/* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 2005, Intec Automation Inc. * Copyright (C) 2014, Freescale Semiconductor, Inc. */ #ifndef __LINUX_MTD_SPI_NOR_INTERNAL_H #define __LINUX_MTD_SPI_NOR_INTERNAL_H #include "sfdp.h" #define SPI_NOR_MAX_ID_LEN 6 /* Standard SPI NOR flash operations. */ #define SPI_NOR_READID_OP(naddr, ndummy, buf, len) \ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 0), \ SPI_MEM_OP_ADDR(naddr, 0, 0), \ SPI_MEM_OP_DUMMY(ndummy, 0), \ SPI_MEM_OP_DATA_IN(len, buf, 0)) #define SPI_NOR_WREN_OP \ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 0), \ SPI_MEM_OP_NO_ADDR, \ SPI_MEM_OP_NO_DUMMY, \ SPI_MEM_OP_NO_DATA) #define SPI_NOR_WRDI_OP \ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 0), \ SPI_MEM_OP_NO_ADDR, \ SPI_MEM_OP_NO_DUMMY, \ SPI_MEM_OP_NO_DATA) #define SPI_NOR_RDSR_OP(buf) \ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 0), \ SPI_MEM_OP_NO_ADDR, \ SPI_MEM_OP_NO_DUMMY, \ SPI_MEM_OP_DATA_IN(1, buf, 0)) #define SPI_NOR_WRSR_OP(buf, len) \ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 0), \ SPI_MEM_OP_NO_ADDR, \ SPI_MEM_OP_NO_DUMMY, \ SPI_MEM_OP_DATA_OUT(len, buf, 0)) #define SPI_NOR_RDSR2_OP(buf) \ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR2, 0), \ SPI_MEM_OP_NO_ADDR, \ SPI_MEM_OP_NO_DUMMY, \ SPI_MEM_OP_DATA_OUT(1, buf, 0)) #define SPI_NOR_WRSR2_OP(buf) \ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR2, 0), \ SPI_MEM_OP_NO_ADDR, \ SPI_MEM_OP_NO_DUMMY, \ SPI_MEM_OP_DATA_OUT(1, buf, 0)) #define SPI_NOR_RDCR_OP(buf) \ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDCR, 0), \ SPI_MEM_OP_NO_ADDR, \ SPI_MEM_OP_NO_DUMMY, \ SPI_MEM_OP_DATA_IN(1, buf, 0)) #define SPI_NOR_EN4B_EX4B_OP(enable) \ SPI_MEM_OP(SPI_MEM_OP_CMD(enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B, 0), \ SPI_MEM_OP_NO_ADDR, \ SPI_MEM_OP_NO_DUMMY, \ SPI_MEM_OP_NO_DATA) #define SPI_NOR_BRWR_OP(buf) \ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_BRWR, 0), \ SPI_MEM_OP_NO_ADDR, \ SPI_MEM_OP_NO_DUMMY, \ SPI_MEM_OP_DATA_OUT(1, buf, 0)) #define SPI_NOR_GBULK_OP \ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_GBULK, 0), \ SPI_MEM_OP_NO_ADDR, \ SPI_MEM_OP_NO_DUMMY, \ SPI_MEM_OP_NO_DATA) #define SPI_NOR_CHIP_ERASE_OP \ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CHIP_ERASE, 0), \ SPI_MEM_OP_NO_ADDR, \ SPI_MEM_OP_NO_DUMMY, \ SPI_MEM_OP_NO_DATA) #define SPI_NOR_SECTOR_ERASE_OP(opcode, addr_nbytes, addr) \ SPI_MEM_OP(SPI_MEM_OP_CMD(opcode, 0), \ SPI_MEM_OP_ADDR(addr_nbytes, addr, 0), \ SPI_MEM_OP_NO_DUMMY, \ SPI_MEM_OP_NO_DATA) #define SPI_NOR_READ_OP(opcode) \ SPI_MEM_OP(SPI_MEM_OP_CMD(opcode, 0), \ SPI_MEM_OP_ADDR(3, 0, 0), \ SPI_MEM_OP_DUMMY(1, 0), \ SPI_MEM_OP_DATA_IN(2, NULL, 0)) #define SPI_NOR_PP_OP(opcode) \ SPI_MEM_OP(SPI_MEM_OP_CMD(opcode, 0), \ SPI_MEM_OP_ADDR(3, 0, 0), \ SPI_MEM_OP_NO_DUMMY, \ SPI_MEM_OP_DATA_OUT(2, NULL, 0)) #define SPINOR_SRSTEN_OP \ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_SRSTEN, 0), \ SPI_MEM_OP_NO_DUMMY, \ SPI_MEM_OP_NO_ADDR, \ SPI_MEM_OP_NO_DATA) #define SPINOR_SRST_OP \ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_SRST, 0), \ SPI_MEM_OP_NO_DUMMY, \ SPI_MEM_OP_NO_ADDR, \ SPI_MEM_OP_NO_DATA) /* Keep these in sync with the list in debugfs.c */ enum spi_nor_option_flags { SNOR_F_HAS_SR_TB = BIT(0), SNOR_F_NO_OP_CHIP_ERASE = BIT(1), SNOR_F_BROKEN_RESET = BIT(2), SNOR_F_4B_OPCODES = BIT(3), SNOR_F_HAS_4BAIT = BIT(4), SNOR_F_HAS_LOCK = BIT(5), SNOR_F_HAS_16BIT_SR = BIT(6), SNOR_F_NO_READ_CR = BIT(7), SNOR_F_HAS_SR_TB_BIT6 = BIT(8), SNOR_F_HAS_4BIT_BP = BIT(9), SNOR_F_HAS_SR_BP3_BIT6 = BIT(10), SNOR_F_IO_MODE_EN_VOLATILE = BIT(11), SNOR_F_SOFT_RESET = BIT(12), SNOR_F_SWP_IS_VOLATILE = BIT(13), SNOR_F_RWW = BIT(14), SNOR_F_ECC = BIT(15), }; struct spi_nor_read_command { u8 num_mode_clocks; u8 num_wait_states; u8 opcode; enum spi_nor_protocol proto; }; struct spi_nor_pp_command { u8 opcode; enum spi_nor_protocol proto; }; enum spi_nor_read_command_index { SNOR_CMD_READ, SNOR_CMD_READ_FAST, SNOR_CMD_READ_1_1_1_DTR, /* Dual SPI */ SNOR_CMD_READ_1_1_2, SNOR_CMD_READ_1_2_2, SNOR_CMD_READ_2_2_2, SNOR_CMD_READ_1_2_2_DTR, /* Quad SPI */ SNOR_CMD_READ_1_1_4, SNOR_CMD_READ_1_4_4, SNOR_CMD_READ_4_4_4, SNOR_CMD_READ_1_4_4_DTR, /* Octal SPI */ SNOR_CMD_READ_1_1_8, SNOR_CMD_READ_1_8_8, SNOR_CMD_READ_8_8_8, SNOR_CMD_READ_1_8_8_DTR, SNOR_CMD_READ_8_8_8_DTR, SNOR_CMD_READ_MAX }; enum spi_nor_pp_command_index { SNOR_CMD_PP, /* Quad SPI */ SNOR_CMD_PP_1_1_4, SNOR_CMD_PP_1_4_4, SNOR_CMD_PP_4_4_4, /* Octal SPI */ SNOR_CMD_PP_1_1_8, SNOR_CMD_PP_1_8_8, SNOR_CMD_PP_8_8_8, SNOR_CMD_PP_8_8_8_DTR, SNOR_CMD_PP_MAX }; /** * struct spi_nor_erase_type - Structure to describe a SPI NOR erase type * @size: the size of the sector/block erased by the erase type. * JEDEC JESD216B imposes erase sizes to be a power of 2. * @size_shift: @size is a power of 2, the shift is stored in * @size_shift. * @size_mask: the size mask based on @size_shift. * @opcode: the SPI command op code to erase the sector/block. * @idx: Erase Type index as sorted in the Basic Flash Parameter * Table. It will be used to synchronize the supported * Erase Types with the ones identified in the SFDP * optional tables. */ struct spi_nor_erase_type { u32 size; u32 size_shift; u32 size_mask; u8 opcode; u8 idx; }; /** * struct spi_nor_erase_command - Used for non-uniform erases * The structure is used to describe a list of erase commands to be executed * once we validate that the erase can be performed. The elements in the list * are run-length encoded. * @list: for inclusion into the list of erase commands. * @count: how many times the same erase command should be * consecutively used. * @size: the size of the sector/block erased by the command. * @opcode: the SPI command op code to erase the sector/block. */ struct spi_nor_erase_command { struct list_head list; u32 count; u32 size; u8 opcode; }; /** * struct spi_nor_erase_region - Structure to describe a SPI NOR erase region * @offset: the offset in the data array of erase region start. * LSB bits are used as a bitmask encoding flags to * determine if this region is overlaid, if this region is * the last in the SPI NOR flash memory and to indicate * all the supported erase commands inside this region. * The erase types are sorted in ascending order with the * smallest Erase Type size being at BIT(0). * @size: the size of the region in bytes. */ struct spi_nor_erase_region { u64 offset; u64 size; }; #define SNOR_ERASE_TYPE_MAX 4 #define SNOR_ERASE_TYPE_MASK GENMASK_ULL(SNOR_ERASE_TYPE_MAX - 1, 0) #define SNOR_LAST_REGION BIT(4) #define SNOR_OVERLAID_REGION BIT(5) #define SNOR_ERASE_FLAGS_MAX 6 #define SNOR_ERASE_FLAGS_MASK GENMASK_ULL(SNOR_ERASE_FLAGS_MAX - 1, 0) /** * struct spi_nor_erase_map - Structure to describe the SPI NOR erase map * @regions: array of erase regions. The regions are consecutive in * address space. Walking through the regions is done * incrementally. * @uniform_region: a pre-allocated erase region for SPI NOR with a uniform * sector size (legacy implementation). * @erase_type: an array of erase types shared by all the regions. * The erase types are sorted in ascending order, with the * smallest Erase Type size being the first member in the * erase_type array. * @uniform_erase_type: bitmask encoding erase types that can erase the * entire memory. This member is completed at init by * uniform and non-uniform SPI NOR flash memories if they * support at least one erase type that can erase the * entire memory. */ struct spi_nor_erase_map { struct spi_nor_erase_region *regions; struct spi_nor_erase_region uniform_region; struct spi_nor_erase_type erase_type[SNOR_ERASE_TYPE_MAX]; u8 uniform_erase_type; }; /** * struct spi_nor_locking_ops - SPI NOR locking methods * @lock: lock a region of the SPI NOR. * @unlock: unlock a region of the SPI NOR. * @is_locked: check if a region of the SPI NOR is completely locked */ struct spi_nor_locking_ops { int (*lock)(struct spi_nor *nor, loff_t ofs, uint64_t len); int (*unlock)(struct spi_nor *nor, loff_t ofs, uint64_t len); int (*is_locked)(struct spi_nor *nor, loff_t ofs, uint64_t len); }; /** * struct spi_nor_otp_organization - Structure to describe the SPI NOR OTP regions * @len: size of one OTP region in bytes. * @base: start address of the OTP area. * @offset: offset between consecutive OTP regions if there are more * than one. * @n_regions: number of individual OTP regions. */ struct spi_nor_otp_organization { size_t len; loff_t base; loff_t offset; unsigned int n_regions; }; /** * struct spi_nor_otp_ops - SPI NOR OTP methods * @read: read from the SPI NOR OTP area. * @write: write to the SPI NOR OTP area. * @lock: lock an OTP region. * @erase: erase an OTP region. * @is_locked: check if an OTP region of the SPI NOR is locked. */ struct spi_nor_otp_ops { int (*read)(struct spi_nor *nor, loff_t addr, size_t len, u8 *buf); int (*write)(struct spi_nor *nor, loff_t addr, size_t len, const u8 *buf); int (*lock)(struct spi_nor *nor, unsigned int region); int (*erase)(struct spi_nor *nor, loff_t addr); int (*is_locked)(struct spi_nor *nor, unsigned int region); }; /** * struct spi_nor_otp - SPI NOR OTP grouping structure * @org: OTP region organization * @ops: OTP access ops */ struct spi_nor_otp { const struct spi_nor_otp_organization *org; const struct spi_nor_otp_ops *ops; }; /** * struct spi_nor_flash_parameter - SPI NOR flash parameters and settings. * Includes legacy flash parameters and settings that can be overwritten * by the spi_nor_fixups hooks, or dynamically when parsing the JESD216 * Serial Flash Discoverable Parameters (SFDP) tables. * * @bank_size: the flash memory bank density in bytes. * @size: the total flash memory density in bytes. * @writesize Minimal writable flash unit size. Defaults to 1. Set to * ECC unit size for ECC-ed flashes. * @page_size: the page size of the SPI NOR flash memory. * @addr_nbytes: number of address bytes to send. * @addr_mode_nbytes: number of address bytes of current address mode. Useful * when the flash operates with 4B opcodes but needs the * internal address mode for opcodes that don't have a 4B * opcode correspondent. * @rdsr_dummy: dummy cycles needed for Read Status Register command * in octal DTR mode. * @rdsr_addr_nbytes: dummy address bytes needed for Read Status Register * command in octal DTR mode. * @n_dice: number of dice in the flash memory. * @vreg_offset: volatile register offset for each die. * @hwcaps: describes the read and page program hardware * capabilities. * @reads: read capabilities ordered by priority: the higher index * in the array, the higher priority. * @page_programs: page program capabilities ordered by priority: the * higher index in the array, the higher priority. * @erase_map: the erase map parsed from the SFDP Sector Map Parameter * Table. * @otp: SPI NOR OTP info. * @octal_dtr_enable: enables SPI NOR octal DTR mode. * @quad_enable: enables SPI NOR quad mode. * @set_4byte_addr_mode: puts the SPI NOR in 4 byte addressing mode. * @convert_addr: converts an absolute address into something the flash * will understand. Particularly useful when pagesize is * not a power-of-2. * @setup: (optional) configures the SPI NOR memory. Useful for * SPI NOR flashes that have peculiarities to the SPI NOR * standard e.g. different opcodes, specific address * calculation, page size, etc. * @ready: (optional) flashes might use a different mechanism * than reading the status register to indicate they * are ready for a new command * @locking_ops: SPI NOR locking methods. * @priv: flash's private data. */ struct spi_nor_flash_parameter { u64 bank_size; u64 size; u32 writesize; u32 page_size; u8 addr_nbytes; u8 addr_mode_nbytes; u8 rdsr_dummy; u8 rdsr_addr_nbytes; u8 n_dice; u32 *vreg_offset; struct spi_nor_hwcaps hwcaps; struct spi_nor_read_command reads[SNOR_CMD_READ_MAX]; struct spi_nor_pp_command page_programs[SNOR_CMD_PP_MAX]; struct spi_nor_erase_map erase_map; struct spi_nor_otp otp; int (*octal_dtr_enable)(struct spi_nor *nor, bool enable); int (*quad_enable)(struct spi_nor *nor); int (*set_4byte_addr_mode)(struct spi_nor *nor, bool enable); u32 (*convert_addr)(struct spi_nor *nor, u32 addr); int (*setup)(struct spi_nor *nor, const struct spi_nor_hwcaps *hwcaps); int (*ready)(struct spi_nor *nor); const struct spi_nor_locking_ops *locking_ops; void *priv; }; /** * struct spi_nor_fixups - SPI NOR fixup hooks * @default_init: called after default flash parameters init. Used to tweak * flash parameters when information provided by the flash_info * table is incomplete or wrong. * @post_bfpt: called after the BFPT table has been parsed * @post_sfdp: called after SFDP has been parsed (is also called for SPI NORs * that do not support RDSFDP). Typically used to tweak various * parameters that could not be extracted by other means (i.e. * when information provided by the SFDP/flash_info tables are * incomplete or wrong). * @late_init: used to initialize flash parameters that are not declared in the * JESD216 SFDP standard, or where SFDP tables not defined at all. * Will replace the default_init() hook. * * Those hooks can be used to tweak the SPI NOR configuration when the SFDP * table is broken or not available. */ struct spi_nor_fixups { void (*default_init)(struct spi_nor *nor); int (*post_bfpt)(struct spi_nor *nor, const struct sfdp_parameter_header *bfpt_header, const struct sfdp_bfpt *bfpt); int (*post_sfdp)(struct spi_nor *nor); int (*late_init)(struct spi_nor *nor); }; /** * struct flash_info - SPI NOR flash_info entry. * @name: the name of the flash. * @id: the flash's ID bytes. The first three bytes are the * JEDIC ID. JEDEC ID zero means "no ID" (mostly older chips). * @id_len: the number of bytes of ID. * @sector_size: the size listed here is what works with SPINOR_OP_SE, which * isn't necessarily called a "sector" by the vendor. * @n_sectors: the number of sectors. * @n_banks: the number of banks. * @page_size: the flash's page size. * @addr_nbytes: number of address bytes to send. * * @parse_sfdp: true when flash supports SFDP tables. The false value has no * meaning. If one wants to skip the SFDP tables, one should * instead use the SPI_NOR_SKIP_SFDP sfdp_flag. * @flags: flags that indicate support that is not defined by the * JESD216 standard in its SFDP tables. Flag meanings: * SPI_NOR_HAS_LOCK: flash supports lock/unlock via SR * SPI_NOR_HAS_TB: flash SR has Top/Bottom (TB) protect bit. Must be * used with SPI_NOR_HAS_LOCK. * SPI_NOR_TB_SR_BIT6: Top/Bottom (TB) is bit 6 of status register. * Must be used with SPI_NOR_HAS_TB. * SPI_NOR_4BIT_BP: flash SR has 4 bit fields (BP0-3) for block * protection. * SPI_NOR_BP3_SR_BIT6: BP3 is bit 6 of status register. Must be used with * SPI_NOR_4BIT_BP. * SPI_NOR_SWP_IS_VOLATILE: flash has volatile software write protection bits. * Usually these will power-up in a write-protected * state. * SPI_NOR_NO_ERASE: no erase command needed. * NO_CHIP_ERASE: chip does not support chip erase. * SPI_NOR_NO_FR: can't do fastread. * SPI_NOR_QUAD_PP: flash supports Quad Input Page Program. * SPI_NOR_RWW: flash supports reads while write. * * @no_sfdp_flags: flags that indicate support that can be discovered via SFDP. * Used when SFDP tables are not defined in the flash. These * flags are used together with the SPI_NOR_SKIP_SFDP flag. * SPI_NOR_SKIP_SFDP: skip parsing of SFDP tables. * SECT_4K: SPINOR_OP_BE_4K works uniformly. * SPI_NOR_DUAL_READ: flash supports Dual Read. * SPI_NOR_QUAD_READ: flash supports Quad Read. * SPI_NOR_OCTAL_READ: flash supports Octal Read. * SPI_NOR_OCTAL_DTR_READ: flash supports octal DTR Read. * SPI_NOR_OCTAL_DTR_PP: flash supports Octal DTR Page Program. * * @fixup_flags: flags that indicate support that can be discovered via SFDP * ideally, but can not be discovered for this particular flash * because the SFDP table that indicates this support is not * defined by the flash. In case the table for this support is * defined but has wrong values, one should instead use a * post_sfdp() hook to set the SNOR_F equivalent flag. * * SPI_NOR_4B_OPCODES: use dedicated 4byte address op codes to support * memory size above 128Mib. * SPI_NOR_IO_MODE_EN_VOLATILE: flash enables the best available I/O mode * via a volatile bit. * @mfr_flags: manufacturer private flags. Used in the manufacturer fixup * hooks to differentiate support between flashes of the same * manufacturer. * @otp_org: flash's OTP organization. * @fixups: part specific fixup hooks. */ struct flash_info { char *name; u8 id[SPI_NOR_MAX_ID_LEN]; u8 id_len; unsigned sector_size; u16 n_sectors; u16 page_size; u8 n_banks; u8 addr_nbytes; bool parse_sfdp; u16 flags; #define SPI_NOR_HAS_LOCK BIT(0) #define SPI_NOR_HAS_TB BIT(1) #define SPI_NOR_TB_SR_BIT6 BIT(2) #define SPI_NOR_4BIT_BP BIT(3) #define SPI_NOR_BP3_SR_BIT6 BIT(4) #define SPI_NOR_SWP_IS_VOLATILE BIT(5) #define SPI_NOR_NO_ERASE BIT(6) #define NO_CHIP_ERASE BIT(7) #define SPI_NOR_NO_FR BIT(8) #define SPI_NOR_QUAD_PP BIT(9) #define SPI_NOR_RWW BIT(10) u8 no_sfdp_flags; #define SPI_NOR_SKIP_SFDP BIT(0) #define SECT_4K BIT(1) #define SPI_NOR_DUAL_READ BIT(3) #define SPI_NOR_QUAD_READ BIT(4) #define SPI_NOR_OCTAL_READ BIT(5) #define SPI_NOR_OCTAL_DTR_READ BIT(6) #define SPI_NOR_OCTAL_DTR_PP BIT(7) u8 fixup_flags; #define SPI_NOR_4B_OPCODES BIT(0) #define SPI_NOR_IO_MODE_EN_VOLATILE BIT(1) u8 mfr_flags; const struct spi_nor_otp_organization otp_org; const struct spi_nor_fixups *fixups; }; #define SPI_NOR_ID_2ITEMS(_id) ((_id) >> 8) & 0xff, (_id) & 0xff #define SPI_NOR_ID_3ITEMS(_id) ((_id) >> 16) & 0xff, SPI_NOR_ID_2ITEMS(_id) #define SPI_NOR_ID(_jedec_id, _ext_id) \ .id = { SPI_NOR_ID_3ITEMS(_jedec_id), SPI_NOR_ID_2ITEMS(_ext_id) }, \ .id_len = !(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0)) #define SPI_NOR_ID6(_jedec_id, _ext_id) \ .id = { SPI_NOR_ID_3ITEMS(_jedec_id), SPI_NOR_ID_3ITEMS(_ext_id) }, \ .id_len = 6 #define SPI_NOR_GEOMETRY(_sector_size, _n_sectors, _n_banks) \ .sector_size = (_sector_size), \ .n_sectors = (_n_sectors), \ .page_size = 256, \ .n_banks = (_n_banks) /* Used when the "_ext_id" is two bytes at most */ #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors) \ SPI_NOR_ID((_jedec_id), (_ext_id)), \ SPI_NOR_GEOMETRY((_sector_size), (_n_sectors), 1), #define INFOB(_jedec_id, _ext_id, _sector_size, _n_sectors, _n_banks) \ SPI_NOR_ID((_jedec_id), (_ext_id)), \ SPI_NOR_GEOMETRY((_sector_size), (_n_sectors), (_n_banks)), #define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors) \ SPI_NOR_ID6((_jedec_id), (_ext_id)), \ SPI_NOR_GEOMETRY((_sector_size), (_n_sectors), 1), #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_nbytes) \ .sector_size = (_sector_size), \ .n_sectors = (_n_sectors), \ .page_size = (_page_size), \ .n_banks = 1, \ .addr_nbytes = (_addr_nbytes), \ .flags = SPI_NOR_NO_ERASE | SPI_NOR_NO_FR, \ #define OTP_INFO(_len, _n_regions, _base, _offset) \ .otp_org = { \ .len = (_len), \ .base = (_base), \ .offset = (_offset), \ .n_regions = (_n_regions), \ }, #define PARSE_SFDP \ .parse_sfdp = true, \ #define FLAGS(_flags) \ .flags = (_flags), \ #define NO_SFDP_FLAGS(_no_sfdp_flags) \ .no_sfdp_flags = (_no_sfdp_flags), \ #define FIXUP_FLAGS(_fixup_flags) \ .fixup_flags = (_fixup_flags), \ #define MFR_FLAGS(_mfr_flags) \ .mfr_flags = (_mfr_flags), \ /** * struct spi_nor_manufacturer - SPI NOR manufacturer object * @name: manufacturer name * @parts: array of parts supported by this manufacturer * @nparts: number of entries in the parts array * @fixups: hooks called at various points in time during spi_nor_scan() */ struct spi_nor_manufacturer { const char *name; const struct flash_info *parts; unsigned int nparts; const struct spi_nor_fixups *fixups; }; /** * struct sfdp - SFDP data * @num_dwords: number of entries in the dwords array * @dwords: array of double words of the SFDP data */ struct sfdp { size_t num_dwords; u32 *dwords; }; /* Manufacturer drivers. */ extern const struct spi_nor_manufacturer spi_nor_atmel; extern const struct spi_nor_manufacturer spi_nor_catalyst; extern const struct spi_nor_manufacturer spi_nor_eon; extern const struct spi_nor_manufacturer spi_nor_esmt; extern const struct spi_nor_manufacturer spi_nor_everspin; extern const struct spi_nor_manufacturer spi_nor_fujitsu; extern const struct spi_nor_manufacturer spi_nor_gigadevice; extern const struct spi_nor_manufacturer spi_nor_intel; extern const struct spi_nor_manufacturer spi_nor_issi; extern const struct spi_nor_manufacturer spi_nor_macronix; extern const struct spi_nor_manufacturer spi_nor_micron; extern const struct spi_nor_manufacturer spi_nor_st; extern const struct spi_nor_manufacturer spi_nor_spansion; extern const struct spi_nor_manufacturer spi_nor_sst; extern const struct spi_nor_manufacturer spi_nor_winbond; extern const struct spi_nor_manufacturer spi_nor_xilinx; extern const struct spi_nor_manufacturer spi_nor_xmc; extern const struct attribute_group *spi_nor_sysfs_groups[]; void spi_nor_spimem_setup_op(const struct spi_nor *nor, struct spi_mem_op *op, const enum spi_nor_protocol proto); int spi_nor_write_enable(struct spi_nor *nor); int spi_nor_write_disable(struct spi_nor *nor); int spi_nor_set_4byte_addr_mode_en4b_ex4b(struct spi_nor *nor, bool enable); int spi_nor_set_4byte_addr_mode_wren_en4b_ex4b(struct spi_nor *nor, bool enable); int spi_nor_set_4byte_addr_mode_brwr(struct spi_nor *nor, bool enable); int spi_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable); int spi_nor_wait_till_ready(struct spi_nor *nor); int spi_nor_global_block_unlock(struct spi_nor *nor); int spi_nor_prep_and_lock(struct spi_nor *nor); void spi_nor_unlock_and_unprep(struct spi_nor *nor); int spi_nor_sr1_bit6_quad_enable(struct spi_nor *nor); int spi_nor_sr2_bit1_quad_enable(struct spi_nor *nor); int spi_nor_sr2_bit7_quad_enable(struct spi_nor *nor); int spi_nor_read_id(struct spi_nor *nor, u8 naddr, u8 ndummy, u8 *id, enum spi_nor_protocol reg_proto); int spi_nor_read_sr(struct spi_nor *nor, u8 *sr); int spi_nor_sr_ready(struct spi_nor *nor); int spi_nor_read_cr(struct spi_nor *nor, u8 *cr); int spi_nor_write_sr(struct spi_nor *nor, const u8 *sr, size_t len); int spi_nor_write_sr_and_check(struct spi_nor *nor, u8 sr1); int spi_nor_write_16bit_cr_and_check(struct spi_nor *nor, u8 cr); ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len, u8 *buf); ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len, const u8 *buf); int spi_nor_read_any_reg(struct spi_nor *nor, struct spi_mem_op *op, enum spi_nor_protocol proto); int spi_nor_write_any_volatile_reg(struct spi_nor *nor, struct spi_mem_op *op, enum spi_nor_protocol proto); int spi_nor_erase_sector(struct spi_nor *nor, u32 addr); int spi_nor_otp_read_secr(struct spi_nor *nor, loff_t addr, size_t len, u8 *buf); int spi_nor_otp_write_secr(struct spi_nor *nor, loff_t addr, size_t len, const u8 *buf); int spi_nor_otp_erase_secr(struct spi_nor *nor, loff_t addr); int spi_nor_otp_lock_sr2(struct spi_nor *nor, unsigned int region); int spi_nor_otp_is_locked_sr2(struct spi_nor *nor, unsigned int region); int spi_nor_hwcaps_read2cmd(u32 hwcaps); int spi_nor_hwcaps_pp2cmd(u32 hwcaps); u8 spi_nor_convert_3to4_read(u8 opcode); void spi_nor_set_read_settings(struct spi_nor_read_command *read, u8 num_mode_clocks, u8 num_wait_states, u8 opcode, enum spi_nor_protocol proto); void spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, u8 opcode, enum spi_nor_protocol proto); void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, u32 size, u8 opcode); void spi_nor_mask_erase_type(struct spi_nor_erase_type *erase); struct spi_nor_erase_region * spi_nor_region_next(struct spi_nor_erase_region *region); void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map, u8 erase_mask, u64 flash_size); int spi_nor_post_bfpt_fixups(struct spi_nor *nor, const struct sfdp_parameter_header *bfpt_header, const struct sfdp_bfpt *bfpt); void spi_nor_init_default_locking_ops(struct spi_nor *nor); void spi_nor_try_unlock_all(struct spi_nor *nor); void spi_nor_set_mtd_locking_ops(struct spi_nor *nor); void spi_nor_set_mtd_otp_ops(struct spi_nor *nor); int spi_nor_controller_ops_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, size_t len); int spi_nor_controller_ops_write_reg(struct spi_nor *nor, u8 opcode, const u8 *buf, size_t len); int spi_nor_check_sfdp_signature(struct spi_nor *nor); int spi_nor_parse_sfdp(struct spi_nor *nor); static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd) { return container_of(mtd, struct spi_nor, mtd); } #ifdef CONFIG_DEBUG_FS void spi_nor_debugfs_register(struct spi_nor *nor); void spi_nor_debugfs_shutdown(void); #else static inline void spi_nor_debugfs_register(struct spi_nor *nor) {} static inline void spi_nor_debugfs_shutdown(void) {} #endif #endif /* __LINUX_MTD_SPI_NOR_INTERNAL_H */