// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2020 Invensense, Inc. */ #include #include #include #include "inv_icm42600.h" #include "inv_icm42600_timestamp.h" /* internal chip period is 32kHz, 31250ns */ #define INV_ICM42600_TIMESTAMP_PERIOD 31250 /* allow a jitter of +/- 2% */ #define INV_ICM42600_TIMESTAMP_JITTER 2 /* compute min and max periods accepted */ #define INV_ICM42600_TIMESTAMP_MIN_PERIOD(_p) \ (((_p) * (100 - INV_ICM42600_TIMESTAMP_JITTER)) / 100) #define INV_ICM42600_TIMESTAMP_MAX_PERIOD(_p) \ (((_p) * (100 + INV_ICM42600_TIMESTAMP_JITTER)) / 100) /* Add a new value inside an accumulator and update the estimate value */ static void inv_update_acc(struct inv_icm42600_timestamp_acc *acc, uint32_t val) { uint64_t sum = 0; size_t i; acc->values[acc->idx++] = val; if (acc->idx >= ARRAY_SIZE(acc->values)) acc->idx = 0; /* compute the mean of all stored values, use 0 as empty slot */ for (i = 0; i < ARRAY_SIZE(acc->values); ++i) { if (acc->values[i] == 0) break; sum += acc->values[i]; } acc->val = div_u64(sum, i); } void inv_icm42600_timestamp_init(struct inv_icm42600_timestamp *ts, uint32_t period) { /* initial odr for sensor after reset is 1kHz */ const uint32_t default_period = 1000000; /* current multiplier and period values after reset */ ts->mult = default_period / INV_ICM42600_TIMESTAMP_PERIOD; ts->period = default_period; /* new set multiplier is the one from chip initialization */ ts->new_mult = period / INV_ICM42600_TIMESTAMP_PERIOD; /* use theoretical value for chip period */ inv_update_acc(&ts->chip_period, INV_ICM42600_TIMESTAMP_PERIOD); } int inv_icm42600_timestamp_setup(struct inv_icm42600_state *st) { unsigned int val; /* enable timestamp register */ val = INV_ICM42600_TMST_CONFIG_TMST_TO_REGS_EN | INV_ICM42600_TMST_CONFIG_TMST_EN; return regmap_update_bits(st->map, INV_ICM42600_REG_TMST_CONFIG, INV_ICM42600_TMST_CONFIG_MASK, val); } int inv_icm42600_timestamp_update_odr(struct inv_icm42600_timestamp *ts, uint32_t period, bool fifo) { /* when FIFO is on, prevent odr change if one is already pending */ if (fifo && ts->new_mult != 0) return -EAGAIN; ts->new_mult = period / INV_ICM42600_TIMESTAMP_PERIOD; return 0; } static bool inv_validate_period(uint32_t period, uint32_t mult) { const uint32_t chip_period = INV_ICM42600_TIMESTAMP_PERIOD; uint32_t period_min, period_max; /* check that period is acceptable */ period_min = INV_ICM42600_TIMESTAMP_MIN_PERIOD(chip_period) * mult; period_max = INV_ICM42600_TIMESTAMP_MAX_PERIOD(chip_period) * mult; if (period > period_min && period < period_max) return true; else return false; } static bool inv_update_chip_period(struct inv_icm42600_timestamp *ts, uint32_t mult, uint32_t period) { uint32_t new_chip_period; if (!inv_validate_period(period, mult)) return false; /* update chip internal period estimation */ new_chip_period = period / mult; inv_update_acc(&ts->chip_period, new_chip_period); ts->period = ts->mult * ts->chip_period.val; return true; } static void inv_align_timestamp_it(struct inv_icm42600_timestamp *ts) { int64_t delta, jitter; int64_t adjust; /* delta time between last sample and last interrupt */ delta = ts->it.lo - ts->timestamp; /* adjust timestamp while respecting jitter */ jitter = div_s64((int64_t)ts->period * INV_ICM42600_TIMESTAMP_JITTER, 100); if (delta > jitter) adjust = jitter; else if (delta < -jitter) adjust = -jitter; else adjust = 0; ts->timestamp += adjust; } void inv_icm42600_timestamp_interrupt(struct inv_icm42600_timestamp *ts, uint32_t fifo_period, size_t fifo_nb, size_t sensor_nb, int64_t timestamp) { struct inv_icm42600_timestamp_interval *it; int64_t delta, interval; const uint32_t fifo_mult = fifo_period / INV_ICM42600_TIMESTAMP_PERIOD; uint32_t period = ts->period; bool valid = false; if (fifo_nb == 0) return; /* update interrupt timestamp and compute chip and sensor periods */ it = &ts->it; it->lo = it->up; it->up = timestamp; delta = it->up - it->lo; if (it->lo != 0) { /* compute period: delta time divided by number of samples */ period = div_s64(delta, fifo_nb); valid = inv_update_chip_period(ts, fifo_mult, period); } /* no previous data, compute theoritical value from interrupt */ if (ts->timestamp == 0) { /* elapsed time: sensor period * sensor samples number */ interval = (int64_t)ts->period * (int64_t)sensor_nb; ts->timestamp = it->up - interval; return; } /* if interrupt interval is valid, sync with interrupt timestamp */ if (valid) inv_align_timestamp_it(ts); } void inv_icm42600_timestamp_apply_odr(struct inv_icm42600_timestamp *ts, uint32_t fifo_period, size_t fifo_nb, unsigned int fifo_no) { int64_t interval; uint32_t fifo_mult; if (ts->new_mult == 0) return; /* update to new multiplier and update period */ ts->mult = ts->new_mult; ts->new_mult = 0; ts->period = ts->mult * ts->chip_period.val; /* * After ODR change the time interval with the previous sample is * undertermined (depends when the change occures). So we compute the * timestamp from the current interrupt using the new FIFO period, the * total number of samples and the current sample numero. */ if (ts->timestamp != 0) { /* compute measured fifo period */ fifo_mult = fifo_period / INV_ICM42600_TIMESTAMP_PERIOD; fifo_period = fifo_mult * ts->chip_period.val; /* computes time interval between interrupt and this sample */ interval = (int64_t)(fifo_nb - fifo_no) * (int64_t)fifo_period; ts->timestamp = ts->it.up - interval; } }