// SPDX-License-Identifier: GPL-2.0+ /* * Renesas R-Car Fine Display Processor * * Video format converter and frame deinterlacer device. * * Author: Kieran Bingham, * Copyright (c) 2016 Renesas Electronics Corporation. * * This code is developed and inspired from the vim2m, rcar_jpu, * m2m-deinterlace, and vsp1 drivers. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static unsigned int debug; module_param(debug, uint, 0644); MODULE_PARM_DESC(debug, "activate debug info"); /* Minimum and maximum frame width/height */ #define FDP1_MIN_W 80U #define FDP1_MIN_H 80U #define FDP1_MAX_W 3840U #define FDP1_MAX_H 2160U #define FDP1_MAX_PLANES 3U #define FDP1_MAX_STRIDE 8190U /* Flags that indicate a format can be used for capture/output */ #define FDP1_CAPTURE BIT(0) #define FDP1_OUTPUT BIT(1) #define DRIVER_NAME "rcar_fdp1" /* Number of Job's to have available on the processing queue */ #define FDP1_NUMBER_JOBS 8 #define dprintk(fdp1, fmt, arg...) \ v4l2_dbg(1, debug, &fdp1->v4l2_dev, "%s: " fmt, __func__, ## arg) /* * FDP1 registers and bits */ /* FDP1 start register - Imm */ #define FD1_CTL_CMD 0x0000 #define FD1_CTL_CMD_STRCMD BIT(0) /* Sync generator register - Imm */ #define FD1_CTL_SGCMD 0x0004 #define FD1_CTL_SGCMD_SGEN BIT(0) /* Register set end register - Imm */ #define FD1_CTL_REGEND 0x0008 #define FD1_CTL_REGEND_REGEND BIT(0) /* Channel activation register - Vupdt */ #define FD1_CTL_CHACT 0x000c #define FD1_CTL_CHACT_SMW BIT(9) #define FD1_CTL_CHACT_WR BIT(8) #define FD1_CTL_CHACT_SMR BIT(3) #define FD1_CTL_CHACT_RD2 BIT(2) #define FD1_CTL_CHACT_RD1 BIT(1) #define FD1_CTL_CHACT_RD0 BIT(0) /* Operation Mode Register - Vupdt */ #define FD1_CTL_OPMODE 0x0010 #define FD1_CTL_OPMODE_PRG BIT(4) #define FD1_CTL_OPMODE_VIMD_INTERRUPT (0 << 0) #define FD1_CTL_OPMODE_VIMD_BESTEFFORT (1 << 0) #define FD1_CTL_OPMODE_VIMD_NOINTERRUPT (2 << 0) #define FD1_CTL_VPERIOD 0x0014 #define FD1_CTL_CLKCTRL 0x0018 #define FD1_CTL_CLKCTRL_CSTP_N BIT(0) /* Software reset register */ #define FD1_CTL_SRESET 0x001c #define FD1_CTL_SRESET_SRST BIT(0) /* Control status register (V-update-status) */ #define FD1_CTL_STATUS 0x0024 #define FD1_CTL_STATUS_VINT_CNT_MASK GENMASK(31, 16) #define FD1_CTL_STATUS_VINT_CNT_SHIFT 16 #define FD1_CTL_STATUS_SGREGSET BIT(10) #define FD1_CTL_STATUS_SGVERR BIT(9) #define FD1_CTL_STATUS_SGFREND BIT(8) #define FD1_CTL_STATUS_BSY BIT(0) #define FD1_CTL_VCYCLE_STAT 0x0028 /* Interrupt enable register */ #define FD1_CTL_IRQENB 0x0038 /* Interrupt status register */ #define FD1_CTL_IRQSTA 0x003c /* Interrupt control register */ #define FD1_CTL_IRQFSET 0x0040 /* Common IRQ Bit settings */ #define FD1_CTL_IRQ_VERE BIT(16) #define FD1_CTL_IRQ_VINTE BIT(4) #define FD1_CTL_IRQ_FREE BIT(0) #define FD1_CTL_IRQ_MASK (FD1_CTL_IRQ_VERE | \ FD1_CTL_IRQ_VINTE | \ FD1_CTL_IRQ_FREE) /* RPF */ #define FD1_RPF_SIZE 0x0060 #define FD1_RPF_SIZE_MASK GENMASK(12, 0) #define FD1_RPF_SIZE_H_SHIFT 16 #define FD1_RPF_SIZE_V_SHIFT 0 #define FD1_RPF_FORMAT 0x0064 #define FD1_RPF_FORMAT_CIPM BIT(16) #define FD1_RPF_FORMAT_RSPYCS BIT(13) #define FD1_RPF_FORMAT_RSPUVS BIT(12) #define FD1_RPF_FORMAT_CF BIT(8) #define FD1_RPF_PSTRIDE 0x0068 #define FD1_RPF_PSTRIDE_Y_SHIFT 16 #define FD1_RPF_PSTRIDE_C_SHIFT 0 /* RPF0 Source Component Y Address register */ #define FD1_RPF0_ADDR_Y 0x006c /* RPF1 Current Picture Registers */ #define FD1_RPF1_ADDR_Y 0x0078 #define FD1_RPF1_ADDR_C0 0x007c #define FD1_RPF1_ADDR_C1 0x0080 /* RPF2 next picture register */ #define FD1_RPF2_ADDR_Y 0x0084 #define FD1_RPF_SMSK_ADDR 0x0090 #define FD1_RPF_SWAP 0x0094 /* WPF */ #define FD1_WPF_FORMAT 0x00c0 #define FD1_WPF_FORMAT_PDV_SHIFT 24 #define FD1_WPF_FORMAT_FCNL BIT(20) #define FD1_WPF_FORMAT_WSPYCS BIT(15) #define FD1_WPF_FORMAT_WSPUVS BIT(14) #define FD1_WPF_FORMAT_WRTM_601_16 (0 << 9) #define FD1_WPF_FORMAT_WRTM_601_0 (1 << 9) #define FD1_WPF_FORMAT_WRTM_709_16 (2 << 9) #define FD1_WPF_FORMAT_CSC BIT(8) #define FD1_WPF_RNDCTL 0x00c4 #define FD1_WPF_RNDCTL_CBRM BIT(28) #define FD1_WPF_RNDCTL_CLMD_NOCLIP (0 << 12) #define FD1_WPF_RNDCTL_CLMD_CLIP_16_235 (1 << 12) #define FD1_WPF_RNDCTL_CLMD_CLIP_1_254 (2 << 12) #define FD1_WPF_PSTRIDE 0x00c8 #define FD1_WPF_PSTRIDE_Y_SHIFT 16 #define FD1_WPF_PSTRIDE_C_SHIFT 0 /* WPF Destination picture */ #define FD1_WPF_ADDR_Y 0x00cc #define FD1_WPF_ADDR_C0 0x00d0 #define FD1_WPF_ADDR_C1 0x00d4 #define FD1_WPF_SWAP 0x00d8 #define FD1_WPF_SWAP_OSWAP_SHIFT 0 #define FD1_WPF_SWAP_SSWAP_SHIFT 4 /* WPF/RPF Common */ #define FD1_RWPF_SWAP_BYTE BIT(0) #define FD1_RWPF_SWAP_WORD BIT(1) #define FD1_RWPF_SWAP_LWRD BIT(2) #define FD1_RWPF_SWAP_LLWD BIT(3) /* IPC */ #define FD1_IPC_MODE 0x0100 #define FD1_IPC_MODE_DLI BIT(8) #define FD1_IPC_MODE_DIM_ADAPT2D3D (0 << 0) #define FD1_IPC_MODE_DIM_FIXED2D (1 << 0) #define FD1_IPC_MODE_DIM_FIXED3D (2 << 0) #define FD1_IPC_MODE_DIM_PREVFIELD (3 << 0) #define FD1_IPC_MODE_DIM_NEXTFIELD (4 << 0) #define FD1_IPC_SMSK_THRESH 0x0104 #define FD1_IPC_SMSK_THRESH_CONST 0x00010002 #define FD1_IPC_COMB_DET 0x0108 #define FD1_IPC_COMB_DET_CONST 0x00200040 #define FD1_IPC_MOTDEC 0x010c #define FD1_IPC_MOTDEC_CONST 0x00008020 /* DLI registers */ #define FD1_IPC_DLI_BLEND 0x0120 #define FD1_IPC_DLI_BLEND_CONST 0x0080ff02 #define FD1_IPC_DLI_HGAIN 0x0124 #define FD1_IPC_DLI_HGAIN_CONST 0x001000ff #define FD1_IPC_DLI_SPRS 0x0128 #define FD1_IPC_DLI_SPRS_CONST 0x009004ff #define FD1_IPC_DLI_ANGLE 0x012c #define FD1_IPC_DLI_ANGLE_CONST 0x0004080c #define FD1_IPC_DLI_ISOPIX0 0x0130 #define FD1_IPC_DLI_ISOPIX0_CONST 0xff10ff10 #define FD1_IPC_DLI_ISOPIX1 0x0134 #define FD1_IPC_DLI_ISOPIX1_CONST 0x0000ff10 /* Sensor registers */ #define FD1_IPC_SENSOR_TH0 0x0140 #define FD1_IPC_SENSOR_TH0_CONST 0x20208080 #define FD1_IPC_SENSOR_TH1 0x0144 #define FD1_IPC_SENSOR_TH1_CONST 0 #define FD1_IPC_SENSOR_CTL0 0x0170 #define FD1_IPC_SENSOR_CTL0_CONST 0x00002201 #define FD1_IPC_SENSOR_CTL1 0x0174 #define FD1_IPC_SENSOR_CTL1_CONST 0 #define FD1_IPC_SENSOR_CTL2 0x0178 #define FD1_IPC_SENSOR_CTL2_X_SHIFT 16 #define FD1_IPC_SENSOR_CTL2_Y_SHIFT 0 #define FD1_IPC_SENSOR_CTL3 0x017c #define FD1_IPC_SENSOR_CTL3_0_SHIFT 16 #define FD1_IPC_SENSOR_CTL3_1_SHIFT 0 /* Line memory pixel number register */ #define FD1_IPC_LMEM 0x01e0 #define FD1_IPC_LMEM_LINEAR 1024 #define FD1_IPC_LMEM_TILE 960 /* Internal Data (HW Version) */ #define FD1_IP_INTDATA 0x0800 /* R-Car Gen2 HW manual says zero, but actual value matches R-Car H3 ES1.x */ #define FD1_IP_GEN2 0x02010101 #define FD1_IP_M3W 0x02010202 #define FD1_IP_H3 0x02010203 #define FD1_IP_M3N 0x02010204 #define FD1_IP_E3 0x02010205 /* LUTs */ #define FD1_LUT_DIF_ADJ 0x1000 #define FD1_LUT_SAD_ADJ 0x1400 #define FD1_LUT_BLD_GAIN 0x1800 #define FD1_LUT_DIF_GAIN 0x1c00 #define FD1_LUT_MDET 0x2000 /** * struct fdp1_fmt - The FDP1 internal format data * @fourcc: the fourcc code, to match the V4L2 API * @bpp: bits per pixel per plane * @num_planes: number of planes * @hsub: horizontal subsampling factor * @vsub: vertical subsampling factor * @fmt: 7-bit format code for the fdp1 hardware * @swap_yc: the Y and C components are swapped (Y comes before C) * @swap_uv: the U and V components are swapped (V comes before U) * @swap: swap register control * @types: types of queue this format is applicable to */ struct fdp1_fmt { u32 fourcc; u8 bpp[3]; u8 num_planes; u8 hsub; u8 vsub; u8 fmt; bool swap_yc; bool swap_uv; u8 swap; u8 types; }; static const struct fdp1_fmt fdp1_formats[] = { /* RGB formats are only supported by the Write Pixel Formatter */ { V4L2_PIX_FMT_RGB332, { 8, 0, 0 }, 1, 1, 1, 0x00, false, false, FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, FDP1_CAPTURE }, { V4L2_PIX_FMT_XRGB444, { 16, 0, 0 }, 1, 1, 1, 0x01, false, false, FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | FD1_RWPF_SWAP_WORD, FDP1_CAPTURE }, { V4L2_PIX_FMT_XRGB555, { 16, 0, 0 }, 1, 1, 1, 0x04, false, false, FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | FD1_RWPF_SWAP_WORD, FDP1_CAPTURE }, { V4L2_PIX_FMT_RGB565, { 16, 0, 0 }, 1, 1, 1, 0x06, false, false, FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | FD1_RWPF_SWAP_WORD, FDP1_CAPTURE }, { V4L2_PIX_FMT_ABGR32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false, FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD, FDP1_CAPTURE }, { V4L2_PIX_FMT_XBGR32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false, FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD, FDP1_CAPTURE }, { V4L2_PIX_FMT_ARGB32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false, FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, FDP1_CAPTURE }, { V4L2_PIX_FMT_XRGB32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false, FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, FDP1_CAPTURE }, { V4L2_PIX_FMT_RGB24, { 24, 0, 0 }, 1, 1, 1, 0x15, false, false, FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, FDP1_CAPTURE }, { V4L2_PIX_FMT_BGR24, { 24, 0, 0 }, 1, 1, 1, 0x18, false, false, FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, FDP1_CAPTURE }, { V4L2_PIX_FMT_ARGB444, { 16, 0, 0 }, 1, 1, 1, 0x19, false, false, FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | FD1_RWPF_SWAP_WORD, FDP1_CAPTURE }, { V4L2_PIX_FMT_ARGB555, { 16, 0, 0 }, 1, 1, 1, 0x1b, false, false, FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | FD1_RWPF_SWAP_WORD, FDP1_CAPTURE }, /* YUV Formats are supported by Read and Write Pixel Formatters */ { V4L2_PIX_FMT_NV16M, { 8, 16, 0 }, 2, 2, 1, 0x41, false, false, FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, FDP1_CAPTURE | FDP1_OUTPUT }, { V4L2_PIX_FMT_NV61M, { 8, 16, 0 }, 2, 2, 1, 0x41, false, true, FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, FDP1_CAPTURE | FDP1_OUTPUT }, { V4L2_PIX_FMT_NV12M, { 8, 16, 0 }, 2, 2, 2, 0x42, false, false, FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, FDP1_CAPTURE | FDP1_OUTPUT }, { V4L2_PIX_FMT_NV21M, { 8, 16, 0 }, 2, 2, 2, 0x42, false, true, FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, FDP1_CAPTURE | FDP1_OUTPUT }, { V4L2_PIX_FMT_UYVY, { 16, 0, 0 }, 1, 2, 1, 0x47, false, false, FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, FDP1_CAPTURE | FDP1_OUTPUT }, { V4L2_PIX_FMT_VYUY, { 16, 0, 0 }, 1, 2, 1, 0x47, false, true, FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, FDP1_CAPTURE | FDP1_OUTPUT }, { V4L2_PIX_FMT_YUYV, { 16, 0, 0 }, 1, 2, 1, 0x47, true, false, FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, FDP1_CAPTURE | FDP1_OUTPUT }, { V4L2_PIX_FMT_YVYU, { 16, 0, 0 }, 1, 2, 1, 0x47, true, true, FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, FDP1_CAPTURE | FDP1_OUTPUT }, { V4L2_PIX_FMT_YUV444M, { 8, 8, 8 }, 3, 1, 1, 0x4a, false, false, FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, FDP1_CAPTURE | FDP1_OUTPUT }, { V4L2_PIX_FMT_YVU444M, { 8, 8, 8 }, 3, 1, 1, 0x4a, false, true, FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, FDP1_CAPTURE | FDP1_OUTPUT }, { V4L2_PIX_FMT_YUV422M, { 8, 8, 8 }, 3, 2, 1, 0x4b, false, false, FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, FDP1_CAPTURE | FDP1_OUTPUT }, { V4L2_PIX_FMT_YVU422M, { 8, 8, 8 }, 3, 2, 1, 0x4b, false, true, FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, FDP1_CAPTURE | FDP1_OUTPUT }, { V4L2_PIX_FMT_YUV420M, { 8, 8, 8 }, 3, 2, 2, 0x4c, false, false, FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, FDP1_CAPTURE | FDP1_OUTPUT }, { V4L2_PIX_FMT_YVU420M, { 8, 8, 8 }, 3, 2, 2, 0x4c, false, true, FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, FDP1_CAPTURE | FDP1_OUTPUT }, }; static int fdp1_fmt_is_rgb(const struct fdp1_fmt *fmt) { return fmt->fmt <= 0x1b; /* Last RGB code */ } /* * FDP1 Lookup tables range from 0...255 only * * Each table must be less than 256 entries, and all tables * are padded out to 256 entries by duplicating the last value. */ static const u8 fdp1_diff_adj[] = { 0x00, 0x24, 0x43, 0x5e, 0x76, 0x8c, 0x9e, 0xaf, 0xbd, 0xc9, 0xd4, 0xdd, 0xe4, 0xea, 0xef, 0xf3, 0xf6, 0xf9, 0xfb, 0xfc, 0xfd, 0xfe, 0xfe, 0xff, }; static const u8 fdp1_sad_adj[] = { 0x00, 0x24, 0x43, 0x5e, 0x76, 0x8c, 0x9e, 0xaf, 0xbd, 0xc9, 0xd4, 0xdd, 0xe4, 0xea, 0xef, 0xf3, 0xf6, 0xf9, 0xfb, 0xfc, 0xfd, 0xfe, 0xfe, 0xff, }; static const u8 fdp1_bld_gain[] = { 0x80, }; static const u8 fdp1_dif_gain[] = { 0x80, }; static const u8 fdp1_mdet[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f, 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf, 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf, 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf, 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf, 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef, 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff }; /* Per-queue, driver-specific private data */ struct fdp1_q_data { const struct fdp1_fmt *fmt; struct v4l2_pix_format_mplane format; unsigned int vsize; unsigned int stride_y; unsigned int stride_c; }; static const struct fdp1_fmt *fdp1_find_format(u32 pixelformat) { const struct fdp1_fmt *fmt; unsigned int i; for (i = 0; i < ARRAY_SIZE(fdp1_formats); i++) { fmt = &fdp1_formats[i]; if (fmt->fourcc == pixelformat) return fmt; } return NULL; } enum fdp1_deint_mode { FDP1_PROGRESSIVE = 0, /* Must be zero when !deinterlacing */ FDP1_ADAPT2D3D, FDP1_FIXED2D, FDP1_FIXED3D, FDP1_PREVFIELD, FDP1_NEXTFIELD, }; #define FDP1_DEINT_MODE_USES_NEXT(mode) \ (mode == FDP1_ADAPT2D3D || \ mode == FDP1_FIXED3D || \ mode == FDP1_NEXTFIELD) #define FDP1_DEINT_MODE_USES_PREV(mode) \ (mode == FDP1_ADAPT2D3D || \ mode == FDP1_FIXED3D || \ mode == FDP1_PREVFIELD) /* * FDP1 operates on potentially 3 fields, which are tracked * from the VB buffers using this context structure. * Will always be a field or a full frame, never two fields. */ struct fdp1_field_buffer { struct vb2_v4l2_buffer *vb; dma_addr_t addrs[3]; /* Should be NONE:TOP:BOTTOM only */ enum v4l2_field field; /* Flag to indicate this is the last field in the vb */ bool last_field; /* Buffer queue lists */ struct list_head list; }; struct fdp1_buffer { struct v4l2_m2m_buffer m2m_buf; struct fdp1_field_buffer fields[2]; unsigned int num_fields; }; static inline struct fdp1_buffer *to_fdp1_buffer(struct vb2_v4l2_buffer *vb) { return container_of(vb, struct fdp1_buffer, m2m_buf.vb); } struct fdp1_job { struct fdp1_field_buffer *previous; struct fdp1_field_buffer *active; struct fdp1_field_buffer *next; struct fdp1_field_buffer *dst; /* A job can only be on one list at a time */ struct list_head list; }; struct fdp1_dev { struct v4l2_device v4l2_dev; struct video_device vfd; struct mutex dev_mutex; spinlock_t irqlock; spinlock_t device_process_lock; void __iomem *regs; unsigned int irq; struct device *dev; /* Job Queues */ struct fdp1_job jobs[FDP1_NUMBER_JOBS]; struct list_head free_job_list; struct list_head queued_job_list; struct list_head hw_job_list; unsigned int clk_rate; struct rcar_fcp_device *fcp; struct v4l2_m2m_dev *m2m_dev; }; struct fdp1_ctx { struct v4l2_fh fh; struct fdp1_dev *fdp1; struct v4l2_ctrl_handler hdl; unsigned int sequence; /* Processed buffers in this transaction */ u8 num_processed; /* Transaction length (i.e. how many buffers per transaction) */ u32 translen; /* Abort requested by m2m */ int aborting; /* Deinterlace processing mode */ enum fdp1_deint_mode deint_mode; /* * Adaptive 2D/3D mode uses a shared mask * This is allocated at streamon, if the ADAPT2D3D mode * is requested */ unsigned int smsk_size; dma_addr_t smsk_addr[2]; void *smsk_cpu; /* Capture pipeline, can specify an alpha value * for supported formats. 0-255 only */ unsigned char alpha; /* Source and destination queue data */ struct fdp1_q_data out_q; /* HW Source */ struct fdp1_q_data cap_q; /* HW Destination */ /* * Field Queues * Interlaced fields are used on 3 occasions, and tracked in this list. * * V4L2 Buffers are tracked inside the fdp1_buffer * and released when the last 'field' completes */ struct list_head fields_queue; unsigned int buffers_queued; /* * For de-interlacing we need to track our previous buffer * while preparing our job lists. */ struct fdp1_field_buffer *previous; }; static inline struct fdp1_ctx *fh_to_ctx(struct v4l2_fh *fh) { return container_of(fh, struct fdp1_ctx, fh); } static struct fdp1_q_data *get_q_data(struct fdp1_ctx *ctx, enum v4l2_buf_type type) { if (V4L2_TYPE_IS_OUTPUT(type)) return &ctx->out_q; else return &ctx->cap_q; } /* * list_remove_job: Take the first item off the specified job list * * Returns: pointer to a job, or NULL if the list is empty. */ static struct fdp1_job *list_remove_job(struct fdp1_dev *fdp1, struct list_head *list) { struct fdp1_job *job; unsigned long flags; spin_lock_irqsave(&fdp1->irqlock, flags); job = list_first_entry_or_null(list, struct fdp1_job, list); if (job) list_del(&job->list); spin_unlock_irqrestore(&fdp1->irqlock, flags); return job; } /* * list_add_job: Add a job to the specified job list * * Returns: void - always succeeds */ static void list_add_job(struct fdp1_dev *fdp1, struct list_head *list, struct fdp1_job *job) { unsigned long flags; spin_lock_irqsave(&fdp1->irqlock, flags); list_add_tail(&job->list, list); spin_unlock_irqrestore(&fdp1->irqlock, flags); } static struct fdp1_job *fdp1_job_alloc(struct fdp1_dev *fdp1) { return list_remove_job(fdp1, &fdp1->free_job_list); } static void fdp1_job_free(struct fdp1_dev *fdp1, struct fdp1_job *job) { /* Ensure that all residue from previous jobs is gone */ memset(job, 0, sizeof(struct fdp1_job)); list_add_job(fdp1, &fdp1->free_job_list, job); } static void queue_job(struct fdp1_dev *fdp1, struct fdp1_job *job) { list_add_job(fdp1, &fdp1->queued_job_list, job); } static struct fdp1_job *get_queued_job(struct fdp1_dev *fdp1) { return list_remove_job(fdp1, &fdp1->queued_job_list); } static void queue_hw_job(struct fdp1_dev *fdp1, struct fdp1_job *job) { list_add_job(fdp1, &fdp1->hw_job_list, job); } static struct fdp1_job *get_hw_queued_job(struct fdp1_dev *fdp1) { return list_remove_job(fdp1, &fdp1->hw_job_list); } /* * Buffer lists handling */ static void fdp1_field_complete(struct fdp1_ctx *ctx, struct fdp1_field_buffer *fbuf) { /* job->previous may be on the first field */ if (!fbuf) return; if (fbuf->last_field) v4l2_m2m_buf_done(fbuf->vb, VB2_BUF_STATE_DONE); } static void fdp1_queue_field(struct fdp1_ctx *ctx, struct fdp1_field_buffer *fbuf) { unsigned long flags; spin_lock_irqsave(&ctx->fdp1->irqlock, flags); list_add_tail(&fbuf->list, &ctx->fields_queue); spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags); ctx->buffers_queued++; } static struct fdp1_field_buffer *fdp1_dequeue_field(struct fdp1_ctx *ctx) { struct fdp1_field_buffer *fbuf; unsigned long flags; ctx->buffers_queued--; spin_lock_irqsave(&ctx->fdp1->irqlock, flags); fbuf = list_first_entry_or_null(&ctx->fields_queue, struct fdp1_field_buffer, list); if (fbuf) list_del(&fbuf->list); spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags); return fbuf; } /* * Return the next field in the queue - or NULL, * without removing the item from the list */ static struct fdp1_field_buffer *fdp1_peek_queued_field(struct fdp1_ctx *ctx) { struct fdp1_field_buffer *fbuf; unsigned long flags; spin_lock_irqsave(&ctx->fdp1->irqlock, flags); fbuf = list_first_entry_or_null(&ctx->fields_queue, struct fdp1_field_buffer, list); spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags); return fbuf; } static u32 fdp1_read(struct fdp1_dev *fdp1, unsigned int reg) { u32 value = ioread32(fdp1->regs + reg); if (debug >= 2) dprintk(fdp1, "Read 0x%08x from 0x%04x\n", value, reg); return value; } static void fdp1_write(struct fdp1_dev *fdp1, u32 val, unsigned int reg) { if (debug >= 2) dprintk(fdp1, "Write 0x%08x to 0x%04x\n", val, reg); iowrite32(val, fdp1->regs + reg); } /* IPC registers are to be programmed with constant values */ static void fdp1_set_ipc_dli(struct fdp1_ctx *ctx) { struct fdp1_dev *fdp1 = ctx->fdp1; fdp1_write(fdp1, FD1_IPC_SMSK_THRESH_CONST, FD1_IPC_SMSK_THRESH); fdp1_write(fdp1, FD1_IPC_COMB_DET_CONST, FD1_IPC_COMB_DET); fdp1_write(fdp1, FD1_IPC_MOTDEC_CONST, FD1_IPC_MOTDEC); fdp1_write(fdp1, FD1_IPC_DLI_BLEND_CONST, FD1_IPC_DLI_BLEND); fdp1_write(fdp1, FD1_IPC_DLI_HGAIN_CONST, FD1_IPC_DLI_HGAIN); fdp1_write(fdp1, FD1_IPC_DLI_SPRS_CONST, FD1_IPC_DLI_SPRS); fdp1_write(fdp1, FD1_IPC_DLI_ANGLE_CONST, FD1_IPC_DLI_ANGLE); fdp1_write(fdp1, FD1_IPC_DLI_ISOPIX0_CONST, FD1_IPC_DLI_ISOPIX0); fdp1_write(fdp1, FD1_IPC_DLI_ISOPIX1_CONST, FD1_IPC_DLI_ISOPIX1); } static void fdp1_set_ipc_sensor(struct fdp1_ctx *ctx) { struct fdp1_dev *fdp1 = ctx->fdp1; struct fdp1_q_data *src_q_data = &ctx->out_q; unsigned int x0, x1; unsigned int hsize = src_q_data->format.width; unsigned int vsize = src_q_data->format.height; x0 = hsize / 3; x1 = 2 * hsize / 3; fdp1_write(fdp1, FD1_IPC_SENSOR_TH0_CONST, FD1_IPC_SENSOR_TH0); fdp1_write(fdp1, FD1_IPC_SENSOR_TH1_CONST, FD1_IPC_SENSOR_TH1); fdp1_write(fdp1, FD1_IPC_SENSOR_CTL0_CONST, FD1_IPC_SENSOR_CTL0); fdp1_write(fdp1, FD1_IPC_SENSOR_CTL1_CONST, FD1_IPC_SENSOR_CTL1); fdp1_write(fdp1, ((hsize - 1) << FD1_IPC_SENSOR_CTL2_X_SHIFT) | ((vsize - 1) << FD1_IPC_SENSOR_CTL2_Y_SHIFT), FD1_IPC_SENSOR_CTL2); fdp1_write(fdp1, (x0 << FD1_IPC_SENSOR_CTL3_0_SHIFT) | (x1 << FD1_IPC_SENSOR_CTL3_1_SHIFT), FD1_IPC_SENSOR_CTL3); } /* * fdp1_write_lut: Write a padded LUT to the hw * * FDP1 uses constant data for de-interlacing processing, * with large tables. These hardware tables are all 256 bytes * long, however they often contain repeated data at the end. * * The last byte of the table is written to all remaining entries. */ static void fdp1_write_lut(struct fdp1_dev *fdp1, const u8 *lut, unsigned int len, unsigned int base) { unsigned int i; u8 pad; /* Tables larger than the hw are clipped */ len = min(len, 256u); for (i = 0; i < len; i++) fdp1_write(fdp1, lut[i], base + (i*4)); /* Tables are padded with the last entry */ pad = lut[i-1]; for (; i < 256; i++) fdp1_write(fdp1, pad, base + (i*4)); } static void fdp1_set_lut(struct fdp1_dev *fdp1) { fdp1_write_lut(fdp1, fdp1_diff_adj, ARRAY_SIZE(fdp1_diff_adj), FD1_LUT_DIF_ADJ); fdp1_write_lut(fdp1, fdp1_sad_adj, ARRAY_SIZE(fdp1_sad_adj), FD1_LUT_SAD_ADJ); fdp1_write_lut(fdp1, fdp1_bld_gain, ARRAY_SIZE(fdp1_bld_gain), FD1_LUT_BLD_GAIN); fdp1_write_lut(fdp1, fdp1_dif_gain, ARRAY_SIZE(fdp1_dif_gain), FD1_LUT_DIF_GAIN); fdp1_write_lut(fdp1, fdp1_mdet, ARRAY_SIZE(fdp1_mdet), FD1_LUT_MDET); } static void fdp1_configure_rpf(struct fdp1_ctx *ctx, struct fdp1_job *job) { struct fdp1_dev *fdp1 = ctx->fdp1; u32 picture_size; u32 pstride; u32 format; u32 smsk_addr; struct fdp1_q_data *q_data = &ctx->out_q; /* Picture size is common to Source and Destination frames */ picture_size = (q_data->format.width << FD1_RPF_SIZE_H_SHIFT) | (q_data->vsize << FD1_RPF_SIZE_V_SHIFT); /* Strides */ pstride = q_data->stride_y << FD1_RPF_PSTRIDE_Y_SHIFT; if (q_data->format.num_planes > 1) pstride |= q_data->stride_c << FD1_RPF_PSTRIDE_C_SHIFT; /* Format control */ format = q_data->fmt->fmt; if (q_data->fmt->swap_yc) format |= FD1_RPF_FORMAT_RSPYCS; if (q_data->fmt->swap_uv) format |= FD1_RPF_FORMAT_RSPUVS; if (job->active->field == V4L2_FIELD_BOTTOM) { format |= FD1_RPF_FORMAT_CF; /* Set for Bottom field */ smsk_addr = ctx->smsk_addr[0]; } else { smsk_addr = ctx->smsk_addr[1]; } /* Deint mode is non-zero when deinterlacing */ if (ctx->deint_mode) format |= FD1_RPF_FORMAT_CIPM; fdp1_write(fdp1, format, FD1_RPF_FORMAT); fdp1_write(fdp1, q_data->fmt->swap, FD1_RPF_SWAP); fdp1_write(fdp1, picture_size, FD1_RPF_SIZE); fdp1_write(fdp1, pstride, FD1_RPF_PSTRIDE); fdp1_write(fdp1, smsk_addr, FD1_RPF_SMSK_ADDR); /* Previous Field Channel (CH0) */ if (job->previous) fdp1_write(fdp1, job->previous->addrs[0], FD1_RPF0_ADDR_Y); /* Current Field Channel (CH1) */ fdp1_write(fdp1, job->active->addrs[0], FD1_RPF1_ADDR_Y); fdp1_write(fdp1, job->active->addrs[1], FD1_RPF1_ADDR_C0); fdp1_write(fdp1, job->active->addrs[2], FD1_RPF1_ADDR_C1); /* Next Field Channel (CH2) */ if (job->next) fdp1_write(fdp1, job->next->addrs[0], FD1_RPF2_ADDR_Y); } static void fdp1_configure_wpf(struct fdp1_ctx *ctx, struct fdp1_job *job) { struct fdp1_dev *fdp1 = ctx->fdp1; struct fdp1_q_data *src_q_data = &ctx->out_q; struct fdp1_q_data *q_data = &ctx->cap_q; u32 pstride; u32 format; u32 swap; u32 rndctl; pstride = q_data->format.plane_fmt[0].bytesperline << FD1_WPF_PSTRIDE_Y_SHIFT; if (q_data->format.num_planes > 1) pstride |= q_data->format.plane_fmt[1].bytesperline << FD1_WPF_PSTRIDE_C_SHIFT; format = q_data->fmt->fmt; /* Output Format Code */ if (q_data->fmt->swap_yc) format |= FD1_WPF_FORMAT_WSPYCS; if (q_data->fmt->swap_uv) format |= FD1_WPF_FORMAT_WSPUVS; if (fdp1_fmt_is_rgb(q_data->fmt)) { /* Enable Colour Space conversion */ format |= FD1_WPF_FORMAT_CSC; /* Set WRTM */ if (src_q_data->format.ycbcr_enc == V4L2_YCBCR_ENC_709) format |= FD1_WPF_FORMAT_WRTM_709_16; else if (src_q_data->format.quantization == V4L2_QUANTIZATION_FULL_RANGE) format |= FD1_WPF_FORMAT_WRTM_601_0; else format |= FD1_WPF_FORMAT_WRTM_601_16; } /* Set an alpha value into the Pad Value */ format |= ctx->alpha << FD1_WPF_FORMAT_PDV_SHIFT; /* Determine picture rounding and clipping */ rndctl = FD1_WPF_RNDCTL_CBRM; /* Rounding Off */ rndctl |= FD1_WPF_RNDCTL_CLMD_NOCLIP; /* WPF Swap needs both ISWAP and OSWAP setting */ swap = q_data->fmt->swap << FD1_WPF_SWAP_OSWAP_SHIFT; swap |= src_q_data->fmt->swap << FD1_WPF_SWAP_SSWAP_SHIFT; fdp1_write(fdp1, format, FD1_WPF_FORMAT); fdp1_write(fdp1, rndctl, FD1_WPF_RNDCTL); fdp1_write(fdp1, swap, FD1_WPF_SWAP); fdp1_write(fdp1, pstride, FD1_WPF_PSTRIDE); fdp1_write(fdp1, job->dst->addrs[0], FD1_WPF_ADDR_Y); fdp1_write(fdp1, job->dst->addrs[1], FD1_WPF_ADDR_C0); fdp1_write(fdp1, job->dst->addrs[2], FD1_WPF_ADDR_C1); } static void fdp1_configure_deint_mode(struct fdp1_ctx *ctx, struct fdp1_job *job) { struct fdp1_dev *fdp1 = ctx->fdp1; u32 opmode = FD1_CTL_OPMODE_VIMD_NOINTERRUPT; u32 ipcmode = FD1_IPC_MODE_DLI; /* Always set */ u32 channels = FD1_CTL_CHACT_WR | FD1_CTL_CHACT_RD1; /* Always on */ /* De-interlacing Mode */ switch (ctx->deint_mode) { default: case FDP1_PROGRESSIVE: dprintk(fdp1, "Progressive Mode\n"); opmode |= FD1_CTL_OPMODE_PRG; ipcmode |= FD1_IPC_MODE_DIM_FIXED2D; break; case FDP1_ADAPT2D3D: dprintk(fdp1, "Adapt2D3D Mode\n"); if (ctx->sequence == 0 || ctx->aborting) ipcmode |= FD1_IPC_MODE_DIM_FIXED2D; else ipcmode |= FD1_IPC_MODE_DIM_ADAPT2D3D; if (ctx->sequence > 1) { channels |= FD1_CTL_CHACT_SMW; channels |= FD1_CTL_CHACT_RD0 | FD1_CTL_CHACT_RD2; } if (ctx->sequence > 2) channels |= FD1_CTL_CHACT_SMR; break; case FDP1_FIXED3D: dprintk(fdp1, "Fixed 3D Mode\n"); ipcmode |= FD1_IPC_MODE_DIM_FIXED3D; /* Except for first and last frame, enable all channels */ if (!(ctx->sequence == 0 || ctx->aborting)) channels |= FD1_CTL_CHACT_RD0 | FD1_CTL_CHACT_RD2; break; case FDP1_FIXED2D: dprintk(fdp1, "Fixed 2D Mode\n"); ipcmode |= FD1_IPC_MODE_DIM_FIXED2D; /* No extra channels enabled */ break; case FDP1_PREVFIELD: dprintk(fdp1, "Previous Field Mode\n"); ipcmode |= FD1_IPC_MODE_DIM_PREVFIELD; channels |= FD1_CTL_CHACT_RD0; /* Previous */ break; case FDP1_NEXTFIELD: dprintk(fdp1, "Next Field Mode\n"); ipcmode |= FD1_IPC_MODE_DIM_NEXTFIELD; channels |= FD1_CTL_CHACT_RD2; /* Next */ break; } fdp1_write(fdp1, channels, FD1_CTL_CHACT); fdp1_write(fdp1, opmode, FD1_CTL_OPMODE); fdp1_write(fdp1, ipcmode, FD1_IPC_MODE); } /* * fdp1_device_process() - Run the hardware * * Configure and start the hardware to generate a single frame * of output given our input parameters. */ static int fdp1_device_process(struct fdp1_ctx *ctx) { struct fdp1_dev *fdp1 = ctx->fdp1; struct fdp1_job *job; unsigned long flags; spin_lock_irqsave(&fdp1->device_process_lock, flags); /* Get a job to process */ job = get_queued_job(fdp1); if (!job) { /* * VINT can call us to see if we can queue another job. * If we have no work to do, we simply return. */ spin_unlock_irqrestore(&fdp1->device_process_lock, flags); return 0; } /* First Frame only? ... */ fdp1_write(fdp1, FD1_CTL_CLKCTRL_CSTP_N, FD1_CTL_CLKCTRL); /* Set the mode, and configuration */ fdp1_configure_deint_mode(ctx, job); /* DLI Static Configuration */ fdp1_set_ipc_dli(ctx); /* Sensor Configuration */ fdp1_set_ipc_sensor(ctx); /* Setup the source picture */ fdp1_configure_rpf(ctx, job); /* Setup the destination picture */ fdp1_configure_wpf(ctx, job); /* Line Memory Pixel Number Register for linear access */ fdp1_write(fdp1, FD1_IPC_LMEM_LINEAR, FD1_IPC_LMEM); /* Enable Interrupts */ fdp1_write(fdp1, FD1_CTL_IRQ_MASK, FD1_CTL_IRQENB); /* Finally, the Immediate Registers */ /* This job is now in the HW queue */ queue_hw_job(fdp1, job); /* Start the command */ fdp1_write(fdp1, FD1_CTL_CMD_STRCMD, FD1_CTL_CMD); /* Registers will update to HW at next VINT */ fdp1_write(fdp1, FD1_CTL_REGEND_REGEND, FD1_CTL_REGEND); /* Enable VINT Generator */ fdp1_write(fdp1, FD1_CTL_SGCMD_SGEN, FD1_CTL_SGCMD); spin_unlock_irqrestore(&fdp1->device_process_lock, flags); return 0; } /* * mem2mem callbacks */ /* * job_ready() - check whether an instance is ready to be scheduled to run */ static int fdp1_m2m_job_ready(void *priv) { struct fdp1_ctx *ctx = priv; struct fdp1_q_data *src_q_data = &ctx->out_q; int srcbufs = 1; int dstbufs = 1; dprintk(ctx->fdp1, "+ Src: %d : Dst: %d\n", v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx), v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx)); /* One output buffer is required for each field */ if (V4L2_FIELD_HAS_BOTH(src_q_data->format.field)) dstbufs = 2; if (v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx) < srcbufs || v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx) < dstbufs) { dprintk(ctx->fdp1, "Not enough buffers available\n"); return 0; } return 1; } static void fdp1_m2m_job_abort(void *priv) { struct fdp1_ctx *ctx = priv; dprintk(ctx->fdp1, "+\n"); /* Will cancel the transaction in the next interrupt handler */ ctx->aborting = 1; /* Immediate abort sequence */ fdp1_write(ctx->fdp1, 0, FD1_CTL_SGCMD); fdp1_write(ctx->fdp1, FD1_CTL_SRESET_SRST, FD1_CTL_SRESET); } /* * fdp1_prepare_job: Prepare and queue a new job for a single action of work * * Prepare the next field, (or frame in progressive) and an output * buffer for the hardware to perform a single operation. */ static struct fdp1_job *fdp1_prepare_job(struct fdp1_ctx *ctx) { struct vb2_v4l2_buffer *vbuf; struct fdp1_buffer *fbuf; struct fdp1_dev *fdp1 = ctx->fdp1; struct fdp1_job *job; unsigned int buffers_required = 1; dprintk(fdp1, "+\n"); if (FDP1_DEINT_MODE_USES_NEXT(ctx->deint_mode)) buffers_required = 2; if (ctx->buffers_queued < buffers_required) return NULL; job = fdp1_job_alloc(fdp1); if (!job) { dprintk(fdp1, "No free jobs currently available\n"); return NULL; } job->active = fdp1_dequeue_field(ctx); if (!job->active) { /* Buffer check should prevent this ever happening */ dprintk(fdp1, "No input buffers currently available\n"); fdp1_job_free(fdp1, job); return NULL; } dprintk(fdp1, "+ Buffer en-route...\n"); /* Source buffers have been prepared on our buffer_queue * Prepare our Output buffer */ vbuf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx); fbuf = to_fdp1_buffer(vbuf); job->dst = &fbuf->fields[0]; job->active->vb->sequence = ctx->sequence; job->dst->vb->sequence = ctx->sequence; ctx->sequence++; if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode)) { job->previous = ctx->previous; /* Active buffer becomes the next job's previous buffer */ ctx->previous = job->active; } if (FDP1_DEINT_MODE_USES_NEXT(ctx->deint_mode)) { /* Must be called after 'active' is dequeued */ job->next = fdp1_peek_queued_field(ctx); } /* Transfer timestamps and flags from src->dst */ job->dst->vb->vb2_buf.timestamp = job->active->vb->vb2_buf.timestamp; job->dst->vb->flags = job->active->vb->flags & V4L2_BUF_FLAG_TSTAMP_SRC_MASK; /* Ideally, the frame-end function will just 'check' to see * if there are more jobs instead */ ctx->translen++; /* Finally, Put this job on the processing queue */ queue_job(fdp1, job); dprintk(fdp1, "Job Queued translen = %d\n", ctx->translen); return job; } /* fdp1_m2m_device_run() - prepares and starts the device for an M2M task * * A single input buffer is taken and serialised into our fdp1_buffer * queue. The queue is then processed to create as many jobs as possible * from our available input. */ static void fdp1_m2m_device_run(void *priv) { struct fdp1_ctx *ctx = priv; struct fdp1_dev *fdp1 = ctx->fdp1; struct vb2_v4l2_buffer *src_vb; struct fdp1_buffer *buf; unsigned int i; dprintk(fdp1, "+\n"); ctx->translen = 0; /* Get our incoming buffer of either one or two fields, or one frame */ src_vb = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx); buf = to_fdp1_buffer(src_vb); for (i = 0; i < buf->num_fields; i++) { struct fdp1_field_buffer *fbuf = &buf->fields[i]; fdp1_queue_field(ctx, fbuf); dprintk(fdp1, "Queued Buffer [%d] last_field:%d\n", i, fbuf->last_field); } /* Queue as many jobs as our data provides for */ while (fdp1_prepare_job(ctx)) ; if (ctx->translen == 0) { dprintk(fdp1, "No jobs were processed. M2M action complete\n"); v4l2_m2m_job_finish(fdp1->m2m_dev, ctx->fh.m2m_ctx); return; } /* Kick the job processing action */ fdp1_device_process(ctx); } /* * device_frame_end: * * Handles the M2M level after a buffer completion event. */ static void device_frame_end(struct fdp1_dev *fdp1, enum vb2_buffer_state state) { struct fdp1_ctx *ctx; unsigned long flags; struct fdp1_job *job = get_hw_queued_job(fdp1); dprintk(fdp1, "+\n"); ctx = v4l2_m2m_get_curr_priv(fdp1->m2m_dev); if (ctx == NULL) { v4l2_err(&fdp1->v4l2_dev, "Instance released before the end of transaction\n"); return; } ctx->num_processed++; /* * fdp1_field_complete will call buf_done only when the last vb2_buffer * reference is complete */ if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode)) fdp1_field_complete(ctx, job->previous); else fdp1_field_complete(ctx, job->active); spin_lock_irqsave(&fdp1->irqlock, flags); v4l2_m2m_buf_done(job->dst->vb, state); job->dst = NULL; spin_unlock_irqrestore(&fdp1->irqlock, flags); /* Move this job back to the free job list */ fdp1_job_free(fdp1, job); dprintk(fdp1, "curr_ctx->num_processed %d curr_ctx->translen %d\n", ctx->num_processed, ctx->translen); if (ctx->num_processed == ctx->translen || ctx->aborting) { dprintk(ctx->fdp1, "Finishing transaction\n"); ctx->num_processed = 0; v4l2_m2m_job_finish(fdp1->m2m_dev, ctx->fh.m2m_ctx); } else { /* * For pipelined performance support, this would * be called from a VINT handler */ fdp1_device_process(ctx); } } /* * video ioctls */ static int fdp1_vidioc_querycap(struct file *file, void *priv, struct v4l2_capability *cap) { strscpy(cap->driver, DRIVER_NAME, sizeof(cap->driver)); strscpy(cap->card, DRIVER_NAME, sizeof(cap->card)); snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s", DRIVER_NAME); return 0; } static int fdp1_enum_fmt(struct v4l2_fmtdesc *f, u32 type) { unsigned int i, num; num = 0; for (i = 0; i < ARRAY_SIZE(fdp1_formats); ++i) { if (fdp1_formats[i].types & type) { if (num == f->index) break; ++num; } } /* Format not found */ if (i >= ARRAY_SIZE(fdp1_formats)) return -EINVAL; /* Format found */ f->pixelformat = fdp1_formats[i].fourcc; return 0; } static int fdp1_enum_fmt_vid_cap(struct file *file, void *priv, struct v4l2_fmtdesc *f) { return fdp1_enum_fmt(f, FDP1_CAPTURE); } static int fdp1_enum_fmt_vid_out(struct file *file, void *priv, struct v4l2_fmtdesc *f) { return fdp1_enum_fmt(f, FDP1_OUTPUT); } static int fdp1_g_fmt(struct file *file, void *priv, struct v4l2_format *f) { struct fdp1_q_data *q_data; struct fdp1_ctx *ctx = fh_to_ctx(priv); if (!v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type)) return -EINVAL; q_data = get_q_data(ctx, f->type); f->fmt.pix_mp = q_data->format; return 0; } static void fdp1_compute_stride(struct v4l2_pix_format_mplane *pix, const struct fdp1_fmt *fmt) { unsigned int i; /* Compute and clamp the stride and image size. */ for (i = 0; i < min_t(unsigned int, fmt->num_planes, 2U); ++i) { unsigned int hsub = i > 0 ? fmt->hsub : 1; unsigned int vsub = i > 0 ? fmt->vsub : 1; /* From VSP : TODO: Confirm alignment limits for FDP1 */ unsigned int align = 128; unsigned int bpl; bpl = clamp_t(unsigned int, pix->plane_fmt[i].bytesperline, pix->width / hsub * fmt->bpp[i] / 8, round_down(FDP1_MAX_STRIDE, align)); pix->plane_fmt[i].bytesperline = round_up(bpl, align); pix->plane_fmt[i].sizeimage = pix->plane_fmt[i].bytesperline * pix->height / vsub; } if (fmt->num_planes == 3) { /* The two chroma planes must have the same stride. */ pix->plane_fmt[2].bytesperline = pix->plane_fmt[1].bytesperline; pix->plane_fmt[2].sizeimage = pix->plane_fmt[1].sizeimage; } } static void fdp1_try_fmt_output(struct fdp1_ctx *ctx, const struct fdp1_fmt **fmtinfo, struct v4l2_pix_format_mplane *pix) { const struct fdp1_fmt *fmt; unsigned int width; unsigned int height; /* Validate the pixel format to ensure the output queue supports it. */ fmt = fdp1_find_format(pix->pixelformat); if (!fmt || !(fmt->types & FDP1_OUTPUT)) fmt = fdp1_find_format(V4L2_PIX_FMT_YUYV); if (fmtinfo) *fmtinfo = fmt; pix->pixelformat = fmt->fourcc; pix->num_planes = fmt->num_planes; /* * Progressive video and all interlaced field orders are acceptable. * Default to V4L2_FIELD_INTERLACED. */ if (pix->field != V4L2_FIELD_NONE && pix->field != V4L2_FIELD_ALTERNATE && !V4L2_FIELD_HAS_BOTH(pix->field)) pix->field = V4L2_FIELD_INTERLACED; /* * The deinterlacer doesn't care about the colorspace, accept all values * and default to V4L2_COLORSPACE_SMPTE170M. The YUV to RGB conversion * at the output of the deinterlacer supports a subset of encodings and * quantization methods and will only be available when the colorspace * allows it. */ if (pix->colorspace == V4L2_COLORSPACE_DEFAULT) pix->colorspace = V4L2_COLORSPACE_SMPTE170M; /* * Align the width and height for YUV 4:2:2 and 4:2:0 formats and clamp * them to the supported frame size range. The height boundary are * related to the full frame, divide them by two when the format passes * fields in separate buffers. */ width = round_down(pix->width, fmt->hsub); pix->width = clamp(width, FDP1_MIN_W, FDP1_MAX_W); height = round_down(pix->height, fmt->vsub); if (pix->field == V4L2_FIELD_ALTERNATE) pix->height = clamp(height, FDP1_MIN_H / 2, FDP1_MAX_H / 2); else pix->height = clamp(height, FDP1_MIN_H, FDP1_MAX_H); fdp1_compute_stride(pix, fmt); } static void fdp1_try_fmt_capture(struct fdp1_ctx *ctx, const struct fdp1_fmt **fmtinfo, struct v4l2_pix_format_mplane *pix) { struct fdp1_q_data *src_data = &ctx->out_q; enum v4l2_colorspace colorspace; enum v4l2_ycbcr_encoding ycbcr_enc; enum v4l2_quantization quantization; const struct fdp1_fmt *fmt; bool allow_rgb; /* * Validate the pixel format. We can only accept RGB output formats if * the input encoding and quantization are compatible with the format * conversions supported by the hardware. The supported combinations are * * V4L2_YCBCR_ENC_601 + V4L2_QUANTIZATION_LIM_RANGE * V4L2_YCBCR_ENC_601 + V4L2_QUANTIZATION_FULL_RANGE * V4L2_YCBCR_ENC_709 + V4L2_QUANTIZATION_LIM_RANGE */ colorspace = src_data->format.colorspace; ycbcr_enc = src_data->format.ycbcr_enc; if (ycbcr_enc == V4L2_YCBCR_ENC_DEFAULT) ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(colorspace); quantization = src_data->format.quantization; if (quantization == V4L2_QUANTIZATION_DEFAULT) quantization = V4L2_MAP_QUANTIZATION_DEFAULT(false, colorspace, ycbcr_enc); allow_rgb = ycbcr_enc == V4L2_YCBCR_ENC_601 || (ycbcr_enc == V4L2_YCBCR_ENC_709 && quantization == V4L2_QUANTIZATION_LIM_RANGE); fmt = fdp1_find_format(pix->pixelformat); if (!fmt || (!allow_rgb && fdp1_fmt_is_rgb(fmt))) fmt = fdp1_find_format(V4L2_PIX_FMT_YUYV); if (fmtinfo) *fmtinfo = fmt; pix->pixelformat = fmt->fourcc; pix->num_planes = fmt->num_planes; pix->field = V4L2_FIELD_NONE; /* * The colorspace on the capture queue is copied from the output queue * as the hardware can't change the colorspace. It can convert YCbCr to * RGB though, in which case the encoding and quantization are set to * default values as anything else wouldn't make sense. */ pix->colorspace = src_data->format.colorspace; pix->xfer_func = src_data->format.xfer_func; if (fdp1_fmt_is_rgb(fmt)) { pix->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT; pix->quantization = V4L2_QUANTIZATION_DEFAULT; } else { pix->ycbcr_enc = src_data->format.ycbcr_enc; pix->quantization = src_data->format.quantization; } /* * The frame width is identical to the output queue, and the height is * either doubled or identical depending on whether the output queue * field order contains one or two fields per frame. */ pix->width = src_data->format.width; if (src_data->format.field == V4L2_FIELD_ALTERNATE) pix->height = 2 * src_data->format.height; else pix->height = src_data->format.height; fdp1_compute_stride(pix, fmt); } static int fdp1_try_fmt(struct file *file, void *priv, struct v4l2_format *f) { struct fdp1_ctx *ctx = fh_to_ctx(priv); if (f->type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) fdp1_try_fmt_output(ctx, NULL, &f->fmt.pix_mp); else fdp1_try_fmt_capture(ctx, NULL, &f->fmt.pix_mp); dprintk(ctx->fdp1, "Try %s format: %4.4s (0x%08x) %ux%u field %u\n", V4L2_TYPE_IS_OUTPUT(f->type) ? "output" : "capture", (char *)&f->fmt.pix_mp.pixelformat, f->fmt.pix_mp.pixelformat, f->fmt.pix_mp.width, f->fmt.pix_mp.height, f->fmt.pix_mp.field); return 0; } static void fdp1_set_format(struct fdp1_ctx *ctx, struct v4l2_pix_format_mplane *pix, enum v4l2_buf_type type) { struct fdp1_q_data *q_data = get_q_data(ctx, type); const struct fdp1_fmt *fmtinfo; if (type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) fdp1_try_fmt_output(ctx, &fmtinfo, pix); else fdp1_try_fmt_capture(ctx, &fmtinfo, pix); q_data->fmt = fmtinfo; q_data->format = *pix; q_data->vsize = pix->height; if (pix->field != V4L2_FIELD_NONE) q_data->vsize /= 2; q_data->stride_y = pix->plane_fmt[0].bytesperline; q_data->stride_c = pix->plane_fmt[1].bytesperline; /* Adjust strides for interleaved buffers */ if (pix->field == V4L2_FIELD_INTERLACED || pix->field == V4L2_FIELD_INTERLACED_TB || pix->field == V4L2_FIELD_INTERLACED_BT) { q_data->stride_y *= 2; q_data->stride_c *= 2; } /* Propagate the format from the output node to the capture node. */ if (type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) { struct fdp1_q_data *dst_data = &ctx->cap_q; /* * Copy the format, clear the per-plane bytes per line and image * size, override the field and double the height if needed. */ dst_data->format = q_data->format; memset(dst_data->format.plane_fmt, 0, sizeof(dst_data->format.plane_fmt)); dst_data->format.field = V4L2_FIELD_NONE; if (pix->field == V4L2_FIELD_ALTERNATE) dst_data->format.height *= 2; fdp1_try_fmt_capture(ctx, &dst_data->fmt, &dst_data->format); dst_data->vsize = dst_data->format.height; dst_data->stride_y = dst_data->format.plane_fmt[0].bytesperline; dst_data->stride_c = dst_data->format.plane_fmt[1].bytesperline; } } static int fdp1_s_fmt(struct file *file, void *priv, struct v4l2_format *f) { struct fdp1_ctx *ctx = fh_to_ctx(priv); struct v4l2_m2m_ctx *m2m_ctx = ctx->fh.m2m_ctx; struct vb2_queue *vq = v4l2_m2m_get_vq(m2m_ctx, f->type); if (vb2_is_busy(vq)) { v4l2_err(&ctx->fdp1->v4l2_dev, "%s queue busy\n", __func__); return -EBUSY; } fdp1_set_format(ctx, &f->fmt.pix_mp, f->type); dprintk(ctx->fdp1, "Set %s format: %4.4s (0x%08x) %ux%u field %u\n", V4L2_TYPE_IS_OUTPUT(f->type) ? "output" : "capture", (char *)&f->fmt.pix_mp.pixelformat, f->fmt.pix_mp.pixelformat, f->fmt.pix_mp.width, f->fmt.pix_mp.height, f->fmt.pix_mp.field); return 0; } static int fdp1_g_ctrl(struct v4l2_ctrl *ctrl) { struct fdp1_ctx *ctx = container_of(ctrl->handler, struct fdp1_ctx, hdl); struct fdp1_q_data *src_q_data = &ctx->out_q; switch (ctrl->id) { case V4L2_CID_MIN_BUFFERS_FOR_CAPTURE: if (V4L2_FIELD_HAS_BOTH(src_q_data->format.field)) ctrl->val = 2; else ctrl->val = 1; return 0; } return 1; } static int fdp1_s_ctrl(struct v4l2_ctrl *ctrl) { struct fdp1_ctx *ctx = container_of(ctrl->handler, struct fdp1_ctx, hdl); switch (ctrl->id) { case V4L2_CID_ALPHA_COMPONENT: ctx->alpha = ctrl->val; break; case V4L2_CID_DEINTERLACING_MODE: ctx->deint_mode = ctrl->val; break; } return 0; } static const struct v4l2_ctrl_ops fdp1_ctrl_ops = { .s_ctrl = fdp1_s_ctrl, .g_volatile_ctrl = fdp1_g_ctrl, }; static const char * const fdp1_ctrl_deint_menu[] = { "Progressive", "Adaptive 2D/3D", "Fixed 2D", "Fixed 3D", "Previous field", "Next field", NULL }; static const struct v4l2_ioctl_ops fdp1_ioctl_ops = { .vidioc_querycap = fdp1_vidioc_querycap, .vidioc_enum_fmt_vid_cap = fdp1_enum_fmt_vid_cap, .vidioc_enum_fmt_vid_out = fdp1_enum_fmt_vid_out, .vidioc_g_fmt_vid_cap_mplane = fdp1_g_fmt, .vidioc_g_fmt_vid_out_mplane = fdp1_g_fmt, .vidioc_try_fmt_vid_cap_mplane = fdp1_try_fmt, .vidioc_try_fmt_vid_out_mplane = fdp1_try_fmt, .vidioc_s_fmt_vid_cap_mplane = fdp1_s_fmt, .vidioc_s_fmt_vid_out_mplane = fdp1_s_fmt, .vidioc_reqbufs = v4l2_m2m_ioctl_reqbufs, .vidioc_querybuf = v4l2_m2m_ioctl_querybuf, .vidioc_qbuf = v4l2_m2m_ioctl_qbuf, .vidioc_dqbuf = v4l2_m2m_ioctl_dqbuf, .vidioc_prepare_buf = v4l2_m2m_ioctl_prepare_buf, .vidioc_create_bufs = v4l2_m2m_ioctl_create_bufs, .vidioc_expbuf = v4l2_m2m_ioctl_expbuf, .vidioc_streamon = v4l2_m2m_ioctl_streamon, .vidioc_streamoff = v4l2_m2m_ioctl_streamoff, .vidioc_subscribe_event = v4l2_ctrl_subscribe_event, .vidioc_unsubscribe_event = v4l2_event_unsubscribe, }; /* * Queue operations */ static int fdp1_queue_setup(struct vb2_queue *vq, unsigned int *nbuffers, unsigned int *nplanes, unsigned int sizes[], struct device *alloc_ctxs[]) { struct fdp1_ctx *ctx = vb2_get_drv_priv(vq); struct fdp1_q_data *q_data; unsigned int i; q_data = get_q_data(ctx, vq->type); if (*nplanes) { if (*nplanes > FDP1_MAX_PLANES) return -EINVAL; return 0; } *nplanes = q_data->format.num_planes; for (i = 0; i < *nplanes; i++) sizes[i] = q_data->format.plane_fmt[i].sizeimage; return 0; } static void fdp1_buf_prepare_field(struct fdp1_q_data *q_data, struct vb2_v4l2_buffer *vbuf, unsigned int field_num) { struct fdp1_buffer *buf = to_fdp1_buffer(vbuf); struct fdp1_field_buffer *fbuf = &buf->fields[field_num]; unsigned int num_fields; unsigned int i; num_fields = V4L2_FIELD_HAS_BOTH(vbuf->field) ? 2 : 1; fbuf->vb = vbuf; fbuf->last_field = (field_num + 1) == num_fields; for (i = 0; i < vbuf->vb2_buf.num_planes; ++i) fbuf->addrs[i] = vb2_dma_contig_plane_dma_addr(&vbuf->vb2_buf, i); switch (vbuf->field) { case V4L2_FIELD_INTERLACED: /* * Interlaced means bottom-top for 60Hz TV standards (NTSC) and * top-bottom for 50Hz. As TV standards are not applicable to * the mem-to-mem API, use the height as a heuristic. */ fbuf->field = (q_data->format.height < 576) == field_num ? V4L2_FIELD_TOP : V4L2_FIELD_BOTTOM; break; case V4L2_FIELD_INTERLACED_TB: case V4L2_FIELD_SEQ_TB: fbuf->field = field_num ? V4L2_FIELD_BOTTOM : V4L2_FIELD_TOP; break; case V4L2_FIELD_INTERLACED_BT: case V4L2_FIELD_SEQ_BT: fbuf->field = field_num ? V4L2_FIELD_TOP : V4L2_FIELD_BOTTOM; break; default: fbuf->field = vbuf->field; break; } /* Buffer is completed */ if (!field_num) return; /* Adjust buffer addresses for second field */ switch (vbuf->field) { case V4L2_FIELD_INTERLACED: case V4L2_FIELD_INTERLACED_TB: case V4L2_FIELD_INTERLACED_BT: for (i = 0; i < vbuf->vb2_buf.num_planes; i++) fbuf->addrs[i] += (i == 0 ? q_data->stride_y : q_data->stride_c); break; case V4L2_FIELD_SEQ_TB: case V4L2_FIELD_SEQ_BT: for (i = 0; i < vbuf->vb2_buf.num_planes; i++) fbuf->addrs[i] += q_data->vsize * (i == 0 ? q_data->stride_y : q_data->stride_c); break; } } static int fdp1_buf_prepare(struct vb2_buffer *vb) { struct fdp1_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue); struct fdp1_q_data *q_data = get_q_data(ctx, vb->vb2_queue->type); struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); struct fdp1_buffer *buf = to_fdp1_buffer(vbuf); unsigned int i; if (V4L2_TYPE_IS_OUTPUT(vb->vb2_queue->type)) { bool field_valid = true; /* Validate the buffer field. */ switch (q_data->format.field) { case V4L2_FIELD_NONE: if (vbuf->field != V4L2_FIELD_NONE) field_valid = false; break; case V4L2_FIELD_ALTERNATE: if (vbuf->field != V4L2_FIELD_TOP && vbuf->field != V4L2_FIELD_BOTTOM) field_valid = false; break; case V4L2_FIELD_INTERLACED: case V4L2_FIELD_SEQ_TB: case V4L2_FIELD_SEQ_BT: case V4L2_FIELD_INTERLACED_TB: case V4L2_FIELD_INTERLACED_BT: if (vbuf->field != q_data->format.field) field_valid = false; break; } if (!field_valid) { dprintk(ctx->fdp1, "buffer field %u invalid for format field %u\n", vbuf->field, q_data->format.field); return -EINVAL; } } else { vbuf->field = V4L2_FIELD_NONE; } /* Validate the planes sizes. */ for (i = 0; i < q_data->format.num_planes; i++) { unsigned long size = q_data->format.plane_fmt[i].sizeimage; if (vb2_plane_size(vb, i) < size) { dprintk(ctx->fdp1, "data will not fit into plane [%u/%u] (%lu < %lu)\n", i, q_data->format.num_planes, vb2_plane_size(vb, i), size); return -EINVAL; } /* We have known size formats all around */ vb2_set_plane_payload(vb, i, size); } buf->num_fields = V4L2_FIELD_HAS_BOTH(vbuf->field) ? 2 : 1; for (i = 0; i < buf->num_fields; ++i) fdp1_buf_prepare_field(q_data, vbuf, i); return 0; } static void fdp1_buf_queue(struct vb2_buffer *vb) { struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); struct fdp1_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue); v4l2_m2m_buf_queue(ctx->fh.m2m_ctx, vbuf); } static int fdp1_start_streaming(struct vb2_queue *q, unsigned int count) { struct fdp1_ctx *ctx = vb2_get_drv_priv(q); struct fdp1_q_data *q_data = get_q_data(ctx, q->type); if (V4L2_TYPE_IS_OUTPUT(q->type)) { /* * Force our deint_mode when we are progressive, * ignoring any setting on the device from the user, * Otherwise, lock in the requested de-interlace mode. */ if (q_data->format.field == V4L2_FIELD_NONE) ctx->deint_mode = FDP1_PROGRESSIVE; if (ctx->deint_mode == FDP1_ADAPT2D3D) { u32 stride; dma_addr_t smsk_base; const u32 bpp = 2; /* bytes per pixel */ stride = round_up(q_data->format.width, 8); ctx->smsk_size = bpp * stride * q_data->vsize; ctx->smsk_cpu = dma_alloc_coherent(ctx->fdp1->dev, ctx->smsk_size, &smsk_base, GFP_KERNEL); if (ctx->smsk_cpu == NULL) { dprintk(ctx->fdp1, "Failed to alloc smsk\n"); return -ENOMEM; } ctx->smsk_addr[0] = smsk_base; ctx->smsk_addr[1] = smsk_base + (ctx->smsk_size/2); } } return 0; } static void fdp1_stop_streaming(struct vb2_queue *q) { struct fdp1_ctx *ctx = vb2_get_drv_priv(q); struct vb2_v4l2_buffer *vbuf; unsigned long flags; while (1) { if (V4L2_TYPE_IS_OUTPUT(q->type)) vbuf = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx); else vbuf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx); if (vbuf == NULL) break; spin_lock_irqsave(&ctx->fdp1->irqlock, flags); v4l2_m2m_buf_done(vbuf, VB2_BUF_STATE_ERROR); spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags); } /* Empty Output queues */ if (V4L2_TYPE_IS_OUTPUT(q->type)) { /* Empty our internal queues */ struct fdp1_field_buffer *fbuf; /* Free any queued buffers */ fbuf = fdp1_dequeue_field(ctx); while (fbuf != NULL) { fdp1_field_complete(ctx, fbuf); fbuf = fdp1_dequeue_field(ctx); } /* Free smsk_data */ if (ctx->smsk_cpu) { dma_free_coherent(ctx->fdp1->dev, ctx->smsk_size, ctx->smsk_cpu, ctx->smsk_addr[0]); ctx->smsk_addr[0] = ctx->smsk_addr[1] = 0; ctx->smsk_cpu = NULL; } WARN(!list_empty(&ctx->fields_queue), "Buffer queue not empty"); } else { /* Empty Capture queues (Jobs) */ struct fdp1_job *job; job = get_queued_job(ctx->fdp1); while (job) { if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode)) fdp1_field_complete(ctx, job->previous); else fdp1_field_complete(ctx, job->active); v4l2_m2m_buf_done(job->dst->vb, VB2_BUF_STATE_ERROR); job->dst = NULL; job = get_queued_job(ctx->fdp1); } /* Free any held buffer in the ctx */ fdp1_field_complete(ctx, ctx->previous); WARN(!list_empty(&ctx->fdp1->queued_job_list), "Queued Job List not empty"); WARN(!list_empty(&ctx->fdp1->hw_job_list), "HW Job list not empty"); } } static const struct vb2_ops fdp1_qops = { .queue_setup = fdp1_queue_setup, .buf_prepare = fdp1_buf_prepare, .buf_queue = fdp1_buf_queue, .start_streaming = fdp1_start_streaming, .stop_streaming = fdp1_stop_streaming, .wait_prepare = vb2_ops_wait_prepare, .wait_finish = vb2_ops_wait_finish, }; static int queue_init(void *priv, struct vb2_queue *src_vq, struct vb2_queue *dst_vq) { struct fdp1_ctx *ctx = priv; int ret; src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE; src_vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF; src_vq->drv_priv = ctx; src_vq->buf_struct_size = sizeof(struct fdp1_buffer); src_vq->ops = &fdp1_qops; src_vq->mem_ops = &vb2_dma_contig_memops; src_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY; src_vq->lock = &ctx->fdp1->dev_mutex; src_vq->dev = ctx->fdp1->dev; ret = vb2_queue_init(src_vq); if (ret) return ret; dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE; dst_vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF; dst_vq->drv_priv = ctx; dst_vq->buf_struct_size = sizeof(struct fdp1_buffer); dst_vq->ops = &fdp1_qops; dst_vq->mem_ops = &vb2_dma_contig_memops; dst_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY; dst_vq->lock = &ctx->fdp1->dev_mutex; dst_vq->dev = ctx->fdp1->dev; return vb2_queue_init(dst_vq); } /* * File operations */ static int fdp1_open(struct file *file) { struct fdp1_dev *fdp1 = video_drvdata(file); struct v4l2_pix_format_mplane format; struct fdp1_ctx *ctx = NULL; struct v4l2_ctrl *ctrl; int ret = 0; if (mutex_lock_interruptible(&fdp1->dev_mutex)) return -ERESTARTSYS; ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) { ret = -ENOMEM; goto done; } v4l2_fh_init(&ctx->fh, video_devdata(file)); file->private_data = &ctx->fh; ctx->fdp1 = fdp1; /* Initialise Queues */ INIT_LIST_HEAD(&ctx->fields_queue); ctx->translen = 1; ctx->sequence = 0; /* Initialise controls */ v4l2_ctrl_handler_init(&ctx->hdl, 3); v4l2_ctrl_new_std_menu_items(&ctx->hdl, &fdp1_ctrl_ops, V4L2_CID_DEINTERLACING_MODE, FDP1_NEXTFIELD, BIT(0), FDP1_FIXED3D, fdp1_ctrl_deint_menu); ctrl = v4l2_ctrl_new_std(&ctx->hdl, &fdp1_ctrl_ops, V4L2_CID_MIN_BUFFERS_FOR_CAPTURE, 1, 2, 1, 1); if (ctrl) ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE; v4l2_ctrl_new_std(&ctx->hdl, &fdp1_ctrl_ops, V4L2_CID_ALPHA_COMPONENT, 0, 255, 1, 255); if (ctx->hdl.error) { ret = ctx->hdl.error; goto error_ctx; } ctx->fh.ctrl_handler = &ctx->hdl; v4l2_ctrl_handler_setup(&ctx->hdl); /* Configure default parameters. */ memset(&format, 0, sizeof(format)); fdp1_set_format(ctx, &format, V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE); ctx->fh.m2m_ctx = v4l2_m2m_ctx_init(fdp1->m2m_dev, ctx, &queue_init); if (IS_ERR(ctx->fh.m2m_ctx)) { ret = PTR_ERR(ctx->fh.m2m_ctx); goto error_ctx; } /* Perform any power management required */ ret = pm_runtime_resume_and_get(fdp1->dev); if (ret < 0) goto error_pm; v4l2_fh_add(&ctx->fh); dprintk(fdp1, "Created instance: %p, m2m_ctx: %p\n", ctx, ctx->fh.m2m_ctx); mutex_unlock(&fdp1->dev_mutex); return 0; error_pm: v4l2_m2m_ctx_release(ctx->fh.m2m_ctx); error_ctx: v4l2_ctrl_handler_free(&ctx->hdl); kfree(ctx); done: mutex_unlock(&fdp1->dev_mutex); return ret; } static int fdp1_release(struct file *file) { struct fdp1_dev *fdp1 = video_drvdata(file); struct fdp1_ctx *ctx = fh_to_ctx(file->private_data); dprintk(fdp1, "Releasing instance %p\n", ctx); v4l2_fh_del(&ctx->fh); v4l2_fh_exit(&ctx->fh); v4l2_ctrl_handler_free(&ctx->hdl); mutex_lock(&fdp1->dev_mutex); v4l2_m2m_ctx_release(ctx->fh.m2m_ctx); mutex_unlock(&fdp1->dev_mutex); kfree(ctx); pm_runtime_put(fdp1->dev); return 0; } static const struct v4l2_file_operations fdp1_fops = { .owner = THIS_MODULE, .open = fdp1_open, .release = fdp1_release, .poll = v4l2_m2m_fop_poll, .unlocked_ioctl = video_ioctl2, .mmap = v4l2_m2m_fop_mmap, }; static const struct video_device fdp1_videodev = { .name = DRIVER_NAME, .vfl_dir = VFL_DIR_M2M, .fops = &fdp1_fops, .device_caps = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING, .ioctl_ops = &fdp1_ioctl_ops, .minor = -1, .release = video_device_release_empty, }; static const struct v4l2_m2m_ops m2m_ops = { .device_run = fdp1_m2m_device_run, .job_ready = fdp1_m2m_job_ready, .job_abort = fdp1_m2m_job_abort, }; static irqreturn_t fdp1_irq_handler(int irq, void *dev_id) { struct fdp1_dev *fdp1 = dev_id; u32 int_status; u32 ctl_status; u32 vint_cnt; u32 cycles; int_status = fdp1_read(fdp1, FD1_CTL_IRQSTA); cycles = fdp1_read(fdp1, FD1_CTL_VCYCLE_STAT); ctl_status = fdp1_read(fdp1, FD1_CTL_STATUS); vint_cnt = (ctl_status & FD1_CTL_STATUS_VINT_CNT_MASK) >> FD1_CTL_STATUS_VINT_CNT_SHIFT; /* Clear interrupts */ fdp1_write(fdp1, ~(int_status) & FD1_CTL_IRQ_MASK, FD1_CTL_IRQSTA); if (debug >= 2) { dprintk(fdp1, "IRQ: 0x%x %s%s%s\n", int_status, int_status & FD1_CTL_IRQ_VERE ? "[Error]" : "[!E]", int_status & FD1_CTL_IRQ_VINTE ? "[VSync]" : "[!V]", int_status & FD1_CTL_IRQ_FREE ? "[FrameEnd]" : "[!F]"); dprintk(fdp1, "CycleStatus = %d (%dms)\n", cycles, cycles/(fdp1->clk_rate/1000)); dprintk(fdp1, "Control Status = 0x%08x : VINT_CNT = %d %s:%s:%s:%s\n", ctl_status, vint_cnt, ctl_status & FD1_CTL_STATUS_SGREGSET ? "RegSet" : "", ctl_status & FD1_CTL_STATUS_SGVERR ? "Vsync Error" : "", ctl_status & FD1_CTL_STATUS_SGFREND ? "FrameEnd" : "", ctl_status & FD1_CTL_STATUS_BSY ? "Busy" : ""); dprintk(fdp1, "***********************************\n"); } /* Spurious interrupt */ if (!(FD1_CTL_IRQ_MASK & int_status)) return IRQ_NONE; /* Work completed, release the frame */ if (FD1_CTL_IRQ_VERE & int_status) device_frame_end(fdp1, VB2_BUF_STATE_ERROR); else if (FD1_CTL_IRQ_FREE & int_status) device_frame_end(fdp1, VB2_BUF_STATE_DONE); return IRQ_HANDLED; } static int fdp1_probe(struct platform_device *pdev) { struct fdp1_dev *fdp1; struct video_device *vfd; struct device_node *fcp_node; struct clk *clk; unsigned int i; int ret; int hw_version; fdp1 = devm_kzalloc(&pdev->dev, sizeof(*fdp1), GFP_KERNEL); if (!fdp1) return -ENOMEM; INIT_LIST_HEAD(&fdp1->free_job_list); INIT_LIST_HEAD(&fdp1->queued_job_list); INIT_LIST_HEAD(&fdp1->hw_job_list); /* Initialise the jobs on the free list */ for (i = 0; i < ARRAY_SIZE(fdp1->jobs); i++) list_add(&fdp1->jobs[i].list, &fdp1->free_job_list); mutex_init(&fdp1->dev_mutex); spin_lock_init(&fdp1->irqlock); spin_lock_init(&fdp1->device_process_lock); fdp1->dev = &pdev->dev; platform_set_drvdata(pdev, fdp1); /* Memory-mapped registers */ fdp1->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(fdp1->regs)) return PTR_ERR(fdp1->regs); /* Interrupt service routine registration */ ret = platform_get_irq(pdev, 0); if (ret < 0) return ret; fdp1->irq = ret; ret = devm_request_irq(&pdev->dev, fdp1->irq, fdp1_irq_handler, 0, dev_name(&pdev->dev), fdp1); if (ret) { dev_err(&pdev->dev, "cannot claim IRQ %d\n", fdp1->irq); return ret; } /* FCP */ fcp_node = of_parse_phandle(pdev->dev.of_node, "renesas,fcp", 0); if (fcp_node) { fdp1->fcp = rcar_fcp_get(fcp_node); of_node_put(fcp_node); if (IS_ERR(fdp1->fcp)) { dev_dbg(&pdev->dev, "FCP not found (%ld)\n", PTR_ERR(fdp1->fcp)); return PTR_ERR(fdp1->fcp); } } /* Determine our clock rate */ clk = clk_get(&pdev->dev, NULL); if (IS_ERR(clk)) { ret = PTR_ERR(clk); goto put_dev; } fdp1->clk_rate = clk_get_rate(clk); clk_put(clk); /* V4L2 device registration */ ret = v4l2_device_register(&pdev->dev, &fdp1->v4l2_dev); if (ret) { v4l2_err(&fdp1->v4l2_dev, "Failed to register video device\n"); goto put_dev; } /* M2M registration */ fdp1->m2m_dev = v4l2_m2m_init(&m2m_ops); if (IS_ERR(fdp1->m2m_dev)) { v4l2_err(&fdp1->v4l2_dev, "Failed to init mem2mem device\n"); ret = PTR_ERR(fdp1->m2m_dev); goto unreg_dev; } /* Video registration */ fdp1->vfd = fdp1_videodev; vfd = &fdp1->vfd; vfd->lock = &fdp1->dev_mutex; vfd->v4l2_dev = &fdp1->v4l2_dev; video_set_drvdata(vfd, fdp1); strscpy(vfd->name, fdp1_videodev.name, sizeof(vfd->name)); ret = video_register_device(vfd, VFL_TYPE_VIDEO, 0); if (ret) { v4l2_err(&fdp1->v4l2_dev, "Failed to register video device\n"); goto release_m2m; } v4l2_info(&fdp1->v4l2_dev, "Device registered as /dev/video%d\n", vfd->num); /* Power up the cells to read HW */ pm_runtime_enable(&pdev->dev); ret = pm_runtime_resume_and_get(fdp1->dev); if (ret < 0) goto disable_pm; hw_version = fdp1_read(fdp1, FD1_IP_INTDATA); switch (hw_version) { case FD1_IP_GEN2: dprintk(fdp1, "FDP1 Version R-Car Gen2\n"); break; case FD1_IP_M3W: dprintk(fdp1, "FDP1 Version R-Car M3-W\n"); break; case FD1_IP_H3: dprintk(fdp1, "FDP1 Version R-Car H3\n"); break; case FD1_IP_M3N: dprintk(fdp1, "FDP1 Version R-Car M3-N\n"); break; case FD1_IP_E3: dprintk(fdp1, "FDP1 Version R-Car E3\n"); break; default: dev_err(fdp1->dev, "FDP1 Unidentifiable (0x%08x)\n", hw_version); } /* Allow the hw to sleep until an open call puts it to use */ pm_runtime_put(fdp1->dev); return 0; disable_pm: pm_runtime_disable(fdp1->dev); release_m2m: v4l2_m2m_release(fdp1->m2m_dev); unreg_dev: v4l2_device_unregister(&fdp1->v4l2_dev); put_dev: rcar_fcp_put(fdp1->fcp); return ret; } static void fdp1_remove(struct platform_device *pdev) { struct fdp1_dev *fdp1 = platform_get_drvdata(pdev); v4l2_m2m_release(fdp1->m2m_dev); video_unregister_device(&fdp1->vfd); v4l2_device_unregister(&fdp1->v4l2_dev); pm_runtime_disable(&pdev->dev); rcar_fcp_put(fdp1->fcp); } static int __maybe_unused fdp1_pm_runtime_suspend(struct device *dev) { struct fdp1_dev *fdp1 = dev_get_drvdata(dev); rcar_fcp_disable(fdp1->fcp); return 0; } static int __maybe_unused fdp1_pm_runtime_resume(struct device *dev) { struct fdp1_dev *fdp1 = dev_get_drvdata(dev); /* Program in the static LUTs */ fdp1_set_lut(fdp1); return rcar_fcp_enable(fdp1->fcp); } static const struct dev_pm_ops fdp1_pm_ops = { SET_RUNTIME_PM_OPS(fdp1_pm_runtime_suspend, fdp1_pm_runtime_resume, NULL) }; static const struct of_device_id fdp1_dt_ids[] = { { .compatible = "renesas,fdp1" }, { }, }; MODULE_DEVICE_TABLE(of, fdp1_dt_ids); static struct platform_driver fdp1_pdrv = { .probe = fdp1_probe, .remove_new = fdp1_remove, .driver = { .name = DRIVER_NAME, .of_match_table = fdp1_dt_ids, .pm = &fdp1_pm_ops, }, }; module_platform_driver(fdp1_pdrv); MODULE_DESCRIPTION("Renesas R-Car Fine Display Processor Driver"); MODULE_AUTHOR("Kieran Bingham "); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:" DRIVER_NAME);