_info->max_xmit_msg_size <= 32) return; do_middle = ssif_info->max_xmit_msg_size > 63; memset(msg, 0, sizeof(msg)); msg[0] = IPMI_NETFN_APP_REQUEST << 2; msg[1] = IPMI_GET_DEVICE_ID_CMD; /* * The specification is all messed up dealing with sending * multi-part messages. Per what the specification says, it * is impossible to send a message that is a multiple of 32 * bytes, except for 32 itself. It talks about a "start" * transaction (cmd=6) that must be 32 bytes, "middle" * transaction (cmd=7) that must be 32 bytes, and an "end" * transaction. The "end" transaction is shown as cmd=7 in * the text, but if that's the case there is no way to * differentiate between a middle and end part except the * length being less than 32. But there is a table at the far * end of the section (that I had never noticed until someone * pointed it out to me) that mentions it as cmd=8. * * After some thought, I think the example is wrong and the * end transaction should be cmd=8. But some systems don't * implement cmd=8, they use a zero-length end transaction, * even though that violates the SMBus specification. * * So, to work around this, this code tests if cmd=8 works. * If it does, then we use that. If not, it tests zero- * byte end transactions. If that works, good. If not, * we only allow 63-byte transactions max. */ ret = start_multipart_test(client, msg, do_middle); if (ret) goto out_no_multi_part; ret = i2c_smbus_write_block_data(client, SSIF_IPMI_MULTI_PART_REQUEST_END, 1, msg + 64); if (!ret) ret = read_response(client, resp); if (ret > 0) { /* End transactions work, we are good. */ ssif_info->cmd8_works = true; return; } ret = start_multipart_test(client, msg, do_middle); if (ret) { dev_err(&client->dev, "Second multipart test failed.\n"); goto out_no_multi_part; } ret = i2c_smbus_write_block_data(client, SSIF_IPMI_MULTI_PART_REQUEST_MIDDLE, 0, msg + 64); if (!ret) ret = read_response(client, resp); if (ret > 0) /* Zero-size end parts work, use those. */ return; /* Limit to 63 bytes and use a short middle command to mark the end. */ if (ssif_info->max_xmit_msg_size > 63) ssif_info->max_xmit_msg_size = 63; return; out_no_multi_part: ssif_info->max_xmit_msg_size = 32; return; } /* * Global enables we care about. */ #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \ IPMI_BMC_EVT_MSG_INTR) static void ssif_remove_dup(struct i2c_client *client) { struct ssif_info *ssif_info = i2c_get_clientdata(client); ipmi_unregister_smi(ssif_info->intf); kfree(ssif_info); } static int ssif_add_infos(struct i2c_client *client) { struct ssif_addr_info *info; info = kzalloc(sizeof(*info), GFP_KERNEL); if (!info) return -ENOMEM; info->addr_src = SI_ACPI; info->client = client; info->adapter_name = kstrdup(client->adapter->name, GFP_KERNEL); if (!info->adapter_name) { kfree(info); return -ENOMEM; } info->binfo.addr = client->addr; list_add_tail(&info->link, &ssif_infos); return 0; } /* * Prefer ACPI over SMBIOS, if both are available. * So if we get an ACPI interface and have already registered a SMBIOS * interface at the same address, remove the SMBIOS and add the ACPI one. */ static int ssif_check_and_remove(struct i2c_client *client, struct ssif_info *ssif_info) { struct ssif_addr_info *info; list_for_each_entry(info, &ssif_infos, link) { if (!info->client) return 0; if (!strcmp(info->adapter_name, client->adapter->name) && info->binfo.addr == client->addr) { if (info->addr_src == SI_ACPI) return -EEXIST; if (ssif_info->addr_source == SI_ACPI && info->addr_src == SI_SMBIOS) { dev_info(&client->dev, "Removing %s-specified SSIF interface in favor of ACPI\n", ipmi_addr_src_to_str(info->addr_src)); ssif_remove_dup(info->client); return 0; } } } return 0; } static int ssif_probe(struct i2c_client *client) { unsigned char msg[3]; unsigned char *resp; struct ssif_info *ssif_info; int rv = 0; int len = 0; int i; u8 slave_addr = 0; struct ssif_addr_info *addr_info = NULL; mutex_lock(&ssif_infos_mutex); resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); if (!resp) { mutex_unlock(&ssif_infos_mutex); return -ENOMEM; } ssif_info = kzalloc(sizeof(*ssif_info), GFP_KERNEL); if (!ssif_info) { kfree(resp); mutex_unlock(&ssif_infos_mutex); return -ENOMEM; } if (!check_acpi(ssif_info, &client->dev)) { addr_info = ssif_info_find(client->addr, client->adapter->name, true); if (!addr_info) { /* Must have come in through sysfs. */ ssif_info->addr_source = SI_HOTMOD; } else { ssif_info->addr_source = addr_info->addr_src; ssif_info->ssif_debug = addr_info->debug; ssif_info->addr_info = addr_info->addr_info; addr_info->client = client; slave_addr = addr_info->slave_addr; } } ssif_info->client = client; i2c_set_clientdata(client, ssif_info); rv = ssif_check_and_remove(client, ssif_info); /* If rv is 0 and addr source is not SI_ACPI, continue probing */ if (!rv && ssif_info->addr_source == SI_ACPI) { rv = ssif_add_infos(client); if (rv) { dev_err(&client->dev, "Out of memory!, exiting ..\n"); goto out; } } else if (rv) { dev_err(&client->dev, "Not probing, Interface already present\n"); goto out; } slave_addr = find_slave_address(client, slave_addr); dev_info(&client->dev, "Trying %s-specified SSIF interface at i2c address 0x%x, adapter %s, slave address 0x%x\n", ipmi_addr_src_to_str(ssif_info->addr_source), client->addr, client->adapter->name, slave_addr); /* Now check for system interface capabilities */ msg[0] = IPMI_NETFN_APP_REQUEST << 2; msg[1] = IPMI_GET_SYSTEM_INTERFACE_CAPABILITIES_CMD; msg[2] = 0; /* SSIF */ rv = do_cmd(client, 3, msg, &len, resp); if (!rv && (len >= 3) && (resp[2] == 0)) { if (len < 7) { if (ssif_dbg_probe) dev_dbg(&ssif_info->client->dev, "SSIF info too short: %d\n", len); goto no_support; } /* Got a good SSIF response, handle it. */ ssif_info->max_xmit_msg_size = resp[5]; ssif_info->max_recv_msg_size = resp[6]; ssif_info->multi_support = (resp[4] >> 6) & 0x3; ssif_info->supports_pec = (resp[4] >> 3) & 0x1; /* Sanitize the data */ switch (ssif_info->multi_support) { case SSIF_NO_MULTI: if (ssif_info->max_xmit_msg_size > 32) ssif_info->max_xmit_msg_size = 32; if (ssif_info->max_recv_msg_size > 32) ssif_info->max_recv_msg_size = 32; break; case SSIF_MULTI_2_PART: if (ssif_info->max_xmit_msg_size > 63) ssif_info->max_xmit_msg_size = 63; if (ssif_info->max_recv_msg_size > 62) ssif_info->max_recv_msg_size = 62; break; case SSIF_MULTI_n_PART: /* We take whatever size given, but do some testing. */ break; default: /* Data is not sane, just give up. */ goto no_support; } } else { no_support: /* Assume no multi-part or PEC support */ dev_info(&ssif_info->client->dev, "Error fetching SSIF: %d %d %2.2x, your system probably doesn't support this command so using defaults\n", rv, len, resp[2]); ssif_info->max_xmit_msg_size = 32; ssif_info->max_recv_msg_size = 32; ssif_info->multi_support = SSIF_NO_MULTI; ssif_info->supports_pec = 0; } test_multipart_messages(client, ssif_info, resp); /* Make sure the NMI timeout is cleared. */ msg[0] = IPMI_NETFN_APP_REQUEST << 2; msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; msg[2] = WDT_PRE_TIMEOUT_INT; rv = do_cmd(client, 3, msg, &len, resp); if (rv || (len < 3) || (resp[2] != 0)) dev_warn(&ssif_info->client->dev, "Unable to clear message flags: %d %d %2.2x\n", rv, len, resp[2]); /* Attempt to enable the event buffer. */ msg[0] = IPMI_NETFN_APP_REQUEST << 2; msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; rv = do_cmd(client, 2, msg, &len, resp); if (rv || (len < 4) || (resp[2] != 0)) { dev_warn(&ssif_info->client->dev, "Error getting global enables: %d %d %2.2x\n", rv, len, resp[2]); rv = 0; /* Not fatal */ goto found; } ssif_info->global_enables = resp[3]; if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) { ssif_info->has_event_buffer = true; /* buffer is already enabled, nothing to do. */ goto found; } msg[0] = IPMI_NETFN_APP_REQUEST << 2; msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; msg[2] = ssif_info->global_enables | IPMI_BMC_EVT_MSG_BUFF; rv = do_cmd(client, 3, msg, &len, resp); if (rv || (len < 2)) { dev_warn(&ssif_info->client->dev, "Error setting global enables: %d %d %2.2x\n", rv, len, resp[2]); rv = 0; /* Not fatal */ goto found; } if (resp[2] == 0) { /* A successful return means the event buffer is supported. */ ssif_info->has_event_buffer = true; ssif_info->global_enables |= IPMI_BMC_EVT_MSG_BUFF; } /* Some systems don't behave well if you enable alerts. */ if (alerts_broken) goto found; msg[0] = IPMI_NETFN_APP_REQUEST << 2; msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; msg[2] = ssif_info->global_enables | IPMI_BMC_RCV_MSG_INTR; rv = do_cmd(client, 3, msg, &len, resp); if (rv || (len < 2)) { dev_warn(&ssif_info->client->dev, "Error setting global enables: %d %d %2.2x\n", rv, len, resp[2]); rv = 0; /* Not fatal */ goto found; } if (resp[2] == 0) { /* A successful return means the alert is supported. */ ssif_info->supports_alert = true; ssif_info->global_enables |= IPMI_BMC_RCV_MSG_INTR; } found: if (ssif_dbg_probe) { dev_dbg(&ssif_info->client->dev, "%s: i2c_probe found device at i2c address %x\n", __func__, client->addr); } spin_lock_init(&ssif_info->lock); ssif_info->ssif_state = SSIF_IDLE; timer_setup(&ssif_info->retry_timer, retry_timeout, 0); timer_setup(&ssif_info->watch_timer, watch_timeout, 0); for (i = 0; i < SSIF_NUM_STATS; i++) atomic_set(&ssif_info->stats[i], 0); if (ssif_info->supports_pec) ssif_info->client->flags |= I2C_CLIENT_PEC; ssif_info->handlers.owner = THIS_MODULE; ssif_info->handlers.start_processing = ssif_start_processing; ssif_info->handlers.shutdown = shutdown_ssif; ssif_info->handlers.get_smi_info = get_smi_info; ssif_info->handlers.sender = sender; ssif_info->handlers.request_events = request_events; ssif_info->handlers.set_need_watch = ssif_set_need_watch; { unsigned int thread_num; thread_num = ((i2c_adapter_id(ssif_info->client->adapter) << 8) | ssif_info->client->addr); init_completion(&ssif_info->wake_thread); ssif_info->thread = kthread_run(ipmi_ssif_thread, ssif_info, "kssif%4.4x", thread_num); if (IS_ERR(ssif_info->thread)) { rv = PTR_ERR(ssif_info->thread); dev_notice(&ssif_info->client->dev, "Could not start kernel thread: error %d\n", rv); goto out; } } dev_set_drvdata(&ssif_info->client->dev, ssif_info); rv = device_add_group(&ssif_info->client->dev, &ipmi_ssif_dev_attr_group); if (rv) { dev_err(&ssif_info->client->dev, "Unable to add device attributes: error %d\n", rv); goto out; } rv = ipmi_register_smi(&ssif_info->handlers, ssif_info, &ssif_info->client->dev, slave_addr); if (rv) { dev_err(&ssif_info->client->dev, "Unable to register device: error %d\n", rv); goto out_remove_attr; } out: if (rv) { if (addr_info) addr_info->client = NULL; dev_err(&ssif_info->client->dev, "Unable to start IPMI SSIF: %d\n", rv); i2c_set_clientdata(client, NULL); kfree(ssif_info); } kfree(resp); mutex_unlock(&ssif_infos_mutex); return rv; out_remove_attr: device_remove_group(&ssif_info->client->dev, &ipmi_ssif_dev_attr_group); dev_set_drvdata(&ssif_info->client->dev, NULL); goto out; } static int new_ssif_client(int addr, char *adapter_name, int debug, int slave_addr, enum ipmi_addr_src addr_src, struct device *dev) { struct ssif_addr_info *addr_info; int rv = 0; mutex_lock(&ssif_infos_mutex); if (ssif_info_find(addr, adapter_name, false)) { rv = -EEXIST; goto out_unlock; } addr_info = kzalloc(sizeof(*addr_info), GFP_KERNEL); if (!addr_info) { rv = -ENOMEM; goto out_unlock; } if (adapter_name) { addr_info->adapter_name = kstrdup(adapter_name, GFP_KERNEL); if (!addr_info->adapter_name) { kfree(addr_info); rv = -ENOMEM; goto out_unlock; } } strncpy(addr_info->binfo.type, DEVICE_NAME, sizeof(addr_info->binfo.type)); addr_info->binfo.addr = addr; addr_info->binfo.platform_data = addr_info; addr_info->debug = debug; addr_info->slave_addr = slave_addr; addr_info->addr_src = addr_src; addr_info->dev = dev; if (dev) dev_set_drvdata(dev, addr_info); list_add_tail(&addr_info->link, &ssif_infos); /* Address list will get it */ out_unlock: mutex_unlock(&ssif_infos_mutex); return rv; } static void free_ssif_clients(void) { struct ssif_addr_info *info, *tmp; mutex_lock(&ssif_infos_mutex); list_for_each_entry_safe(info, tmp, &ssif_infos, link) { list_del(&info->link); kfree(info->adapter_name); kfree(info); } mutex_unlock(&ssif_infos_mutex); } static unsigned short *ssif_address_list(void) { struct ssif_addr_info *info; unsigned int count = 0, i = 0; unsigned short *address_list; list_for_each_entry(info, &ssif_infos, link) count++; address_list = kcalloc(count + 1, sizeof(*address_list), GFP_KERNEL); if (!address_list) return NULL; list_for_each_entry(info, &ssif_infos, link) { unsigned short addr = info->binfo.addr; int j; for (j = 0; j < i; j++) { if (address_list[j] == addr) /* Found a dup. */ break; } if (j == i) /* Didn't find it in the list. */ address_list[i++] = addr; } address_list[i] = I2C_CLIENT_END; return address_list; } #ifdef CONFIG_ACPI static const struct acpi_device_id ssif_acpi_match[] = { { "IPI0001", 0 }, { }, }; MODULE_DEVICE_TABLE(acpi, ssif_acpi_match); #endif #ifdef CONFIG_DMI static int dmi_ipmi_probe(struct platform_device *pdev) { u8 slave_addr = 0; u16 i2c_addr; int rv; if (!ssif_trydmi) return -ENODEV; rv = device_property_read_u16(&pdev->dev, "i2c-addr", &i2c_addr); if (rv) { dev_warn(&pdev->dev, "No i2c-addr property\n"); return -ENODEV; } rv = device_property_read_u8(&pdev->dev, "slave-addr", &slave_addr); if (rv) slave_addr = 0x20; return new_ssif_client(i2c_addr, NULL, 0, slave_addr, SI_SMBIOS, &pdev->dev); } #else static int dmi_ipmi_probe(struct platform_device *pdev) { return -ENODEV; } #endif static const struct i2c_device_id ssif_id[] = { { DEVICE_NAME, 0 }, { } }; MODULE_DEVICE_TABLE(i2c, ssif_id); static struct i2c_driver ssif_i2c_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = DEVICE_NAME }, .probe_new = ssif_probe, .remove = ssif_remove, .alert = ssif_alert, .id_table = ssif_id, .detect = ssif_detect }; static int ssif_platform_probe(struct platform_device *dev) { return dmi_ipmi_probe(dev); } static int ssif_platform_remove(struct platform_device *dev) { struct ssif_addr_info *addr_info = dev_get_drvdata(&dev->dev); mutex_lock(&ssif_infos_mutex); list_del(&addr_info->link); kfree(addr_info); mutex_unlock(&ssif_infos_mutex); return 0; } static const struct platform_device_id ssif_plat_ids[] = { { "dmi-ipmi-ssif", 0 }, { } }; static struct platform_driver ipmi_driver = { .driver = { .name = DEVICE_NAME, }, .probe = ssif_platform_probe, .remove = ssif_platform_remove, .id_table = ssif_plat_ids }; static int __init init_ipmi_ssif(void) { int i; int rv; if (initialized) return 0; pr_info("IPMI SSIF Interface driver\n"); /* build list for i2c from addr list */ for (i = 0; i < num_addrs; i++) { rv = new_ssif_client(addr[i], adapter_name[i], dbg[i], slave_addrs[i], SI_HARDCODED, NULL); if (rv) pr_err("Couldn't add hardcoded device at addr 0x%x\n", addr[i]); } if (ssif_tryacpi) ssif_i2c_driver.driver.acpi_match_table = ACPI_PTR(ssif_acpi_match); if (ssif_trydmi) { rv = platform_driver_register(&ipmi_driver); if (rv) pr_err("Unable to register driver: %d\n", rv); else platform_registered = true; } ssif_i2c_driver.address_list = ssif_address_list(); rv = i2c_add_driver(&ssif_i2c_driver); if (!rv) initialized = true; return rv; } module_init(init_ipmi_ssif); static void __exit cleanup_ipmi_ssif(void) { if (!initialized) return; initialized = false; i2c_del_driver(&ssif_i2c_driver); kfree(ssif_i2c_driver.address_list); if (ssif_trydmi && platform_registered) platform_driver_unregister(&ipmi_driver); free_ssif_clients(); } module_exit(cleanup_ipmi_ssif); MODULE_ALIAS("platform:dmi-ipmi-ssif"); MODULE_AUTHOR("Todd C Davis , Corey Minyard "); MODULE_DESCRIPTION("IPMI driver for management controllers on a SMBus"); MODULE_LICENSE("GPL");