/* SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0 */ /* Copyright (c) 2015-2018 Mellanox Technologies. All rights reserved */ #ifndef _MLXSW_REG_H #define _MLXSW_REG_H #include #include #include #include #include "item.h" #include "port.h" struct mlxsw_reg_info { u16 id; u16 len; /* In u8 */ const char *name; }; #define MLXSW_REG_DEFINE(_name, _id, _len) \ static const struct mlxsw_reg_info mlxsw_reg_##_name = { \ .id = _id, \ .len = _len, \ .name = #_name, \ } #define MLXSW_REG(type) (&mlxsw_reg_##type) #define MLXSW_REG_LEN(type) MLXSW_REG(type)->len #define MLXSW_REG_ZERO(type, payload) memset(payload, 0, MLXSW_REG(type)->len) /* SGCR - Switch General Configuration Register * -------------------------------------------- * This register is used for configuration of the switch capabilities. */ #define MLXSW_REG_SGCR_ID 0x2000 #define MLXSW_REG_SGCR_LEN 0x10 MLXSW_REG_DEFINE(sgcr, MLXSW_REG_SGCR_ID, MLXSW_REG_SGCR_LEN); /* reg_sgcr_llb * Link Local Broadcast (Default=0) * When set, all Link Local packets (224.0.0.X) will be treated as broadcast * packets and ignore the IGMP snooping entries. * Access: RW */ MLXSW_ITEM32(reg, sgcr, llb, 0x04, 0, 1); static inline void mlxsw_reg_sgcr_pack(char *payload, bool llb) { MLXSW_REG_ZERO(sgcr, payload); mlxsw_reg_sgcr_llb_set(payload, !!llb); } /* SPAD - Switch Physical Address Register * --------------------------------------- * The SPAD register configures the switch physical MAC address. */ #define MLXSW_REG_SPAD_ID 0x2002 #define MLXSW_REG_SPAD_LEN 0x10 MLXSW_REG_DEFINE(spad, MLXSW_REG_SPAD_ID, MLXSW_REG_SPAD_LEN); /* reg_spad_base_mac * Base MAC address for the switch partitions. * Per switch partition MAC address is equal to: * base_mac + swid * Access: RW */ MLXSW_ITEM_BUF(reg, spad, base_mac, 0x02, 6); /* SSPR - Switch System Port Record Register * ----------------------------------------- * Configures the system port to local port mapping. */ #define MLXSW_REG_SSPR_ID 0x2008 #define MLXSW_REG_SSPR_LEN 0x8 MLXSW_REG_DEFINE(sspr, MLXSW_REG_SSPR_ID, MLXSW_REG_SSPR_LEN); /* reg_sspr_m * Master - if set, then the record describes the master system port. * This is needed in case a local port is mapped into several system ports * (for multipathing). That number will be reported as the source system * port when packets are forwarded to the CPU. Only one master port is allowed * per local port. * * Note: Must be set for Spectrum. * Access: RW */ MLXSW_ITEM32(reg, sspr, m, 0x00, 31, 1); /* reg_sspr_local_port * Local port number. * * Access: RW */ MLXSW_ITEM32_LP(reg, sspr, 0x00, 16, 0x00, 12); /* reg_sspr_system_port * Unique identifier within the stacking domain that represents all the ports * that are available in the system (external ports). * * Currently, only single-ASIC configurations are supported, so we default to * 1:1 mapping between system ports and local ports. * Access: Index */ MLXSW_ITEM32(reg, sspr, system_port, 0x04, 0, 16); static inline void mlxsw_reg_sspr_pack(char *payload, u16 local_port) { MLXSW_REG_ZERO(sspr, payload); mlxsw_reg_sspr_m_set(payload, 1); mlxsw_reg_sspr_local_port_set(payload, local_port); mlxsw_reg_sspr_system_port_set(payload, local_port); } /* SFDAT - Switch Filtering Database Aging Time * -------------------------------------------- * Controls the Switch aging time. Aging time is able to be set per Switch * Partition. */ #define MLXSW_REG_SFDAT_ID 0x2009 #define MLXSW_REG_SFDAT_LEN 0x8 MLXSW_REG_DEFINE(sfdat, MLXSW_REG_SFDAT_ID, MLXSW_REG_SFDAT_LEN); /* reg_sfdat_swid * Switch partition ID. * Access: Index */ MLXSW_ITEM32(reg, sfdat, swid, 0x00, 24, 8); /* reg_sfdat_age_time * Aging time in seconds * Min - 10 seconds * Max - 1,000,000 seconds * Default is 300 seconds. * Access: RW */ MLXSW_ITEM32(reg, sfdat, age_time, 0x04, 0, 20); static inline void mlxsw_reg_sfdat_pack(char *payload, u32 age_time) { MLXSW_REG_ZERO(sfdat, payload); mlxsw_reg_sfdat_swid_set(payload, 0); mlxsw_reg_sfdat_age_time_set(payload, age_time); } /* SFD - Switch Filtering Database * ------------------------------- * The following register defines the access to the filtering database. * The register supports querying, adding, removing and modifying the database. * The access is optimized for bulk updates in which case more than one * FDB record is present in the same command. */ #define MLXSW_REG_SFD_ID 0x200A #define MLXSW_REG_SFD_BASE_LEN 0x10 /* base length, without records */ #define MLXSW_REG_SFD_REC_LEN 0x10 /* record length */ #define MLXSW_REG_SFD_REC_MAX_COUNT 64 #define MLXSW_REG_SFD_LEN (MLXSW_REG_SFD_BASE_LEN + \ MLXSW_REG_SFD_REC_LEN * MLXSW_REG_SFD_REC_MAX_COUNT) MLXSW_REG_DEFINE(sfd, MLXSW_REG_SFD_ID, MLXSW_REG_SFD_LEN); /* reg_sfd_swid * Switch partition ID for queries. Reserved on Write. * Access: Index */ MLXSW_ITEM32(reg, sfd, swid, 0x00, 24, 8); enum mlxsw_reg_sfd_op { /* Dump entire FDB a (process according to record_locator) */ MLXSW_REG_SFD_OP_QUERY_DUMP = 0, /* Query records by {MAC, VID/FID} value */ MLXSW_REG_SFD_OP_QUERY_QUERY = 1, /* Query and clear activity. Query records by {MAC, VID/FID} value */ MLXSW_REG_SFD_OP_QUERY_QUERY_AND_CLEAR_ACTIVITY = 2, /* Test. Response indicates if each of the records could be * added to the FDB. */ MLXSW_REG_SFD_OP_WRITE_TEST = 0, /* Add/modify. Aged-out records cannot be added. This command removes * the learning notification of the {MAC, VID/FID}. Response includes * the entries that were added to the FDB. */ MLXSW_REG_SFD_OP_WRITE_EDIT = 1, /* Remove record by {MAC, VID/FID}. This command also removes * the learning notification and aged-out notifications * of the {MAC, VID/FID}. The response provides current (pre-removal) * entries as non-aged-out. */ MLXSW_REG_SFD_OP_WRITE_REMOVE = 2, /* Remove learned notification by {MAC, VID/FID}. The response provides * the removed learning notification. */ MLXSW_REG_SFD_OP_WRITE_REMOVE_NOTIFICATION = 2, }; /* reg_sfd_op * Operation. * Access: OP */ MLXSW_ITEM32(reg, sfd, op, 0x04, 30, 2); /* reg_sfd_record_locator * Used for querying the FDB. Use record_locator=0 to initiate the * query. When a record is returned, a new record_locator is * returned to be used in the subsequent query. * Reserved for database update. * Access: Index */ MLXSW_ITEM32(reg, sfd, record_locator, 0x04, 0, 30); /* reg_sfd_num_rec * Request: Number of records to read/add/modify/remove * Response: Number of records read/added/replaced/removed * See above description for more details. * Ranges 0..64 * Access: RW */ MLXSW_ITEM32(reg, sfd, num_rec, 0x08, 0, 8); static inline void mlxsw_reg_sfd_pack(char *payload, enum mlxsw_reg_sfd_op op, u32 record_locator) { MLXSW_REG_ZERO(sfd, payload); mlxsw_reg_sfd_op_set(payload, op); mlxsw_reg_sfd_record_locator_set(payload, record_locator); } /* reg_sfd_rec_swid * Switch partition ID. * Access: Index */ MLXSW_ITEM32_INDEXED(reg, sfd, rec_swid, MLXSW_REG_SFD_BASE_LEN, 24, 8, MLXSW_REG_SFD_REC_LEN, 0x00, false); enum mlxsw_reg_sfd_rec_type { MLXSW_REG_SFD_REC_TYPE_UNICAST = 0x0, MLXSW_REG_SFD_REC_TYPE_UNICAST_LAG = 0x1, MLXSW_REG_SFD_REC_TYPE_MULTICAST = 0x2, MLXSW_REG_SFD_REC_TYPE_UNICAST_TUNNEL = 0xC, }; /* reg_sfd_rec_type * FDB record type. * Access: RW */ MLXSW_ITEM32_INDEXED(reg, sfd, rec_type, MLXSW_REG_SFD_BASE_LEN, 20, 4, MLXSW_REG_SFD_REC_LEN, 0x00, false); enum mlxsw_reg_sfd_rec_policy { /* Replacement disabled, aging disabled. */ MLXSW_REG_SFD_REC_POLICY_STATIC_ENTRY = 0, /* (mlag remote): Replacement enabled, aging disabled, * learning notification enabled on this port. */ MLXSW_REG_SFD_REC_POLICY_DYNAMIC_ENTRY_MLAG = 1, /* (ingress device): Replacement enabled, aging enabled. */ MLXSW_REG_SFD_REC_POLICY_DYNAMIC_ENTRY_INGRESS = 3, }; /* reg_sfd_rec_policy * Policy. * Access: RW */ MLXSW_ITEM32_INDEXED(reg, sfd, rec_policy, MLXSW_REG_SFD_BASE_LEN, 18, 2, MLXSW_REG_SFD_REC_LEN, 0x00, false); /* reg_sfd_rec_a * Activity. Set for new static entries. Set for static entries if a frame SMAC * lookup hits on the entry. * To clear the a bit, use "query and clear activity" op. * Access: RO */ MLXSW_ITEM32_INDEXED(reg, sfd, rec_a, MLXSW_REG_SFD_BASE_LEN, 16, 1, MLXSW_REG_SFD_REC_LEN, 0x00, false); /* reg_sfd_rec_mac * MAC address. * Access: Index */ MLXSW_ITEM_BUF_INDEXED(reg, sfd, rec_mac, MLXSW_REG_SFD_BASE_LEN, 6, MLXSW_REG_SFD_REC_LEN, 0x02); enum mlxsw_reg_sfd_rec_action { /* forward */ MLXSW_REG_SFD_REC_ACTION_NOP = 0, /* forward and trap, trap_id is FDB_TRAP */ MLXSW_REG_SFD_REC_ACTION_MIRROR_TO_CPU = 1, /* trap and do not forward, trap_id is FDB_TRAP */ MLXSW_REG_SFD_REC_ACTION_TRAP = 2, /* forward to IP router */ MLXSW_REG_SFD_REC_ACTION_FORWARD_IP_ROUTER = 3, MLXSW_REG_SFD_REC_ACTION_DISCARD_ERROR = 15, }; /* reg_sfd_rec_action * Action to apply on the packet. * Note: Dynamic entries can only be configured with NOP action. * Access: RW */ MLXSW_ITEM32_INDEXED(reg, sfd, rec_action, MLXSW_REG_SFD_BASE_LEN, 28, 4, MLXSW_REG_SFD_REC_LEN, 0x0C, false); /* reg_sfd_uc_sub_port * VEPA channel on local port. * Valid only if local port is a non-stacking port. Must be 0 if multichannel * VEPA is not enabled. * Access: RW */ MLXSW_ITEM32_INDEXED(reg, sfd, uc_sub_port, MLXSW_REG_SFD_BASE_LEN, 16, 8, MLXSW_REG_SFD_REC_LEN, 0x08, false); /* reg_sfd_uc_set_vid * Set VID. * 0 - Do not update VID. * 1 - Set VID. * For Spectrum-2 when set_vid=0 and smpe_valid=1, the smpe will modify the vid. * Access: RW * * Note: Reserved when legacy bridge model is used. */ MLXSW_ITEM32_INDEXED(reg, sfd, uc_set_vid, MLXSW_REG_SFD_BASE_LEN, 31, 1, MLXSW_REG_SFD_REC_LEN, 0x08, false); /* reg_sfd_uc_fid_vid * Filtering ID or VLAN ID * For SwitchX and SwitchX-2: * - Dynamic entries (policy 2,3) use FID * - Static entries (policy 0) use VID * - When independent learning is configured, VID=FID * For Spectrum: use FID for both Dynamic and Static entries. * VID should not be used. * Access: Index */ MLXSW_ITEM32_INDEXED(reg, sfd, uc_fid_vid, MLXSW_REG_SFD_BASE_LEN, 0, 16, MLXSW_REG_SFD_REC_LEN, 0x08, false); /* reg_sfd_uc_vid * New VID when set_vid=1. * Access: RW * * Note: Reserved when legacy bridge model is used and when set_vid=0. */ MLXSW_ITEM32_INDEXED(reg, sfd, uc_vid, MLXSW_REG_SFD_BASE_LEN, 16, 12, MLXSW_REG_SFD_REC_LEN, 0x0C, false); /* reg_sfd_uc_system_port * Unique port identifier for the final destination of the packet. * Access: RW */ MLXSW_ITEM32_INDEXED(reg, sfd, uc_system_port, MLXSW_REG_SFD_BASE_LEN, 0, 16, MLXSW_REG_SFD_REC_LEN, 0x0C, false); static inline void mlxsw_reg_sfd_rec_pack(char *payload, int rec_index, enum mlxsw_reg_sfd_rec_type rec_type, const char *mac, enum mlxsw_reg_sfd_rec_action action) { u8 num_rec = mlxsw_reg_sfd_num_rec_get(payload); if (rec_index >= num_rec) mlxsw_reg_sfd_num_rec_set(payload, rec_index + 1); mlxsw_reg_sfd_rec_swid_set(payload, rec_index, 0); mlxsw_reg_sfd_rec_type_set(payload, rec_index, rec_type); mlxsw_reg_sfd_rec_mac_memcpy_to(payload, rec_index, mac); mlxsw_reg_sfd_rec_action_set(payload, rec_index, action); } static inline void mlxsw_reg_sfd_uc_pack(char *payload, int rec_index, enum mlxsw_reg_sfd_rec_policy policy, const char *mac, u16 fid_vid, u16 vid, enum mlxsw_reg_sfd_rec_action action, u16 local_port) { mlxsw_reg_sfd_rec_pack(payload, rec_index, MLXSW_REG_SFD_REC_TYPE_UNICAST, mac, action); mlxsw_reg_sfd_rec_policy_set(payload, rec_index, policy); mlxsw_reg_sfd_uc_sub_port_set(payload, rec_index, 0); mlxsw_reg_sfd_uc_fid_vid_set(payload, rec_index, fid_vid); mlxsw_reg_sfd_uc_set_vid_set(payload, rec_index, vid ? true : false); mlxsw_reg_sfd_uc_vid_set(payload, rec_index, vid); mlxsw_reg_sfd_uc_system_port_set(payload, rec_index, local_port); } /* reg_sfd_uc_lag_sub_port * LAG sub port. * Must be 0 if multichannel VEPA is not enabled. * Access: RW */ MLXSW_ITEM32_INDEXED(reg, sfd, uc_lag_sub_port, MLXSW_REG_SFD_BASE_LEN, 16, 8, MLXSW_REG_SFD_REC_LEN, 0x08, false); /* reg_sfd_uc_lag_set_vid * Set VID. * 0 - Do not update VID. * 1 - Set VID. * For Spectrum-2 when set_vid=0 and smpe_valid=1, the smpe will modify the vid. * Access: RW * * Note: Reserved when legacy bridge model is used. */ MLXSW_ITEM32_INDEXED(reg, sfd, uc_lag_set_vid, MLXSW_REG_SFD_BASE_LEN, 31, 1, MLXSW_REG_SFD_REC_LEN, 0x08, false); /* reg_sfd_uc_lag_fid_vid * Filtering ID or VLAN ID * For SwitchX and SwitchX-2: * - Dynamic entries (policy 2,3) use FID * - Static entries (policy 0) use VID * - When independent learning is configured, VID=FID * For Spectrum: use FID for both Dynamic and Static entries. * VID should not be used. * Access: Index */ MLXSW_ITEM32_INDEXED(reg, sfd, uc_lag_fid_vid, MLXSW_REG_SFD_BASE_LEN, 0, 16, MLXSW_REG_SFD_REC_LEN, 0x08, false); /* reg_sfd_uc_lag_lag_vid * New vlan ID. * Access: RW * * Note: Reserved when legacy bridge model is used and set_vid=0. */ MLXSW_ITEM32_INDEXED(reg, sfd, uc_lag_lag_vid, MLXSW_REG_SFD_BASE_LEN, 16, 12, MLXSW_REG_SFD_REC_LEN, 0x0C, false); /* reg_sfd_uc_lag_lag_id * LAG Identifier - pointer into the LAG descriptor table. * Access: RW */ MLXSW_ITEM32_INDEXED(reg, sfd, uc_lag_lag_id, MLXSW_REG_SFD_BASE_LEN, 0, 10, MLXSW_REG_SFD_REC_LEN, 0x0C, false); static inline void mlxsw_reg_sfd_uc_lag_pack(char *payload, int rec_index, enum mlxsw_reg_sfd_rec_policy policy, const char *mac, u16 fid_vid, enum mlxsw_reg_sfd_rec_action action, u16 lag_vid, u16 lag_id) { mlxsw_reg_sfd_rec_pack(payload, rec_index, MLXSW_REG_SFD_REC_TYPE_UNICAST_LAG, mac, action); mlxsw_reg_sfd_rec_policy_set(payload, rec_index, policy); mlxsw_reg_sfd_uc_lag_sub_port_set(payload, rec_index, 0); mlxsw_reg_sfd_uc_lag_fid_vid_set(payload, rec_index, fid_vid); mlxsw_reg_sfd_uc_lag_set_vid_set(payload, rec_index, true); mlxsw_reg_sfd_uc_lag_lag_vid_set(payload, rec_index, lag_vid); mlxsw_reg_sfd_uc_lag_lag_id_set(payload, rec_index, lag_id); } /* reg_sfd_mc_pgi * * Multicast port group index - index into the port group table. * Value 0x1FFF indicates the pgi should point to the MID entry. * For Spectrum this value must be set to 0x1FFF * Access: RW */ MLXSW_ITEM32_INDEXED(reg, sfd, mc_pgi, MLXSW_REG_SFD_BASE_LEN, 16, 13, MLXSW_REG_SFD_REC_LEN, 0x08, false); /* reg_sfd_mc_fid_vid * * Filtering ID or VLAN ID * Access: Index */ MLXSW_ITEM32_INDEXED(reg, sfd, mc_fid_vid, MLXSW_REG_SFD_BASE_LEN, 0, 16, MLXSW_REG_SFD_REC_LEN, 0x08, false); /* reg_sfd_mc_mid * * Multicast identifier - global identifier that represents the multicast * group across all devices. * Access: RW */ MLXSW_ITEM32_INDEXED(reg, sfd, mc_mid, MLXSW_REG_SFD_BASE_LEN, 0, 16, MLXSW_REG_SFD_REC_LEN, 0x0C, false); static inline void mlxsw_reg_sfd_mc_pack(char *payload, int rec_index, const char *mac, u16 fid_vid, enum mlxsw_reg_sfd_rec_action action, u16 mid) { mlxsw_reg_sfd_rec_pack(payload, rec_index, MLXSW_REG_SFD_REC_TYPE_MULTICAST, mac, action); mlxsw_reg_sfd_mc_pgi_set(payload, rec_index, 0x1FFF); mlxsw_reg_sfd_mc_fid_vid_set(payload, rec_index, fid_vid); mlxsw_reg_sfd_mc_mid_set(payload, rec_index, mid); } /* reg_sfd_uc_tunnel_uip_msb * When protocol is IPv4, the most significant byte of the underlay IPv4 * destination IP. * When protocol is IPv6, reserved. * Access: RW */ MLXSW_ITEM32_INDEXED(reg, sfd, uc_tunnel_uip_msb, MLXSW_REG_SFD_BASE_LEN, 24, 8, MLXSW_REG_SFD_REC_LEN, 0x08, false); /* reg_sfd_uc_tunnel_fid * Filtering ID. * Access: Index */ MLXSW_ITEM32_INDEXED(reg, sfd, uc_tunnel_fid, MLXSW_REG_SFD_BASE_LEN, 0, 16, MLXSW_REG_SFD_REC_LEN, 0x08, false); enum mlxsw_reg_sfd_uc_tunnel_protocol { MLXSW_REG_SFD_UC_TUNNEL_PROTOCOL_IPV4, MLXSW_REG_SFD_UC_TUNNEL_PROTOCOL_IPV6, }; /* reg_sfd_uc_tunnel_protocol * IP protocol. * Access: RW */ MLXSW_ITEM32_INDEXED(reg, sfd, uc_tunnel_protocol, MLXSW_REG_SFD_BASE_LEN, 27, 1, MLXSW_REG_SFD_REC_LEN, 0x0C, false); /* reg_sfd_uc_tunnel_uip_lsb * When protocol is IPv4, the least significant bytes of the underlay * IPv4 destination IP. * When protocol is IPv6, pointer to the underlay IPv6 destination IP * which is configured by RIPS. * Access: RW */ MLXSW_ITEM32_INDEXED(reg, sfd, uc_tunnel_uip_lsb, MLXSW_REG_SFD_BASE_LEN, 0, 24, MLXSW_REG_SFD_REC_LEN, 0x0C, false); static inline void mlxsw_reg_sfd_uc_tunnel_pack(char *payload, int rec_index, enum mlxsw_reg_sfd_rec_policy policy, const char *mac, u16 fid, enum mlxsw_reg_sfd_rec_action action, enum mlxsw_reg_sfd_uc_tunnel_protocol proto) { mlxsw_reg_sfd_rec_pack(payload, rec_index, MLXSW_REG_SFD_REC_TYPE_UNICAST_TUNNEL, mac, action); mlxsw_reg_sfd_rec_policy_set(payload, rec_index, policy); mlxsw_reg_sfd_uc_tunnel_fid_set(payload, rec_index, fid); mlxsw_reg_sfd_uc_tunnel_protocol_set(payload, rec_index, proto); } static inline void mlxsw_reg_sfd_uc_tunnel_pack4(char *payload, int rec_index, enum mlxsw_reg_sfd_rec_policy policy, const char *mac, u16 fid, enum mlxsw_reg_sfd_rec_action action, u32 uip) { mlxsw_reg_sfd_uc_tunnel_uip_msb_set(payload, rec_index, uip >> 24); mlxsw_reg_sfd_uc_tunnel_uip_lsb_set(payload, rec_index, uip); mlxsw_reg_sfd_uc_tunnel_pack(payload, rec_index, policy, mac, fid, action, MLXSW_REG_SFD_UC_TUNNEL_PROTOCOL_IPV4); } static inline void mlxsw_reg_sfd_uc_tunnel_pack6(char *payload, int rec_index, const char *mac, u16 fid, enum mlxsw_reg_sfd_rec_action action, u32 uip_ptr) { mlxsw_reg_sfd_uc_tunnel_uip_lsb_set(payload, rec_index, uip_ptr); /* Only static policy is supported for IPv6 unicast tunnel entry. */ mlxsw_reg_sfd_uc_tunnel_pack(payload, rec_index, MLXSW_REG_SFD_REC_POLICY_STATIC_ENTRY, mac, fid, action, MLXSW_REG_SFD_UC_TUNNEL_PROTOCOL_IPV6); } enum mlxsw_reg_tunnel_port { MLXSW_REG_TUNNEL_PORT_NVE, MLXSW_REG_TUNNEL_PORT_VPLS, MLXSW_REG_TUNNEL_PORT_FLEX_TUNNEL0, MLXSW_REG_TUNNEL_PORT_FLEX_TUNNEL1, }; /* SFN - Switch FDB Notification Register * ------------------------------------------- * The switch provides notifications on newly learned FDB entries and * aged out entries. The notifications can be polled by software. */ #define MLXSW_REG_SFN_ID 0x200B #define MLXSW_REG_SFN_BASE_LEN 0x10 /* base length, without records */ #define MLXSW_REG_SFN_REC_LEN 0x10 /* record length */ #define MLXSW_REG_SFN_REC_MAX_COUNT 64 #define MLXSW_REG_SFN_LEN (MLXSW_REG_SFN_BASE_LEN + \ MLXSW_REG_SFN_REC_LEN * MLXSW_REG_SFN_REC_MAX_COUNT) MLXSW_REG_DEFINE(sfn, MLXSW_REG_SFN_ID, MLXSW_REG_SFN_LEN); /* reg_sfn_swid * Switch partition ID. * Access: Index */ MLXSW_ITEM32(reg, sfn, swid, 0x00, 24, 8); /* reg_sfn_end * Forces the current session to end. * Access: OP */ MLXSW_ITEM32(reg, sfn, end, 0x04, 20, 1); /* reg_sfn_num_rec * Request: Number of learned notifications and aged-out notification * records requested. * Response: Number of notification records returned (must be smaller * than or equal to the value requested) * Ranges 0..64 * Access: OP */ MLXSW_ITEM32(reg, sfn, num_rec, 0x04, 0, 8); static inline void mlxsw_reg_sfn_pack(char *payload) { MLXSW_REG_ZERO(sfn, payload); mlxsw_reg_sfn_swid_set(payload, 0); mlxsw_reg_sfn_end_set(payload, 0); mlxsw_reg_sfn_num_rec_set(payload, MLXSW_REG_SFN_REC_MAX_COUNT); } /* reg_sfn_rec_swid * Switch partition ID. * Access: RO */ MLXSW_ITEM32_INDEXED(reg, sfn, rec_swid, MLXSW_REG_SFN_BASE_LEN, 24, 8, MLXSW_REG_SFN_REC_LEN, 0x00, false); enum mlxsw_reg_sfn_rec_type { /* MAC addresses learned on a regular port. */ MLXSW_REG_SFN_REC_TYPE_LEARNED_MAC = 0x5, /* MAC addresses learned on a LAG port. */ MLXSW_REG_SFN_REC_TYPE_LEARNED_MAC_LAG = 0x6, /* Aged-out MAC address on a regular port. */ MLXSW_REG_SFN_REC_TYPE_AGED_OUT_MAC = 0x7, /* Aged-out MAC address on a LAG port. */ MLXSW_REG_SFN_REC_TYPE_AGED_OUT_MAC_LAG = 0x8, /* Learned unicast tunnel record. */ MLXSW_REG_SFN_REC_TYPE_LEARNED_UNICAST_TUNNEL = 0xD, /* Aged-out unicast tunnel record. */ MLXSW_REG_SFN_REC_TYPE_AGED_OUT_UNICAST_TUNNEL = 0xE, }; /* reg_sfn_rec_type * Notification record type. * Access: RO */ MLXSW_ITEM32_INDEXED(reg, sfn, rec_type, MLXSW_REG_SFN_BASE_LEN, 20, 4, MLXSW_REG_SFN_REC_LEN, 0x00, false); /* reg_sfn_rec_mac * MAC address. * Access: RO */ MLXSW_ITEM_BUF_INDEXED(reg, sfn, rec_mac, MLXSW_REG_SFN_BASE_LEN, 6, MLXSW_REG_SFN_REC_LEN, 0x02); /* reg_sfn_mac_sub_port * VEPA channel on the local port. * 0 if multichannel VEPA is not enabled. * Access: RO */ MLXSW_ITEM32_INDEXED(reg, sfn, mac_sub_port, MLXSW_REG_SFN_BASE_LEN, 16, 8, MLXSW_REG_SFN_REC_LEN, 0x08, false); /* reg_sfn_mac_fid * Filtering identifier. * Access: RO */ MLXSW_ITEM32_INDEXED(reg, sfn, mac_fid, MLXSW_REG_SFN_BASE_LEN, 0, 16, MLXSW_REG_SFN_REC_LEN, 0x08, false); /* reg_sfn_mac_system_port * Unique port identifier for the final destination of the packet. * Access: RO */ MLXSW_ITEM32_INDEXED(reg, sfn, mac_system_port, MLXSW_REG_SFN_BASE_LEN, 0, 16, MLXSW_REG_SFN_REC_LEN, 0x0C, false); static inline void mlxsw_reg_sfn_mac_unpack(char *payload, int rec_index, char *mac, u16 *p_vid, u16 *p_local_port) { mlxsw_reg_sfn_rec_mac_memcpy_from(payload, rec_index, mac); *p_vid = mlxsw_reg_sfn_mac_fid_get(payload, rec_index); *p_local_port = mlxsw_reg_sfn_mac_system_port_get(payload, rec_index); } /* reg_sfn_mac_lag_lag_id * LAG ID (pointer into the LAG descriptor table). * Access: RO */ MLXSW_ITEM32_INDEXED(reg, sfn, mac_lag_lag_id, MLXSW_REG_SFN_BASE_LEN, 0, 10, MLXSW_REG_SFN_REC_LEN, 0x0C, false); static inline void mlxsw_reg_sfn_mac_lag_unpack(char *payload, int rec_index, char *mac, u16 *p_vid, u16 *p_lag_id) { mlxsw_reg_sfn_rec_mac_memcpy_from(payload, rec_index, mac); *p_vid = mlxsw_reg_sfn_mac_fid_get(payload, rec_index); *p_lag_id = mlxsw_reg_sfn_mac_lag_lag_id_get(payload, rec_index); } /* reg_sfn_uc_tunnel_uip_msb * When protocol is IPv4, the most significant byte of the underlay IPv4 * address of the remote VTEP. * When protocol is IPv6, reserved. * Access: RO */ MLXSW_ITEM32_INDEXED(reg, sfn, uc_tunnel_uip_msb, MLXSW_REG_SFN_BASE_LEN, 24, 8, MLXSW_REG_SFN_REC_LEN, 0x08, false); enum mlxsw_reg_sfn_uc_tunnel_protocol { MLXSW_REG_SFN_UC_TUNNEL_PROTOCOL_IPV4, MLXSW_REG_SFN_UC_TUNNEL_PROTOCOL_IPV6, }; /* reg_sfn_uc_tunnel_protocol * IP protocol. * Access: RO */ MLXSW_ITEM32_INDEXED(reg, sfn, uc_tunnel_protocol, MLXSW_REG_SFN_BASE_LEN, 27, 1, MLXSW_REG_SFN_REC_LEN, 0x0C, false); /* reg_sfn_uc_tunnel_uip_lsb * When protocol is IPv4, the least significant bytes of the underlay * IPv4 address of the remote VTEP. * When protocol is IPv6, ipv6_id to be queried from TNIPSD. * Access: RO */ MLXSW_ITEM32_INDEXED(reg, sfn, uc_tunnel_uip_lsb, MLXSW_REG_SFN_BASE_LEN, 0, 24, MLXSW_REG_SFN_REC_LEN, 0x0C, false); /* reg_sfn_uc_tunnel_port * Tunnel port. * Reserved on Spectrum. * Access: RO */ MLXSW_ITEM32_INDEXED(reg, sfn, tunnel_port, MLXSW_REG_SFN_BASE_LEN, 0, 4, MLXSW_REG_SFN_REC_LEN, 0x10, false); static inline void mlxsw_reg_sfn_uc_tunnel_unpack(char *payload, int rec_index, char *mac, u16 *p_fid, u32 *p_uip, enum mlxsw_reg_sfn_uc_tunnel_protocol *p_proto) { u32 uip_msb, uip_lsb; mlxsw_reg_sfn_rec_mac_memcpy_from(payload, rec_index, mac); *p_fid = mlxsw_reg_sfn_mac_fid_get(payload, rec_index); uip_msb = mlxsw_reg_sfn_uc_tunnel_uip_msb_get(payload, rec_index); uip_lsb = mlxsw_reg_sfn_uc_tunnel_uip_lsb_get(payload, rec_index); *p_uip = uip_msb << 24 | uip_lsb; *p_proto = mlxsw_reg_sfn_uc_tunnel_protocol_get(payload, rec_index); } /* SPMS - Switch Port MSTP/RSTP State Register * ------------------------------------------- * Configures the spanning tree state of a physical port. */ #define MLXSW_REG_SPMS_ID 0x200D #define MLXSW_REG_SPMS_LEN 0x404 MLXSW_REG_DEFINE(spms, MLXSW_REG_SPMS_ID, MLXSW_REG_SPMS_LEN); /* reg_spms_local_port * Local port number. * Access: Index */ MLXSW_ITEM32_LP(reg, spms, 0x00, 16, 0x00, 12); enum mlxsw_reg_spms_state { MLXSW_REG_SPMS_STATE_NO_CHANGE, MLXSW_REG_SPMS_STATE_DISCARDING, MLXSW_REG_SPMS_STATE_LEARNING, MLXSW_REG_SPMS_STATE_FORWARDING, }; /* reg_spms_state * Spanning tree state of each VLAN ID (VID) of the local port. * 0 - Do not change spanning tree state (used only when writing). * 1 - Discarding. No learning or forwarding to/from this port (default). * 2 - Learning. Port is learning, but not forwarding. * 3 - Forwarding. Port is learning and forwarding. * Access: RW */ MLXSW_ITEM_BIT_ARRAY(reg, spms, state, 0x04, 0x400, 2); static inline void mlxsw_reg_spms_pack(char *payload, u16 local_port) { MLXSW_REG_ZERO(spms, payload); mlxsw_reg_spms_local_port_set(payload, local_port); } static inline void mlxsw_reg_spms_vid_pack(char *payload, u16 vid, enum mlxsw_reg_spms_state state) { mlxsw_reg_spms_state_set(payload, vid, state); } /* SPVID - Switch Port VID * ----------------------- * The switch port VID configures the default VID for a port. */ #define MLXSW_REG_SPVID_ID 0x200E #define MLXSW_REG_SPVID_LEN 0x08 MLXSW_REG_DEFINE(spvid, MLXSW_REG_SPVID_ID, MLXSW_REG_SPVID_LEN); /* reg_spvid_tport * Port is tunnel port. * Reserved when SwitchX/-2 or Spectrum-1. * Access: Index */ MLXSW_ITEM32(reg, spvid, tport, 0x00, 24, 1); /* reg_spvid_local_port * When tport = 0: Local port number. Not supported for CPU port. * When tport = 1: Tunnel port. * Access: Index */ MLXSW_ITEM32_LP(reg, spvid, 0x00, 16, 0x00, 12); /* reg_spvid_sub_port * Virtual port within the physical port. * Should be set to 0 when virtual ports are not enabled on the port. * Access: Index */ MLXSW_ITEM32(reg, spvid, sub_port, 0x00, 8, 8); /* reg_spvid_egr_et_set * When VLAN is pushed at ingress (for untagged packets or for * QinQ push mode) then the EtherType is decided at the egress port. * Reserved when Spectrum-1. * Access: RW */ MLXSW_ITEM32(reg, spvid, egr_et_set, 0x04, 24, 1); /* reg_spvid_et_vlan * EtherType used for when VLAN is pushed at ingress (for untagged * packets or for QinQ push mode). * 0: ether_type0 - (default) * 1: ether_type1 * 2: ether_type2 - Reserved when Spectrum-1, supported by Spectrum-2 * Ethertype IDs are configured by SVER. * Reserved when egr_et_set = 1. * Access: RW */ MLXSW_ITEM32(reg, spvid, et_vlan, 0x04, 16, 2); /* reg_spvid_pvid * Port default VID * Access: RW */ MLXSW_ITEM32(reg, spvid, pvid, 0x04, 0, 12); static inline void mlxsw_reg_spvid_pack(char *payload, u16 local_port, u16 pvid, u8 et_vlan) { MLXSW_REG_ZERO(spvid, payload); mlxsw_reg_spvid_local_port_set(payload, local_port); mlxsw_reg_spvid_pvid_set(payload, pvid); mlxsw_reg_spvid_et_vlan_set(payload, et_vlan); } /* SPVM - Switch Port VLAN Membership * ---------------------------------- * The Switch Port VLAN Membership register configures the VLAN membership * of a port in a VLAN denoted by VID. VLAN membership is managed per * virtual port. The register can be used to add and remove VID(s) from a port. */ #define MLXSW_REG_SPVM_ID 0x200F #define MLXSW_REG_SPVM_BASE_LEN 0x04 /* base length, without records */ #define MLXSW_REG_SPVM_REC_LEN 0x04 /* record length */ #define MLXSW_REG_SPVM_REC_MAX_COUNT 255 #define MLXSW_REG_SPVM_LEN (MLXSW_REG_SPVM_BASE_LEN + \ MLXSW_REG_SPVM_REC_LEN * MLXSW_REG_SPVM_REC_MAX_COUNT) MLXSW_REG_DEFINE(spvm, MLXSW_REG_SPVM_ID, MLXSW_REG_SPVM_LEN); /* reg_spvm_pt * Priority tagged. If this bit is set, packets forwarded to the port with * untagged VLAN membership (u bit is set) will be tagged with priority tag * (VID=0) * Access: RW */ MLXSW_ITEM32(reg, spvm, pt, 0x00, 31, 1); /* reg_spvm_pte * Priority Tagged Update Enable. On Write operations, if this bit is cleared, * the pt bit will NOT be updated. To update the pt bit, pte must be set. * Access: WO */ MLXSW_ITEM32(reg, spvm, pte, 0x00, 30, 1); /* reg_spvm_local_port * Local port number. * Access: Index */ MLXSW_ITEM32_LP(reg, spvm, 0x00, 16, 0x00, 12); /* reg_spvm_sub_port * Virtual port within the physical port. * Should be set to 0 when virtual ports are not enabled on the port. * Access: Index */ MLXSW_ITEM32(reg, spvm, sub_port, 0x00, 8, 8); /* reg_spvm_num_rec * Number of records to update. Each record contains: i, e, u, vid. * Access: OP */ MLXSW_ITEM32(reg, spvm, num_rec, 0x00, 0, 8); /* reg_spvm_rec_i * Ingress membership in VLAN ID. * Access: Index */ MLXSW_ITEM32_INDEXED(reg, spvm, rec_i, MLXSW_REG_SPVM_BASE_LEN, 14, 1, MLXSW_REG_SPVM_REC_LEN, 0, false); /* reg_spvm_rec_e * Egress membership in VLAN ID. * Access: Index */ MLXSW_ITEM32_INDEXED(reg, spvm, rec_e, MLXSW_REG_SPVM_BASE_LEN, 13, 1, MLXSW_REG_SPVM_REC_LEN, 0, false); /* reg_spvm_rec_u * Untagged - port is an untagged member - egress transmission uses untagged * frames on VID * Access: Index */ MLXSW_ITEM32_INDEXED(reg, spvm, rec_u, MLXSW_REG_SPVM_BASE_LEN, 12, 1, MLXSW_REG_SPVM_REC_LEN, 0, false); /* reg_spvm_rec_vid * Egress membership in VLAN ID. * Access: Index */ MLXSW_ITEM32_INDEXED(reg, spvm, rec_vid, MLXSW_REG_SPVM_BASE_LEN, 0, 12, MLXSW_REG_SPVM_REC_LEN, 0, false); static inline void mlxsw_reg_spvm_pack(char *payload, u16 local_port, u16 vid_begin, u16 vid_end, bool is_member, bool untagged) { int size = vid_end - vid_begin + 1; int i; MLXSW_REG_ZERO(spvm, payload); mlxsw_reg_spvm_local_port_set(payload, local_port); mlxsw_reg_spvm_num_rec_set(payload, size); for (i = 0; i < size; i++) { mlxsw_reg_spvm_rec_i_set(payload, i, is_member); mlxsw_reg_spvm_rec_e_set(payload, i, is_member); mlxsw_reg_spvm_rec_u_set(payload, i, untagged); mlxsw_reg_spvm_rec_vid_set(payload, i, vid_begin + i); } } /* SPAFT - Switch Port Acceptable Frame Types * ------------------------------------------ * The Switch Port Acceptable Frame Types register configures the frame * admittance of the port. */ #define MLXSW_REG_SPAFT_ID 0x2010 #define MLXSW_REG_SPAFT_LEN 0x08 MLXSW_REG_DEFINE(spaft, MLXSW_REG_SPAFT_ID, MLXSW_REG_SPAFT_LEN); /* reg_spaft_local_port * Local port number. * Access: Index * * Note: CPU port is not supported (all tag types are allowed). */ MLXSW_ITEM32_LP(reg, spaft, 0x00, 16, 0x00, 12); /* reg_spaft_sub_port * Virtual port within the physical port. * Should be set to 0 when virtual ports are not enabled on the port. * Access: RW */ MLXSW_ITEM32(reg, spaft, sub_port, 0x00, 8, 8); /* reg_spaft_allow_untagged * When set, untagged frames on the ingress are allowed (default). * Access: RW */ MLXSW_ITEM32(reg, spaft, allow_untagged, 0x04, 31, 1); /* reg_spaft_allow_prio_tagged * When set, priority tagged frames on the ingress are allowed (default). * Access: RW */ MLXSW_ITEM32(reg, spaft, allow_prio_tagged, 0x04, 30, 1); /* reg_spaft_allow_tagged * When set, tagged frames on the ingress are allowed (default). * Access: RW */ MLXSW_ITEM32(reg, spaft, allow_tagged, 0x04, 29, 1); static inline void mlxsw_reg_spaft_pack(char *payload, u16 local_port, bool allow_untagged) { MLXSW_REG_ZERO(spaft, payload); mlxsw_reg_spaft_local_port_set(payload, local_port); mlxsw_reg_spaft_allow_untagged_set(payload, allow_untagged); mlxsw_reg_spaft_allow_prio_tagged_set(payload, allow_untagged); mlxsw_reg_spaft_allow_tagged_set(payload, true); } /* SFGC - Switch Flooding Group Configuration * ------------------------------------------ * The following register controls the association of flooding tables and MIDs * to packet types used for flooding. */ #define MLXSW_REG_SFGC_ID 0x2011 #define MLXSW_REG_SFGC_LEN 0x14 MLXSW_REG_DEFINE(sfgc, MLXSW_REG_SFGC_ID, MLXSW_REG_SFGC_LEN); enum mlxsw_reg_sfgc_type { MLXSW_REG_SFGC_TYPE_BROADCAST, MLXSW_REG_SFGC_TYPE_UNKNOWN_UNICAST, MLXSW_REG_SFGC_TYPE_UNREGISTERED_MULTICAST_IPV4, MLXSW_REG_SFGC_TYPE_UNREGISTERED_MULTICAST_IPV6, MLXSW_REG_SFGC_TYPE_RESERVED, MLXSW_REG_SFGC_TYPE_UNREGISTERED_MULTICAST_NON_IP, MLXSW_REG_SFGC_TYPE_IPV4_LINK_LOCAL, MLXSW_REG_SFGC_TYPE_IPV6_ALL_HOST, MLXSW_REG_SFGC_TYPE_MAX, }; /* reg_sfgc_type * The traffic type to reach the flooding table. * Access: Index */ MLXSW_ITEM32(reg, sfgc, type, 0x00, 0, 4); /* bridge_type is used in SFGC and SFMR. */ enum mlxsw_reg_bridge_type { MLXSW_REG_BRIDGE_TYPE_0 = 0, /* Used for .1q FIDs. */ MLXSW_REG_BRIDGE_TYPE_1 = 1, /* Used for .1d FIDs. */ }; /* reg_sfgc_bridge_type * Access: Index * * Note: SwitchX-2 only supports 802.1Q mode. */ MLXSW_ITEM32(reg, sfgc, bridge_type, 0x04, 24, 3); enum mlxsw_flood_table_type { MLXSW_REG_SFGC_TABLE_TYPE_VID = 1, MLXSW_REG_SFGC_TABLE_TYPE_SINGLE = 2, MLXSW_REG_SFGC_TABLE_TYPE_ANY = 0, MLXSW_REG_SFGC_TABLE_TYPE_FID_OFFSET = 3, MLXSW_REG_SFGC_TABLE_TYPE_FID = 4, }; /* reg_sfgc_table_type * See mlxsw_flood_table_type * Access: RW * * Note: FID offset and FID types are not supported in SwitchX-2. */ MLXSW_ITEM32(reg, sfgc, table_type, 0x04, 16, 3); /* reg_sfgc_flood_table * Flooding table index to associate with the specific type on the specific * switch partition. * Access: RW */ MLXSW_ITEM32(reg, sfgc, flood_table, 0x04, 0, 6); /* reg_sfgc_counter_set_type * Counter Set Type for flow counters. * Access: RW */ MLXSW_ITEM32(reg, sfgc, counter_set_type, 0x0C, 24, 8); /* reg_sfgc_counter_index * Counter Index for flow counters. * Access: RW */ MLXSW_ITEM32(reg, sfgc, counter_index, 0x0C, 0, 24); /* reg_sfgc_mid_base * MID Base. * Access: RW * * Note: Reserved when legacy bridge model is used. */ MLXSW_ITEM32(reg, sfgc, mid_base, 0x10, 0, 16); static inline void mlxsw_reg_sfgc_pack(char *payload, enum mlxsw_reg_sfgc_type type, enum mlxsw_reg_bridge_type bridge_type, enum mlxsw_flood_table_type table_type, unsigned int flood_table, u16 mid_base) { MLXSW_REG_ZERO(sfgc, payload); mlxsw_reg_sfgc_type_set(payload, type); mlxsw_reg_sfgc_bridge_type_set(payload, bridge_type); mlxsw_reg_sfgc_table_type_set(payload, table_type); mlxsw_reg_sfgc_flood_table_set(payload, flood_table); mlxsw_reg_sfgc_mid_base_set(payload, mid_base); } /* SFDF - Switch Filtering DB Flush * -------------------------------- * The switch filtering DB flush register is used to flush the FDB. * Note that FDB notifications are flushed as well. */ #define MLXSW_REG_SFDF_ID 0x2013 #define MLXSW_REG_SFDF_LEN 0x14 MLXSW_REG_DEFINE(sfdf, MLXSW_REG_SFDF_ID, MLXSW_REG_SFDF_LEN); /* reg_sfdf_swid * Switch partition ID. * Access: Index */ MLXSW_ITEM32(reg, sfdf, swid, 0x00, 24, 8); enum mlxsw_reg_sfdf_flush_type { MLXSW_REG_SFDF_FLUSH_PER_SWID, MLXSW_REG_SFDF_FLUSH_PER_FID, MLXSW_REG_SFDF_FLUSH_PER_PORT, MLXSW_REG_SFDF_FLUSH_PER_PORT_AND_FID, MLXSW_REG_SFDF_FLUSH_PER_LAG, MLXSW_REG_SFDF_FLUSH_PER_LAG_AND_FID, MLXSW_REG_SFDF_FLUSH_PER_NVE, MLXSW_REG_SFDF_FLUSH_PER_NVE_AND_FID, }; /* reg_sfdf_flush_type * Flush type. * 0 - All SWID dynamic entries are flushed. * 1 - All FID dynamic entries are flushed. * 2 - All dynamic entries pointing to port are flushed. * 3 - All FID dynamic entries pointing to port are flushed. * 4 - All dynamic entries pointing to LAG are flushed. * 5 - All FID dynamic entries pointing to LAG are flushed. * 6 - All entries of type "Unicast Tunnel" or "Multicast Tunnel" are * flushed. * 7 - All entries of type "Unicast Tunnel" or "Multicast Tunnel" are * flushed, per FID. * Access: RW */ MLXSW_ITEM32(reg, sfdf, flush_type, 0x04, 28, 4); /* reg_sfdf_flush_static * Static. * 0 - Flush only dynamic entries. * 1 - Flush both dynamic and static entries. * Access: RW */ MLXSW_ITEM32(reg, sfdf, flush_static, 0x04, 24, 1); static inline void mlxsw_reg_sfdf_pack(char *payload, enum mlxsw_reg_sfdf_flush_type type) { MLXSW_REG_ZERO(sfdf, payload); mlxsw_reg_sfdf_flush_type_set(payload, type); mlxsw_reg_sfdf_flush_static_set(payload, true); } /* reg_sfdf_fid * FID to flush. * Access: RW */ MLXSW_ITEM32(reg, sfdf, fid, 0x0C, 0, 16); /* reg_sfdf_system_port * Port to flush. * Access: RW */ MLXSW_ITEM32(reg, sfdf, system_port, 0x0C, 0, 16); /* reg_sfdf_port_fid_system_port * Port to flush, pointed to by FID. * Access: RW */ MLXSW_ITEM32(reg, sfdf, port_fid_system_port, 0x08, 0, 16); /* reg_sfdf_lag_id * LAG ID to flush. * Access: RW */ MLXSW_ITEM32(reg, sfdf, lag_id, 0x0C, 0, 10); /* reg_sfdf_lag_fid_lag_id * LAG ID to flush, pointed to by FID. * Access: RW */ MLXSW_ITEM32(reg, sfdf, lag_fid_lag_id, 0x08, 0, 10); /* SLDR - Switch LAG Descriptor Register * ----------------------------------------- * The switch LAG descriptor register is populated by LAG descriptors. * Each LAG descriptor is indexed by lag_id. The LAG ID runs from 0 to * max_lag-1. */ #define MLXSW_REG_SLDR_ID 0x2014 #define MLXSW_REG_SLDR_LEN 0x0C /* counting in only one port in list */ MLXSW_REG_DEFINE(sldr, MLXSW_REG_SLDR_ID, MLXSW_REG_SLDR_LEN); enum mlxsw_reg_sldr_op { /* Indicates a creation of a new LAG-ID, lag_id must be valid */ MLXSW_REG_SLDR_OP_LAG_CREATE, MLXSW_REG_SLDR_OP_LAG_DESTROY, /* Ports that appear in the list have the Distributor enabled */ MLXSW_REG_SLDR_OP_LAG_ADD_PORT_LIST, /* Removes ports from the disributor list */ MLXSW_REG_SLDR_OP_LAG_REMOVE_PORT_LIST, }; /* reg_sldr_op * Operation. * Access: RW */ MLXSW_ITEM32(reg, sldr, op, 0x00, 29, 3); /* reg_sldr_lag_id * LAG identifier. The lag_id is the index into the LAG descriptor table. * Access: Index */ MLXSW_ITEM32(reg, sldr, lag_id, 0x00, 0, 10); static inline void mlxsw_reg_sldr_lag_create_pack(char *payload, u8 lag_id) { MLXSW_REG_ZERO(sldr, payload); mlxsw_reg_sldr_op_set(payload, MLXSW_REG_SLDR_OP_LAG_CREATE); mlxsw_reg_sldr_lag_id_set(payload, lag_id); } static inline void mlxsw_reg_sldr_lag_destroy_pack(char *payload, u8 lag_id) { MLXSW_REG_ZERO(sldr, payload); mlxsw_reg_sldr_op_set(payload, MLXSW_REG_SLDR_OP_LAG_DESTROY); mlxsw_reg_sldr_lag_id_set(payload, lag_id); } /* reg_sldr_num_ports * The number of member ports of the LAG. * Reserved for Create / Destroy operations * For Add / Remove operations - indicates the number of ports in the list. * Access: RW */ MLXSW_ITEM32(reg, sldr, num_ports, 0x04, 24, 8); /* reg_sldr_system_port * System port. * Access: RW */ MLXSW_ITEM32_INDEXED(reg, sldr, system_port, 0x08, 0, 16, 4, 0, false); static inline void mlxsw_reg_sldr_lag_add_port_pack(char *payload, u8 lag_id, u16 local_port) { MLXSW_REG_ZERO(sldr, payload); mlxsw_reg_sldr_op_set(payload, MLXSW_REG_SLDR_OP_LAG_ADD_PORT_LIST); mlxsw_reg_sldr_lag_id_set(payload, lag_id); mlxsw_reg_sldr_num_ports_set(payload, 1); mlxsw_reg_sldr_system_port_set(payload, 0, local_port); } static inline void mlxsw_reg_sldr_lag_remove_port_pack(char *payload, u8 lag_id, u16 local_port) { MLXSW_REG_ZERO(sldr, payload); mlxsw_reg_sldr_op_set(payload, MLXSW_REG_SLDR_OP_LAG_REMOVE_PORT_LIST); mlxsw_reg_sldr_lag_id_set(payload, lag_id); mlxsw_reg_sldr_num_ports_set(payload, 1); mlxsw_reg_sldr_system_port_set(payload, 0, local_port); } /* SLCR - Switch LAG Configuration 2 Register * ------------------------------------------- * The Switch LAG Configuration register is used for configuring the * LAG properties of the switch. */ #define MLXSW_REG_SLCR_ID 0x2015 #define MLXSW_REG_SLCR_LEN 0x10 MLXSW_REG_DEFINE(slcr, MLXSW_REG_SLCR_ID, MLXSW_REG_SLCR_LEN); enum mlxsw_reg_slcr_pp { /* Global Configuration (for all ports) */ MLXSW_REG_SLCR_PP_GLOBAL, /* Per port configuration, based on local_port field */ MLXSW_REG_SLCR_PP_PER_PORT, }; /* reg_slcr_pp * Per Port Configuration * Note: Reading at Global mode results in reading port 1 configuration. * Access: Index */ MLXSW_ITEM32(reg, slcr, pp, 0x00, 24, 1); /* reg_slcr_local_port * Local port number * Supported from CPU port * Not supported from router port * Reserved when pp = Global Configuration * Access: Index */ MLXSW_ITEM32_LP(reg, slcr, 0x00, 16, 0x00, 12); enum mlxsw_reg_slcr_type { MLXSW_REG_SLCR_TYPE_CRC, /* default */ MLXSW_REG_SLCR_TYPE_XOR, MLXSW_REG_SLCR_TYPE_RANDOM, }; /* reg_slcr_type * Hash type * Access: RW */ MLXSW_ITEM32(reg, slcr, type, 0x00, 0, 4); /* Ingress port */ #define MLXSW_REG_SLCR_LAG_HASH_IN_PORT BIT(0) /* SMAC - for IPv4 and IPv6 packets */ #define MLXSW_REG_SLCR_LAG_HASH_SMAC_IP BIT(1) /* SMAC - for non-IP packets */ #define MLXSW_REG_SLCR_LAG_HASH_SMAC_NONIP BIT(2) #define MLXSW_REG_SLCR_LAG_HASH_SMAC \ (MLXSW_REG_SLCR_LAG_HASH_SMAC_IP | \ MLXSW_REG_SLCR_LAG_HASH_SMAC_NONIP) /* DMAC - for IPv4 and IPv6 packets */ #define MLXSW_REG_SLCR_LAG_HASH_DMAC_IP BIT(3) /* DMAC - for non-IP packets */ #define MLXSW_REG_SLCR_LAG_HASH_DMAC_NONIP BIT(4) #define MLXSW_REG_SLCR_LAG_HASH_DMAC \ (MLXSW_REG_SLCR_LAG_HASH_DMAC_IP | \ MLXSW_REG_SLCR_LAG_HASH_DMAC_NONIP) /* Ethertype - for IPv4 and IPv6 packets */ #define MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE_IP BIT(5) /* Ethertype - for non-IP packets */ #define MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE_NONIP BIT(6) #define MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE \ (MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE_IP | \ MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE_NONIP) /* VLAN ID - for IPv4 and IPv6 packets */ #define MLXSW_REG_SLCR_LAG_HASH_VLANID_IP BIT(7) /* VLAN ID - for non-IP packets */ #define MLXSW_REG_SLCR_LAG_HASH_VLANID_NONIP BIT(8) #define MLXSW_REG_SLCR_LAG_HASH_VLANID \ (MLXSW_REG_SLCR_LAG_HASH_VLANID_IP | \ MLXSW_REG_SLCR_LAG_HASH_VLANID_NONIP) /* Source IP address (can be IPv4 or IPv6) */ #define MLXSW_REG_SLCR_LAG_HASH_SIP BIT(9) /* Destination IP address (can be IPv4 or IPv6) */ #define MLXSW_REG_SLCR_LAG_HASH_DIP BIT(10) /* TCP/UDP source port */ #define MLXSW_REG_SLCR_LAG_HASH_SPORT BIT(11) /* TCP/UDP destination port*/ #define MLXSW_REG_SLCR_LAG_HASH_DPORT BIT(12) /* IPv4 Protocol/IPv6 Next Header */ #define MLXSW_REG_SLCR_LAG_HASH_IPPROTO BIT(13) /* IPv6 Flow label */ #define MLXSW_REG_SLCR_LAG_HASH_FLOWLABEL BIT(14) /* SID - FCoE source ID */ #define MLXSW_REG_SLCR_LAG_HASH_FCOE_SID BIT(15) /* DID - FCoE destination ID */ #define MLXSW_REG_SLCR_LAG_HASH_FCOE_DID BIT(16) /* OXID - FCoE originator exchange ID */ #define MLXSW_REG_SLCR_LAG_HASH_FCOE_OXID BIT(17) /* Destination QP number - for RoCE packets */ #define MLXSW_REG_SLCR_LAG_HASH_ROCE_DQP BIT(19) /* reg_slcr_lag_hash * LAG hashing configuration. This is a bitmask, in which each set * bit includes the corresponding item in the LAG hash calculation. * The default lag_hash contains SMAC, DMAC, VLANID and * Ethertype (for all packet types). * Access: RW */ MLXSW_ITEM32(reg, slcr, lag_hash, 0x04, 0, 20); /* reg_slcr_seed * LAG seed value. The seed is the same for all ports. * Access: RW */ MLXSW_ITEM32(reg, slcr, seed, 0x08, 0, 32); static inline void mlxsw_reg_slcr_pack(char *payload, u16 lag_hash, u32 seed) { MLXSW_REG_ZERO(slcr, payload); mlxsw_reg_slcr_pp_set(payload, MLXSW_REG_SLCR_PP_GLOBAL); mlxsw_reg_slcr_type_set(payload, MLXSW_REG_SLCR_TYPE_CRC); mlxsw_reg_slcr_lag_hash_set(payload, lag_hash); mlxsw_reg_slcr_seed_set(payload, seed); } /* SLCOR - Switch LAG Collector Register * ------------------------------------- * The Switch LAG Collector register controls the Local Port membership * in a LAG and enablement of the collector. */ #define MLXSW_REG_SLCOR_ID 0x2016 #define MLXSW_REG_SLCOR_LEN 0x10 MLXSW_REG_DEFINE(slcor, MLXSW_REG_SLCOR_ID, MLXSW_REG_SLCOR_LEN); enum mlxsw_reg_slcor_col { /* Port is added with collector disabled */ MLXSW_REG_SLCOR_COL_LAG_ADD_PORT, MLXSW_REG_SLCOR_COL_LAG_COLLECTOR_ENABLED, MLXSW_REG_SLCOR_COL_LAG_COLLECTOR_DISABLED, MLXSW_REG_SLCOR_COL_LAG_REMOVE_PORT, }; /* reg_slcor_col * Collector configuration * Access: RW */ MLXSW_ITEM32(reg, slcor, col, 0x00, 30, 2); /* reg_slcor_local_port * Local port number * Not supported for CPU port * Access: Index */ MLXSW_ITEM32_LP(reg, slcor, 0x00, 16, 0x00, 12); /* reg_slcor_lag_id * LAG Identifier. Index into the LAG descriptor table. * Access: Index */ MLXSW_ITEM32(reg, slcor, lag_id, 0x00, 0, 10); /* reg_slcor_port_index * Port index in the LAG list. Only valid on Add Port to LAG col. * Valid range is from 0 to cap_max_lag_members-1 * Access: RW */ MLXSW_ITEM32(reg, slcor, port_index, 0x04, 0, 10); static inline void mlxsw_reg_slcor_pack(char *payload, u16 local_port, u16 lag_id, enum mlxsw_reg_slcor_col col) { MLXSW_REG_ZERO(slcor, payload); mlxsw_reg_slcor_col_set(payload, col); mlxsw_reg_slcor_local_port_set(payload, local_port); mlxsw_reg_slcor_lag_id_set(payload, lag_id); } static inline void mlxsw_reg_slcor_port_add_pack(char *payload, u16 local_port, u16 lag_id, u8 port_index) { mlxsw_reg_slcor_pack(payload, local_port, lag_id, MLXSW_REG_SLCOR_COL_LAG_ADD_PORT); mlxsw_reg_slcor_port_index_set(payload, port_index); } static inline void mlxsw_reg_slcor_port_remove_pack(char *payload, u16 local_port, u16 lag_id) { mlxsw_reg_slcor_pack(payload, local_port, lag_id, MLXSW_REG_SLCOR_COL_LAG_REMOVE_PORT); } static inline void mlxsw_reg_slcor_col_enable_pack(char *payload, u16 local_port, u16 lag_id) { mlxsw_reg_slcor_pack(payload, local_port, lag_id, MLXSW_REG_SLCOR_COL_LAG_COLLECTOR_ENABLED); } static inline void mlxsw_reg_slcor_col_disable_pack(char *payload, u16 local_port, u16 lag_id) { mlxsw_reg_slcor_pack(payload, local_port, lag_id, MLXSW_REG_SLCOR_COL_LAG_COLLECTOR_ENABLED); } /* SPMLR - Switch Port MAC Learning Register * ----------------------------------------- * Controls the Switch MAC learning policy per port. */ #define MLXSW_REG_SPMLR_ID 0x2018 #define MLXSW_REG_SPMLR_LEN 0x8 MLXSW_REG_DEFINE(spmlr, MLXSW_REG_SPMLR_ID, MLXSW_REG_SPMLR_LEN); /* reg_spmlr_local_port * Local port number. * Access: Index */ MLXSW_ITEM32_LP(reg, spmlr, 0x00, 16, 0x00, 12); /* reg_spmlr_sub_port * Virtual port within the physical port. * Should be set to 0 when virtual ports are not enabled on the port. * Access: Index */ MLXSW_ITEM32(reg, spmlr, sub_port, 0x00, 8, 8); enum mlxsw_reg_spmlr_learn_mode { MLXSW_REG_SPMLR_LEARN_MODE_DISABLE = 0, MLXSW_REG_SPMLR_LEARN_MODE_ENABLE = 2, MLXSW_REG_SPMLR_LEARN_MODE_SEC = 3, }; /* reg_spmlr_learn_mode * Learning mode on the port. * 0 - Learning disabled. * 2 - Learning enabled. * 3 - Security mode. * * In security mode the switch does not learn MACs on the port, but uses the * SMAC to see if it exists on another ingress port. If so, the packet is * classified as a bad packet and is discarded unless the software registers * to receive port security error packets usign HPKT. */ MLXSW_ITEM32(reg, spmlr, learn_mode, 0x04, 30, 2); static inline void mlxsw_reg_spmlr_pack(char *payload, u16 local_port, enum mlxsw_reg_spmlr_learn_mode mode) { MLXSW_REG_ZERO(spmlr, payload); mlxsw_reg_spmlr_local_port_set(payload, local_port); mlxsw_reg_spmlr_sub_port_set(payload, 0); mlxsw_reg_spmlr_learn_mode_set(payload, mode); } /* SVFA - Switch VID to FID Allocation Register * -------------------------------------------- * Controls the VID to FID mapping and {Port, VID} to FID mapping for * virtualized ports. */ #define MLXSW_REG_SVFA_ID 0x201C #define MLXSW_REG_SVFA_LEN 0x18 MLXSW_REG_DEFINE(svfa, MLXSW_REG_SVFA_ID, MLXSW_REG_SVFA_LEN); /* reg_svfa_swid * Switch partition ID. * Access: Index */ MLXSW_ITEM32(reg, svfa, swid, 0x00, 24, 8); /* reg_svfa_local_port * Local port number. * Access: Index * * Note: Reserved for 802.1Q FIDs. */ MLXSW_ITEM32_LP(reg, svfa, 0x00, 16, 0x00, 12); enum mlxsw_reg_svfa_mt { MLXSW_REG_SVFA_MT_VID_TO_FID, MLXSW_REG_SVFA_MT_PORT_VID_TO_FID, MLXSW_REG_SVFA_MT_VNI_TO_FID, }; /* reg_svfa_mapping_table * Mapping table: * 0 - VID to FID * 1 - {Port, VID} to FID * Access: Index * * Note: Reserved for SwitchX-2. */ MLXSW_ITEM32(reg, svfa, mapping_table, 0x00, 8, 3); /* reg_svfa_v * Valid. * Valid if set. * Access: RW * * Note: Reserved for SwitchX-2. */ MLXSW_ITEM32(reg, svfa, v, 0x00, 0, 1); /* reg_svfa_fid * Filtering ID. * Access: RW */ MLXSW_ITEM32(reg, svfa, fid, 0x04, 16, 16); /* reg_svfa_vid * VLAN ID. * Access: Index */ MLXSW_ITEM32(reg, svfa, vid, 0x04, 0, 12); /* reg_svfa_counter_set_type * Counter set type for flow counters. * Access: RW * * Note: Reserved for SwitchX-2. */ MLXSW_ITEM32(reg, svfa, counter_set_type, 0x08, 24, 8); /* reg_svfa_counter_index * Counter index for flow counters. * Access: RW * * Note: Reserved for SwitchX-2. */ MLXSW_ITEM32(reg, svfa, counter_index, 0x08, 0, 24); /* reg_svfa_vni * Virtual Network Identifier. * Access: Index * * Note: Reserved when mapping_table is not 2 (VNI mapping table). */ MLXSW_ITEM32(reg, svfa, vni, 0x10, 0, 24); /* reg_svfa_irif_v * Ingress RIF valid. * 0 - Ingress RIF is not valid, no ingress RIF assigned. * 1 - Ingress RIF valid. * Must not be set for a non enabled RIF. * Access: RW * * Note: Reserved when legacy bridge model is used. */ MLXSW_ITEM32(reg, svfa, irif_v, 0x14, 24, 1); /* reg_svfa_irif * Ingress RIF (Router Interface). * Range is 0..cap_max_router_interfaces-1. * Access: RW * * Note: Reserved when legacy bridge model is used and when irif_v=0. */ MLXSW_ITEM32(reg, svfa, irif, 0x14, 0, 16); static inline void __mlxsw_reg_svfa_pack(char *payload, enum mlxsw_reg_svfa_mt mt, bool valid, u16 fid, bool irif_v, u16 irif) { MLXSW_REG_ZERO(svfa, payload); mlxsw_reg_svfa_swid_set(payload, 0); mlxsw_reg_svfa_mapping_table_set(payload, mt); mlxsw_reg_svfa_v_set(payload, valid); mlxsw_reg_svfa_fid_set(payload, fid); mlxsw_reg_svfa_irif_v_set(payload, irif_v); mlxsw_reg_svfa_irif_set(payload, irif_v ? irif : 0); } static inline void mlxsw_reg_svfa_port_vid_pack(char *payload, u16 local_port, bool valid, u16 fid, u16 vid, bool irif_v, u16 irif) { enum mlxsw_reg_svfa_mt mt = MLXSW_REG_SVFA_MT_PORT_VID_TO_FID; __mlxsw_reg_svfa_pack(payload, mt, valid, fid, irif_v, irif); mlxsw_reg_svfa_local_port_set(payload, local_port); mlxsw_reg_svfa_vid_set(payload, vid); } static inline void mlxsw_reg_svfa_vid_pack(char *payload, bool valid, u16 fid, u16 vid, bool irif_v, u16 irif) { enum mlxsw_reg_svfa_mt mt = MLXSW_REG_SVFA_MT_VID_TO_FID; __mlxsw_reg_svfa_pack(payload, mt, valid, fid, irif_v, irif); mlxsw_reg_svfa_vid_set(payload, vid); } static inline void mlxsw_reg_svfa_vni_pack(char *payload, bool valid, u16 fid, u32 vni, bool irif_v, u16 irif) { enum mlxsw_reg_svfa_mt mt = MLXSW_REG_SVFA_MT_VNI_TO_FID; __mlxsw_reg_svfa_pack(payload, mt, valid, fid, irif_v, irif); mlxsw_reg_svfa_vni_set(payload, vni); } /* SPVTR - Switch Port VLAN Stacking Register * ------------------------------------------ * The Switch Port VLAN Stacking register configures the VLAN mode of the port * to enable VLAN stacking. */ #define MLXSW_REG_SPVTR_ID 0x201D #define MLXSW_REG_SPVTR_LEN 0x10 MLXSW_REG_DEFINE(spvtr, MLXSW_REG_SPVTR_ID, MLXSW_REG_SPVTR_LEN); /* reg_spvtr_tport * Port is tunnel port. * Access: Index * * Note: Reserved when SwitchX/-2 or Spectrum-1. */ MLXSW_ITEM32(reg, spvtr, tport, 0x00, 24, 1); /* reg_spvtr_local_port * When tport = 0: local port number (Not supported from/to CPU). * When tport = 1: tunnel port. * Access: Index */ MLXSW_ITEM32_LP(reg, spvtr, 0x00, 16, 0x00, 12); /* reg_spvtr_ippe * Ingress Port Prio Mode Update Enable. * When set, the Port Prio Mode is updated with the provided ipprio_mode field. * Reserved on Get operations. * Access: OP */ MLXSW_ITEM32(reg, spvtr, ippe, 0x04, 31, 1); /* reg_spvtr_ipve * Ingress Port VID Mode Update Enable. * When set, the Ingress Port VID Mode is updated with the provided ipvid_mode * field. * Reserved on Get operations. * Access: OP */ MLXSW_ITEM32(reg, spvtr, ipve, 0x04, 30, 1); /* reg_spvtr_epve * Egress Port VID Mode Update Enable. * When set, the Egress Port VID Mode is updated with the provided epvid_mode * field. * Access: OP */ MLXSW_ITEM32(reg, spvtr, epve, 0x04, 29, 1); /* reg_spvtr_ipprio_mode * Ingress Port Priority Mode. * This controls the PCP and DEI of the new outer VLAN * Note: for SwitchX/-2 the DEI is not affected. * 0: use port default PCP and DEI (configured by QPDPC). * 1: use C-VLAN PCP and DEI. * Has no effect when ipvid_mode = 0. * Reserved when tport = 1. * Access: RW */ MLXSW_ITEM32(reg, spvtr, ipprio_mode, 0x04, 20, 4); enum mlxsw_reg_spvtr_ipvid_mode { /* IEEE Compliant PVID (default) */ MLXSW_REG_SPVTR_IPVID_MODE_IEEE_COMPLIANT_PVID, /* Push VLAN (for VLAN stacking, except prio tagged packets) */ MLXSW_REG_SPVTR_IPVID_MODE_PUSH_VLAN_FOR_UNTAGGED_PACKET, /* Always push VLAN (also for prio tagged packets) */ MLXSW_REG_SPVTR_IPVID_MODE_ALWAYS_PUSH_VLAN, }; /* reg_spvtr_ipvid_mode * Ingress Port VLAN-ID Mode. * For Spectrum family, this affects the values of SPVM.i * Access: RW */ MLXSW_ITEM32(reg, spvtr, ipvid_mode, 0x04, 16, 4); enum mlxsw_reg_spvtr_epvid_mode { /* IEEE Compliant VLAN membership */ MLXSW_REG_SPVTR_EPVID_MODE_IEEE_COMPLIANT_VLAN_MEMBERSHIP, /* Pop VLAN (for VLAN stacking) */ MLXSW_REG_SPVTR_EPVID_MODE_POP_VLAN, }; /* reg_spvtr_epvid_mode * Egress Port VLAN-ID Mode. * For Spectrum family, this affects the values of SPVM.e,u,pt. * Access: WO */ MLXSW_ITEM32(reg, spvtr, epvid_mode, 0x04, 0, 4); static inline void mlxsw_reg_spvtr_pack(char *payload, bool tport, u16 local_port, enum mlxsw_reg_spvtr_ipvid_mode ipvid_mode) { MLXSW_REG_ZERO(spvtr, payload); mlxsw_reg_spvtr_tport_set(payload, tport); mlxsw_reg_spvtr_local_port_set(payload, local_port); mlxsw_reg_spvtr_ipvid_mode_set(payload, ipvid_mode); mlxsw_reg_spvtr_ipve_set(payload, true); } /* SVPE - Switch Virtual-Port Enabling Register * -------------------------------------------- * Enables port virtualization. */ #define MLXSW_REG_SVPE_ID 0x201E #define MLXSW_REG_SVPE_LEN 0x4 MLXSW_REG_DEFINE(svpe, MLXSW_REG_SVPE_ID, MLXSW_REG_SVPE_LEN); /* reg_svpe_local_port * Local port number * Access: Index * * Note: CPU port is not supported (uses VLAN mode only). */ MLXSW_ITEM32_LP(reg, svpe, 0x00, 16, 0x00, 12); /* reg_svpe_vp_en * Virtual port enable. * 0 - Disable, VLAN mode (VID to FID). * 1 - Enable, Virtual port mode ({Port, VID} to FID). * Access: RW */ MLXSW_ITEM32(reg, svpe, vp_en, 0x00, 8, 1); static inline void mlxsw_reg_svpe_pack(char *payload, u16 local_port, bool enable) { MLXSW_REG_ZERO(svpe, payload); mlxsw_reg_svpe_local_port_set(payload, local_port); mlxsw_reg_svpe_vp_en_set(payload, enable); } /* SFMR - Switch FID Management Register * ------------------------------------- * Creates and configures FIDs. */ #define MLXSW_REG_SFMR_ID 0x201F #define MLXSW_REG_SFMR_LEN 0x30 MLXSW_REG_DEFINE(sfmr, MLXSW_REG_SFMR_ID, MLXSW_REG_SFMR_LEN); enum mlxsw_reg_sfmr_op { MLXSW_REG_SFMR_OP_CREATE_FID, MLXSW_REG_SFMR_OP_DESTROY_FID, }; /* reg_sfmr_op * Operation. * 0 - Create or edit FID. * 1 - Destroy FID. * Access: WO */ MLXSW_ITEM32(reg, sfmr, op, 0x00, 24, 4); /* reg_sfmr_fid * Filtering ID. * Access: Index */ MLXSW_ITEM32(reg, sfmr, fid, 0x00, 0, 16); /* reg_sfmr_flood_rsp * Router sub-port flooding table. * 0 - Regular flooding table. * 1 - Router sub-port flooding table. For this FID the flooding is per * router-sub-port local_port. Must not be set for a FID which is not a * router-sub-port and must be set prior to enabling the relevant RIF. * Access: RW * * Note: Reserved when legacy bridge model is used. */ MLXSW_ITEM32(reg, sfmr, flood_rsp, 0x08, 31, 1); /* reg_sfmr_flood_bridge_type * Flood bridge type (see SFGC.bridge_type). * 0 - type_0. * 1 - type_1. * Access: RW * * Note: Reserved when legacy bridge model is used and when flood_rsp=1. */ MLXSW_ITEM32(reg, sfmr, flood_bridge_type, 0x08, 28, 1); /* reg_sfmr_fid_offset * FID offset. * Used to point into the flooding table selected by SFGC register if * the table is of type FID-Offset. Otherwise, this field is reserved. * Access: RW */ MLXSW_ITEM32(reg, sfmr, fid_offset, 0x08, 0, 16); /* reg_sfmr_vtfp * Valid Tunnel Flood Pointer. * If not set, then nve_tunnel_flood_ptr is reserved and considered NULL. * Access: RW * * Note: Reserved for 802.1Q FIDs. */ MLXSW_ITEM32(reg, sfmr, vtfp, 0x0C, 31, 1); /* reg_sfmr_nve_tunnel_flood_ptr * Underlay Flooding and BC Pointer. * Used as a pointer to the first entry of the group based link lists of * flooding or BC entries (for NVE tunnels). * Access: RW */ MLXSW_ITEM32(reg, sfmr, nve_tunnel_flood_ptr, 0x0C, 0, 24); /* reg_sfmr_vv * VNI Valid. * If not set, then vni is reserved. * Access: RW * * Note: Reserved for 802.1Q FIDs. */ MLXSW_ITEM32(reg, sfmr, vv, 0x10, 31, 1); /* reg_sfmr_vni * Virtual Network Identifier. * When legacy bridge model is used, a given VNI can only be assigned to one * FID. When unified bridge model is used, it configures only the FID->VNI, * the VNI->FID is done by SVFA. * Access: RW */ MLXSW_ITEM32(reg, sfmr, vni, 0x10, 0, 24); /* reg_sfmr_irif_v * Ingress RIF valid. * 0 - Ingress RIF is not valid, no ingress RIF assigned. * 1 - Ingress RIF valid. * Must not be set for a non valid RIF. * Access: RW * * Note: Reserved when legacy bridge model is used. */ MLXSW_ITEM32(reg, sfmr, irif_v, 0x14, 24, 1); /* reg_sfmr_irif * Ingress RIF (Router Interface). * Range is 0..cap_max_router_interfaces-1. * Access: RW * * Note: Reserved when legacy bridge model is used and when irif_v=0. */ MLXSW_ITEM32(reg, sfmr, irif, 0x14, 0, 16); /* reg_sfmr_smpe_valid * SMPE is valid. * Access: RW * * Note: Reserved when legacy bridge model is used, when flood_rsp=1 and on * Spectrum-1. */ MLXSW_ITEM32(reg, sfmr, smpe_valid, 0x28, 20, 1); /* reg_sfmr_smpe * Switch multicast port to egress VID. * Range is 0..cap_max_rmpe-1 * Access: RW * * Note: Reserved when legacy bridge model is used, when flood_rsp=1 and on * Spectrum-1. */ MLXSW_ITEM32(reg, sfmr, smpe, 0x28, 0, 16); static inline void mlxsw_reg_sfmr_pack(char *payload, enum mlxsw_reg_sfmr_op op, u16 fid, u16 fid_offset, bool flood_rsp, enum mlxsw_reg_bridge_type bridge_type, bool smpe_valid, u16 smpe) { MLXSW_REG_ZERO(sfmr, payload); mlxsw_reg_sfmr_op_set(payload, op); mlxsw_reg_sfmr_fid_set(payload, fid); mlxsw_reg_sfmr_fid_offset_set(payload, fid_offset); mlxsw_reg_sfmr_vtfp_set(payload, false); mlxsw_reg_sfmr_vv_set(payload, false); mlxsw_reg_sfmr_flood_rsp_set(payload, flood_rsp); mlxsw_reg_sfmr_flood_bridge_type_set(payload, bridge_type); mlxsw_reg_sfmr_smpe_valid_set(payload, smpe_valid); mlxsw_reg_sfmr_smpe_set(payload, smpe); } /* SPVMLR - Switch Port VLAN MAC Learning Register * ----------------------------------------------- * Controls the switch MAC learning policy per {Port, VID}. */ #define MLXSW_REG_SPVMLR_ID 0x2020 #define MLXSW_REG_SPVMLR_BASE_LEN 0x04 /* base length, without records */ #define MLXSW_REG_SPVMLR_REC_LEN 0x04 /* record length */ #define MLXSW_REG_SPVMLR_REC_MAX_COUNT 255 #define MLXSW_REG_SPVMLR_LEN (MLXSW_REG_SPVMLR_BASE_LEN + \ MLXSW_REG_SPVMLR_REC_LEN * \ MLXSW_REG_SPVMLR_REC_MAX_COUNT) MLXSW_REG_DEFINE(spvmlr, MLXSW_REG_SPVMLR_ID, MLXSW_REG_SPVMLR_LEN); /* reg_spvmlr_local_port * Local ingress port. * Access: Index * * Note: CPU port is not supported. */ MLXSW_ITEM32_LP(reg, spvmlr, 0x00, 16, 0x00, 12); /* reg_spvmlr_num_rec * Number of records to update. * Access: OP */ MLXSW_ITEM32(reg, spvmlr, num_rec, 0x00, 0, 8); /* reg_spvmlr_rec_learn_enable * 0 - Disable learning for {Port, VID}. * 1 - Enable learning for {Port, VID}. * Access: RW */ MLXSW_ITEM32_INDEXED(reg, spvmlr, rec_learn_enable, MLXSW_REG_SPVMLR_BASE_LEN, 31, 1, MLXSW_REG_SPVMLR_REC_LEN, 0x00, false); /* reg_spvmlr_rec_vid * VLAN ID to be added/removed from port or for querying. * Access: Index */ MLXSW_ITEM32_INDEXED(reg, spvmlr, rec_vid, MLXSW_REG_SPVMLR_BASE_LEN, 0, 12, MLXSW_REG_SPVMLR_REC_LEN, 0x00, false); static inline void mlxsw_reg_spvmlr_pack(char *payload, u16 local_port, u16 vid_begin, u16 vid_end, bool learn_enable) { int num_rec = vid_end - vid_begin + 1; int i; WARN_ON(num_rec < 1 || num_rec > MLXSW_REG_SPVMLR_REC_MAX_COUNT); MLXSW_REG_ZERO(spvmlr, payload); mlxsw_reg_spvmlr_local_port_set(payload, local_port); mlxsw_reg_spvmlr_num_rec_set(payload, num_rec); for (i = 0; i < num_rec; i++) { mlxsw_reg_spvmlr_rec_learn_enable_set(payload, i, learn_enable); mlxsw_reg_spvmlr_rec_vid_set(payload, i, vid_begin + i); } } /* SPFSR - Switch Port FDB Security Register * ----------------------------------------- * Configures the security mode per port. */ #define MLXSW_REG_SPFSR_ID 0x2023 #define MLXSW_REG_SPFSR_LEN 0x08 MLXSW_REG_DEFINE(spfsr, MLXSW_REG_SPFSR_ID, MLXSW_REG_SPFSR_LEN); /* reg_spfsr_local_port * Local port. * Access: Index * * Note: not supported for CPU port. */ MLXSW_ITEM32_LP(reg, spfsr, 0x00, 16, 0x00, 12); /* reg_spfsr_security * Security checks. * 0: disabled (default) * 1: enabled * Access: RW */ MLXSW_ITEM32(reg, spfsr, security, 0x04, 31, 1); static inline void mlxsw_reg_spfsr_pack(char *payload, u16 local_port, bool security) { MLXSW_REG_ZERO(spfsr, payload); mlxsw_reg_spfsr_local_port_set(payload, local_port); mlxsw_reg_spfsr_security_set(payload, security); } /* SPVC - Switch Port VLAN Classification Register * ----------------------------------------------- * Configures the port to identify packets as untagged / single tagged / * double packets based on the packet EtherTypes. * Ethertype IDs are configured by SVER. */ #define MLXSW_REG_SPVC_ID 0x2026 #define MLXSW_REG_SPVC_LEN 0x0C MLXSW_REG_DEFINE(spvc, MLXSW_REG_SPVC_ID, MLXSW_REG_SPVC_LEN); /* reg_spvc_local_port * Local port. * Access: Index * * Note: applies both to Rx port and Tx port, so if a packet traverses * through Rx port i and a Tx port j then port i and port j must have the * same configuration. */ MLXSW_ITEM32_LP(reg, spvc, 0x00, 16, 0x00, 12); /* reg_spvc_inner_et2 * Vlan Tag1 EtherType2 enable. * Packet is initially classified as double VLAN Tag if in addition to * being classified with a tag0 VLAN Tag its tag1 EtherType value is * equal to ether_type2. * 0: disable (default) * 1: enable * Access: RW */ MLXSW_ITEM32(reg, spvc, inner_et2, 0x08, 17, 1); /* reg_spvc_et2 * Vlan Tag0 EtherType2 enable. * Packet is initially classified as VLAN Tag if its tag0 EtherType is * equal to ether_type2. * 0: disable (default) * 1: enable * Access: RW */ MLXSW_ITEM32(reg, spvc, et2, 0x08, 16, 1); /* reg_spvc_inner_et1 * Vlan Tag1 EtherType1 enable. * Packet is initially classified as double VLAN Tag if in addition to * being classified with a tag0 VLAN Tag its tag1 EtherType value is * equal to ether_type1. * 0: disable * 1: enable (default) * Access: RW */ MLXSW_ITEM32(reg, spvc, inner_et1, 0x08, 9, 1); /* reg_spvc_et1 * Vlan Tag0 EtherType1 enable. * Packet is initially classified as VLAN Tag if its tag0 EtherType is * equal to ether_type1. * 0: disable * 1: enable (default) * Access: RW */ MLXSW_ITEM32(reg, spvc, et1, 0x08, 8, 1); /* reg_inner_et0 * Vlan Tag1 EtherType0 enable. * Packet is initially classified as double VLAN Tag if in addition to * being classified with a tag0 VLAN Tag its tag1 EtherType value is * equal to ether_type0. * 0: disable * 1: enable (default) * Access: RW */ MLXSW_ITEM32(reg, spvc, inner_et0, 0x08, 1, 1); /* reg_et0 * Vlan Tag0 EtherType0 enable. * Packet is initially classified as VLAN Tag if its tag0 EtherType is * equal to ether_type0. * 0: disable * 1: enable (default) * Access: RW */ MLXSW_ITEM32(reg, spvc, et0, 0x08, 0, 1); static inline void mlxsw_reg_spvc_pack(char *payload, u16 local_port, bool et1, bool et0) { MLXSW_REG_ZERO(spvc, payload); mlxsw_reg_spvc_local_port_set(payload, local_port); /* Enable inner_et1 and inner_et0 to enable identification of double * tagged packets. */ mlxsw_reg_spvc_inner_et1_set(payload, 1); mlxsw_reg_spvc_inner_et0_set(payload, 1); mlxsw_reg_spvc_et1_set(payload, et1); mlxsw_reg_spvc_et0_set(payload, et0); } /* SPEVET - Switch Port Egress VLAN EtherType * ------------------------------------------ * The switch port egress VLAN EtherType configures which EtherType to push at * egress for packets incoming through a local port for which 'SPVID.egr_et_set' * is set. */ #define MLXSW_REG_SPEVET_ID 0x202A #define MLXSW_REG_SPEVET_LEN 0x08 MLXSW_REG_DEFINE(spevet, MLXSW_REG_SPEVET_ID, MLXSW_REG_SPEVET_LEN); /* reg_spevet_local_port * Egress Local port number. * Not supported to CPU port. * Access: Index */ MLXSW_ITEM32_LP(reg, spevet, 0x00, 16, 0x00, 12); /* reg_spevet_et_vlan * Egress EtherType VLAN to push when SPVID.egr_et_set field set for the packet: * 0: ether_type0 - (default) * 1: ether_type1 * 2: ether_type2 * Access: RW */ MLXSW_ITEM32(reg, spevet, et_vlan, 0x04, 16, 2); static inline void mlxsw_reg_spevet_pack(char *payload, u16 local_port, u8 et_vlan) { MLXSW_REG_ZERO(spevet, payload); mlxsw_reg_spevet_local_port_set(payload, local_port); mlxsw_reg_spevet_et_vlan_set(payload, et_vlan); } /* SMPE - Switch Multicast Port to Egress VID * ------------------------------------------ * The switch multicast port to egress VID maps * {egress_port, SMPE index} -> {VID}. */ #define MLXSW_REG_SMPE_ID 0x202B #define MLXSW_REG_SMPE_LEN 0x0C MLXSW_REG_DEFINE(smpe, MLXSW_REG_SMPE_ID, MLXSW_REG_SMPE_LEN); /* reg_smpe_local_port * Local port number. * CPU port is not supported. * Access: Index */ MLXSW_ITEM32_LP(reg, smpe, 0x00, 16, 0x00, 12); /* reg_smpe_smpe_index * Switch multicast port to egress VID. * Range is 0..cap_max_rmpe-1. * Access: Index */ MLXSW_ITEM32(reg, smpe, smpe_index, 0x04, 0, 16); /* reg_smpe_evid * Egress VID. * Access: RW */ MLXSW_ITEM32(reg, smpe, evid, 0x08, 0, 12); static inline void mlxsw_reg_smpe_pack(char *payload, u16 local_port, u16 smpe_index, u16 evid) { MLXSW_REG_ZERO(smpe, payload); mlxsw_reg_smpe_local_port_set(payload, local_port); mlxsw_reg_smpe_smpe_index_set(payload, smpe_index); mlxsw_reg_smpe_evid_set(payload, evid); } /* SMID-V2 - Switch Multicast ID Version 2 Register * ------------------------------------------------ * The MID record maps from a MID (Multicast ID), which is a unique identifier * of the multicast group within the stacking domain, into a list of local * ports into which the packet is replicated. */ #define MLXSW_REG_SMID2_ID 0x2034 #define MLXSW_REG_SMID2_LEN 0x120 MLXSW_REG_DEFINE(smid2, MLXSW_REG_SMID2_ID, MLXSW_REG_SMID2_LEN); /* reg_smid2_swid * Switch partition ID. * Access: Index */ MLXSW_ITEM32(reg, smid2, swid, 0x00, 24, 8); /* reg_smid2_mid * Multicast identifier - global identifier that represents the multicast group * across all devices. * Access: Index */ MLXSW_ITEM32(reg, smid2, mid, 0x00, 0, 16); /* reg_smid2_smpe_valid * SMPE is valid. * When not valid, the egress VID will not be modified by the SMPE table. * Access: RW * * Note: Reserved when legacy bridge model is used and on Spectrum-2. */ MLXSW_ITEM32(reg, smid2, smpe_valid, 0x08, 20, 1); /* reg_smid2_smpe * Switch multicast port to egress VID. * Access: RW * * Note: Reserved when legacy bridge model is used and on Spectrum-2. */ MLXSW_ITEM32(reg, smid2, smpe, 0x08, 0, 16); /* reg_smid2_port * Local port memebership (1 bit per port). * Access: RW */ MLXSW_ITEM_BIT_ARRAY(reg, smid2, port, 0x20, 0x80, 1); /* reg_smid2_port_mask * Local port mask (1 bit per port). * Access: WO */ MLXSW_ITEM_BIT_ARRAY(reg, smid2, port_mask, 0xA0, 0x80, 1); static inline void mlxsw_reg_smid2_pack(char *payload, u16 mid, u16 port, bool set, bool smpe_valid, u16 smpe) { MLXSW_REG_ZERO(smid2, payload); mlxsw_reg_smid2_swid_set(payload, 0); mlxsw_reg_smid2_mid_set(payload, mid); mlxsw_reg_smid2_port_set(payload, port, set); mlxsw_reg_smid2_port_mask_set(payload, port, 1); mlxsw_reg_smid2_smpe_valid_set(payload, smpe_valid); mlxsw_reg_smid2_smpe_set(payload, smpe_valid ? smpe : 0); } /* CWTP - Congetion WRED ECN TClass Profile * ---------------------------------------- * Configures the profiles for queues of egress port and traffic class */ #define MLXSW_REG_CWTP_ID 0x2802 #define MLXSW_REG_CWTP_BASE_LEN 0x28 #define MLXSW_REG_CWTP_PROFILE_DATA_REC_LEN 0x08 #define MLXSW_REG_CWTP_LEN 0x40 MLXSW_REG_DEFINE(cwtp, MLXSW_REG_CWTP_ID, MLXSW_REG_CWTP_LEN); /* reg_cwtp_local_port * Local port number * Not supported for CPU port * Access: Index */ MLXSW_ITEM32_LP(reg, cwtp, 0x00, 16, 0x00, 12); /* reg_cwtp_traffic_class * Traffic Class to configure * Access: Index */ MLXSW_ITEM32(reg, cwtp, traffic_class, 32, 0, 8); /* reg_cwtp_profile_min * Minimum Average Queue Size of the profile in cells. * Access: RW */ MLXSW_ITEM32_INDEXED(reg, cwtp, profile_min, MLXSW_REG_CWTP_BASE_LEN, 0, 20, MLXSW_REG_CWTP_PROFILE_DATA_REC_LEN, 0, false); /* reg_cwtp_profile_percent * Percentage of WRED and ECN marking for maximum Average Queue size * Range is 0 to 100, units of integer percentage * Access: RW */ MLXSW_ITEM32_INDEXED(reg, cwtp, profile_percent, MLXSW_REG_CWTP_BASE_LEN, 24, 7, MLXSW_REG_CWTP_PROFILE_DATA_REC_LEN, 4, false); /* reg_cwtp_profile_max * Maximum Average Queue size of the profile in cells * Access: RW */ MLXSW_ITEM32_INDEXED(reg, cwtp, profile_max, MLXSW_REG_CWTP_BASE_LEN, 0, 20, MLXSW_REG_CWTP_PROFILE_DATA_REC_LEN, 4, false); #define MLXSW_REG_CWTP_MIN_VALUE 64 #define MLXSW_REG_CWTP_MAX_PROFILE 2 #define MLXSW_REG_CWTP_DEFAULT_PROFILE 1 static inline void mlxsw_reg_cwtp_pack(char *payload, u16 local_port, u8 traffic_class) { int i; MLXSW_REG_ZERO(cwtp, payload); mlxsw_reg_cwtp_local_port_set(payload, local_port); mlxsw_reg_cwtp_traffic_class_set(payload, traffic_class); for (i = 0; i <= MLXSW_REG_CWTP_MAX_PROFILE; i++) { mlxsw_reg_cwtp_profile_min_set(payload, i, MLXSW_REG_CWTP_MIN_VALUE); mlxsw_reg_cwtp_profile_max_set(payload, i, MLXSW_REG_CWTP_MIN_VALUE); } } #define MLXSW_REG_CWTP_PROFILE_TO_INDEX(profile) (profile - 1) static inline void mlxsw_reg_cwtp_profile_pack(char *payload, u8 profile, u32 min, u32 max, u32 probability) { u8 index = MLXSW_REG_CWTP_PROFILE_TO_INDEX(profile); mlxsw_reg_cwtp_profile_min_set(payload, index, min); mlxsw_reg_cwtp_profile_max_set(payload, index, max); mlxsw_reg_cwtp_profile_percent_set(payload, index, probability); } /* CWTPM - Congestion WRED ECN TClass and Pool Mapping * --------------------------------------------------- * The CWTPM register maps each egress port and traffic class to profile num. */ #define MLXSW_REG_CWTPM_ID 0x2803 #define MLXSW_REG_CWTPM_LEN 0x44 MLXSW_REG_DEFINE(cwtpm, MLXSW_REG_CWTPM_ID, MLXSW_REG_CWTPM_LEN); /* reg_cwtpm_local_port * Local port number * Not supported for CPU port * Access: Index */ MLXSW_ITEM32_LP(reg, cwtpm, 0x00, 16, 0x00, 12); /* reg_cwtpm_traffic_class * Traffic Class to configure * Access: Index */ MLXSW_ITEM32(reg, cwtpm, traffic_class, 32, 0, 8); /* reg_cwtpm_ew * Control enablement of WRED for traffic class: * 0 - Disable * 1 - Enable * Access: RW */ MLXSW_ITEM32(reg, cwtpm, ew, 36, 1, 1); /* reg_cwtpm_ee * Control enablement of ECN for traffic class: * 0 - Disable * 1 - Enable * Access: RW */ MLXSW_ITEM32(reg, cwtpm, ee, 36, 0, 1); /* reg_cwtpm_tcp_g * TCP Green Profile. * Index of the profile within {port, traffic class} to use. * 0 for disabling both WRED and ECN for this type of traffic. * Access: RW */ MLXSW_ITEM32(reg, cwtpm, tcp_g, 52, 0, 2); /* reg_cwtpm_tcp_y * TCP Yellow Profile. * Index of the profile within {port, traffic class} to use. * 0 for disabling both WRED and ECN for this type of traffic. * Access: RW */ MLXSW_ITEM32(reg, cwtpm, tcp_y, 56, 16, 2); /* reg_cwtpm_tcp_r * TCP Red Profile. * Index of the profile within {port, traffic class} to use. * 0 for disabling both WRED and ECN for this type of traffic. * Access: RW */ MLXSW_ITEM32(reg, cwtpm, tcp_r, 56, 0, 2); /* reg_cwtpm_ntcp_g * Non-TCP Green Profile. * Index of the profile within {port, traffic class} to use. * 0 for disabling both WRED and ECN for this type of traffic. * Access: RW */ MLXSW_ITEM32(reg, cwtpm, ntcp_g, 60, 0, 2); /* reg_cwtpm_ntcp_y * Non-TCP Yellow Profile. * Index of the profile within {port, traffic class} to use. * 0 for disabling both WRED and ECN for this type of traffic. * Access: RW */ MLXSW_ITEM32(reg, cwtpm, ntcp_y, 64, 16, 2); /* reg_cwtpm_ntcp_r * Non-TCP Red Profile. * Index of the profile within {port, traffic class} to use. * 0 for disabling both WRED and ECN for this type of traffic. * Access: RW */ MLXSW_ITEM32(reg, cwtpm, ntcp_r, 64, 0, 2); #define MLXSW_REG_CWTPM_RESET_PROFILE 0 static inline void mlxsw_reg_cwtpm_pack(char *payload, u16 local_port, u8 traffic_class, u8 profile, bool wred, bool ecn) { MLXSW_REG_ZERO(cwtpm, payload); mlxsw_reg_cwtpm_local_port_set(payload, local_port); mlxsw_reg_cwtpm_traffic_class_set(payload, traffic_class); mlxsw_reg_cwtpm_ew_set(payload, wred); mlxsw_reg_cwtpm_ee_set(payload, ecn); mlxsw_reg_cwtpm_tcp_g_set(payload, profile); mlxsw_reg_cwtpm_tcp_y_set(payload, profile); mlxsw_reg_cwtpm_tcp_r_set(payload, profile); mlxsw_reg_cwtpm_ntcp_g_set(payload, profile); mlxsw_reg_cwtpm_ntcp_y_set(payload, profile); mlxsw_reg_cwtpm_ntcp_r_set(payload, profile); } /* PGCR - Policy-Engine General Configuration Register * --------------------------------------------------- * This register configures general Policy-Engine settings. */ #define MLXSW_REG_PGCR_ID 0x3001 #define MLXSW_REG_PGCR_LEN 0x20 MLXSW_REG_DEFINE(pgcr, MLXSW_REG_PGCR_ID, MLXSW_REG_PGCR_LEN); /* reg_pgcr_default_action_pointer_base * Default action pointer base. Each region has a default action pointer * which is equal to default_action_pointer_base + region_id. * Access: RW */ MLXSW_ITEM32(reg, pgcr, default_action_pointer_base, 0x1C, 0, 24); static inline void mlxsw_reg_pgcr_pack(char *payload, u32 pointer_base) { MLXSW_REG_ZERO(pgcr, payload); mlxsw_reg_pgcr_default_action_pointer_base_set(payload, pointer_base); } /* PPBT - Policy-Engine Port Binding Table * --------------------------------------- * This register is used for configuration of the Port Binding Table. */ #define MLXSW_REG_PPBT_ID 0x3002 #define MLXSW_REG_PPBT_LEN 0x14 MLXSW_REG_DEFINE(ppbt, MLXSW_REG_PPBT_ID, MLXSW_REG_PPBT_LEN); enum mlxsw_reg_pxbt_e { MLXSW_REG_PXBT_E_IACL, MLXSW_REG_PXBT_E_EACL, }; /* reg_ppbt_e * Access: Index */ MLXSW_ITEM32(reg, ppbt, e, 0x00, 31, 1); enum mlxsw_reg_pxbt_op { MLXSW_REG_PXBT_OP_BIND, MLXSW_REG_PXBT_OP_UNBIND, }; /* reg_ppbt_op * Access: RW */ MLXSW_ITEM32(reg, ppbt, op, 0x00, 28, 3); /* reg_ppbt_local_port * Local port. Not including CPU port. * Access: Index */ MLXSW_ITEM32_LP(reg, ppbt, 0x00, 16, 0x00, 12); /* reg_ppbt_g * group - When set, the binding is of an ACL group. When cleared, * the binding is of an ACL. * Must be set to 1 for Spectrum. * Access: RW */ MLXSW_ITEM32(reg, ppbt, g, 0x10, 31, 1); /* reg_ppbt_acl_info * ACL/ACL group identifier. If the g bit is set, this field should hold * the acl_group_id, else it should hold the acl_id. * Access: RW */ MLXSW_ITEM32(reg, ppbt, acl_info, 0x10, 0, 16); static inline void mlxsw_reg_ppbt_pack(char *payload, enum mlxsw_reg_pxbt_e e, enum mlxsw_reg_pxbt_op op, u16 local_port, u16 acl_info) { MLXSW_REG_ZERO(ppbt, payload); mlxsw_reg_ppbt_e_set(payload, e); mlxsw_reg_ppbt_op_set(payload, op); mlxsw_reg_ppbt_local_port_set(payload, local_port); mlxsw_reg_ppbt_g_set(payload, true); mlxsw_reg_ppbt_acl_info_set(payload, acl_info); } /* PACL - Policy-Engine ACL Register * --------------------------------- * This register is used for configuration of the ACL. */ #define MLXSW_REG_PACL_ID 0x3004 #define MLXSW_REG_PACL_LEN 0x70 MLXSW_REG_DEFINE(pacl, MLXSW_REG_PACL_ID, MLXSW_REG_PACL_LEN); /* reg_pacl_v * Valid. Setting the v bit makes the ACL valid. It should not be cleared * while the ACL is bounded to either a port, VLAN or ACL rule. * Access: RW */ MLXSW_ITEM32(reg, pacl, v, 0x00, 24, 1); /* reg_pacl_acl_id * An identifier representing the ACL (managed by software) * Range 0 .. cap_max_acl_regions - 1 * Access: Index */ MLXSW_ITEM32(reg, pacl, acl_id, 0x08, 0, 16); #define MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN 16 /* reg_pacl_tcam_region_info * Opaque object that represents a TCAM region. * Obtained through PTAR register. * Access: RW */ MLXSW_ITEM_BUF(reg, pacl, tcam_region_info, 0x30, MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN); static inline void mlxsw_reg_pacl_pack(char *payload, u16 acl_id, bool valid, const char *tcam_region_info) { MLXSW_REG_ZERO(pacl, payload); mlxsw_reg_pacl_acl_id_set(payload, acl_id); mlxsw_reg_pacl_v_set(payload, valid); mlxsw_reg_pacl_tcam_region_info_memcpy_to(payload, tcam_region_info); } /* PAGT - Policy-Engine ACL Group Table * ------------------------------------ * This register is used for configuration of the ACL Group Table. */ #define MLXSW_REG_PAGT_ID 0x3005 #define MLXSW_REG_PAGT_BASE_LEN 0x30 #define MLXSW_REG_PAGT_ACL_LEN 4 #define MLXSW_REG_PAGT_ACL_MAX_NUM 16 #define MLXSW_REG_PAGT_LEN (MLXSW_REG_PAGT_BASE_LEN + \ MLXSW_REG_PAGT_ACL_MAX_NUM * MLXSW_REG_PAGT_ACL_LEN) MLXSW_REG_DEFINE(pagt, MLXSW_REG_PAGT_ID, MLXSW_REG_PAGT_LEN); /* reg_pagt_size * Number of ACLs in the group. * Size 0 invalidates a group. * Range 0 .. cap_max_acl_group_size (hard coded to 16 for now) * Total number of ACLs in all groups must be lower or equal * to cap_max_acl_tot_groups * Note: a group which is binded must not be invalidated * Access: Index */ MLXSW_ITEM32(reg, pagt, size, 0x00, 0, 8); /* reg_pagt_acl_group_id * An identifier (numbered from 0..cap_max_acl_groups-1) representing * the ACL Group identifier (managed by software). * Access: Index */ MLXSW_ITEM32(reg, pagt, acl_group_id, 0x08, 0, 16); /* reg_pagt_multi * Multi-ACL * 0 - This ACL is the last ACL in the multi-ACL * 1 - This ACL is part of a multi-ACL * Access: RW */ MLXSW_ITEM32_INDEXED(reg, pagt, multi, 0x30, 31, 1, 0x04, 0x00, false); /* reg_pagt_acl_id * ACL identifier * Access: RW */ MLXSW_ITEM32_INDEXED(reg, pagt, acl_id, 0x30, 0, 16, 0x04, 0x00, false); static inline void mlxsw_reg_pagt_pack(char *payload, u16 acl_group_id) { MLXSW_REG_ZERO(pagt, payload); mlxsw_reg_pagt_acl_group_id_set(payload, acl_group_id); } static inline void mlxsw_reg_pagt_acl_id_pack(char *payload, int index, u16 acl_id, bool multi) { u8 size = mlxsw_reg_pagt_size_get(payload); if (index >= size) mlxsw_reg_pagt_size_set(payload, index + 1); mlxsw_reg_pagt_multi_set(payload, index, multi); mlxsw_reg_pagt_acl_id_set(payload, index, acl_id); } /* PTAR - Policy-Engine TCAM Allocation Register * --------------------------------------------- * This register is used for allocation of regions in the TCAM. * Note: Query method is not supported on this register. */ #define MLXSW_REG_PTAR_ID 0x3006 #define MLXSW_REG_PTAR_BASE_LEN 0x20 #define MLXSW_REG_PTAR_KEY_ID_LEN 1 #define MLXSW_REG_PTAR_KEY_ID_MAX_NUM 16 #define MLXSW_REG_PTAR_LEN (MLXSW_REG_PTAR_BASE_LEN + \ MLXSW_REG_PTAR_KEY_ID_MAX_NUM * MLXSW_REG_PTAR_KEY_ID_LEN) MLXSW_REG_DEFINE(ptar, MLXSW_REG_PTAR_ID, MLXSW_REG_PTAR_LEN); enum mlxsw_reg_ptar_op { /* allocate a TCAM region */ MLXSW_REG_PTAR_OP_ALLOC, /* resize a TCAM region */ MLXSW_REG_PTAR_OP_RESIZE, /* deallocate TCAM region */ MLXSW_REG_PTAR_OP_FREE, /* test allocation */ MLXSW_REG_PTAR_OP_TEST, }; /* reg_ptar_op * Access: OP */ MLXSW_ITEM32(reg, ptar, op, 0x00, 28, 4); /* reg_ptar_action_set_type * Type of action set to be used on this region. * For Spectrum and Spectrum-2, this is always type 2 - "flexible" * Access: WO */ MLXSW_ITEM32(reg, ptar, action_set_type, 0x00, 16, 8); enum mlxsw_reg_ptar_key_type { MLXSW_REG_PTAR_KEY_TYPE_FLEX = 0x50, /* Spetrum */ MLXSW_REG_PTAR_KEY_TYPE_FLEX2 = 0x51, /* Spectrum-2 */ }; /* reg_ptar_key_type * TCAM key type for the region. * Access: WO */ MLXSW_ITEM32(reg, ptar, key_type, 0x00, 0, 8); /* reg_ptar_region_size * TCAM region size. When allocating/resizing this is the requested size, * the response is the actual size. Note that actual size may be * larger than requested. * Allowed range 1 .. cap_max_rules-1 * Reserved during op deallocate. * Access: WO */ MLXSW_ITEM32(reg, ptar, region_size, 0x04, 0, 16); /* reg_ptar_region_id * Region identifier * Range 0 .. cap_max_regions-1 * Access: Index */ MLXSW_ITEM32(reg, ptar, region_id, 0x08, 0, 16); /* reg_ptar_tcam_region_info * Opaque object that represents the TCAM region. * Returned when allocating a region. * Provided by software for ACL generation and region deallocation and resize. * Access: RW */ MLXSW_ITEM_BUF(reg, ptar, tcam_region_info, 0x10, MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN); /* reg_ptar_flexible_key_id * Identifier of the Flexible Key. * Only valid if key_type == "FLEX_KEY" * The key size will be rounded up to one of the following values: * 9B, 18B, 36B, 54B. * This field is reserved for in resize operation. * Access: WO */ MLXSW_ITEM8_INDEXED(reg, ptar, flexible_key_id, 0x20, 0, 8, MLXSW_REG_PTAR_KEY_ID_LEN, 0x00, false); static inline void mlxsw_reg_ptar_pack(char *payload, enum mlxsw_reg_ptar_op op, enum mlxsw_reg_ptar_key_type key_type, u16 region_size, u16 region_id, const char *tcam_region_info) { MLXSW_REG_ZERO(ptar, payload); mlxsw_reg_ptar_op_set(payload, op); mlxsw_reg_ptar_action_set_type_set(payload, 2); /* "flexible" */ mlxsw_reg_ptar_key_type_set(payload, key_type); mlxsw_reg_ptar_region_size_set(payload, region_size); mlxsw_reg_ptar_region_id_set(payload, region_id); mlxsw_reg_ptar_tcam_region_info_memcpy_to(payload, tcam_region_info); } static inline void mlxsw_reg_ptar_key_id_pack(char *payload, int index, u16 key_id) { mlxsw_reg_ptar_flexible_key_id_set(payload, index, key_id); } static inline void mlxsw_reg_ptar_unpack(char *payload, char *tcam_region_info) { mlxsw_reg_ptar_tcam_region_info_memcpy_from(payload, tcam_region_info); } /* PPBS - Policy-Engine Policy Based Switching Register * ---------------------------------------------------- * This register retrieves and sets Policy Based Switching Table entries. */ #define MLXSW_REG_PPBS_ID 0x300C #define MLXSW_REG_PPBS_LEN 0x14 MLXSW_REG_DEFINE(ppbs, MLXSW_REG_PPBS_ID, MLXSW_REG_PPBS_LEN); /* reg_ppbs_pbs_ptr * Index into the PBS table. * For Spectrum, the index points to the KVD Linear. * Access: Index */ MLXSW_ITEM32(reg, ppbs, pbs_ptr, 0x08, 0, 24); /* reg_ppbs_system_port * Unique port identifier for the final destination of the packet. * Access: RW */ MLXSW_ITEM32(reg, ppbs, system_port, 0x10, 0, 16); static inline void mlxsw_reg_ppbs_pack(char *payload, u32 pbs_ptr, u16 system_port) { MLXSW_REG_ZERO(ppbs, payload); mlxsw_reg_ppbs_pbs_ptr_set(payload, pbs_ptr); mlxsw_reg_ppbs_system_port_set(payload, system_port); } /* PRCR - Policy-Engine Rules Copy Register * ---------------------------------------- * This register is used for accessing rules within a TCAM region. */ #define MLXSW_REG_PRCR_ID 0x300D #define MLXSW_REG_PRCR_LEN 0x40 MLXSW_REG_DEFINE(prcr, MLXSW_REG_PRCR_ID, MLXSW_REG_PRCR_LEN); enum mlxsw_reg_prcr_op { /* Move rules. Moves the rules from "tcam_region_info" starting * at offset "offset" to "dest_tcam_region_info" * at offset "dest_offset." */ MLXSW_REG_PRCR_OP_MOVE, /* Copy rules. Copies the rules from "tcam_region_info" starting * at offset "offset" to "dest_tcam_region_info" * at offset "dest_offset." */ MLXSW_REG_PRCR_OP_COPY, }; /* reg_prcr_op * Access: OP */ MLXSW_ITEM32(reg, prcr, op, 0x00, 28, 4); /* reg_prcr_offset * Offset within the source region to copy/move from. * Access: Index */ MLXSW_ITEM32(reg, prcr, offset, 0x00, 0, 16); /* reg_prcr_size * The number of rules to copy/move. * Access: WO */ MLXSW_ITEM32(reg, prcr, size, 0x04, 0, 16); /* reg_prcr_tcam_region_info * Opaque object that represents the source TCAM region. * Access: Index */ MLXSW_ITEM_BUF(reg, prcr, tcam_region_info, 0x10, MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN); /* reg_prcr_dest_offset * Offset within the source region to copy/move to. * Access: Index */ MLXSW_ITEM32(reg, prcr, dest_offset, 0x20, 0, 16); /* reg_prcr_dest_tcam_region_info * Opaque object that represents the destination TCAM region. * Access: Index */ MLXSW_ITEM_BUF(reg, prcr, dest_tcam_region_info, 0x30, MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN); static inline void mlxsw_reg_prcr_pack(char *payload, enum mlxsw_reg_prcr_op op, const char *src_tcam_region_info, u16 src_offset, const char *dest_tcam_region_info, u16 dest_offset, u16 size) { MLXSW_REG_ZERO(prcr, payload); mlxsw_reg_prcr_op_set(payload, op); mlxsw_reg_prcr_offset_set(payload, src_offset); mlxsw_reg_prcr_size_set(payload, size); mlxsw_reg_prcr_tcam_region_info_memcpy_to(payload, src_tcam_region_info); mlxsw_reg_prcr_dest_offset_set(payload, dest_offset); mlxsw_reg_prcr_dest_tcam_region_info_memcpy_to(payload, dest_tcam_region_info); } /* PEFA - Policy-Engine Extended Flexible Action Register * ------------------------------------------------------ * This register is used for accessing an extended flexible action entry * in the central KVD Linear Database. */ #define MLXSW_REG_PEFA_ID 0x300F #define MLXSW_REG_PEFA_LEN 0xB0 MLXSW_REG_DEFINE(pefa, MLXSW_REG_PEFA_ID, MLXSW_REG_PEFA_LEN); /* reg_pefa_index * Index in the KVD Linear Centralized Database. * Access: Index */ MLXSW_ITEM32(reg, pefa, index, 0x00, 0, 24); /* reg_pefa_a * Index in the KVD Linear Centralized Database. * Activity * For a new entry: set if ca=0, clear if ca=1 * Set if a packet lookup has hit on the specific entry * Access: RO */ MLXSW_ITEM32(reg, pefa, a, 0x04, 29, 1); /* reg_pefa_ca * Clear activity * When write: activity is according to this field * When read: after reading the activity is cleared according to ca * Access: OP */ MLXSW_ITEM32(reg, pefa, ca, 0x04, 24, 1); #define MLXSW_REG_FLEX_ACTION_SET_LEN 0xA8 /* reg_pefa_flex_action_set * Action-set to perform when rule is matched. * Must be zero padded if action set is shorter. * Access: RW */ MLXSW_ITEM_BUF(reg, pefa, flex_action_set, 0x08, MLXSW_REG_FLEX_ACTION_SET_LEN); static inline void mlxsw_reg_pefa_pack(char *payload, u32 index, bool ca, const char *flex_action_set) { MLXSW_REG_ZERO(pefa, payload); mlxsw_reg_pefa_index_set(payload, index); mlxsw_reg_pefa_ca_set(payload, ca); if (flex_action_set) mlxsw_reg_pefa_flex_action_set_memcpy_to(payload, flex_action_set); } static inline void mlxsw_reg_pefa_unpack(char *payload, bool *p_a) { *p_a = mlxsw_reg_pefa_a_get(payload); } /* PEMRBT - Policy-Engine Multicast Router Binding Table Register * -------------------------------------------------------------- * This register is used for binding Multicast router to an ACL group * that serves the MC router. * This register is not supported by SwitchX/-2 and Spectrum. */ #define MLXSW_REG_PEMRBT_ID 0x3014 #define MLXSW_REG_PEMRBT_LEN 0x14 MLXSW_REG_DEFINE(pemrbt, MLXSW_REG_PEMRBT_ID, MLXSW_REG_PEMRBT_LEN); enum mlxsw_reg_pemrbt_protocol { MLXSW_REG_PEMRBT_PROTO_IPV4, MLXSW_REG_PEMRBT_PROTO_IPV6, }; /* reg_pemrbt_protocol * Access: Index */ MLXSW_ITEM32(reg, pemrbt, protocol, 0x00, 0, 1); /* reg_pemrbt_group_id * ACL group identifier. * Range 0..cap_max_acl_groups-1 * Access: RW */ MLXSW_ITEM32(reg, pemrbt, group_id, 0x10, 0, 16); static inline void mlxsw_reg_pemrbt_pack(char *payload, enum mlxsw_reg_pemrbt_protocol protocol, u16 group_id) { MLXSW_REG_ZERO(pemrbt, payload); mlxsw_reg_pemrbt_protocol_set(payload, protocol); mlxsw_reg_pemrbt_group_id_set(payload, group_id); } /* PTCE-V2 - Policy-Engine TCAM Entry Register Version 2 * ----------------------------------------------------- * This register is used for accessing rules within a TCAM region. * It is a new version of PTCE in order to support wider key, * mask and action within a TCAM region. This register is not supported * by SwitchX and SwitchX-2. */ #define MLXSW_REG_PTCE2_ID 0x3017 #define MLXSW_REG_PTCE2_LEN 0x1D8 MLXSW_REG_DEFINE(ptce2, MLXSW_REG_PTCE2_ID, MLXSW_REG_PTCE2_LEN); /* reg_ptce2_v * Valid. * Access: RW */ MLXSW_ITEM32(reg, ptce2, v, 0x00, 31, 1); /* reg_ptce2_a * Activity. Set if a packet lookup has hit on the specific entry. * To clear the "a" bit, use "clear activity" op or "clear on read" op. * Access: RO */ MLXSW_ITEM32(reg, ptce2, a, 0x00, 30, 1); enum mlxsw_reg_ptce2_op { /* Read operation. */ MLXSW_REG_PTCE2_OP_QUERY_READ = 0, /* clear on read operation. Used to read entry * and clear Activity bit. */ MLXSW_REG_PTCE2_OP_QUERY_CLEAR_ON_READ = 1, /* Write operation. Used to write a new entry to the table. * All R/W fields are relevant for new entry. Activity bit is set * for new entries - Note write with v = 0 will delete the entry. */ MLXSW_REG_PTCE2_OP_WRITE_WRITE = 0, /* Update action. Only action set will be updated. */ MLXSW_REG_PTCE2_OP_WRITE_UPDATE = 1, /* Clear activity. A bit is cleared for the entry. */ MLXSW_REG_PTCE2_OP_WRITE_CLEAR_ACTIVITY = 2, }; /* reg_ptce2_op * Access: OP */ MLXSW_ITEM32(reg, ptce2, op, 0x00, 20, 3); /* reg_ptce2_offset * Access: Index */ MLXSW_ITEM32(reg, ptce2, offset, 0x00, 0, 16); /* reg_ptce2_priority * Priority of the rule, higher values win. The range is 1..cap_kvd_size-1. * Note: priority does not have to be unique per rule. * Within a region, higher priority should have lower offset (no limitation * between regions in a multi-region). * Access: RW */ MLXSW_ITEM32(reg, ptce2, priority, 0x04, 0, 24); /* reg_ptce2_tcam_region_info * Opaque object that represents the TCAM region. * Access: Index */ MLXSW_ITEM_BUF(reg, ptce2, tcam_region_info, 0x10, MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN); #define MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN 96 /* reg_ptce2_flex_key_blocks * ACL Key. * Access: RW */ MLXSW_ITEM_BUF(reg, ptce2, flex_key_blocks, 0x20, MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN); /* reg_ptce2_mask * mask- in the same size as key. A bit that is set directs the TCAM * to compare the corresponding bit in key. A bit that is clear directs * the TCAM to ignore the corresponding bit in key. * Access: RW */ MLXSW_ITEM_BUF(reg, ptce2, mask, 0x80, MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN); /* reg_ptce2_flex_action_set * ACL action set. * Access: RW */ MLXSW_ITEM_BUF(reg, ptce2, flex_action_set, 0xE0, MLXSW_REG_FLEX_ACTION_SET_LEN); static inline void mlxsw_reg_ptce2_pack(char *payload, bool valid, enum mlxsw_reg_ptce2_op op, const char *tcam_region_info, u16 offset, u32 priority) { MLXSW_REG_ZERO(ptce2, payload); mlxsw_reg_ptce2_v_set(payload, valid); mlxsw_reg_ptce2_op_set(payload, op); mlxsw_reg_ptce2_offset_set(payload, offset); mlxsw_reg_ptce2_priority_set(payload, priority); mlxsw_reg_ptce2_tcam_region_info_memcpy_to(payload, tcam_region_info); } /* PERPT - Policy-Engine ERP Table Register * ---------------------------------------- * This register adds and removes eRPs from the eRP table. */ #define MLXSW_REG_PERPT_ID 0x3021 #define MLXSW_REG_PERPT_LEN 0x80 MLXSW_REG_DEFINE(perpt, MLXSW_REG_PERPT_ID, MLXSW_REG_PERPT_LEN); /* reg_perpt_erpt_bank * eRP table bank. * Range 0 .. cap_max_erp_table_banks - 1 * Access: Index */ MLXSW_ITEM32(reg, perpt, erpt_bank, 0x00, 16, 4); /* reg_perpt_erpt_index * Index to eRP table within the eRP bank. * Range is 0 .. cap_max_erp_table_bank_size - 1 * Access: Index */ MLXSW_ITEM32(reg, perpt, erpt_index, 0x00, 0, 8); enum mlxsw_reg_perpt_key_size { MLXSW_REG_PERPT_KEY_SIZE_2KB, MLXSW_REG_PERPT_KEY_SIZE_4KB, MLXSW_REG_PERPT_KEY_SIZE_8KB, MLXSW_REG_PERPT_KEY_SIZE_12KB, }; /* reg_perpt_key_size * Access: OP */ MLXSW_ITEM32(reg, perpt, key_size, 0x04, 0, 4); /* reg_perpt_bf_bypass * 0 - The eRP is used only if bloom filter state is set for the given * rule. * 1 - The eRP is used regardless of bloom filter state. * The bypass is an OR condition of region_id or eRP. See PERCR.bf_bypass * Access: RW */ MLXSW_ITEM32(reg, perpt, bf_bypass, 0x08, 8, 1); /* reg_perpt_erp_id * eRP ID for use by the rules. * Access: RW */ MLXSW_ITEM32(reg, perpt, erp_id, 0x08, 0, 4); /* reg_perpt_erpt_base_bank * Base eRP table bank, points to head of erp_vector * Range is 0 .. cap_max_erp_table_banks - 1 * Access: OP */ MLXSW_ITEM32(reg, perpt, erpt_base_bank, 0x0C, 16, 4); /* reg_perpt_erpt_base_index * Base index to eRP table within the eRP bank * Range is 0 .. cap_max_erp_table_bank_size - 1 * Access: OP */ MLXSW_ITEM32(reg, perpt, erpt_base_index, 0x0C, 0, 8); /* reg_perpt_erp_index_in_vector * eRP index in the vector. * Access: OP */ MLXSW_ITEM32(reg, perpt, erp_index_in_vector, 0x10, 0, 4); /* reg_perpt_erp_vector * eRP vector. * Access: OP */ MLXSW_ITEM_BIT_ARRAY(reg, perpt, erp_vector, 0x14, 4, 1); /* reg_perpt_mask * Mask * 0 - A-TCAM will ignore the bit in key * 1 - A-TCAM will compare the bit in key * Access: RW */ MLXSW_ITEM_BUF(reg, perpt, mask, 0x20, MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN); static inline void mlxsw_reg_perpt_erp_vector_pack(char *payload, unsigned long *erp_vector, unsigned long size) { unsigned long bit; for_each_set_bit(bit, erp_vector, size) mlxsw_reg_perpt_erp_vector_set(payload, bit, true); } static inline void mlxsw_reg_perpt_pack(char *payload, u8 erpt_bank, u8 erpt_index, enum mlxsw_reg_perpt_key_size key_size, u8 erp_id, u8 erpt_base_bank, u8 erpt_base_index, u8 erp_index, char *mask) { MLXSW_REG_ZERO(perpt, payload); mlxsw_reg_perpt_erpt_bank_set(payload, erpt_bank); mlxsw_reg_perpt_erpt_index_set(payload, erpt_index); mlxsw_reg_perpt_key_size_set(payload, key_size); mlxsw_reg_perpt_bf_bypass_set(payload, false); mlxsw_reg_perpt_erp_id_set(payload, erp_id); mlxsw_reg_perpt_erpt_base_bank_set(payload, erpt_base_bank); mlxsw_reg_perpt_erpt_base_index_set(payload, erpt_base_index); mlxsw_reg_perpt_erp_index_in_vector_set(payload, erp_index); mlxsw_reg_perpt_mask_memcpy_to(payload, mask); } /* PERAR - Policy-Engine Region Association Register * ------------------------------------------------- * This register associates a hw region for region_id's. Changing on the fly * is supported by the device. */ #define MLXSW_REG_PERAR_ID 0x3026 #define MLXSW_REG_PERAR_LEN 0x08 MLXSW_REG_DEFINE(perar, MLXSW_REG_PERAR_ID, MLXSW_REG_PERAR_LEN); /* reg_perar_region_id * Region identifier * Range 0 .. cap_max_regions-1 * Access: Index */ MLXSW_ITEM32(reg, perar, region_id, 0x00, 0, 16); static inline unsigned int mlxsw_reg_perar_hw_regions_needed(unsigned int block_num) { return DIV_ROUND_UP(block_num, 4); } /* reg_perar_hw_region * HW Region * Range 0 .. cap_max_regions-1 * Default: hw_region = region_id * For a 8 key block region, 2 consecutive regions are used * For a 12 key block region, 3 consecutive regions are used * Access: RW */ MLXSW_ITEM32(reg, perar, hw_region, 0x04, 0, 16); static inline void mlxsw_reg_perar_pack(char *payload, u16 region_id, u16 hw_region) { MLXSW_REG_ZERO(perar, payload); mlxsw_reg_perar_region_id_set(payload, region_id); mlxsw_reg_perar_hw_region_set(payload, hw_region); } /* PTCE-V3 - Policy-Engine TCAM Entry Register Version 3 * ----------------------------------------------------- * This register is a new version of PTCE-V2 in order to support the * A-TCAM. This register is not supported by SwitchX/-2 and Spectrum. */ #define MLXSW_REG_PTCE3_ID 0x3027 #define MLXSW_REG_PTCE3_LEN 0xF0 MLXSW_REG_DEFINE(ptce3, MLXSW_REG_PTCE3_ID, MLXSW_REG_PTCE3_LEN); /* reg_ptce3_v * Valid. * Access: RW */ MLXSW_ITEM32(reg, ptce3, v, 0x00, 31, 1); enum mlxsw_reg_ptce3_op { /* Write operation. Used to write a new entry to the table. * All R/W fields are relevant for new entry. Activity bit is set * for new entries. Write with v = 0 will delete the entry. Must * not be used if an entry exists. */ MLXSW_REG_PTCE3_OP_WRITE_WRITE = 0, /* Update operation */ MLXSW_REG_PTCE3_OP_WRITE_UPDATE = 1, /* Read operation */ MLXSW_REG_PTCE3_OP_QUERY_READ = 0, }; /* reg_ptce3_op * Access: OP */ MLXSW_ITEM32(reg, ptce3, op, 0x00, 20, 3); /* reg_ptce3_priority * Priority of the rule. Higher values win. * For Spectrum-2 range is 1..cap_kvd_size - 1 * Note: Priority does not have to be unique per rule. * Access: RW */ MLXSW_ITEM32(reg, ptce3, priority, 0x04, 0, 24); /* reg_ptce3_tcam_region_info * Opaque object that represents the TCAM region. * Access: Index */ MLXSW_ITEM_BUF(reg, ptce3, tcam_region_info, 0x10, MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN); /* reg_ptce3_flex2_key_blocks * ACL key. The key must be masked according to eRP (if exists) or * according to master mask. * Access: Index */ MLXSW_ITEM_BUF(reg, ptce3, flex2_key_blocks, 0x20, MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN); /* reg_ptce3_erp_id * eRP ID. * Access: Index */ MLXSW_ITEM32(reg, ptce3, erp_id, 0x80, 0, 4); /* reg_ptce3_delta_start * Start point of delta_value and delta_mask, in bits. Must not exceed * num_key_blocks * 36 - 8. Reserved when delta_mask = 0. * Access: Index */ MLXSW_ITEM32(reg, ptce3, delta_start, 0x84, 0, 10); /* reg_ptce3_delta_mask * Delta mask. * 0 - Ignore relevant bit in delta_value * 1 - Compare relevant bit in delta_value * Delta mask must not be set for reserved fields in the key blocks. * Note: No delta when no eRPs. Thus, for regions with * PERERP.erpt_pointer_valid = 0 the delta mask must be 0. * Access: Index */ MLXSW_ITEM32(reg, ptce3, delta_mask, 0x88, 16, 8); /* reg_ptce3_delta_value * Delta value. * Bits which are masked by delta_mask must be 0. * Access: Index */ MLXSW_ITEM32(reg, ptce3, delta_value, 0x88, 0, 8); /* reg_ptce3_prune_vector * Pruning vector relative to the PERPT.erp_id. * Used for reducing lookups. * 0 - NEED: Do a lookup using the eRP. * 1 - PRUNE: Do not perform a lookup using the eRP. * Maybe be modified by PEAPBL and PEAPBM. * Note: In Spectrum-2, a region of 8 key blocks must be set to either * all 1's or all 0's. * Access: RW */ MLXSW_ITEM_BIT_ARRAY(reg, ptce3, prune_vector, 0x90, 4, 1); /* reg_ptce3_prune_ctcam * Pruning on C-TCAM. Used for reducing lookups. * 0 - NEED: Do a lookup in the C-TCAM. * 1 - PRUNE: Do not perform a lookup in the C-TCAM. * Access: RW */ MLXSW_ITEM32(reg, ptce3, prune_ctcam, 0x94, 31, 1); /* reg_ptce3_large_exists * Large entry key ID exists. * Within the region: * 0 - SINGLE: The large_entry_key_id is not currently in use. * For rule insert: The MSB of the key (blocks 6..11) will be added. * For rule delete: The MSB of the key will be removed. * 1 - NON_SINGLE: The large_entry_key_id is currently in use. * For rule insert: The MSB of the key (blocks 6..11) will not be added. * For rule delete: The MSB of the key will not be removed. * Access: WO */ MLXSW_ITEM32(reg, ptce3, large_exists, 0x98, 31, 1); /* reg_ptce3_large_entry_key_id * Large entry key ID. * A key for 12 key blocks rules. Reserved when region has less than 12 key * blocks. Must be different for different keys which have the same common * 6 key blocks (MSB, blocks 6..11) key within a region. * Range is 0..cap_max_pe_large_key_id - 1 * Access: RW */ MLXSW_ITEM32(reg, ptce3, large_entry_key_id, 0x98, 0, 24); /* reg_ptce3_action_pointer * Pointer to action. * Range is 0..cap_max_kvd_action_sets - 1 * Access: RW */ MLXSW_ITEM32(reg, ptce3, action_pointer, 0xA0, 0, 24); static inline void mlxsw_reg_ptce3_pack(char *payload, bool valid, enum mlxsw_reg_ptce3_op op, u32 priority, const char *tcam_region_info, const char *key, u8 erp_id, u16 delta_start, u8 delta_mask, u8 delta_value, bool large_exists, u32 lkey_id, u32 action_pointer) { MLXSW_REG_ZERO(ptce3, payload); mlxsw_reg_ptce3_v_set(payload, valid); mlxsw_reg_ptce3_op_set(payload, op); mlxsw_reg_ptce3_priority_set(payload, priority); mlxsw_reg_ptce3_tcam_region_info_memcpy_to(payload, tcam_region_info); mlxsw_reg_ptce3_flex2_key_blocks_memcpy_to(payload, key); mlxsw_reg_ptce3_erp_id_set(payload, erp_id); mlxsw_reg_ptce3_delta_start_set(payload, delta_start); mlxsw_reg_ptce3_delta_mask_set(payload, delta_mask); mlxsw_reg_ptce3_delta_value_set(payload, delta_value); mlxsw_reg_ptce3_large_exists_set(payload, large_exists); mlxsw_reg_ptce3_large_entry_key_id_set(payload, lkey_id); mlxsw_reg_ptce3_action_pointer_set(payload, action_pointer); } /* PERCR - Policy-Engine Region Configuration Register * --------------------------------------------------- * This register configures the region parameters. The region_id must be * allocated. */ #define MLXSW_REG_PERCR_ID 0x302A #define MLXSW_REG_PERCR_LEN 0x80 MLXSW_REG_DEFINE(percr, MLXSW_REG_PERCR_ID, MLXSW_REG_PERCR_LEN); /* reg_percr_region_id * Region identifier. * Range 0..cap_max_regions-1 * Access: Index */ MLXSW_ITEM32(reg, percr, region_id, 0x00, 0, 16); /* reg_percr_atcam_ignore_prune * Ignore prune_vector by other A-TCAM rules. Used e.g., for a new rule. * Access: RW */ MLXSW_ITEM32(reg, percr, atcam_ignore_prune, 0x04, 25, 1); /* reg_percr_ctcam_ignore_prune * Ignore prune_ctcam by other A-TCAM rules. Used e.g., for a new rule. * Access: RW */ MLXSW_ITEM32(reg, percr, ctcam_ignore_prune, 0x04, 24, 1); /* reg_percr_bf_bypass * Bloom filter bypass. * 0 - Bloom filter is used (default) * 1 - Bloom filter is bypassed. The bypass is an OR condition of * region_id or eRP. See PERPT.bf_bypass * Access: RW */ MLXSW_ITEM32(reg, percr, bf_bypass, 0x04, 16, 1); /* reg_percr_master_mask * Master mask. Logical OR mask of all masks of all rules of a region * (both A-TCAM and C-TCAM). When there are no eRPs * (erpt_pointer_valid = 0), then this provides the mask. * Access: RW */ MLXSW_ITEM_BUF(reg, percr, master_mask, 0x20, 96); static inline void mlxsw_reg_percr_pack(char *payload, u16 region_id) { MLXSW_REG_ZERO(percr, payload); mlxsw_reg_percr_region_id_set(payload, region_id); mlxsw_reg_percr_atcam_ignore_prune_set(payload, false); mlxsw_reg_percr_ctcam_ignore_prune_set(payload, false); mlxsw_reg_percr_bf_bypass_set(payload, false); } /* PERERP - Policy-Engine Region eRP Register * ------------------------------------------ * This register configures the region eRP. The region_id must be * allocated. */ #define MLXSW_REG_PERERP_ID 0x302B #define MLXSW_REG_PERERP_LEN 0x1C MLXSW_REG_DEFINE(pererp, MLXSW_REG_PERERP_ID, MLXSW_REG_PERERP_LEN); /* reg_pererp_region_id * Region identifier. * Range 0..cap_max_regions-1 * Access: Index */ MLXSW_ITEM32(reg, pererp, region_id, 0x00, 0, 16); /* reg_pererp_ctcam_le * C-TCAM lookup enable. Reserved when erpt_pointer_valid = 0. * Access: RW */ MLXSW_ITEM32(reg, pererp, ctcam_le, 0x04, 28, 1); /* reg_pererp_erpt_pointer_valid * erpt_pointer is valid. * Access: RW */ MLXSW_ITEM32(reg, pererp, erpt_pointer_valid, 0x10, 31, 1); /* reg_pererp_erpt_bank_pointer * Pointer to eRP table bank. May be modified at any time. * Range 0..cap_max_erp_table_banks-1 * Reserved when erpt_pointer_valid = 0 */ MLXSW_ITEM32(reg, pererp, erpt_bank_pointer, 0x10, 16, 4); /* reg_pererp_erpt_pointer * Pointer to eRP table within the eRP bank. Can be changed for an * existing region. * Range 0..cap_max_erp_table_size-1 * Reserved when erpt_pointer_valid = 0 * Access: RW */ MLXSW_ITEM32(reg, pererp, erpt_pointer, 0x10, 0, 8); /* reg_pererp_erpt_vector * Vector of allowed eRP indexes starting from erpt_pointer within the * erpt_bank_pointer. Next entries will be in next bank. * Note that eRP index is used and not eRP ID. * Reserved when erpt_pointer_valid = 0 * Access: RW */ MLXSW_ITEM_BIT_ARRAY(reg, pererp, erpt_vector, 0x14, 4, 1); /* reg_pererp_master_rp_id * Master RP ID. When there are no eRPs, then this provides the eRP ID * for the lookup. Can be changed for an existing region. * Reserved when erpt_pointer_valid = 1 * Access: RW */ MLXSW_ITEM32(reg, pererp, master_rp_id, 0x18, 0, 4); static inline void mlxsw_reg_pererp_erp_vector_pack(char *payload, unsigned long *erp_vector, unsigned long size) { unsigned long bit; for_each_set_bit(bit, erp_vector, size) mlxsw_reg_pererp_erpt_vector_set(payload, bit, true); } static inline void mlxsw_reg_pererp_pack(char *payload, u16 region_id, bool ctcam_le, bool erpt_pointer_valid, u8 erpt_bank_pointer, u8 erpt_pointer, u8 master_rp_id) { MLXSW_REG_ZERO(pererp, payload); mlxsw_reg_pererp_region_id_set(payload, region_id); mlxsw_reg_pererp_ctcam_le_set(payload, ctcam_le); mlxsw_reg_pererp_erpt_pointer_valid_set(payload, erpt_pointer_valid); mlxsw_reg_pererp_erpt_bank_pointer_set(payload, erpt_bank_pointer); mlxsw_reg_pererp_erpt_pointer_set(payload, erpt_pointer); mlxsw_reg_pererp_master_rp_id_set(payload, master_rp_id); } /* PEABFE - Policy-Engine Algorithmic Bloom Filter Entries Register * ---------------------------------------------------------------- * This register configures the Bloom filter entries. */ #define MLXSW_REG_PEABFE_ID 0x3022 #define MLXSW_REG_PEABFE_BASE_LEN 0x10 #define MLXSW_REG_PEABFE_BF_REC_LEN 0x4 #define MLXSW_REG_PEABFE_BF_REC_MAX_COUNT 256 #define MLXSW_REG_PEABFE_LEN (MLXSW_REG_PEABFE_BASE_LEN + \ MLXSW_REG_PEABFE_BF_REC_LEN * \ MLXSW_REG_PEABFE_BF_REC_MAX_COUNT) MLXSW_REG_DEFINE(peabfe, MLXSW_REG_PEABFE_ID, MLXSW_REG_PEABFE_LEN); /* reg_peabfe_size * Number of BF entries to be updated. * Range 1..256 * Access: Op */ MLXSW_ITEM32(reg, peabfe, size, 0x00, 0, 9); /* reg_peabfe_bf_entry_state * Bloom filter state * 0 - Clear * 1 - Set * Access: RW */ MLXSW_ITEM32_INDEXED(reg, peabfe, bf_entry_state, MLXSW_REG_PEABFE_BASE_LEN, 31, 1, MLXSW_REG_PEABFE_BF_REC_LEN, 0x00, false); /* reg_peabfe_bf_entry_bank * Bloom filter bank ID * Range 0..cap_max_erp_table_banks-1 * Access: Index */ MLXSW_ITEM32_INDEXED(reg, peabfe, bf_entry_bank, MLXSW_REG_PEABFE_BASE_LEN, 24, 4, MLXSW_REG_PEABFE_BF_REC_LEN, 0x00, false); /* reg_peabfe_bf_entry_index * Bloom filter entry index * Range 0..2^cap_max_bf_log-1 * Access: Index */ MLXSW_ITEM32_INDEXED(reg, peabfe, bf_entry_index, MLXSW_REG_PEABFE_BASE_LEN, 0, 24, MLXSW_REG_PEABFE_BF_REC_LEN, 0x00, false); static inline void mlxsw_reg_peabfe_pack(char *payload) { MLXSW_REG_ZERO(peabfe, payload); } static inline void mlxsw_reg_peabfe_rec_pack(char *payload, int rec_index, u8 state, u8 bank, u32 bf_index) { u8 num_rec = mlxsw_reg_peabfe_size_get(payload); if (rec_index >= num_rec) mlxsw_reg_peabfe_size_set(payload, rec_index + 1); mlxsw_reg_peabfe_bf_entry_state_set(payload, rec_index, state); mlxsw_reg_peabfe_bf_entry_bank_set(payload, rec_index, bank); mlxsw_reg_peabfe_bf_entry_index_set(payload, rec_index, bf_index); } /* IEDR - Infrastructure Entry Delete Register * ---------------------------------------------------- * This register is used for deleting entries from the entry tables. * It is legitimate to attempt to delete a nonexisting entry (the device will * respond as a good flow). */ #define MLXSW_REG_IEDR_ID 0x3804 #define MLXSW_REG_IEDR_BASE_LEN 0x10 /* base length, without records */ #define MLXSW_REG_IEDR_REC_LEN 0x8 /* record length */ #define MLXSW_REG_IEDR_REC_MAX_COUNT 64 #define MLXSW_REG_IEDR_LEN (MLXSW_REG_IEDR_BASE_LEN + \ MLXSW_REG_IEDR_REC_LEN * \ MLXSW_REG_IEDR_REC_MAX_COUNT) MLXSW_REG_DEFINE(iedr, MLXSW_REG_IEDR_ID, MLXSW_REG_IEDR_LEN); /* reg_iedr_num_rec * Number of records. * Access: OP */ MLXSW_ITEM32(reg, iedr, num_rec, 0x00, 0, 8); /* reg_iedr_rec_type * Resource type. * Access: OP */ MLXSW_ITEM32_INDEXED(reg, iedr, rec_type, MLXSW_REG_IEDR_BASE_LEN, 24, 8, MLXSW_REG_IEDR_REC_LEN, 0x00, false); /* reg_iedr_rec_size * Size of entries do be deleted. The unit is 1 entry, regardless of entry type. * Access: OP */ MLXSW_ITEM32_INDEXED(reg, iedr, rec_size, MLXSW_REG_IEDR_BASE_LEN, 0, 13, MLXSW_REG_IEDR_REC_LEN, 0x00, false); /* reg_iedr_rec_index_start * Resource index start. * Access: OP */ MLXSW_ITEM32_INDEXED(reg, iedr, rec_index_start, MLXSW_REG_IEDR_BASE_LEN, 0, 24, MLXSW_REG_IEDR_REC_LEN, 0x04, false); static inline void mlxsw_reg_iedr_pack(char *payload) { MLXSW_REG_ZERO(iedr, payload); } static inline void mlxsw_reg_iedr_rec_pack(char *payload, int rec_index, u8 rec_type, u16 rec_size, u32 rec_index_start) { u8 num_rec = mlxsw_reg_iedr_num_rec_get(payload); if (rec_index >= num_rec) mlxsw_reg_iedr_num_rec_set(payload, rec_index + 1); mlxsw_reg_iedr_rec_type_set(payload, rec_index, rec_type); mlxsw_reg_iedr_rec_size_set(payload, rec_index, rec_size); mlxsw_reg_iedr_rec_index_start_set(payload, rec_index, rec_index_start); } /* QPTS - QoS Priority Trust State Register * ---------------------------------------- * This register controls the port policy to calculate the switch priority and * packet color based on incoming packet fields. */ #define MLXSW_REG_QPTS_ID 0x4002 #define MLXSW_REG_QPTS_LEN 0x8 MLXSW_REG_DEFINE(qpts, MLXSW_REG_QPTS_ID, MLXSW_REG_QPTS_LEN); /* reg_qpts_local_port * Local port number. * Access: Index * * Note: CPU port is supported. */ MLXSW_ITEM32_LP(reg, qpts, 0x00, 16, 0x00, 12); enum mlxsw_reg_qpts_trust_state { MLXSW_REG_QPTS_TRUST_STATE_PCP = 1, MLXSW_REG_QPTS_TRUST_STATE_DSCP = 2, /* For MPLS, trust EXP. */ }; /* reg_qpts_trust_state * Trust state for a given port. * Access: RW */ MLXSW_ITEM32(reg, qpts, trust_state, 0x04, 0, 3); static inline void mlxsw_reg_qpts_pack(char *payload, u16 local_port, enum mlxsw_reg_qpts_trust_state ts) { MLXSW_REG_ZERO(qpts, payload); mlxsw_reg_qpts_local_port_set(payload, local_port); mlxsw_reg_qpts_trust_state_set(payload, ts); } /* QPCR - QoS Policer Configuration Register * ----------------------------------------- * The QPCR register is used to create policers - that limit * the rate of bytes or packets via some trap group. */ #define MLXSW_REG_QPCR_ID 0x4004 #define MLXSW_REG_QPCR_LEN 0x28 MLXSW_REG_DEFINE(qpcr, MLXSW_REG_QPCR_ID, MLXSW_REG_QPCR_LEN); enum mlxsw_reg_qpcr_g { MLXSW_REG_QPCR_G_GLOBAL = 2, MLXSW_REG_QPCR_G_STORM_CONTROL = 3, }; /* reg_qpcr_g * The policer type. * Access: Index */ MLXSW_ITEM32(reg, qpcr, g, 0x00, 14, 2); /* reg_qpcr_pid * Policer ID. * Access: Index */ MLXSW_ITEM32(reg, qpcr, pid, 0x00, 0, 14); /* reg_qpcr_clear_counter * Clear counters. * Access: OP */ MLXSW_ITEM32(reg, qpcr, clear_counter, 0x04, 31, 1); /* reg_qpcr_color_aware * Is the policer aware of colors. * Must be 0 (unaware) for cpu port. * Access: RW for unbounded policer. RO for bounded policer. */ MLXSW_ITEM32(reg, qpcr, color_aware, 0x04, 15, 1); /* reg_qpcr_bytes * Is policer limit is for bytes per sec or packets per sec. * 0 - packets * 1 - bytes * Access: RW for unbounded policer. RO for bounded policer. */ MLXSW_ITEM32(reg, qpcr, bytes, 0x04, 14, 1); enum mlxsw_reg_qpcr_ir_units { MLXSW_REG_QPCR_IR_UNITS_M, MLXSW_REG_QPCR_IR_UNITS_K, }; /* reg_qpcr_ir_units * Policer's units for cir and eir fields (for bytes limits only) * 1 - 10^3 * 0 - 10^6 * Access: OP */ MLXSW_ITEM32(reg, qpcr, ir_units, 0x04, 12, 1); enum mlxsw_reg_qpcr_rate_type { MLXSW_REG_QPCR_RATE_TYPE_SINGLE = 1, MLXSW_REG_QPCR_RATE_TYPE_DOUBLE = 2, }; /* reg_qpcr_rate_type * Policer can have one limit (single rate) or 2 limits with specific operation * for packets that exceed the lower rate but not the upper one. * (For cpu port must be single rate) * Access: RW for unbounded policer. RO for bounded policer. */ MLXSW_ITEM32(reg, qpcr, rate_type, 0x04, 8, 2); /* reg_qpc_cbs * Policer's committed burst size. * The policer is working with time slices of 50 nano sec. By default every * slice is granted the proportionate share of the committed rate. If we want to * allow a slice to exceed that share (while still keeping the rate per sec) we * can allow burst. The burst size is between the default proportionate share * (and no lower than 8) to 32Gb. (Even though giving a number higher than the * committed rate will result in exceeding the rate). The burst size must be a * log of 2 and will be determined by 2^cbs. * Access: RW */ MLXSW_ITEM32(reg, qpcr, cbs, 0x08, 24, 6); /* reg_qpcr_cir * Policer's committed rate. * The rate used for sungle rate, the lower rate for double rate. * For bytes limits, the rate will be this value * the unit from ir_units. * (Resolution error is up to 1%). * Access: RW */ MLXSW_ITEM32(reg, qpcr, cir, 0x0C, 0, 32); /* reg_qpcr_eir * Policer's exceed rate. * The higher rate for double rate, reserved for single rate. * Lower rate for double rate policer. * For bytes limits, the rate will be this value * the unit from ir_units. * (Resolution error is up to 1%). * Access: RW */ MLXSW_ITEM32(reg, qpcr, eir, 0x10, 0, 32); #define MLXSW_REG_QPCR_DOUBLE_RATE_ACTION 2 /* reg_qpcr_exceed_action. * What to do with packets between the 2 limits for double rate. * Access: RW for unbounded policer. RO for bounded policer. */ MLXSW_ITEM32(reg, qpcr, exceed_action, 0x14, 0, 4); enum mlxsw_reg_qpcr_action { /* Discard */ MLXSW_REG_QPCR_ACTION_DISCARD = 1, /* Forward and set color to red. * If the packet is intended to cpu port, it will be dropped. */ MLXSW_REG_QPCR_ACTION_FORWARD = 2, }; /* reg_qpcr_violate_action * What to do with packets that cross the cir limit (for single rate) or the eir * limit (for double rate). * Access: RW for unbounded policer. RO for bounded policer. */ MLXSW_ITEM32(reg, qpcr, violate_action, 0x18, 0, 4); /* reg_qpcr_violate_count * Counts the number of times violate_action happened on this PID. * Access: RW */ MLXSW_ITEM64(reg, qpcr, violate_count, 0x20, 0, 64); /* Packets */ #define MLXSW_REG_QPCR_LOWEST_CIR 1 #define MLXSW_REG_QPCR_HIGHEST_CIR (2 * 1000 * 1000 * 1000) /* 2Gpps */ #define MLXSW_REG_QPCR_LOWEST_CBS 4 #define MLXSW_REG_QPCR_HIGHEST_CBS 24 /* Bandwidth */ #define MLXSW_REG_QPCR_LOWEST_CIR_BITS 1024 /* bps */ #define MLXSW_REG_QPCR_HIGHEST_CIR_BITS 2000000000000ULL /* 2Tbps */ #define MLXSW_REG_QPCR_LOWEST_CBS_BITS_SP1 4 #define MLXSW_REG_QPCR_LOWEST_CBS_BITS_SP2 4 #define MLXSW_REG_QPCR_HIGHEST_CBS_BITS_SP1 25 #define MLXSW_REG_QPCR_HIGHEST_CBS_BITS_SP2 31 static inline void mlxsw_reg_qpcr_pack(char *payload, u16 pid, enum mlxsw_reg_qpcr_ir_units ir_units, bool bytes, u32 cir, u16 cbs) { MLXSW_REG_ZERO(qpcr, payload); mlxsw_reg_qpcr_pid_set(payload, pid); mlxsw_reg_qpcr_g_set(payload, MLXSW_REG_QPCR_G_GLOBAL); mlxsw_reg_qpcr_rate_type_set(payload, MLXSW_REG_QPCR_RATE_TYPE_SINGLE); mlxsw_reg_qpcr_violate_action_set(payload, MLXSW_REG_QPCR_ACTION_DISCARD); mlxsw_reg_qpcr_cir_set(payload, cir); mlxsw_reg_qpcr_ir_units_set(payload, ir_units); mlxsw_reg_qpcr_bytes_set(payload, bytes); mlxsw_reg_qpcr_cbs_set(payload, cbs); } /* QTCT - QoS Switch Traffic Class Table * ------------------------------------- * Configures the mapping between the packet switch priority and the * traffic class on the transmit port. */ #define MLXSW_REG_QTCT_ID 0x400A #define MLXSW_REG_QTCT_LEN 0x08 MLXSW_REG_DEFINE(qtct, MLXSW_REG_QTCT_ID, MLXSW_REG_QTCT_LEN); /* reg_qtct_local_port * Local port number. * Access: Index * * Note: CPU port is not supported. */ MLXSW_ITEM32_LP(reg, qtct, 0x00, 16, 0x00, 12); /* reg_qtct_sub_port * Virtual port within the physical port. * Should be set to 0 when virtual ports are not enabled on the port. * Access: Index */ MLXSW_ITEM32(reg, qtct, sub_port, 0x00, 8, 8); /* reg_qtct_switch_prio * Switch priority. * Access: Index */ MLXSW_ITEM32(reg, qtct, switch_prio, 0x00, 0, 4); /* reg_qtct_tclass * Traffic class. * Default values: * switch_prio 0 : tclass 1 * switch_prio 1 : tclass 0 * switch_prio i : tclass i, for i > 1 * Access: RW */ MLXSW_ITEM32(reg, qtct, tclass, 0x04, 0, 4); static inline void mlxsw_reg_qtct_pack(char *payload, u16 local_port, u8 switch_prio, u8 tclass) { MLXSW_REG_ZERO(qtct, payload); mlxsw_reg_qtct_local_port_set(payload, local_port); mlxsw_reg_qtct_switch_prio_set(payload, switch_prio); mlxsw_reg_qtct_tclass_set(payload, tclass); } /* QEEC - QoS ETS Element Configuration Register * --------------------------------------------- * Configures the ETS elements. */ #define MLXSW_REG_QEEC_ID 0x400D #define MLXSW_REG_QEEC_LEN 0x20 MLXSW_REG_DEFINE(qeec, MLXSW_REG_QEEC_ID, MLXSW_REG_QEEC_LEN); /* reg_qeec_local_port * Local port number. * Access: Index * * Note: CPU port is supported. */ MLXSW_ITEM32_LP(reg, qeec, 0x00, 16, 0x00, 12); enum mlxsw_reg_qeec_hr { MLXSW_REG_QEEC_HR_PORT, MLXSW_REG_QEEC_HR_GROUP, MLXSW_REG_QEEC_HR_SUBGROUP, MLXSW_REG_QEEC_HR_TC, }; /* reg_qeec_element_hierarchy * 0 - Port * 1 - Group * 2 - Subgroup * 3 - Traffic Class * Access: Index */ MLXSW_ITEM32(reg, qeec, element_hierarchy, 0x04, 16, 4); /* reg_qeec_element_index * The index of the element in the hierarchy. * Access: Index */ MLXSW_ITEM32(reg, qeec, element_index, 0x04, 0, 8); /* reg_qeec_next_element_index * The index of the next (lower) element in the hierarchy. * Access: RW * * Note: Reserved for element_hierarchy 0. */ MLXSW_ITEM32(reg, qeec, next_element_index, 0x08, 0, 8); /* reg_qeec_mise * Min shaper configuration enable. Enables configuration of the min * shaper on this ETS element * 0 - Disable * 1 - Enable * Access: RW */ MLXSW_ITEM32(reg, qeec, mise, 0x0C, 31, 1); /* reg_qeec_ptps * PTP shaper * 0: regular shaper mode * 1: PTP oriented shaper * Allowed only for hierarchy 0 * Not supported for CPU port * Note that ptps mode may affect the shaper rates of all hierarchies * Supported only on Spectrum-1 * Access: RW */ MLXSW_ITEM32(reg, qeec, ptps, 0x0C, 29, 1); enum { MLXSW_REG_QEEC_BYTES_MODE, MLXSW_REG_QEEC_PACKETS_MODE, }; /* reg_qeec_pb * Packets or bytes mode. * 0 - Bytes mode * 1 - Packets mode * Access: RW * * Note: Used for max shaper configuration. For Spectrum, packets mode * is supported only for traffic classes of CPU port. */ MLXSW_ITEM32(reg, qeec, pb, 0x0C, 28, 1); /* The smallest permitted min shaper rate. */ #define MLXSW_REG_QEEC_MIS_MIN 200000 /* Kbps */ /* reg_qeec_min_shaper_rate * Min shaper information rate. * For CPU port, can only be configured for port hierarchy. * When in bytes mode, value is specified in units of 1000bps. * Access: RW */ MLXSW_ITEM32(reg, qeec, min_shaper_rate, 0x0C, 0, 28); /* reg_qeec_mase * Max shaper configuration enable. Enables configuration of the max * shaper on this ETS element. * 0 - Disable * 1 - Enable * Access: RW */ MLXSW_ITEM32(reg, qeec, mase, 0x10, 31, 1); /* The largest max shaper value possible to disable the shaper. */ #define MLXSW_REG_QEEC_MAS_DIS ((1u << 31) - 1) /* Kbps */ /* reg_qeec_max_shaper_rate * Max shaper information rate. * For CPU port, can only be configured for port hierarchy. * When in bytes mode, value is specified in units of 1000bps. * Access: RW */ MLXSW_ITEM32(reg, qeec, max_shaper_rate, 0x10, 0, 31); /* reg_qeec_de * DWRR configuration enable. Enables configuration of the dwrr and * dwrr_weight. * 0 - Disable * 1 - Enable * Access: RW */ MLXSW_ITEM32(reg, qeec, de, 0x18, 31, 1); /* reg_qeec_dwrr * Transmission selection algorithm to use on the link going down from * the ETS element. * 0 - Strict priority * 1 - DWRR * Access: RW */ MLXSW_ITEM32(reg, qeec, dwrr, 0x18, 15, 1); /* reg_qeec_dwrr_weight * DWRR weight on the link going down from the ETS element. The * percentage of bandwidth guaranteed to an ETS element within * its hierarchy. The sum of all weights across all ETS elements * within one hierarchy should be equal to 100. Reserved when * transmission selection algorithm is strict priority. * Access: RW */ MLXSW_ITEM32(reg, qeec, dwrr_weight, 0x18, 0, 8); /* reg_qeec_max_shaper_bs * Max shaper burst size * Burst size is 2^max_shaper_bs * 512 bits * For Spectrum-1: Range is: 5..25 * For Spectrum-2: Range is: 11..25 * Reserved when ptps = 1 * Access: RW */ MLXSW_ITEM32(reg, qeec, max_shaper_bs, 0x1C, 0, 6); #define MLXSW_REG_QEEC_HIGHEST_SHAPER_BS 25 #define MLXSW_REG_QEEC_LOWEST_SHAPER_BS_SP1 5 #define MLXSW_REG_QEEC_LOWEST_SHAPER_BS_SP2 11 #define MLXSW_REG_QEEC_LOWEST_SHAPER_BS_SP3 11 #define MLXSW_REG_QEEC_LOWEST_SHAPER_BS_SP4 11 static inline void mlxsw_reg_qeec_pack(char *payload, u16 local_port, enum mlxsw_reg_qeec_hr hr, u8 index, u8 next_index) { MLXSW_REG_ZERO(qeec, payload); mlxsw_reg_qeec_local_port_set(payload, local_port); mlxsw_reg_qeec_element_hierarchy_set(payload, hr); mlxsw_reg_qeec_element_index_set(payload, index); mlxsw_reg_qeec_next_element_index_set(payload, next_index); } static inline void mlxsw_reg_qeec_ptps_pack(char *payload, u16 local_port, bool ptps) { MLXSW_REG_ZERO(qeec, payload); mlxsw_reg_qeec_local_port_set(payload, local_port); mlxsw_reg_qeec_element_hierarchy_set(payload, MLXSW_REG_QEEC_HR_PORT); mlxsw_reg_qeec_ptps_set(payload, ptps); } /* QRWE - QoS ReWrite Enable * ------------------------- * This register configures the rewrite enable per receive port. */ #define MLXSW_REG_QRWE_ID 0x400F #define MLXSW_REG_QRWE_LEN 0x08 MLXSW_REG_DEFINE(qrwe, MLXSW_REG_QRWE_ID, MLXSW_REG_QRWE_LEN); /* reg_qrwe_local_port * Local port number. * Access: Index * * Note: CPU port is supported. No support for router port. */ MLXSW_ITEM32_LP(reg, qrwe, 0x00, 16, 0x00, 12); /* reg_qrwe_dscp * Whether to enable DSCP rewrite (default is 0, don't rewrite). * Access: RW */ MLXSW_ITEM32(reg, qrwe, dscp, 0x04, 1, 1); /* reg_qrwe_pcp * Whether to enable PCP and DEI rewrite (default is 0, don't rewrite). * Access: RW */ MLXSW_ITEM32(reg, qrwe, pcp, 0x04, 0, 1); static inline void mlxsw_reg_qrwe_pack(char *payload, u16 local_port, bool rewrite_pcp, bool rewrite_dscp) { MLXSW_REG_ZERO(qrwe, payload); mlxsw_reg_qrwe_local_port_set(payload, local_port); mlxsw_reg_qrwe_pcp_set(payload, rewrite_pcp); mlxsw_reg_qrwe_dscp_set(payload, rewrite_dscp); } /* QPDSM - QoS Priority to DSCP Mapping * ------------------------------------ * QoS Priority to DSCP Mapping Register */ #define MLXSW_REG_QPDSM_ID 0x4011 #define MLXSW_REG_QPDSM_BASE_LEN 0x04 /* base length, without records */ #define MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN 0x4 /* record length */ #define MLXSW_REG_QPDSM_PRIO_ENTRY_REC_MAX_COUNT 16 #define MLXSW_REG_QPDSM_LEN (MLXSW_REG_QPDSM_BASE_LEN + \ MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN * \ MLXSW_REG_QPDSM_PRIO_ENTRY_REC_MAX_COUNT) MLXSW_REG_DEFINE(qpdsm, MLXSW_REG_QPDSM_ID, MLXSW_REG_QPDSM_LEN); /* reg_qpdsm_local_port * Local Port. Supported for data packets from CPU port. * Access: Index */ MLXSW_ITEM32_LP(reg, qpdsm, 0x00, 16, 0x00, 12); /* reg_qpdsm_prio_entry_color0_e * Enable update of the entry for color 0 and a given port. * Access: WO */ MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color0_e, MLXSW_REG_QPDSM_BASE_LEN, 31, 1, MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false); /* reg_qpdsm_prio_entry_color0_dscp * DSCP field in the outer label of the packet for color 0 and a given port. * Reserved when e=0. * Access: RW */ MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color0_dscp, MLXSW_REG_QPDSM_BASE_LEN, 24, 6, MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false); /* reg_qpdsm_prio_entry_color1_e * Enable update of the entry for color 1 and a given port. * Access: WO */ MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color1_e, MLXSW_REG_QPDSM_BASE_LEN, 23, 1, MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false); /* reg_qpdsm_prio_entry_color1_dscp * DSCP field in the outer label of the packet for color 1 and a given port. * Reserved when e=0. * Access: RW */ MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color1_dscp, MLXSW_REG_QPDSM_BASE_LEN, 16, 6, MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false); /* reg_qpdsm_prio_entry_color2_e * Enable update of the entry for color 2 and a given port. * Access: WO */ MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color2_e, MLXSW_REG_QPDSM_BASE_LEN, 15, 1, MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false); /* reg_qpdsm_prio_entry_color2_dscp * DSCP field in the outer label of the packet for color 2 and a given port. * Reserved when e=0. * Access: RW */ MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color2_dscp, MLXSW_REG_QPDSM_BASE_LEN, 8, 6, MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false); static inline void mlxsw_reg_qpdsm_pack(char *payload, u16 local_port) { MLXSW_REG_ZERO(qpdsm, payload); mlxsw_reg_qpdsm_local_port_set(payload, local_port); } static inline void mlxsw_reg_qpdsm_prio_pack(char *payload, unsigned short prio, u8 dscp) { mlxsw_reg_qpdsm_prio_entry_color0_e_set(payload, prio, 1); mlxsw_reg_qpdsm_prio_entry_color0_dscp_set(payload, prio, dscp); mlxsw_reg_qpdsm_prio_entry_color1_e_set(payload, prio, 1); mlxsw_reg_qpdsm_prio_entry_color1_dscp_set(payload, prio, dscp); mlxsw_reg_qpdsm_prio_entry_color2_e_set(payload, prio, 1); mlxsw_reg_qpdsm_prio_entry_color2_dscp_set(payload, prio, dscp); } /* QPDP - QoS Port DSCP to Priority Mapping Register * ------------------------------------------------- * This register controls the port default Switch Priority and Color. The * default Switch Priority and Color are used for frames where the trust state * uses default values. All member ports of a LAG should be configured with the * same default values. */ #define MLXSW_REG_QPDP_ID 0x4007 #define MLXSW_REG_QPDP_LEN 0x8 MLXSW_REG_DEFINE(qpdp, MLXSW_REG_QPDP_ID, MLXSW_REG_QPDP_LEN); /* reg_qpdp_local_port * Local Port. Supported for data packets from CPU port. * Access: Index */ MLXSW_ITEM32_LP(reg, qpdp, 0x00, 16, 0x00, 12); /* reg_qpdp_switch_prio * Default port Switch Priority (default 0) * Access: RW */ MLXSW_ITEM32(reg, qpdp, switch_prio, 0x04, 0, 4); static inline void mlxsw_reg_qpdp_pack(char *payload, u16 local_port, u8 switch_prio) { MLXSW_REG_ZERO(qpdp, payload); mlxsw_reg_qpdp_local_port_set(payload, local_port); mlxsw_reg_qpdp_switch_prio_set(payload, switch_prio); } /* QPDPM - QoS Port DSCP to Priority Mapping Register * -------------------------------------------------- * This register controls the mapping from DSCP field to * Switch Priority for IP packets. */ #define MLXSW_REG_QPDPM_ID 0x4013 #define MLXSW_REG_QPDPM_BASE_LEN 0x4 /* base length, without records */ #define MLXSW_REG_QPDPM_DSCP_ENTRY_REC_LEN 0x2 /* record length */ #define MLXSW_REG_QPDPM_DSCP_ENTRY_REC_MAX_COUNT 64 #define MLXSW_REG_QPDPM_LEN (MLXSW_REG_QPDPM_BASE_LEN + \ MLXSW_REG_QPDPM_DSCP_ENTRY_REC_LEN * \ MLXSW_REG_QPDPM_DSCP_ENTRY_REC_MAX_COUNT) MLXSW_REG_DEFINE(qpdpm, MLXSW_REG_QPDPM_ID, MLXSW_REG_QPDPM_LEN); /* reg_qpdpm_local_port * Local Port. Supported for data packets from CPU port. * Access: Index */ MLXSW_ITEM32_LP(reg, qpdpm, 0x00, 16, 0x00, 12); /* reg_qpdpm_dscp_e * Enable update of the specific entry. When cleared, the switch_prio and color * fields are ignored and the previous switch_prio and color values are * preserved. * Access: WO */ MLXSW_ITEM16_INDEXED(reg, qpdpm, dscp_entry_e, MLXSW_REG_QPDPM_BASE_LEN, 15, 1, MLXSW_REG_QPDPM_DSCP_ENTRY_REC_LEN, 0x00, false); /* reg_qpdpm_dscp_prio * The new Switch Priority value for the relevant DSCP value. * Access: RW */ MLXSW_ITEM16_INDEXED(reg, qpdpm, dscp_entry_prio, MLXSW_REG_QPDPM_BASE_LEN, 0, 4, MLXSW_REG_QPDPM_DSCP_ENTRY_REC_LEN, 0x00, false); static inline void mlxsw_reg_qpdpm_pack(char *payload, u16 local_port) { MLXSW_REG_ZERO(qpdpm, payload); mlxsw_reg_qpdpm_local_port_set(payload, local_port); } static inline void mlxsw_reg_qpdpm_dscp_pack(char *payload, unsigned short dscp, u8 prio) { mlxsw_reg_qpdpm_dscp_entry_e_set(payload, dscp, 1); mlxsw_reg_qpdpm_dscp_entry_prio_set(payload, dscp, prio); } /* QTCTM - QoS Switch Traffic Class Table is Multicast-Aware Register * ------------------------------------------------------------------ * This register configures if the Switch Priority to Traffic Class mapping is * based on Multicast packet indication. If so, then multicast packets will get * a Traffic Class that is plus (cap_max_tclass_data/2) the value configured by * QTCT. * By default, Switch Priority to Traffic Class mapping is not based on * Multicast packet indication. */ #define MLXSW_REG_QTCTM_ID 0x401A #define MLXSW_REG_QTCTM_LEN 0x08 MLXSW_REG_DEFINE(qtctm, MLXSW_REG_QTCTM_ID, MLXSW_REG_QTCTM_LEN); /* reg_qtctm_local_port * Local port number. * No support for CPU port. * Access: Index */ MLXSW_ITEM32_LP(reg, qtctm, 0x00, 16, 0x00, 12); /* reg_qtctm_mc * Multicast Mode * Whether Switch Priority to Traffic Class mapping is based on Multicast packet * indication (default is 0, not based on Multicast packet indication). */ MLXSW_ITEM32(reg, qtctm, mc, 0x04, 0, 1); static inline void mlxsw_reg_qtctm_pack(char *payload, u16 local_port, bool mc) { MLXSW_REG_ZERO(qtctm, payload); mlxsw_reg_qtctm_local_port_set(payload, local_port); mlxsw_reg_qtctm_mc_set(payload, mc); } /* QPSC - QoS PTP Shaper Configuration Register * -------------------------------------------- * The QPSC allows advanced configuration of the shapers when QEEC.ptps=1. * Supported only on Spectrum-1. */ #define MLXSW_REG_QPSC_ID 0x401B #define MLXSW_REG_QPSC_LEN 0x28 MLXSW_REG_DEFINE(qpsc, MLXSW_REG_QPSC_ID, MLXSW_REG_QPSC_LEN); enum mlxsw_reg_qpsc_port_speed { MLXSW_REG_QPSC_PORT_SPEED_100M, MLXSW_REG_QPSC_PORT_SPEED_1G, MLXSW_REG_QPSC_PORT_SPEED_10G, MLXSW_REG_QPSC_PORT_SPEED_25G, }; /* reg_qpsc_port_speed * Port speed. * Access: Index */ MLXSW_ITEM32(reg, qpsc, port_speed, 0x00, 0, 4); /* reg_qpsc_shaper_time_exp * The base-time-interval for updating the shapers tokens (for all hierarchies). * shaper_update_rate = 2 ^ shaper_time_exp * (1 + shaper_time_mantissa) * 32nSec * shaper_rate = 64bit * shaper_inc / shaper_update_rate * Access: RW */ MLXSW_ITEM32(reg, qpsc, shaper_time_exp, 0x04, 16, 4); /* reg_qpsc_shaper_time_mantissa * The base-time-interval for updating the shapers tokens (for all hierarchies). * shaper_update_rate = 2 ^ shaper_time_exp * (1 + shaper_time_mantissa) * 32nSec * shaper_rate = 64bit * shaper_inc / shaper_update_rate * Access: RW */ MLXSW_ITEM32(reg, qpsc, shaper_time_mantissa, 0x04, 0, 5); /* reg_qpsc_shaper_inc * Number of tokens added to shaper on each update. * Units of 8B. * Access: RW */ MLXSW_ITEM32(reg, qpsc, shaper_inc, 0x08, 0, 5); /* reg_qpsc_shaper_bs * Max shaper Burst size. * Burst size is 2 ^ max_shaper_bs * 512 [bits] * Range is: 5..25 (from 2KB..2GB) * Access: RW */ MLXSW_ITEM32(reg, qpsc, shaper_bs, 0x0C, 0, 6); /* reg_qpsc_ptsc_we * Write enable to port_to_shaper_credits. * Access: WO */ MLXSW_ITEM32(reg, qpsc, ptsc_we, 0x10, 31, 1); /* reg_qpsc_port_to_shaper_credits * For split ports: range 1..57 * For non-split ports: range 1..112 * Written only when ptsc_we is set. * Access: RW */ MLXSW_ITEM32(reg, qpsc, port_to_shaper_credits, 0x10, 0, 8); /* reg_qpsc_ing_timestamp_inc * Ingress timestamp increment. * 2's complement. * The timestamp of MTPPTR at ingress will be incremented by this value. Global * value for all ports. * Same units as used by MTPPTR. * Access: RW */ MLXSW_ITEM32(reg, qpsc, ing_timestamp_inc, 0x20, 0, 32); /* reg_qpsc_egr_timestamp_inc * Egress timestamp increment. * 2's complement. * The timestamp of MTPPTR at egress will be incremented by this value. Global * value for all ports. * Same units as used by MTPPTR. * Access: RW */ MLXSW_ITEM32(reg, qpsc, egr_timestamp_inc, 0x24, 0, 32); static inline void mlxsw_reg_qpsc_pack(char *payload, enum mlxsw_reg_qpsc_port_speed port_speed, u8 shaper_time_exp, u8 shaper_time_mantissa, u8 shaper_inc, u8 shaper_bs, u8 port_to_shaper_credits, int ing_timestamp_inc, int egr_timestamp_inc) { MLXSW_REG_ZERO(qpsc, payload); mlxsw_reg_qpsc_port_speed_set(payload, port_speed); mlxsw_reg_qpsc_shaper_time_exp_set(payload, shaper_time_exp); mlxsw_reg_qpsc_shaper_time_mantissa_set(payload, shaper_time_mantissa); mlxsw_reg_qpsc_shaper_inc_set(payload, shaper_inc); mlxsw_reg_qpsc_shaper_bs_set(payload, shaper_bs); mlxsw_reg_qpsc_ptsc_we_set(payload, true); mlxsw_reg_qpsc_port_to_shaper_credits_set(payload, port_to_shaper_credits); mlxsw_reg_qpsc_ing_timestamp_inc_set(payload, ing_timestamp_inc); mlxsw_reg_qpsc_egr_timestamp_inc_set(payload, egr_timestamp_inc); } /* PMLP - Ports Module to Local Port Register * ------------------------------------------ * Configures the assignment of modules to local ports. */ #define MLXSW_REG_PMLP_ID 0x5002 #define MLXSW_REG_PMLP_LEN 0x40 MLXSW_REG_DEFINE(pmlp, MLXSW_REG_PMLP_ID, MLXSW_REG_PMLP_LEN); /* reg_pmlp_rxtx * 0 - Tx value is used for both Tx and Rx. * 1 - Rx value is taken from a separte field. * Access: RW */ MLXSW_ITEM32(reg, pmlp, rxtx, 0x00, 31, 1); /* reg_pmlp_local_port * Local port number. * Access: Index */ MLXSW_ITEM32_LP(reg, pmlp, 0x00, 16, 0x00, 12); /* reg_pmlp_width * 0 - Unmap local port. * 1 - Lane 0 is used. * 2 - Lanes 0 and 1 are used. * 4 - Lanes 0, 1, 2 and 3 are used. * 8 - Lanes 0-7 are used. * Access: RW */ MLXSW_ITEM32(reg, pmlp, width, 0x00, 0, 8); /* reg_pmlp_module * Module number. * Access: RW */ MLXSW_ITEM32_INDEXED(reg, pmlp, module, 0x04, 0, 8, 0x04, 0x00, false); /* reg_pmlp_slot_index * Module number. * Slot_index * Slot_index = 0 represent the onboard (motherboard). * In case of non-modular system only slot_index = 0 is available. * Access: RW */ MLXSW_ITEM32_INDEXED(reg, pmlp, slot_index, 0x04, 8, 4, 0x04, 0x00, false); /* reg_pmlp_tx_lane * Tx Lane. When rxtx field is cleared, this field is used for Rx as well. * Access: RW */ MLXSW_ITEM32_INDEXED(reg, pmlp, tx_lane, 0x04, 16, 4, 0x04, 0x00, false); /* reg_pmlp_rx_lane * Rx Lane. When rxtx field is cleared, this field is ignored and Rx lane is * equal to Tx lane. * Access: RW */ MLXSW_ITEM32_INDEXED(reg, pmlp, rx_lane, 0x04, 24, 4, 0x04, 0x00, false); static inline void mlxsw_reg_pmlp_pack(char *payload, u16 local_port) { MLXSW_REG_ZERO(pmlp, payload); mlxsw_reg_pmlp_local_port_set(payload, local_port); } /* PMTU - Port MTU Register * ------------------------ * Configures and reports the port MTU. */ #define MLXSW_REG_PMTU_ID 0x5003 #define MLXSW_REG_PMTU_LEN 0x10 MLXSW_REG_DEFINE(pmtu, MLXSW_REG_PMTU_ID, MLXSW_REG_PMTU_LEN); /* reg_pmtu_local_port * Local port number. * Access: Index */ MLXSW_ITEM32_LP(reg, pmtu, 0x00, 16, 0x00, 12); /* reg_pmtu_max_mtu * Maximum MTU. * When port type (e.g. Ethernet) is configured, the relevant MTU is * reported, otherwise the minimum between the max_mtu of the different * types is reported. * Access: RO */ MLXSW_ITEM32(reg, pmtu, max_mtu, 0x04, 16, 16); /* reg_pmtu_admin_mtu * MTU value to set port to. Must be smaller or equal to max_mtu. * Note: If port type is Infiniband, then port must be disabled, when its * MTU is set. * Access: RW */ MLXSW_ITEM32(reg, pmtu, admin_mtu, 0x08, 16, 16); /* reg_pmtu_oper_mtu * The actual MTU configured on the port. Packets exceeding this size * will be dropped. * Note: In Ethernet and FC oper_mtu == admin_mtu, however, in Infiniband * oper_mtu might be smaller than admin_mtu. * Access: RO */ MLXSW_ITEM32(reg, pmtu, oper_mtu, 0x0C, 16, 16); static inline void mlxsw_reg_pmtu_pack(char *payload, u16 local_port, u16 new_mtu) { MLXSW_REG_ZERO(pmtu, payload); mlxsw_reg_pmtu_local_port_set(payload, local_port); mlxsw_reg_pmtu_max_mtu_set(payload, 0); mlxsw_reg_pmtu_admin_mtu_set(payload, new_mtu); mlxsw_reg_pmtu_oper_mtu_set(payload, 0); } /* PTYS - Port Type and Speed Register * ----------------------------------- * Configures and reports the port speed type. * * Note: When set while the link is up, the changes will not take effect * until the port transitions from down to up state. */ #define MLXSW_REG_PTYS_ID 0x5004 #define MLXSW_REG_PTYS_LEN 0x40 MLXSW_REG_DEFINE(ptys, MLXSW_REG_PTYS_ID, MLXSW_REG_PTYS_LEN); /* an_disable_admin * Auto negotiation disable administrative configuration * 0 - Device doesn't support AN disable. * 1 - Device supports AN disable. * Access: RW */ MLXSW_ITEM32(reg, ptys, an_disable_admin, 0x00, 30, 1); /* reg_ptys_local_port * Local port number. * Access: Index */ MLXSW_ITEM32_LP(reg, ptys, 0x00, 16, 0x00, 12); #define MLXSW_REG_PTYS_PROTO_MASK_IB BIT(0) #define MLXSW_REG_PTYS_PROTO_MASK_ETH BIT(2) /* reg_ptys_proto_mask * Protocol mask. Indicates which protocol is used. * 0 - Infiniband. * 1 - Fibre Channel. * 2 - Ethernet. * Access: Index */ MLXSW_ITEM32(reg, ptys, proto_mask, 0x00, 0, 3); enum { MLXSW_REG_PTYS_AN_STATUS_NA, MLXSW_REG_PTYS_AN_STATUS_OK, MLXSW_REG_PTYS_AN_STATUS_FAIL, }; /* reg_ptys_an_status * Autonegotiation status. * Access: RO */ MLXSW_ITEM32(reg, ptys, an_status, 0x04, 28, 4); #define MLXSW_REG_PTYS_EXT_ETH_SPEED_SGMII_100M BIT(0) #define MLXSW_REG_PTYS_EXT_ETH_SPEED_1000BASE_X_SGMII BIT(1) #define MLXSW_REG_PTYS_EXT_ETH_SPEED_5GBASE_R BIT(3) #define MLXSW_REG_PTYS_EXT_ETH_SPEED_XFI_XAUI_1_10G BIT(4) #define MLXSW_REG_PTYS_EXT_ETH_SPEED_XLAUI_4_XLPPI_4_40G BIT(5) #define MLXSW_REG_PTYS_EXT_ETH_SPEED_25GAUI_1_25GBASE_CR_KR BIT(6) #define MLXSW_REG_PTYS_EXT_ETH_SPEED_50GAUI_2_LAUI_2_50GBASE_CR2_KR2 BIT(7) #define MLXSW_REG_PTYS_EXT_ETH_SPEED_50GAUI_1_LAUI_1_50GBASE_CR_KR BIT(8) #define MLXSW_REG_PTYS_EXT_ETH_SPEED_CAUI_4_100GBASE_CR4_KR4 BIT(9) #define MLXSW_REG_PTYS_EXT_ETH_SPEED_100GAUI_2_100GBASE_CR2_KR2 BIT(10) #define MLXSW_REG_PTYS_EXT_ETH_SPEED_200GAUI_4_200GBASE_CR4_KR4 BIT(12) #define MLXSW_REG_PTYS_EXT_ETH_SPEED_400GAUI_8 BIT(15) #define MLXSW_REG_PTYS_EXT_ETH_SPEED_800GAUI_8 BIT(19) /* reg_ptys_ext_eth_proto_cap * Extended Ethernet port supported speeds and protocols. * Access: RO */ MLXSW_ITEM32(reg, ptys, ext_eth_proto_cap, 0x08, 0, 32); #define MLXSW_REG_PTYS_ETH_SPEED_SGMII BIT(0) #define MLXSW_REG_PTYS_ETH_SPEED_1000BASE_KX BIT(1) #define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_CX4 BIT(2) #define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_KX4 BIT(3) #define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_KR BIT(4) #define MLXSW_REG_PTYS_ETH_SPEED_40GBASE_CR4 BIT(6) #define MLXSW_REG_PTYS_ETH_SPEED_40GBASE_KR4 BIT(7) #define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_CR BIT(12) #define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_SR BIT(13) #define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_ER_LR BIT(14) #define MLXSW_REG_PTYS_ETH_SPEED_40GBASE_SR4 BIT(15) #define MLXSW_REG_PTYS_ETH_SPEED_40GBASE_LR4_ER4 BIT(16) #define MLXSW_REG_PTYS_ETH_SPEED_50GBASE_SR2 BIT(18) #define MLXSW_REG_PTYS_ETH_SPEED_50GBASE_KR4 BIT(19) #define MLXSW_REG_PTYS_ETH_SPEED_100GBASE_CR4 BIT(20) #define MLXSW_REG_PTYS_ETH_SPEED_100GBASE_SR4 BIT(21) #define MLXSW_REG_PTYS_ETH_SPEED_100GBASE_KR4 BIT(22) #define MLXSW_REG_PTYS_ETH_SPEED_100GBASE_LR4_ER4 BIT(23) #define MLXSW_REG_PTYS_ETH_SPEED_100BASE_T BIT(24) #define MLXSW_REG_PTYS_ETH_SPEED_1000BASE_T BIT(25) #define MLXSW_REG_PTYS_ETH_SPEED_25GBASE_CR BIT(27) #define MLXSW_REG_PTYS_ETH_SPEED_25GBASE_KR BIT(28) #define MLXSW_REG_PTYS_ETH_SPEED_25GBASE_SR BIT(29) #define MLXSW_REG_PTYS_ETH_SPEED_50GBASE_CR2 BIT(30) #define MLXSW_REG_PTYS_ETH_SPEED_50GBASE_KR2 BIT(31) /* reg_ptys_eth_proto_cap * Ethernet port supported speeds and protocols. * Access: RO */ MLXSW_ITEM32(reg, ptys, eth_proto_cap, 0x0C, 0, 32); /* reg_ptys_ext_eth_proto_admin * Extended speed and protocol to set port to. * Access: RW */ MLXSW_ITEM32(reg, ptys, ext_eth_proto_admin, 0x14, 0, 32); /* reg_ptys_eth_proto_admin * Speed and protocol to set port to. * Access: RW */ MLXSW_ITEM32(reg, ptys, eth_proto_admin, 0x18, 0, 32); /* reg_ptys_ext_eth_proto_oper * The extended current speed and protocol configured for the port. * Access: RO */ MLXSW_ITEM32(reg, ptys, ext_eth_proto_oper, 0x20, 0, 32); /* reg_ptys_eth_proto_oper * The current speed and protocol configured for the port. * Access: RO */ MLXSW_ITEM32(reg, ptys, eth_proto_oper, 0x24, 0, 32); enum mlxsw_reg_ptys_connector_type { MLXSW_REG_PTYS_CONNECTOR_TYPE_UNKNOWN_OR_NO_CONNECTOR, MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_NONE, MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_TP, MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_AUI, MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_BNC, MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_MII, MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_FIBRE, MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_DA, MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_OTHER, }; /* reg_ptys_connector_type * Connector type indication. * Access: RO */ MLXSW_ITEM32(reg, ptys, connector_type, 0x2C, 0, 4); static inline void mlxsw_reg_ptys_eth_pack(char *payload, u16 local_port, u32 proto_admin, bool autoneg) { MLXSW_REG_ZERO(ptys, payload); mlxsw_reg_ptys_local_port_set(payload, local_port); mlxsw_reg_ptys_proto_mask_set(payload, MLXSW_REG_PTYS_PROTO_MASK_ETH); mlxsw_reg_ptys_eth_proto_admin_set(payload, proto_admin); mlxsw_reg_ptys_an_disable_admin_set(payload, !autoneg); } static inline void mlxsw_reg_ptys_ext_eth_pack(char *payload, u16 local_port, u32 proto_admin, bool autoneg) { MLXSW_REG_ZERO(ptys, payload); mlxsw_reg_ptys_local_port_set(payload, local_port); mlxsw_reg_ptys_proto_mask_set(payload, MLXSW_REG_PTYS_PROTO_MASK_ETH); mlxsw_reg_ptys_ext_eth_proto_admin_set(payload, proto_admin); mlxsw_reg_ptys_an_disable_admin_set(payload, !autoneg); } static inline void mlxsw_reg_ptys_eth_unpack(char *payload, u32 *p_eth_proto_cap, u32 *p_eth_proto_admin, u32 *p_eth_proto_oper) { if (p_eth_proto_cap) *p_eth_proto_cap = mlxsw_reg_ptys_eth_proto_cap_get(payload); if (p_eth_proto_admin) *p_eth_proto_admin = mlxsw_reg_ptys_eth_proto_admin_get(payload); if (p_eth_proto_oper) *p_eth_proto_oper = mlxsw_reg_ptys_eth_proto_oper_get(payload); } static inline void mlxsw_reg_ptys_ext_eth_unpack(char *payload, u32 *p_eth_proto_cap, u32 *p_eth_proto_admin, u32 *p_eth_proto_oper) { if (p_eth_proto_cap) *p_eth_proto_cap = mlxsw_reg_ptys_ext_eth_proto_cap_get(payload); if (p_eth_proto_admin) *p_eth_proto_admin = mlxsw_reg_ptys_ext_eth_proto_admin_get(payload); if (p_eth_proto_oper) *p_eth_proto_oper = mlxsw_reg_ptys_ext_eth_proto_oper_get(payload); } /* PPAD - Port Physical Address Register * ------------------------------------- * The PPAD register configures the per port physical MAC address. */ #define MLXSW_REG_PPAD_ID 0x5005 #define MLXSW_REG_PPAD_LEN 0x10 MLXSW_REG_DEFINE(ppad, MLXSW_REG_PPAD_ID, MLXSW_REG_PPAD_LEN); /* reg_ppad_single_base_mac * 0: base_mac, local port should be 0 and mac[7:0] is * reserved. HW will set incremental * 1: single_mac - mac of the local_port * Access: RW */ MLXSW_ITEM32(reg, ppad, single_base_mac, 0x00, 28, 1); /* reg_ppad_local_port * port number, if single_base_mac = 0 then local_port is reserved * Access: RW */ MLXSW_ITEM32_LP(reg, ppad, 0x00, 16, 0x00, 24); /* reg_ppad_mac * If single_base_mac = 0 - base MAC address, mac[7:0] is reserved. * If single_base_mac = 1 - the per port MAC address * Access: RW */ MLXSW_ITEM_BUF(reg, ppad, mac, 0x02, 6); static inline void mlxsw_reg_ppad_pack(char *payload, bool single_base_mac, u16 local_port) { MLXSW_REG_ZERO(ppad, payload); mlxsw_reg_ppad_single_base_mac_set(payload, !!single_base_mac); mlxsw_reg_ppad_local_port_set(payload, local_port); } /* PAOS - Ports Administrative and Operational Status Register * ----------------------------------------------------------- * Configures and retrieves per port administrative and operational status. */ #define MLXSW_REG_PAOS_ID 0x5006 #define MLXSW_REG_PAOS_LEN 0x10 MLXSW_REG_DEFINE(paos, MLXSW_REG_PAOS_ID, MLXSW_REG_PAOS_LEN); /* reg_paos_swid * Switch partition ID with which to associate the port. * Note: while external ports uses unique local port numbers (and thus swid is * redundant), router ports use the same local port number where swid is the * only indication for the relevant port. * Access: Index */ MLXSW_ITEM32(reg, paos, swid, 0x00, 24, 8); /* reg_paos_local_port * Local port number. * Access: Index */ MLXSW_ITEM32_LP(reg, paos, 0x00, 16, 0x00, 12); /* reg_paos_admin_status * Port administrative state (the desired state of the port): * 1 - Up. * 2 - Down. * 3 - Up once. This means that in case of link failure, the port won't go * into polling mode, but will wait to be re-enabled by software. * 4 - Disabled by system. Can only be set by hardware. * Access: RW */ MLXSW_ITEM32(reg, paos, admin_status, 0x00, 8, 4); /* reg_paos_oper_status * Port operational state (the current state): * 1 - Up. * 2 - Down. * 3 - Down by port failure. This means that the device will not let the * port up again until explicitly specified by software. * Access: RO */ MLXSW_ITEM32(reg, paos, oper_status, 0x00, 0, 4); /* reg_paos_ase * Admin state update enabled. * Access: WO */ MLXSW_ITEM32(reg, paos, ase, 0x04, 31, 1); /* reg_paos_ee * Event update enable. If this bit is set, event generation will be * updated based on the e field. * Access: WO */ MLXSW_ITEM32(reg, paos, ee, 0x04, 30, 1); /* reg_paos_e * Event generation on operational state change: * 0 - Do not generate event. * 1 - Generate Event. * 2 - Generate Single Event. * Access: RW */ MLXSW_ITEM32(reg, paos, e, 0x04, 0, 2); static inline void mlxsw_reg_paos_pack(char *payload, u16 local_port, enum mlxsw_port_admin_status status) { MLXSW_REG_ZERO(paos, payload); mlxsw_reg_paos_swid_set(payload, 0); mlxsw_reg_paos_local_port_set(payload, local_port); mlxsw_reg_paos_admin_status_set(payload, status); mlxsw_reg_paos_oper_status_set(payload, 0); mlxsw_reg_paos_ase_set(payload, 1); mlxsw_reg_paos_ee_set(payload, 1); mlxsw_reg_paos_e_set(payload, 1); } /* PFCC - Ports Flow Control Configuration Register * ------------------------------------------------ * Configures and retrieves the per port flow control configuration. */ #define MLXSW_REG_PFCC_ID 0x5007 #define MLXSW_REG_PFCC_LEN 0x20 MLXSW_REG_DEFINE(pfcc, MLXSW_REG_PFCC_ID, MLXSW_REG_PFCC_LEN); /* reg_pfcc_local_port * Local port number. * Access: Index */ MLXSW_ITEM32_LP(reg, pfcc, 0x00, 16, 0x00, 12); /* reg_pfcc_pnat * Port number access type. Determines the way local_port is interpreted: * 0 - Local port number. * 1 - IB / label port number. * Access: Index */ MLXSW_ITEM32(reg, pfcc, pnat, 0x00, 14, 2); /* reg_pfcc_shl_cap * Send to higher layers capabilities: * 0 - No capability of sending Pause and PFC frames to higher layers. * 1 - Device has capability of sending Pause and PFC frames to higher * layers. * Access: RO */ MLXSW_ITEM32(reg, pfcc, shl_cap, 0x00, 1, 1); /* reg_pfcc_shl_opr * Send to higher layers operation: * 0 - Pause and PFC frames are handled by the port (default). * 1 - Pause and PFC frames are handled by the port and also sent to * higher layers. Only valid if shl_cap = 1. * Access: RW */ MLXSW_ITEM32(reg, pfcc, shl_opr, 0x00, 0, 1); /* reg_pfcc_ppan * Pause policy auto negotiation. * 0 - Disabled. Generate / ignore Pause frames based on pptx / pprtx. * 1 - Enabled. When auto-negotiation is performed, set the Pause policy * based on the auto-negotiation resolution. * Access: RW * * Note: The auto-negotiation advertisement is set according to pptx and * pprtx. When PFC is set on Tx / Rx, ppan must be set to 0. */ MLXSW_ITEM32(reg, pfcc, ppan, 0x04, 28, 4); /* reg_pfcc_prio_mask_tx * Bit per priority indicating if Tx flow control policy should be * updated based on bit pfctx. * Access: WO */ MLXSW_ITEM32(reg, pfcc, prio_mask_tx, 0x04, 16, 8); /* reg_pfcc_prio_mask_rx * Bit per priority indicating if Rx flow control policy should be * updated based on bit pfcrx. * Access: WO */ MLXSW_ITEM32(reg, pfcc, prio_mask_rx, 0x04, 0, 8); /* reg_pfcc_pptx * Admin Pause policy on Tx. * 0 - Never generate Pause frames (default). * 1 - Generate Pause frames according to Rx buffer threshold. * Access: RW */ MLXSW_ITEM32(reg, pfcc, pptx, 0x08, 31, 1); /* reg_pfcc_aptx * Active (operational) Pause policy on Tx. * 0 - Never generate Pause frames. * 1 - Generate Pause frames according to Rx buffer threshold. * Access: RO */ MLXSW_ITEM32(reg, pfcc, aptx, 0x08, 30, 1); /* reg_pfcc_pfctx * Priority based flow control policy on Tx[7:0]. Per-priority bit mask: * 0 - Never generate priority Pause frames on the specified priority * (default). * 1 - Generate priority Pause frames according to Rx buffer threshold on * the specified priority. * Access: RW * * Note: pfctx and pptx must be mutually exclusive. */ MLXSW_ITEM32(reg, pfcc, pfctx, 0x08, 16, 8); /* reg_pfcc_pprx * Admin Pause policy on Rx. * 0 - Ignore received Pause frames (default). * 1 - Respect received Pause frames. * Access: RW */ MLXSW_ITEM32(reg, pfcc, pprx, 0x0C, 31, 1); /* reg_pfcc_aprx * Active (operational) Pause policy on Rx. * 0 - Ignore received Pause frames. * 1 - Respect received Pause frames. * Access: RO */ MLXSW_ITEM32(reg, pfcc, aprx, 0x0C, 30, 1); /* reg_pfcc_pfcrx * Priority based flow control policy on Rx[7:0]. Per-priority bit mask: * 0 - Ignore incoming priority Pause frames on the specified priority * (default). * 1 - Respect incoming priority Pause frames on the specified priority. * Access: RW */ MLXSW_ITEM32(reg, pfcc, pfcrx, 0x0C, 16, 8); #define MLXSW_REG_PFCC_ALL_PRIO 0xFF static inline void mlxsw_reg_pfcc_prio_pack(char *payload, u8 pfc_en) { mlxsw_reg_pfcc_prio_mask_tx_set(payload, MLXSW_REG_PFCC_ALL_PRIO); mlxsw_reg_pfcc_prio_mask_rx_set(payload, MLXSW_REG_PFCC_ALL_PRIO); mlxsw_reg_pfcc_pfctx_set(payload, pfc_en); mlxsw_reg_pfcc_pfcrx_set(payload, pfc_en); } static inline void mlxsw_reg_pfcc_pack(char *payload, u16 local_port) { MLXSW_REG_ZERO(pfcc, payload); mlxsw_reg_pfcc_local_port_set(payload, local_port); } /* PPCNT - Ports Performance Counters Register * ------------------------------------------- * The PPCNT register retrieves per port performance counters. */ #define MLXSW_REG_PPCNT_ID 0x5008 #define MLXSW_REG_PPCNT_LEN 0x100 #define MLXSW_REG_PPCNT_COUNTERS_OFFSET 0x08 MLXSW_REG_DEFINE(ppcnt, MLXSW_REG_PPCNT_ID, MLXSW_REG_PPCNT_LEN); /* reg_ppcnt_swid * For HCA: must be always 0. * Switch partition ID to associate port with. * Switch partitions are numbered from 0 to 7 inclusively. * Switch partition 254 indicates stacking ports. * Switch partition 255 indicates all switch partitions. * Only valid on Set() operation with local_port=255. * Access: Index */ MLXSW_ITEM32(reg, ppcnt, swid, 0x00, 24, 8); /* reg_ppcnt_local_port * Local port number. * Access: Index */ MLXSW_ITEM32_LP(reg, ppcnt, 0x00, 16, 0x00, 12); /* reg_ppcnt_pnat * Port number access type: * 0 - Local port number * 1 - IB port number * Access: Index */ MLXSW_ITEM32(reg, ppcnt, pnat, 0x00, 14, 2); enum mlxsw_reg_ppcnt_grp { MLXSW_REG_PPCNT_IEEE_8023_CNT = 0x0, MLXSW_REG_PPCNT_RFC_2863_CNT = 0x1, MLXSW_REG_PPCNT_RFC_2819_CNT = 0x2, MLXSW_REG_PPCNT_RFC_3635_CNT = 0x3, MLXSW_REG_PPCNT_EXT_CNT = 0x5, MLXSW_REG_PPCNT_DISCARD_CNT = 0x6, MLXSW_REG_PPCNT_PRIO_CNT = 0x10, MLXSW_REG_PPCNT_TC_CNT = 0x11, MLXSW_REG_PPCNT_TC_CONG_CNT = 0x13, }; /* reg_ppcnt_grp * Performance counter group. * Group 63 indicates all groups. Only valid on Set() operation with * clr bit set. * 0x0: IEEE 802.3 Counters * 0x1: RFC 2863 Counters * 0x2: RFC 2819 Counters * 0x3: RFC 3635 Counters * 0x5: Ethernet Extended Counters * 0x6: Ethernet Discard Counters * 0x8: Link Level Retransmission Counters * 0x10: Per Priority Counters * 0x11: Per Traffic Class Counters * 0x12: Physical Layer Counters * 0x13: Per Traffic Class Congestion Counters * Access: Index */ MLXSW_ITEM32(reg, ppcnt, grp, 0x00, 0, 6); /* reg_ppcnt_clr * Clear counters. Setting the clr bit will reset the counter value * for all counters in the counter group. This bit can be set * for both Set() and Get() operation. * Access: OP */ MLXSW_ITEM32(reg, ppcnt, clr, 0x04, 31, 1); /* reg_ppcnt_lp_gl * Local port global variable. * 0: local_port 255 = all ports of the device. * 1: local_port indicates local port number for all ports. * Access: OP */ MLXSW_ITEM32(reg, ppcnt, lp_gl, 0x04, 30, 1); /* reg_ppcnt_prio_tc * Priority for counter set that support per priority, valid values: 0-7. * Traffic class for counter set that support per traffic class, * valid values: 0- cap_max_tclass-1 . * For HCA: cap_max_tclass is always 8. * Otherwise must be 0. * Access: Index */ MLXSW_ITEM32(reg, ppcnt, prio_tc, 0x04, 0, 5); /* Ethernet IEEE 802.3 Counter Group */ /* reg_ppcnt_a_frames_transmitted_ok * Access: RO */ MLXSW_ITEM64(reg, ppcnt, a_frames_transmitted_ok, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64); /* reg_ppcnt_a_frames_received_ok * Access: RO */ MLXSW_ITEM64(reg, ppcnt, a_frames_received_ok, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64); /* reg_ppcnt_a_frame_check_sequence_errors * Access: RO */ MLXSW_ITEM64(reg, ppcnt, a_frame_check_sequence_errors, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x10, 0, 64); /* reg_ppcnt_a_alignment_errors * Access: RO */ MLXSW_ITEM64(reg, ppcnt, a_alignment_errors, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x18, 0, 64); /* reg_ppcnt_a_octets_transmitted_ok * Access: RO */ MLXSW_ITEM64(reg, ppcnt, a_octets_transmitted_ok, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x20, 0, 64); /* reg_ppcnt_a_octets_received_ok * Access: RO */ MLXSW_ITEM64(reg, ppcnt, a_octets_received_ok, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x28, 0, 64); /* reg_ppcnt_a_multicast_frames_xmitted_ok * Access: RO */ MLXSW_ITEM64(reg, ppcnt, a_multicast_frames_xmitted_ok, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x30, 0, 64); /* reg_ppcnt_a_broadcast_frames_xmitted_ok * Access: RO */ MLXSW_ITEM64(reg, ppcnt, a_broadcast_frames_xmitted_ok, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x38, 0, 64); /* reg_ppcnt_a_multicast_frames_received_ok * Access: RO */ MLXSW_ITEM64(reg, ppcnt, a_multicast_frames_received_ok, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x40, 0, 64); /* reg_ppcnt_a_broadcast_frames_received_ok * Access: RO */ MLXSW_ITEM64(reg, ppcnt, a_broadcast_frames_received_ok, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x48, 0, 64); /* reg_ppcnt_a_in_range_length_errors * Access: RO */ MLXSW_ITEM64(reg, ppcnt, a_in_range_length_errors, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x50, 0, 64); /* reg_ppcnt_a_out_of_range_length_field * Access: RO */ MLXSW_ITEM64(reg, ppcnt, a_out_of_range_length_field, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x58, 0, 64); /* reg_ppcnt_a_frame_too_long_errors * Access: RO */ MLXSW_ITEM64(reg, ppcnt, a_frame_too_long_errors, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64); /* reg_ppcnt_a_symbol_error_during_carrier * Access: RO */ MLXSW_ITEM64(reg, ppcnt, a_symbol_error_during_carrier, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x68, 0, 64); /* reg_ppcnt_a_mac_control_frames_transmitted * Access: RO */ MLXSW_ITEM64(reg, ppcnt, a_mac_control_frames_transmitted, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64); /* reg_ppcnt_a_mac_control_frames_received * Access: RO */ MLXSW_ITEM64(reg, ppcnt, a_mac_control_frames_received, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x78, 0, 64); /* reg_ppcnt_a_unsupported_opcodes_received * Access: RO */ MLXSW_ITEM64(reg, ppcnt, a_unsupported_opcodes_received, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x80, 0, 64); /* reg_ppcnt_a_pause_mac_ctrl_frames_received * Access: RO */ MLXSW_ITEM64(reg, ppcnt, a_pause_mac_ctrl_frames_received, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x88, 0, 64); /* reg_ppcnt_a_pause_mac_ctrl_frames_transmitted * Access: RO */ MLXSW_ITEM64(reg, ppcnt, a_pause_mac_ctrl_frames_transmitted, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x90, 0, 64); /* Ethernet RFC 2863 Counter Group */ /* reg_ppcnt_if_in_discards * Access: RO */ MLXSW_ITEM64(reg, ppcnt, if_in_discards, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x10, 0, 64); /* reg_ppcnt_if_out_discards * Access: RO */ MLXSW_ITEM64(reg, ppcnt, if_out_discards, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x38, 0, 64); /* reg_ppcnt_if_out_errors * Access: RO */ MLXSW_ITEM64(reg, ppcnt, if_out_errors, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x40, 0, 64); /* Ethernet RFC 2819 Counter Group */ /* reg_ppcnt_ether_stats_undersize_pkts * Access: RO */ MLXSW_ITEM64(reg, ppcnt, ether_stats_undersize_pkts, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x30, 0, 64); /* reg_ppcnt_ether_stats_oversize_pkts * Access: RO */ MLXSW_ITEM64(reg, ppcnt, ether_stats_oversize_pkts, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x38, 0, 64); /* reg_ppcnt_ether_stats_fragments * Access: RO */ MLXSW_ITEM64(reg, ppcnt, ether_stats_fragments, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x40, 0, 64); /* reg_ppcnt_ether_stats_pkts64octets * Access: RO */ MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts64octets, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x58, 0, 64); /* reg_ppcnt_ether_stats_pkts65to127octets * Access: RO */ MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts65to127octets, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64); /* reg_ppcnt_ether_stats_pkts128to255octets * Access: RO */ MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts128to255octets, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x68, 0, 64); /* reg_ppcnt_ether_stats_pkts256to511octets * Access: RO */ MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts256to511octets, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64); /* reg_ppcnt_ether_stats_pkts512to1023octets * Access: RO */ MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts512to1023octets, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x78, 0, 64); /* reg_ppcnt_ether_stats_pkts1024to1518octets * Access: RO */ MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts1024to1518octets, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x80, 0, 64); /* reg_ppcnt_ether_stats_pkts1519to2047octets * Access: RO */ MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts1519to2047octets, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x88, 0, 64); /* reg_ppcnt_ether_stats_pkts2048to4095octets * Access: RO */ MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts2048to4095octets, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x90, 0, 64); /* reg_ppcnt_ether_stats_pkts4096to8191octets * Access: RO */ MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts4096to8191octets, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x98, 0, 64); /* reg_ppcnt_ether_stats_pkts8192to10239octets * Access: RO */ MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts8192to10239octets, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0xA0, 0, 64); /* Ethernet RFC 3635 Counter Group */ /* reg_ppcnt_dot3stats_fcs_errors * Access: RO */ MLXSW_ITEM64(reg, ppcnt, dot3stats_fcs_errors, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64); /* reg_ppcnt_dot3stats_symbol_errors * Access: RO */ MLXSW_ITEM64(reg, ppcnt, dot3stats_symbol_errors, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64); /* reg_ppcnt_dot3control_in_unknown_opcodes * Access: RO */ MLXSW_ITEM64(reg, ppcnt, dot3control_in_unknown_opcodes, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x68, 0, 64); /* reg_ppcnt_dot3in_pause_frames * Access: RO */ MLXSW_ITEM64(reg, ppcnt, dot3in_pause_frames, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64); /* Ethernet Extended Counter Group Counters */ /* reg_ppcnt_ecn_marked * Access: RO */ MLXSW_ITEM64(reg, ppcnt, ecn_marked, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64); /* Ethernet Discard Counter Group Counters */ /* reg_ppcnt_ingress_general * Access: RO */ MLXSW_ITEM64(reg, ppcnt, ingress_general, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64); /* reg_ppcnt_ingress_policy_engine * Access: RO */ MLXSW_ITEM64(reg, ppcnt, ingress_policy_engine, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64); /* reg_ppcnt_ingress_vlan_membership * Access: RO */ MLXSW_ITEM64(reg, ppcnt, ingress_vlan_membership, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x10, 0, 64); /* reg_ppcnt_ingress_tag_frame_type * Access: RO */ MLXSW_ITEM64(reg, ppcnt, ingress_tag_frame_type, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x18, 0, 64); /* reg_ppcnt_egress_vlan_membership * Access: RO */ MLXSW_ITEM64(reg, ppcnt, egress_vlan_membership, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x20, 0, 64); /* reg_ppcnt_loopback_filter * Access: RO */ MLXSW_ITEM64(reg, ppcnt, loopback_filter, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x28, 0, 64); /* reg_ppcnt_egress_general * Access: RO */ MLXSW_ITEM64(reg, ppcnt, egress_general, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x30, 0, 64); /* reg_ppcnt_egress_hoq * Access: RO */ MLXSW_ITEM64(reg, ppcnt, egress_hoq, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x40, 0, 64); /* reg_ppcnt_egress_policy_engine * Access: RO */ MLXSW_ITEM64(reg, ppcnt, egress_policy_engine, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x50, 0, 64); /* reg_ppcnt_ingress_tx_link_down * Access: RO */ MLXSW_ITEM64(reg, ppcnt, ingress_tx_link_down, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x58, 0, 64); /* reg_ppcnt_egress_stp_filter * Access: RO */ MLXSW_ITEM64(reg, ppcnt, egress_stp_filter, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64); /* reg_ppcnt_egress_sll * Access: RO */ MLXSW_ITEM64(reg, ppcnt, egress_sll, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64); /* Ethernet Per Priority Group Counters */ /* reg_ppcnt_rx_octets * Access: RO */ MLXSW_ITEM64(reg, ppcnt, rx_octets, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64); /* reg_ppcnt_rx_frames * Access: RO */ MLXSW_ITEM64(reg, ppcnt, rx_frames, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x20, 0, 64); /* reg_ppcnt_tx_octets * Access: RO */ MLXSW_ITEM64(reg, ppcnt, tx_octets, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x28, 0, 64); /* reg_ppcnt_tx_frames * Access: RO */ MLXSW_ITEM64(reg, ppcnt, tx_frames, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x48, 0, 64); /* reg_ppcnt_rx_pause * Access: RO */ MLXSW_ITEM64(reg, ppcnt, rx_pause, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x50, 0, 64); /* reg_ppcnt_rx_pause_duration * Access: RO */ MLXSW_ITEM64(reg, ppcnt, rx_pause_duration, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x58, 0, 64); /* reg_ppcnt_tx_pause * Access: RO */ MLXSW_ITEM64(reg, ppcnt, tx_pause, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64); /* reg_ppcnt_tx_pause_duration * Access: RO */ MLXSW_ITEM64(reg, ppcnt, tx_pause_duration, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x68, 0, 64); /* reg_ppcnt_rx_pause_transition * Access: RO */ MLXSW_ITEM64(reg, ppcnt, tx_pause_transition, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64); /* Ethernet Per Traffic Class Counters */ /* reg_ppcnt_tc_transmit_queue * Contains the transmit queue depth in cells of traffic class * selected by prio_tc and the port selected by local_port. * The field cannot be cleared. * Access: RO */ MLXSW_ITEM64(reg, ppcnt, tc_transmit_queue, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64); /* reg_ppcnt_tc_no_buffer_discard_uc * The number of unicast packets dropped due to lack of shared * buffer resources. * Access: RO */ MLXSW_ITEM64(reg, ppcnt, tc_no_buffer_discard_uc, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64); /* Ethernet Per Traffic Class Congestion Group Counters */ /* reg_ppcnt_wred_discard * Access: RO */ MLXSW_ITEM64(reg, ppcnt, wred_discard, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64); /* reg_ppcnt_ecn_marked_tc * Access: RO */ MLXSW_ITEM64(reg, ppcnt, ecn_marked_tc, MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64); static inline void mlxsw_reg_ppcnt_pack(char *payload, u16 local_port, enum mlxsw_reg_ppcnt_grp grp, u8 prio_tc) { MLXSW_REG_ZERO(ppcnt, payload); mlxsw_reg_ppcnt_swid_set(payload, 0); mlxsw_reg_ppcnt_local_port_set(payload, local_port); mlxsw_reg_ppcnt_pnat_set(payload, 0); mlxsw_reg_ppcnt_grp_set(payload, grp); mlxsw_reg_ppcnt_clr_set(payload, 0); mlxsw_reg_ppcnt_lp_gl_set(payload, 1); mlxsw_reg_ppcnt_prio_tc_set(payload, prio_tc); } /* PPTB - Port Prio To Buffer Register * ----------------------------------- * Configures the switch priority to buffer table. */ #define MLXSW_REG_PPTB_ID 0x500B #define MLXSW_REG_PPTB_LEN 0x10 MLXSW_REG_DEFINE(pptb, MLXSW_REG_PPTB_ID, MLXSW_REG_PPTB_LEN); enum { MLXSW_REG_PPTB_MM_UM, MLXSW_REG_PPTB_MM_UNICAST, MLXSW_REG_PPTB_MM_MULTICAST, }; /* reg_pptb_mm * Mapping mode. * 0 - Map both unicast and multicast packets to the same buffer. * 1 - Map only unicast packets. * 2 - Map only multicast packets. * Access: Index * * Note: SwitchX-2 only supports the first option. */ MLXSW_ITEM32(reg, pptb, mm, 0x00, 28, 2); /* reg_pptb_local_port * Local port number. * Access: Index */ MLXSW_ITEM32_LP(reg, pptb, 0x00, 16, 0x00, 12); /* reg_pptb_um * Enables the update of the untagged_buf field. * Access: RW */ MLXSW_ITEM32(reg, pptb, um, 0x00, 8, 1); /* reg_pptb_pm * Enables the update of the prio_to_buff field. * Bit is a flag for updating the mapping for switch priority . * Access: RW */ MLXSW_ITEM32(reg, pptb, pm, 0x00, 0, 8); /* reg_pptb_prio_to_buff * Mapping of switch priority to one of the allocated receive port * buffers. * Access: RW */ MLXSW_ITEM_BIT_ARRAY(reg, pptb, prio_to_buff, 0x04, 0x04, 4); /* reg_pptb_pm_msb * Enables the update of the prio_to_buff field. * Bit is a flag for updating the mapping for switch priority . * Access: RW */ MLXSW_ITEM32(reg, pptb, pm_msb, 0x08, 24, 8); /* reg_pptb_untagged_buff * Mapping of untagged frames to one of the allocated receive port buffers. * Access: RW * * Note: In SwitchX-2 this field must be mapped to buffer 8. Reserved for * Spectrum, as it maps untagged packets based on the default switch priority. */ MLXSW_ITEM32(reg, pptb, untagged_buff, 0x08, 0, 4); /* reg_pptb_prio_to_buff_msb * Mapping of switch priority to one of the allocated receive port * buffers. * Access: RW */ MLXSW_ITEM_BIT_ARRAY(reg, pptb, prio_to_buff_msb, 0x0C, 0x04, 4); #define MLXSW_REG_PPTB_ALL_PRIO 0xFF static inline void mlxsw_reg_pptb_pack(char *payload, u16 local_port) { MLXSW_REG_ZERO(pptb, payload); mlxsw_reg_pptb_mm_set(payload, MLXSW_REG_PPTB_MM_UM); mlxsw_reg_pptb_local_port_set(payload, local_port); mlxsw_reg_pptb_pm_set(payload, MLXSW_REG_PPTB_ALL_PRIO); mlxsw_reg_pptb_pm_msb_set(payload, MLXSW_REG_PPTB_ALL_PRIO); } static inline void mlxsw_reg_pptb_prio_to_buff_pack(char *payload, u8 prio, u8 buff) { mlxsw_reg_pptb_prio_to_buff_set(payload, prio, buff); mlxsw_reg_pptb_prio_to_buff_msb_set(payload, prio, buff); } /* PBMC - Port Buffer Management Control Register * ---------------------------------------------- * The PBMC register configures and retrieves the port packet buffer * allocation for different Prios, and the Pause threshold management. */ #define MLXSW_REG_PBMC_ID 0x500C #define MLXSW_REG_PBMC_LEN 0x6C MLXSW_REG_DEFINE(pbmc, MLXSW_REG_PBMC_ID, MLXSW_REG_PBMC_LEN); /* reg_pbmc_local_port * Local port number. * Access: Index */ MLXSW_ITEM32_LP(reg, pbmc, 0x00, 16, 0x00, 12); /* reg_pbmc_xoff_timer_value * When device generates a pause frame, it uses this value as the pause * timer (time for the peer port to pause in quota-512 bit time). * Access: RW */ MLXSW_ITEM32(reg, pbmc, xoff_timer_value, 0x04, 16, 16); /* reg_pbmc_xoff_refresh * The time before a new pause frame should be sent to refresh the pause RW * state. Using the same units as xoff_timer_value above (in quota-512 bit * time). * Access: RW */ MLXSW_ITEM32(reg, pbmc, xoff_refresh, 0x04, 0, 16); #define MLXSW_REG_PBMC_PORT_SHARED_BUF_IDX 11 /* reg_pbmc_buf_lossy * The field indicates if the buffer is lossy. * 0 - Lossless * 1 - Lossy * Access: RW */ MLXSW_ITEM32_INDEXED(reg, pbmc, buf_lossy, 0x0C, 25, 1, 0x08, 0x00, false); /* reg_pbmc_buf_epsb * Eligible for Port Shared buffer. * If epsb is set, packets assigned to buffer are allowed to insert the port * shared buffer. * When buf_lossy is MLXSW_REG_PBMC_LOSSY_LOSSY this field is reserved. * Access: RW */ MLXSW_ITEM32_INDEXED(reg, pbmc, buf_epsb, 0x0C, 24, 1, 0x08, 0x00, false); /* reg_pbmc_buf_size * The part of the packet buffer array is allocated for the specific buffer. * Units are represented in cells. * Access: RW */ MLXSW_ITEM32_INDEXED(reg, pbmc, buf_size, 0x0C, 0, 16, 0x08, 0x00, false); /* reg_pbmc_buf_xoff_threshold * Once the amount of data in the buffer goes above this value, device * starts sending PFC frames for all priorities associated with the * buffer. Units are represented in cells. Reserved in case of lossy * buffer. * Access: RW * * Note: In Spectrum, reserved for buffer[9]. */ MLXSW_ITEM32_INDEXED(reg, pbmc, buf_xoff_threshold, 0x0C, 16, 16, 0x08, 0x04, false); /* reg_pbmc_buf_xon_threshold * When the amount of data in the buffer goes below this value, device * stops sending PFC frames for the priorities associated with the * buffer. Units are represented in cells. Reserved in case of lossy * buffer. * Access: RW * * Note: In Spectrum, reserved for buffer[9]. */ MLXSW_ITEM32_INDEXED(reg, pbmc, buf_xon_threshold, 0x0C, 0, 16, 0x08, 0x04, false); static inline void mlxsw_reg_pbmc_pack(char *payload, u16 local_port, u16 xoff_timer_value, u16 xoff_refresh) { MLXSW_REG_ZERO(pbmc, payload); mlxsw_reg_pbmc_local_port_set(payload, local_port); mlxsw_reg_pbmc_xoff_timer_value_set(payload, xoff_timer_value); mlxsw_reg_pbmc_xoff_refresh_set(payload, xoff_refresh); } static inline void mlxsw_reg_pbmc_lossy_buffer_pack(char *payload, int buf_index, u16 size) { mlxsw_reg_pbmc_buf_lossy_set(payload, buf_index, 1); mlxsw_reg_pbmc_buf_epsb_set(payload, buf_index, 0); mlxsw_reg_pbmc_buf_size_set(payload, buf_index, size); } static inline void mlxsw_reg_pbmc_lossless_buffer_pack(char *payload, int buf_index, u16 size, u16 threshold) { mlxsw_reg_pbmc_buf_lossy_set(payload, buf_index, 0); mlxsw_reg_pbmc_buf_epsb_set(payload, buf_index, 0); mlxsw_reg_pbmc_buf_size_set(payload, buf_index, size); mlxsw_reg_pbmc_buf_xoff_threshold_set(payload, buf_index, threshold); mlxsw_reg_pbmc_buf_xon_threshold_set(payload, buf_index, threshold); } /* PSPA - Port Switch Partition Allocation * --------------------------------------- * Controls the association of a port with a switch partition and enables * configuring ports as stacking ports. */ #define MLXSW_REG_PSPA_ID 0x500D #define MLXSW_REG_PSPA_LEN 0x8 MLXSW_REG_DEFINE(pspa, MLXSW_REG_PSPA_ID, MLXSW_REG_PSPA_LEN); /* reg_pspa_swid * Switch partition ID. * Access: RW */ MLXSW_ITEM32(reg, pspa, swid, 0x00, 24, 8); /* reg_pspa_local_port * Local port number. * Access: Index */ MLXSW_ITEM32_LP(reg, pspa, 0x00, 16, 0x00, 0); /* reg_pspa_sub_port * Virtual port within the local port. Set to 0 when virtual ports are * disabled on the local port. * Access: Index */ MLXSW_ITEM32(reg, pspa, sub_port, 0x00, 8, 8); static inline void mlxsw_reg_pspa_pack(char *payload, u8 swid, u16 local_port) { MLXSW_REG_ZERO(pspa, payload); mlxsw_reg_pspa_swid_set(payload, swid); mlxsw_reg_pspa_local_port_set(payload, local_port); mlxsw_reg_pspa_sub_port_set(payload, 0); } /* PMAOS - Ports Module Administrative and Operational Status * ---------------------------------------------------------- * This register configures and retrieves the per module status. */ #define MLXSW_REG_PMAOS_ID 0x5012 #define MLXSW_REG_PMAOS_LEN 0x10 MLXSW_REG_DEFINE(pmaos, MLXSW_REG_PMAOS_ID, MLXSW_REG_PMAOS_LEN); /* reg_pmaos_rst * Module reset toggle. * Note: Setting reset while module is plugged-in will result in transition to * "initializing" operational state. * Access: OP */ MLXSW_ITEM32(reg, pmaos, rst, 0x00, 31, 1); /* reg_pmaos_slot_index * Slot index. * Access: Index */ MLXSW_ITEM32(reg, pmaos, slot_index, 0x00, 24, 4); /* reg_pmaos_module * Module number. * Access: Index */ MLXSW_ITEM32(reg, pmaos, module, 0x00, 16, 8); enum mlxsw_reg_pmaos_admin_status { MLXSW_REG_PMAOS_ADMIN_STATUS_ENABLED = 1, MLXSW_REG_PMAOS_ADMIN_STATUS_DISABLED = 2, /* If the module is active and then unplugged, or experienced an error * event, the operational status should go to "disabled" and can only * be enabled upon explicit enable command. */ MLXSW_REG_PMAOS_ADMIN_STATUS_ENABLED_ONCE = 3, }; /* reg_pmaos_admin_status * Module administrative state (the desired state of the module). * Note: To disable a module, all ports associated with the port must be * administatively down first. * Access: RW */ MLXSW_ITEM32(reg, pmaos, admin_status, 0x00, 8, 4); /* reg_pmaos_ase * Admin state update enable. * If this bit is set, admin state will be updated based on admin_state field. * Only relevant on Set() operations. * Access: WO */ MLXSW_ITEM32(reg, pmaos, ase, 0x04, 31, 1); /* reg_pmaos_ee * Event update enable. * If this bit is set, event generation will be updated based on the e field. * Only relevant on Set operations. * Access: WO */ MLXSW_ITEM32(reg, pmaos, ee, 0x04, 30, 1); enum mlxsw_reg_pmaos_e { MLXSW_REG_PMAOS_E_DO_NOT_GENERATE_EVENT, MLXSW_REG_PMAOS_E_GENERATE_EVENT, MLXSW_REG_PMAOS_E_GENERATE_SINGLE_EVENT, }; /* reg_pmaos_e * Event Generation on operational state change. * Access: RW */ MLXSW_ITEM32(reg, pmaos, e, 0x04, 0, 2); static inline void mlxsw_reg_pmaos_pack(char *payload, u8 slot_index, u8 module) { MLXSW_REG_ZERO(pmaos, payload); mlxsw_reg_pmaos_slot_index_set(payload, slot_index); mlxsw_reg_pmaos_module_set(payload, module); } /* PPLR - Port Physical Loopback Register * -------------------------------------- * This register allows configuration of the port's loopback mode. */ #define MLXSW_REG_PPLR_ID 0x5018 #define MLXSW_REG_PPLR_LEN 0x8 MLXSW_REG_DEFINE(pplr, MLXSW_REG_PPLR_ID, MLXSW_REG_PPLR_LEN); /* reg_pplr_local_port * Local port number. * Access: Index */ MLXSW_ITEM32_LP(reg, pplr, 0x00, 16, 0x00, 12); /* Phy local loopback. When set the port's egress traffic is looped back * to the receiver and the port transmitter is disabled. */ #define MLXSW_REG_PPLR_LB_TYPE_BIT_PHY_LOCAL BIT(1) /* reg_pplr_lb_en * Loopback enable. * Access: RW */ MLXSW_ITEM32(reg, pplr, lb_en, 0x04, 0, 8); static inline void mlxsw_reg_pplr_pack(char *payload, u16 local_port, bool phy_local) { MLXSW_REG_ZERO(pplr, payload); mlxsw_reg_pplr_local_port_set(payload, local_port); mlxsw_reg_pplr_lb_en_set(payload, phy_local ? MLXSW_REG_PPLR_LB_TYPE_BIT_PHY_LOCAL : 0); } /* PMTDB - Port Module To local DataBase Register * ---------------------------------------------- * The PMTDB register allows to query the possible module<->local port * mapping than can be used in PMLP. It does not represent the actual/current * mapping of the local to module. Actual mapping is only defined by PMLP. */ #define MLXSW_REG_PMTDB_ID 0x501A #define MLXSW_REG_PMTDB_LEN 0x40 MLXSW_REG_DEFINE(pmtdb, MLXSW_REG_PMTDB_ID, MLXSW_REG_PMTDB_LEN); /* reg_pmtdb_slot_index * Slot index (0: Main board). * Access: Index */ MLXSW_ITEM32(reg, pmtdb, slot_index, 0x00, 24, 4); /* reg_pmtdb_module * Module number. * Access: Index */ MLXSW_ITEM32(reg, pmtdb, module, 0x00, 16, 8); /* reg_pmtdb_ports_width * Port's width * Access: Index */ MLXSW_ITEM32(reg, pmtdb, ports_width, 0x00, 12, 4); /* reg_pmtdb_num_ports * Number of ports in a single module (split/breakout) * Access: Index */ MLXSW_ITEM32(reg, pmtdb, num_ports, 0x00, 8, 4); enum mlxsw_reg_pmtdb_status { MLXSW_REG_PMTDB_STATUS_SUCCESS, }; /* reg_pmtdb_status * Status * Access: RO */ MLXSW_ITEM32(reg, pmtdb, status, 0x00, 0, 4); /* reg_pmtdb_port_num * The local_port value which can be assigned to the module. * In case of more than one port, port represent the / port of * the module. * Access: RO */ MLXSW_ITEM16_INDEXED(reg, pmtdb, port_num, 0x04, 0, 10, 0x02, 0x00, false); static inline void mlxsw_reg_pmtdb_pack(char *payload, u8 slot_index, u8 module, u8 ports_width, u8 num_ports) { MLXSW_REG_ZERO(pmtdb, payload); mlxsw_reg_pmtdb_slot_index_set(payload, slot_index); mlxsw_reg_pmtdb_module_set(payload, module); mlxsw_reg_pmtdb_ports_width_set(payload, ports_width); mlxsw_reg_pmtdb_num_ports_set(payload, num_ports); } /* PMECR - Ports Mapping Event Configuration Register * -------------------------------------------------- * The PMECR register is used to enable/disable event triggering * in case of local port mapping change. */ #define MLXSW_REG_PMECR_ID 0x501B #define MLXSW_REG_PMECR_LEN 0x20 MLXSW_REG_DEFINE(pmecr, MLXSW_REG_PMECR_ID, MLXSW_REG_PMECR_LEN); /* reg_pmecr_local_port * Local port number. * Access: Index */ MLXSW_ITEM32_LP(reg, pmecr, 0x00, 16, 0x00, 12); /* reg_pmecr_ee * Event update enable. If this bit is set, event generation will be updated * based on the e field. Only relevant on Set operations. * Access: WO */ MLXSW_ITEM32(reg, pmecr, ee, 0x04, 30, 1); /* reg_pmecr_eswi * Software ignore enable bit. If this bit is set, the value of swi is used. * If this bit is clear, the value of swi is ignored. * Only relevant on Set operations. * Access: WO */ MLXSW_ITEM32(reg, pmecr, eswi, 0x04, 24, 1); /* reg_pmecr_swi * Software ignore. If this bit is set, the device shouldn't generate events * in case of PMLP SET operation but only upon self local port mapping change * (if applicable according to e configuration). This is supplementary * configuration on top of e value. * Access: RW */ MLXSW_ITEM32(reg, pmecr, swi, 0x04, 8, 1); enum mlxsw_reg_pmecr_e { MLXSW_REG_PMECR_E_DO_NOT_GENERATE_EVENT, MLXSW_REG_PMECR_E_GENERATE_EVENT, MLXSW_REG_PMECR_E_GENERATE_SINGLE_EVENT, }; /* reg_pmecr_e * Event generation on local port mapping change. * Access: RW */ MLXSW_ITEM32(reg, pmecr, e, 0x04, 0, 2); static inline void mlxsw_reg_pmecr_pack(char *payload, u16 local_port, enum mlxsw_reg_pmecr_e e) { MLXSW_REG_ZERO(pmecr, payload); mlxsw_reg_pmecr_local_port_set(payload, local_port); mlxsw_reg_pmecr_e_set(payload, e); mlxsw_reg_pmecr_ee_set(payload, true); mlxsw_reg_pmecr_swi_set(payload, true); mlxsw_reg_pmecr_eswi_set(payload, true); } /* PMPE - Port Module Plug/Unplug Event Register * --------------------------------------------- * This register reports any operational status change of a module. * A change in the module’s state will generate an event only if the change * happens after arming the event mechanism. Any changes to the module state * while the event mechanism is not armed will not be reported. Software can * query the PMPE register for module status. */ #define MLXSW_REG_PMPE_ID 0x5024 #define MLXSW_REG_PMPE_LEN 0x10 MLXSW_REG_DEFINE(pmpe, MLXSW_REG_PMPE_ID, MLXSW_REG_PMPE_LEN); /* reg_pmpe_slot_index * Slot index. * Access: Index */ MLXSW_ITEM32(reg, pmpe, slot_index, 0x00, 24, 4); /* reg_pmpe_module * Module number. * Access: Index */ MLXSW_ITEM32(reg, pmpe, module, 0x00, 16, 8); enum mlxsw_reg_pmpe_module_status { MLXSW_REG_PMPE_MODULE_STATUS_PLUGGED_ENABLED = 1, MLXSW_REG_PMPE_MODULE_STATUS_UNPLUGGED, MLXSW_REG_PMPE_MODULE_STATUS_PLUGGED_ERROR, MLXSW_REG_PMPE_MODULE_STATUS_PLUGGED_DISABLED, }; /* reg_pmpe_module_status * Module status. * Access: RO */ MLXSW_ITEM32(reg, pmpe, module_status, 0x00, 0, 4); /* reg_pmpe_error_type * Module error details. * Access: RO */ MLXSW_ITEM32(reg, pmpe, error_type, 0x04, 8, 4); /* PDDR - Port Diagnostics Database Register * ----------------------------------------- * The PDDR enables to read the Phy debug database */ #define MLXSW_REG_PDDR_ID 0x5031 #define MLXSW_REG_PDDR_LEN 0x100 MLXSW_REG_DEFINE(pddr, MLXSW_REG_PDDR_ID, MLXSW_REG_PDDR_LEN); /* reg_pddr_local_port * Local port number. * Access: Index */ MLXSW_ITEM32_LP(reg, pddr, 0x00, 16, 0x00, 12); enum mlxsw_reg_pddr_page_select { MLXSW_REG_PDDR_PAGE_SELECT_TROUBLESHOOTING_INFO = 1, }; /* reg_pddr_page_select * Page select index. * Access: Index */ MLXSW_ITEM32(reg, pddr, page_select, 0x04, 0, 8); enum mlxsw_reg_pddr_trblsh_group_opcode { /* Monitor opcodes */ MLXSW_REG_PDDR_TRBLSH_GROUP_OPCODE_MONITOR, }; /* reg_pddr_group_opcode * Group selector. * Access: Index */ MLXSW_ITEM32(reg, pddr, trblsh_group_opcode, 0x08, 0, 16); /* reg_pddr_status_opcode * Group selector. * Access: RO */ MLXSW_ITEM32(reg, pddr, trblsh_status_opcode, 0x0C, 0, 16); static inline void mlxsw_reg_pddr_pack(char *payload, u16 local_port, u8 page_select) { MLXSW_REG_ZERO(pddr, payload); mlxsw_reg_pddr_local_port_set(payload, local_port); mlxsw_reg_pddr_page_select_set(payload, page_select); } /* PMMP - Port Module Memory Map Properties Register * ------------------------------------------------- * The PMMP register allows to override the module memory map advertisement. * The register can only be set when the module is disabled by PMAOS register. */ #define MLXSW_REG_PMMP_ID 0x5044 #define MLXSW_REG_PMMP_LEN 0x2C MLXSW_REG_DEFINE(pmmp, MLXSW_REG_PMMP_ID, MLXSW_REG_PMMP_LEN); /* reg_pmmp_module * Module number. * Access: Index */ MLXSW_ITEM32(reg, pmmp, module, 0x00, 16, 8); /* reg_pmmp_slot_index * Slot index. * Access: Index */ MLXSW_ITEM32(reg, pmmp, slot_index, 0x00, 24, 4); /* reg_pmmp_sticky * When set, will keep eeprom_override values after plug-out event. * Access: OP */ MLXSW_ITEM32(reg, pmmp, sticky, 0x00, 0, 1); /* reg_pmmp_eeprom_override_mask * Write mask bit (negative polarity). * 0 - Allow write * 1 - Ignore write * On write, indicates which of the bits from eeprom_override field are * updated. * Access: WO */ MLXSW_ITEM32(reg, pmmp, eeprom_override_mask, 0x04, 16, 16); enum { /* Set module to low power mode */ MLXSW_REG_PMMP_EEPROM_OVERRIDE_LOW_POWER_MASK = BIT(8), }; /* reg_pmmp_eeprom_override * Override / ignore EEPROM advertisement properties bitmask * Access: RW */ MLXSW_ITEM32(reg, pmmp, eeprom_override, 0x04, 0, 16); static inline void mlxsw_reg_pmmp_pack(char *payload, u8 slot_index, u8 module) { MLXSW_REG_ZERO(pmmp, payload); mlxsw_reg_pmmp_slot_index_set(payload, slot_index); mlxsw_reg_pmmp_module_set(payload, module); } /* PLLP - Port Local port to Label Port mapping Register * ----------------------------------------------------- * The PLLP register returns the mapping from Local Port into Label Port. */ #define MLXSW_REG_PLLP_ID 0x504A #define MLXSW_REG_PLLP_LEN 0x10 MLXSW_REG_DEFINE(pllp, MLXSW_REG_PLLP_ID, MLXSW_REG_PLLP_LEN); /* reg_pllp_local_port * Local port number. * Access: Index */ MLXSW_ITEM32_LP(reg, pllp, 0x00, 16, 0x00, 12); /* reg_pllp_label_port * Front panel label of the port. * Access: RO */ MLXSW_ITEM32(reg, pllp, label_port, 0x00, 0, 8); /* reg_pllp_split_num * Label split mapping for local_port. * Access: RO */ MLXSW_ITEM32(reg, pllp, split_num, 0x04, 0, 4); /* reg_pllp_slot_index * Slot index (0: Main board). * Access: RO */ MLXSW_ITEM32(reg, pllp, slot_index, 0x08, 0, 4); static inline void mlxsw_reg_pllp_pack(char *payload, u16 local_port) { MLXSW_REG_ZERO(pllp, payload); mlxsw_reg_pllp_local_port_set(payload, local_port); } static inline void mlxsw_reg_pllp_unpack(char *payload, u8 *label_port, u8 *split_num, u8 *slot_index) { *label_port = mlxsw_reg_pllp_label_port_get(payload); *split_num = mlxsw_reg_pllp_split_num_get(payload); *slot_index = mlxsw_reg_pllp_slot_index_get(payload); } /* PMTM - Port Module Type Mapping Register * ---------------------------------------- * The PMTM register allows query or configuration of module types. * The register can only be set when the module is disabled by PMAOS register */ #define MLXSW_REG_PMTM_ID 0x5067 #define MLXSW_REG_PMTM_LEN 0x10 MLXSW_REG_DEFINE(pmtm, MLXSW_REG_PMTM_ID, MLXSW_REG_PMTM_LEN); /* reg_pmtm_slot_index * Slot index. * Access: Index */ MLXSW_ITEM32(reg, pmtm, slot_index, 0x00, 24, 4); /* reg_pmtm_module * Module number. * Access: Index */ MLXSW_ITEM32(reg, pmtm, module, 0x00, 16, 8); enum mlxsw_reg_pmtm_module_type { MLXSW_REG_PMTM_MODULE_TYPE_BACKPLANE_4_LANES = 0, MLXSW_REG_PMTM_MODULE_TYPE_QSFP = 1, MLXSW_REG_PMTM_MODULE_TYPE_SFP = 2, MLXSW_REG_PMTM_MODULE_TYPE_BACKPLANE_SINGLE_LANE = 4, MLXSW_REG_PMTM_MODULE_TYPE_BACKPLANE_2_LANES = 8, MLXSW_REG_PMTM_MODULE_TYPE_CHIP2CHIP4X = 10, MLXSW_REG_PMTM_MODULE_TYPE_CHIP2CHIP2X = 11, MLXSW_REG_PMTM_MODULE_TYPE_CHIP2CHIP1X = 12, MLXSW_REG_PMTM_MODULE_TYPE_QSFP_DD = 14, MLXSW_REG_PMTM_MODULE_TYPE_OSFP = 15, MLXSW_REG_PMTM_MODULE_TYPE_SFP_DD = 16, MLXSW_REG_PMTM_MODULE_TYPE_DSFP = 17, MLXSW_REG_PMTM_MODULE_TYPE_CHIP2CHIP8X = 18, MLXSW_REG_PMTM_MODULE_TYPE_TWISTED_PAIR = 19, }; /* reg_pmtm_module_type * Module type. * Access: RW */ MLXSW_ITEM32(reg, pmtm, module_type, 0x04, 0, 5); static inline void mlxsw_reg_pmtm_pack(char *payload, u8 slot_index, u8 module) { MLXSW_REG_ZERO(pmtm, payload); mlxsw_reg_pmtm_slot_index_set(payload, slot_index); mlxsw_reg_pmtm_module_set(payload, module); } /* HTGT - Host Trap Group Table * ---------------------------- * Configures the properties for forwarding to CPU. */ #define MLXSW_REG_HTGT_ID 0x7002 #define MLXSW_REG_HTGT_LEN 0x20 MLXSW_REG_DEFINE(htgt, MLXSW_REG_HTGT_ID, MLXSW_REG_HTGT_LEN); /* reg_htgt_swid * Switch partition ID. * Access: Index */ MLXSW_ITEM32(reg, htgt, swid, 0x00, 24, 8); #define MLXSW_REG_HTGT_PATH_TYPE_LOCAL 0x0 /* For locally attached CPU */ /* reg_htgt_type * CPU path type. * Access: RW */ MLXSW_ITEM32(reg, htgt, type, 0x00, 8, 4); enum mlxsw_reg_htgt_trap_group { MLXSW_REG_HTGT_TRAP_GROUP_EMAD, MLXSW_REG_HTGT_TRAP_GROUP_CORE_EVENT, MLXSW_REG_HTGT_TRAP_GROUP_SP_STP, MLXSW_REG_HTGT_TRAP_GROUP_SP_LACP, MLXSW_REG_HTGT_TRAP_GROUP_SP_LLDP, MLXSW_REG_HTGT_TRAP_GROUP_SP_MC_SNOOPING, MLXSW_REG_HTGT_TRAP_GROUP_SP_BGP, MLXSW_REG_HTGT_TRAP_GROUP_SP_OSPF, MLXSW_REG_HTGT_TRAP_GROUP_SP_PIM, MLXSW_REG_HTGT_TRAP_GROUP_SP_MULTICAST, MLXSW_REG_HTGT_TRAP_GROUP_SP_NEIGH_DISCOVERY, MLXSW_REG_HTGT_TRAP_GROUP_SP_ROUTER_EXP, MLXSW_REG_HTGT_TRAP_GROUP_SP_EXTERNAL_ROUTE, MLXSW_REG_HTGT_TRAP_GROUP_SP_IP2ME, MLXSW_REG_HTGT_TRAP_GROUP_SP_DHCP, MLXSW_REG_HTGT_TRAP_GROUP_SP_EVENT, MLXSW_REG_HTGT_TRAP_GROUP_SP_IPV6, MLXSW_REG_HTGT_TRAP_GROUP_SP_LBERROR, MLXSW_REG_HTGT_TRAP_GROUP_SP_PTP0, MLXSW_REG_HTGT_TRAP_GROUP_SP_PTP1, MLXSW_REG_HTGT_TRAP_GROUP_SP_VRRP, MLXSW_REG_HTGT_TRAP_GROUP_SP_PKT_SAMPLE, MLXSW_REG_HTGT_TRAP_GROUP_SP_FLOW_LOGGING, MLXSW_REG_HTGT_TRAP_GROUP_SP_FID_MISS, MLXSW_REG_HTGT_TRAP_GROUP_SP_BFD, MLXSW_REG_HTGT_TRAP_GROUP_SP_DUMMY, MLXSW_REG_HTGT_TRAP_GROUP_SP_L2_DISCARDS, MLXSW_REG_HTGT_TRAP_GROUP_SP_L3_DISCARDS, MLXSW_REG_HTGT_TRAP_GROUP_SP_L3_EXCEPTIONS, MLXSW_REG_HTGT_TRAP_GROUP_SP_TUNNEL_DISCARDS, MLXSW_REG_HTGT_TRAP_GROUP_SP_ACL_DISCARDS, MLXSW_REG_HTGT_TRAP_GROUP_SP_BUFFER_DISCARDS, MLXSW_REG_HTGT_TRAP_GROUP_SP_EAPOL, __MLXSW_REG_HTGT_TRAP_GROUP_MAX, MLXSW_REG_HTGT_TRAP_GROUP_MAX = __MLXSW_REG_HTGT_TRAP_GROUP_MAX - 1 }; /* reg_htgt_trap_group * Trap group number. User defined number specifying which trap groups * should be forwarded to the CPU. The mapping between trap IDs and trap * groups is configured using HPKT register. * Access: Index */ MLXSW_ITEM32(reg, htgt, trap_group, 0x00, 0, 8); enum { MLXSW_REG_HTGT_POLICER_DISABLE, MLXSW_REG_HTGT_POLICER_ENABLE, }; /* reg_htgt_pide * Enable policer ID specified using 'pid' field. * Access: RW */ MLXSW_ITEM32(reg, htgt, pide, 0x04, 15, 1); #define MLXSW_REG_HTGT_INVALID_POLICER 0xff /* reg_htgt_pid * Policer ID for the trap group. * Access: RW */ MLXSW_ITEM32(reg, htgt, pid, 0x04, 0, 8); #define MLXSW_REG_HTGT_TRAP_TO_CPU 0x0 /* reg_htgt_mirror_action * Mirror action to use. * 0 - Trap to CPU. * 1 - Trap to CPU and mirror to a mirroring agent. * 2 - Mirror to a mirroring agent and do not trap to CPU. * Access: RW * * Note: Mirroring to a mirroring agent is only supported in Spectrum. */ MLXSW_ITEM32(reg, htgt, mirror_action, 0x08, 8, 2); /* reg_htgt_mirroring_agent * Mirroring agent. * Access: RW */ MLXSW_ITEM32(reg, htgt, mirroring_agent, 0x08, 0, 3); #define MLXSW_REG_HTGT_DEFAULT_PRIORITY 0 /* reg_htgt_priority * Trap group priority. * In case a packet matches multiple classification rules, the packet will * only be trapped once, based on the trap ID associated with the group (via * register HPKT) with the highest priority. * Supported values are 0-7, with 7 represnting the highest priority. * Access: RW * * Note: In SwitchX-2 this field is ignored and the priority value is replaced * by the 'trap_group' field. */ MLXSW_ITEM32(reg, htgt, priority, 0x0C, 0, 4); #define MLXSW_REG_HTGT_DEFAULT_TC 7 /* reg_htgt_local_path_cpu_tclass * CPU ingress traffic class for the trap group. * Access: RW */ MLXSW_ITEM32(reg, htgt, local_path_cpu_tclass, 0x10, 16, 6); enum mlxsw_reg_htgt_local_path_rdq { MLXSW_REG_HTGT_LOCAL_PATH_RDQ_SX2_CTRL = 0x13, MLXSW_REG_HTGT_LOCAL_PATH_RDQ_SX2_RX = 0x14, MLXSW_REG_HTGT_LOCAL_PATH_RDQ_SX2_EMAD = 0x15, MLXSW_REG_HTGT_LOCAL_PATH_RDQ_SIB_EMAD = 0x15, }; /* reg_htgt_local_path_rdq * Receive descriptor queue (RDQ) to use for the trap group. * Access: RW */ MLXSW_ITEM32(reg, htgt, local_path_rdq, 0x10, 0, 6); static inline void mlxsw_reg_htgt_pack(char *payload, u8 group, u8 policer_id, u8 priority, u8 tc) { MLXSW_REG_ZERO(htgt, payload); if (policer_id == MLXSW_REG_HTGT_INVALID_POLICER) { mlxsw_reg_htgt_pide_set(payload, MLXSW_REG_HTGT_POLICER_DISABLE); } else { mlxsw_reg_htgt_pide_set(payload, MLXSW_REG_HTGT_POLICER_ENABLE); mlxsw_reg_htgt_pid_set(payload, policer_id); } mlxsw_reg_htgt_type_set(payload, MLXSW_REG_HTGT_PATH_TYPE_LOCAL); mlxsw_reg_htgt_trap_group_set(payload, group); mlxsw_reg_htgt_mirror_action_set(payload, MLXSW_REG_HTGT_TRAP_TO_CPU); mlxsw_reg_htgt_mirroring_agent_set(payload, 0); mlxsw_reg_htgt_priority_set(payload, priority); mlxsw_reg_htgt_local_path_cpu_tclass_set(payload, tc); mlxsw_reg_htgt_local_path_rdq_set(payload, group); } /* HPKT - Host Packet Trap * ----------------------- * Configures trap IDs inside trap groups. */ #define MLXSW_REG_HPKT_ID 0x7003 #define MLXSW_REG_HPKT_LEN 0x10 MLXSW_REG_DEFINE(hpkt, MLXSW_REG_HPKT_ID, MLXSW_REG_HPKT_LEN); enum { MLXSW_REG_HPKT_ACK_NOT_REQUIRED, MLXSW_REG_HPKT_ACK_REQUIRED, }; /* reg_hpkt_ack * Require acknowledgements from the host for events. * If set, then the device will wait for the event it sent to be acknowledged * by the host. This option is only relevant for event trap IDs. * Access: RW * * Note: Currently not supported by firmware. */ MLXSW_ITEM32(reg, hpkt, ack, 0x00, 24, 1); enum mlxsw_reg_hpkt_action { MLXSW_REG_HPKT_ACTION_FORWARD, MLXSW_REG_HPKT_ACTION_TRAP_TO_CPU, MLXSW_REG_HPKT_ACTION_MIRROR_TO_CPU, MLXSW_REG_HPKT_ACTION_DISCARD, MLXSW_REG_HPKT_ACTION_SOFT_DISCARD, MLXSW_REG_HPKT_ACTION_TRAP_AND_SOFT_DISCARD, MLXSW_REG_HPKT_ACTION_TRAP_EXCEPTION_TO_CPU, MLXSW_REG_HPKT_ACTION_SET_FW_DEFAULT = 15, }; /* reg_hpkt_action * Action to perform on packet when trapped. * 0 - No action. Forward to CPU based on switching rules. * 1 - Trap to CPU (CPU receives sole copy). * 2 - Mirror to CPU (CPU receives a replica of the packet). * 3 - Discard. * 4 - Soft discard (allow other traps to act on the packet). * 5 - Trap and soft discard (allow other traps to overwrite this trap). * 6 - Trap to CPU (CPU receives sole copy) and count it as error. * 15 - Restore the firmware's default action. * Access: RW * * Note: Must be set to 0 (forward) for event trap IDs, as they are already * addressed to the CPU. */ MLXSW_ITEM32(reg, hpkt, action, 0x00, 20, 3); /* reg_hpkt_trap_group * Trap group to associate the trap with. * Access: RW */ MLXSW_ITEM32(reg, hpkt, trap_group, 0x00, 12, 6); /* reg_hpkt_trap_id * Trap ID. * Access: Index * * Note: A trap ID can only be associated with a single trap group. The device * will associate the trap ID with the last trap group configured. */ MLXSW_ITEM32(reg, hpkt, trap_id, 0x00, 0, 10); enum { MLXSW_REG_HPKT_CTRL_PACKET_DEFAULT, MLXSW_REG_HPKT_CTRL_PACKET_NO_BUFFER, MLXSW_REG_HPKT_CTRL_PACKET_USE_BUFFER, }; /* reg_hpkt_ctrl * Configure dedicated buffer resources for control packets. * Ignored by SwitchX-2. * 0 - Keep factory defaults. * 1 - Do not use control buffer for this trap ID. * 2 - Use control buffer for this trap ID. * Access: RW */ MLXSW_ITEM32(reg, hpkt, ctrl, 0x04, 16, 2); static inline void mlxsw_reg_hpkt_pack(char *payload, u8 action, u16 trap_id, enum mlxsw_reg_htgt_trap_group trap_group, bool is_ctrl) { MLXSW_REG_ZERO(hpkt, payload); mlxsw_reg_hpkt_ack_set(payload, MLXSW_REG_HPKT_ACK_NOT_REQUIRED); mlxsw_reg_hpkt_action_set(payload, action); mlxsw_reg_hpkt_trap_group_set(payload, trap_group); mlxsw_reg_hpkt_trap_id_set(payload, trap_id); mlxsw_reg_hpkt_ctrl_set(payload, is_ctrl ? MLXSW_REG_HPKT_CTRL_PACKET_USE_BUFFER : MLXSW_REG_HPKT_CTRL_PACKET_NO_BUFFER); } /* RGCR - Router General Configuration Register * -------------------------------------------- * The register is used for setting up the router configuration. */ #define MLXSW_REG_RGCR_ID 0x8001 #define MLXSW_REG_RGCR_LEN 0x28 MLXSW_REG_DEFINE(rgcr, MLXSW_REG_RGCR_ID, MLXSW_REG_RGCR_LEN); /* reg_rgcr_ipv4_en * IPv4 router enable. * Access: RW */ MLXSW_ITEM32(reg, rgcr, ipv4_en, 0x00, 31, 1); /* reg_rgcr_ipv6_en * IPv6 router enable. * Access: RW */ MLXSW_ITEM32(reg, rgcr, ipv6_en, 0x00, 30, 1); /* reg_rgcr_max_router_interfaces * Defines the maximum number of active router interfaces for all virtual * routers. * Access: RW */ MLXSW_ITEM32(reg, rgcr, max_router_interfaces, 0x10, 0, 16); /* reg_rgcr_usp * Update switch priority and packet color. * 0 - Preserve the value of Switch Priority and packet color. * 1 - Recalculate the value of Switch Priority and packet color. * Access: RW * * Note: Not supported by SwitchX and SwitchX-2. */ MLXSW_ITEM32(reg, rgcr, usp, 0x18, 20, 1); /* reg_rgcr_pcp_rw * Indicates how to handle the pcp_rewrite_en value: * 0 - Preserve the value of pcp_rewrite_en. * 2 - Disable PCP rewrite. * 3 - Enable PCP rewrite. * Access: RW * * Note: Not supported by SwitchX and SwitchX-2. */ MLXSW_ITEM32(reg, rgcr, pcp_rw, 0x18, 16, 2); /* reg_rgcr_activity_dis * Activity disable: * 0 - Activity will be set when an entry is hit (default). * 1 - Activity will not be set when an entry is hit. * * Bit 0 - Disable activity bit in Router Algorithmic LPM Unicast Entry * (RALUE). * Bit 1 - Disable activity bit in Router Algorithmic LPM Unicast Host * Entry (RAUHT). * Bits 2:7 are reserved. * Access: RW * * Note: Not supported by SwitchX, SwitchX-2 and Switch-IB. */ MLXSW_ITEM32(reg, rgcr, activity_dis, 0x20, 0, 8); static inline void mlxsw_reg_rgcr_pack(char *payload, bool ipv4_en, bool ipv6_en) { MLXSW_REG_ZERO(rgcr, payload); mlxsw_reg_rgcr_ipv4_en_set(payload, ipv4_en); mlxsw_reg_rgcr_ipv6_en_set(payload, ipv6_en); } /* RITR - Router Interface Table Register * -------------------------------------- * The register is used to configure the router interface table. */ #define MLXSW_REG_RITR_ID 0x8002 #define MLXSW_REG_RITR_LEN 0x40 MLXSW_REG_DEFINE(ritr, MLXSW_REG_RITR_ID, MLXSW_REG_RITR_LEN); /* reg_ritr_enable * Enables routing on the router interface. * Access: RW */ MLXSW_ITEM32(reg, ritr, enable, 0x00, 31, 1); /* reg_ritr_ipv4 * IPv4 routing enable. Enables routing of IPv4 traffic on the router * interface. * Access: RW */ MLXSW_ITEM32(reg, ritr, ipv4, 0x00, 29, 1); /* reg_ritr_ipv6 * IPv6 routing enable. Enables routing of IPv6 traffic on the router * interface. * Access: RW */ MLXSW_ITEM32(reg, ritr, ipv6, 0x00, 28, 1); /* reg_ritr_ipv4_mc * IPv4 multicast routing enable. * Access: RW */ MLXSW_ITEM32(reg, ritr, ipv4_mc, 0x00, 27, 1); /* reg_ritr_ipv6_mc * IPv6 multicast routing enable. * Access: RW */ MLXSW_ITEM32(reg, ritr, ipv6_mc, 0x00, 26, 1); enum mlxsw_reg_ritr_if_type { /* VLAN interface. */ MLXSW_REG_RITR_VLAN_IF, /* FID interface. */ MLXSW_REG_RITR_FID_IF, /* Sub-port interface. */ MLXSW_REG_RITR_SP_IF, /* Loopback Interface. */ MLXSW_REG_RITR_LOOPBACK_IF, }; /* reg_ritr_type * Router interface type as per enum mlxsw_reg_ritr_if_type. * Access: RW */ MLXSW_ITEM32(reg, ritr, type, 0x00, 23, 3); enum { MLXSW_REG_RITR_RIF_CREATE, MLXSW_REG_RITR_RIF_DEL, }; /* reg_ritr_op * Opcode: * 0 - Create or edit RIF. * 1 - Delete RIF. * Reserved for SwitchX-2. For Spectrum, editing of interface properties * is not supported. An interface must be deleted and re-created in order * to update properties. * Access: WO */ MLXSW_ITEM32(reg, ritr, op, 0x00, 20, 2); /* reg_ritr_rif * Router interface index. A pointer to the Router Interface Table. * Access: Index */ MLXSW_ITEM32(reg, ritr, rif, 0x00, 0, 16); /* reg_ritr_ipv4_fe * IPv4 Forwarding Enable. * Enables routing of IPv4 traffic on the router interface. When disabled, * forwarding is blocked but local traffic (traps and IP2ME) will be enabled. * Not supported in SwitchX-2. * Access: RW */ MLXSW_ITEM32(reg, ritr, ipv4_fe, 0x04, 29, 1); /* reg_ritr_ipv6_fe * IPv6 Forwarding Enable. * Enables routing of IPv6 traffic on the router interface. When disabled, * forwarding is blocked but local traffic (traps and IP2ME) will be enabled. * Not supported in SwitchX-2. * Access: RW */ MLXSW_ITEM32(reg, ritr, ipv6_fe, 0x04, 28, 1); /* reg_ritr_ipv4_mc_fe * IPv4 Multicast Forwarding Enable. * When disabled, forwarding is blocked but local traffic (traps and IP to me) * will be enabled. * Access: RW */ MLXSW_ITEM32(reg, ritr, ipv4_mc_fe, 0x04, 27, 1); /* reg_ritr_ipv6_mc_fe * IPv6 Multicast Forwarding Enable. * When disabled, forwarding is blocked but local traffic (traps and IP to me) * will be enabled. * Access: RW */ MLXSW_ITEM32(reg, ritr, ipv6_mc_fe, 0x04, 26, 1); /* reg_ritr_lb_en * Loop-back filter enable for unicast packets. * If the flag is set then loop-back filter for unicast packets is * implemented on the RIF. Multicast packets are always subject to * loop-back filtering. * Access: RW */ MLXSW_ITEM32(reg, ritr, lb_en, 0x04, 24, 1); /* reg_ritr_virtual_router * Virtual router ID associated with the router interface. * Access: RW */ MLXSW_ITEM32(reg, ritr, virtual_router, 0x04, 0, 16); /* reg_ritr_mtu * Router interface MTU. * Access: RW */ MLXSW_ITEM32(reg, ritr, mtu, 0x34, 0, 16); /* reg_ritr_if_swid * Switch partition ID. * Access: RW */ MLXSW_ITEM32(reg, ritr, if_swid, 0x08, 24, 8); /* reg_ritr_if_mac_profile_id * MAC msb profile ID. * Access: RW */ MLXSW_ITEM32(reg, ritr, if_mac_profile_id, 0x10, 16, 4); /* reg_ritr_if_mac * Router interface MAC address. * In Spectrum, all MAC addresses must have the same 38 MSBits. * Access: RW */ MLXSW_ITEM_BUF(reg, ritr, if_mac, 0x12, 6); /* reg_ritr_if_vrrp_id_ipv6 * VRRP ID for IPv6 * Note: Reserved for RIF types other than VLAN, FID and Sub-port. * Access: RW */ MLXSW_ITEM32(reg, ritr, if_vrrp_id_ipv6, 0x1C, 8, 8); /* reg_ritr_if_vrrp_id_ipv4 * VRRP ID for IPv4 * Note: Reserved for RIF types other than VLAN, FID and Sub-port. * Access: RW */ MLXSW_ITEM32(reg, ritr, if_vrrp_id_ipv4, 0x1C, 0, 8); /* VLAN Interface */ /* reg_ritr_vlan_if_vlan_id * VLAN ID. * Access: RW */ MLXSW_ITEM32(reg, ritr, vlan_if_vlan_id, 0x08, 0, 12); /* reg_ritr_vlan_if_efid * Egress FID. * Used to connect the RIF to a bridge. * Access: RW * * Note: Reserved when legacy bridge model is used and on Spectrum-1. */ MLXSW_ITEM32(reg, ritr, vlan_if_efid, 0x0C, 0, 16); /* FID Interface */ /* reg_ritr_fid_if_fid * Filtering ID. Used to connect a bridge to the router. * When legacy bridge model is used, only FIDs from the vFID range are * supported. When unified bridge model is used, this is the egress FID for * router to bridge. * Access: RW */ MLXSW_ITEM32(reg, ritr, fid_if_fid, 0x08, 0, 16); /* Sub-port Interface */ /* reg_ritr_sp_if_lag * LAG indication. When this bit is set the system_port field holds the * LAG identifier. * Access: RW */ MLXSW_ITEM32(reg, ritr, sp_if_lag, 0x08, 24, 1); /* reg_ritr_sp_system_port * Port unique indentifier. When lag bit is set, this field holds the * lag_id in bits 0:9. * Access: RW */ MLXSW_ITEM32(reg, ritr, sp_if_system_port, 0x08, 0, 16); /* reg_ritr_sp_if_efid * Egress filtering ID. * Used to connect the eRIF to a bridge if eRIF-ACL has modified the DMAC or * the VID. * Access: RW * * Note: Reserved when legacy bridge model is used. */ MLXSW_ITEM32(reg, ritr, sp_if_efid, 0x0C, 0, 16); /* reg_ritr_sp_if_vid * VLAN ID. * Access: RW */ MLXSW_ITEM32(reg, ritr, sp_if_vid, 0x18, 0, 12); /* Loopback Interface */ enum mlxsw_reg_ritr_loopback_protocol { /* IPinIP IPv4 underlay Unicast */ MLXSW_REG_RITR_LOOPBACK_PROTOCOL_IPIP_IPV4, /* IPinIP IPv6 underlay Unicast */ MLXSW_REG_RITR_LOOPBACK_PROTOCOL_IPIP_IPV6, /* IPinIP generic - used for Spectrum-2 underlay RIF */ MLXSW_REG_RITR_LOOPBACK_GENERIC, }; /* reg_ritr_loopback_protocol * Access: RW */ MLXSW_ITEM32(reg, ritr, loopback_protocol, 0x08, 28, 4); enum mlxsw_reg_ritr_loopback_ipip_type { /* Tunnel is IPinIP. */ MLXSW_REG_RITR_LOOPBACK_IPIP_TYPE_IP_IN_IP, /* Tunnel is GRE, no key. */ MLXSW_REG_RITR_LOOPBACK_IPIP_TYPE_IP_IN_GRE_IN_IP, /* Tunnel is GRE, with a key. */ MLXSW_REG_RITR_LOOPBACK_IPIP_TYPE_IP_IN_GRE_KEY_IN_IP, }; /* reg_ritr_loopback_ipip_type * Encapsulation type. * Access: RW */ MLXSW_ITEM32(reg, ritr, loopback_ipip_type, 0x10, 24, 4); enum mlxsw_reg_ritr_loopback_ipip_options { /* The key is defined by gre_key. */ MLXSW_REG_RITR_LOOPBACK_IPIP_OPTIONS_GRE_KEY_PRESET, }; /* reg_ritr_loopback_ipip_options * Access: RW */ MLXSW_ITEM32(reg, ritr, loopback_ipip_options, 0x10, 20, 4); /* reg_ritr_loopback_ipip_uvr * Underlay Virtual Router ID. * Range is 0..cap_max_virtual_routers-1. * Reserved for Spectrum-2. * Access: RW */ MLXSW_ITEM32(reg, ritr, loopback_ipip_uvr, 0x10, 0, 16); /* reg_ritr_loopback_ipip_underlay_rif * Underlay ingress router interface. * Reserved for Spectrum. * Access: RW */ MLXSW_ITEM32(reg, ritr, loopback_ipip_underlay_rif, 0x14, 0, 16); /* reg_ritr_loopback_ipip_usip* * Encapsulation Underlay source IP. * Access: RW */ MLXSW_ITEM_BUF(reg, ritr, loopback_ipip_usip6, 0x18, 16); MLXSW_ITEM32(reg, ritr, loopback_ipip_usip4, 0x24, 0, 32); /* reg_ritr_loopback_ipip_gre_key * GRE Key. * Reserved when ipip_type is not IP_IN_GRE_KEY_IN_IP. * Access: RW */ MLXSW_ITEM32(reg, ritr, loopback_ipip_gre_key, 0x28, 0, 32); /* Shared between ingress/egress */ enum mlxsw_reg_ritr_counter_set_type { /* No Count. */ MLXSW_REG_RITR_COUNTER_SET_TYPE_NO_COUNT = 0x0, /* Basic. Used for router interfaces, counting the following: * - Error and Discard counters. * - Unicast, Multicast and Broadcast counters. Sharing the * same set of counters for the different type of traffic * (IPv4, IPv6 and mpls). */ MLXSW_REG_RITR_COUNTER_SET_TYPE_BASIC = 0x9, }; /* reg_ritr_ingress_counter_index * Counter Index for flow counter. * Access: RW */ MLXSW_ITEM32(reg, ritr, ingress_counter_index, 0x38, 0, 24); /* reg_ritr_ingress_counter_set_type * Igress Counter Set Type for router interface counter. * Access: RW */ MLXSW_ITEM32(reg, ritr, ingress_counter_set_type, 0x38, 24, 8); /* reg_ritr_egress_counter_index * Counter Index for flow counter. * Access: RW */ MLXSW_ITEM32(reg, ritr, egress_counter_index, 0x3C, 0, 24); /* reg_ritr_egress_counter_set_type * Egress Counter Set Type for router interface counter. * Access: RW */ MLXSW_ITEM32(reg, ritr, egress_counter_set_type, 0x3C, 24, 8); static inline void mlxsw_reg_ritr_counter_pack(char *payload, u32 index, bool enable, bool egress) { enum mlxsw_reg_ritr_counter_set_type set_type; if (enable) set_type = MLXSW_REG_RITR_COUNTER_SET_TYPE_BASIC; else set_type = MLXSW_REG_RITR_COUNTER_SET_TYPE_NO_COUNT; if (egress) { mlxsw_reg_ritr_egress_counter_set_type_set(payload, set_type); mlxsw_reg_ritr_egress_counter_index_set(payload, index); } else { mlxsw_reg_ritr_ingress_counter_set_type_set(payload, set_type); mlxsw_reg_ritr_ingress_counter_index_set(payload, index); } } static inline void mlxsw_reg_ritr_rif_pack(char *payload, u16 rif) { MLXSW_REG_ZERO(ritr, payload); mlxsw_reg_ritr_rif_set(payload, rif); } static inline void mlxsw_reg_ritr_sp_if_pack(char *payload, bool lag, u16 system_port, u16 efid, u16 vid) { mlxsw_reg_ritr_sp_if_lag_set(payload, lag); mlxsw_reg_ritr_sp_if_system_port_set(payload, system_port); mlxsw_reg_ritr_sp_if_efid_set(payload, efid); mlxsw_reg_ritr_sp_if_vid_set(payload, vid); } static inline void mlxsw_reg_ritr_pack(char *payload, bool enable, enum mlxsw_reg_ritr_if_type type, u16 rif, u16 vr_id, u16 mtu) { bool op = enable ? MLXSW_REG_RITR_RIF_CREATE : MLXSW_REG_RITR_RIF_DEL; MLXSW_REG_ZERO(ritr, payload); mlxsw_reg_ritr_enable_set(payload, enable); mlxsw_reg_ritr_ipv4_set(payload, 1); mlxsw_reg_ritr_ipv6_set(payload, 1); mlxsw_reg_ritr_ipv4_mc_set(payload, 1); mlxsw_reg_ritr_ipv6_mc_set(payload, 1); mlxsw_reg_ritr_type_set(payload, type); mlxsw_reg_ritr_op_set(payload, op); mlxsw_reg_ritr_rif_set(payload, rif); mlxsw_reg_ritr_ipv4_fe_set(payload, 1); mlxsw_reg_ritr_ipv6_fe_set(payload, 1); mlxsw_reg_ritr_ipv4_mc_fe_set(payload, 1); mlxsw_reg_ritr_ipv6_mc_fe_set(payload, 1); mlxsw_reg_ritr_lb_en_set(payload, 1); mlxsw_reg_ritr_virtual_router_set(payload, vr_id); mlxsw_reg_ritr_mtu_set(payload, mtu); } static inline void mlxsw_reg_ritr_mac_pack(char *payload, const char *mac) { mlxsw_reg_ritr_if_mac_memcpy_to(payload, mac); } static inline void mlxsw_reg_ritr_vlan_if_pack(char *payload, bool enable, u16 rif, u16 vr_id, u16 mtu, const char *mac, u8 mac_profile_id, u16 vlan_id, u16 efid) { enum mlxsw_reg_ritr_if_type type = MLXSW_REG_RITR_VLAN_IF; mlxsw_reg_ritr_pack(payload, enable, type, rif, vr_id, mtu); mlxsw_reg_ritr_if_mac_memcpy_to(payload, mac); mlxsw_reg_ritr_if_mac_profile_id_set(payload, mac_profile_id); mlxsw_reg_ritr_vlan_if_vlan_id_set(payload, vlan_id); mlxsw_reg_ritr_vlan_if_efid_set(payload, efid); } static inline void mlxsw_reg_ritr_loopback_ipip_common_pack(char *payload, enum mlxsw_reg_ritr_loopback_ipip_type ipip_type, enum mlxsw_reg_ritr_loopback_ipip_options options, u16 uvr_id, u16 underlay_rif, u32 gre_key) { mlxsw_reg_ritr_loopback_ipip_type_set(payload, ipip_type); mlxsw_reg_ritr_loopback_ipip_options_set(payload, options); mlxsw_reg_ritr_loopback_ipip_uvr_set(payload, uvr_id); mlxsw_reg_ritr_loopback_ipip_underlay_rif_set(payload, underlay_rif); mlxsw_reg_ritr_loopback_ipip_gre_key_set(payload, gre_key); } static inline void mlxsw_reg_ritr_loopback_ipip4_pack(char *payload, enum mlxsw_reg_ritr_loopback_ipip_type ipip_type, enum mlxsw_reg_ritr_loopback_ipip_options options, u16 uvr_id, u16 underlay_rif, u32 usip, u32 gre_key) { mlxsw_reg_ritr_loopback_protocol_set(payload, MLXSW_REG_RITR_LOOPBACK_PROTOCOL_IPIP_IPV4); mlxsw_reg_ritr_loopback_ipip_common_pack(payload, ipip_type, options, uvr_id, underlay_rif, gre_key); mlxsw_reg_ritr_loopback_ipip_usip4_set(payload, usip); } static inline void mlxsw_reg_ritr_loopback_ipip6_pack(char *payload, enum mlxsw_reg_ritr_loopback_ipip_type ipip_type, enum mlxsw_reg_ritr_loopback_ipip_options options, u16 uvr_id, u16 underlay_rif, const struct in6_addr *usip, u32 gre_key) { enum mlxsw_reg_ritr_loopback_protocol protocol = MLXSW_REG_RITR_LOOPBACK_PROTOCOL_IPIP_IPV6; mlxsw_reg_ritr_loopback_protocol_set(payload, protocol); mlxsw_reg_ritr_loopback_ipip_common_pack(payload, ipip_type, options, uvr_id, underlay_rif, gre_key); mlxsw_reg_ritr_loopback_ipip_usip6_memcpy_to(payload, (const char *)usip); } /* RTAR - Router TCAM Allocation Register * -------------------------------------- * This register is used for allocation of regions in the TCAM table. */ #define MLXSW_REG_RTAR_ID 0x8004 #define MLXSW_REG_RTAR_LEN 0x20 MLXSW_REG_DEFINE(rtar, MLXSW_REG_RTAR_ID, MLXSW_REG_RTAR_LEN); enum mlxsw_reg_rtar_op { MLXSW_REG_RTAR_OP_ALLOCATE, MLXSW_REG_RTAR_OP_RESIZE, MLXSW_REG_RTAR_OP_DEALLOCATE, }; /* reg_rtar_op * Access: WO */ MLXSW_ITEM32(reg, rtar, op, 0x00, 28, 4); enum mlxsw_reg_rtar_key_type { MLXSW_REG_RTAR_KEY_TYPE_IPV4_MULTICAST = 1, MLXSW_REG_RTAR_KEY_TYPE_IPV6_MULTICAST = 3 }; /* reg_rtar_key_type * TCAM key type for the region. * Access: WO */ MLXSW_ITEM32(reg, rtar, key_type, 0x00, 0, 8); /* reg_rtar_region_size * TCAM region size. When allocating/resizing this is the requested * size, the response is the actual size. * Note: Actual size may be larger than requested. * Reserved for op = Deallocate * Access: WO */ MLXSW_ITEM32(reg, rtar, region_size, 0x04, 0, 16); static inline void mlxsw_reg_rtar_pack(char *payload, enum mlxsw_reg_rtar_op op, enum mlxsw_reg_rtar_key_type key_type, u16 region_size) { MLXSW_REG_ZERO(rtar, payload); mlxsw_reg_rtar_op_set(payload, op); mlxsw_reg_rtar_key_type_set(payload, key_type); mlxsw_reg_rtar_region_size_set(payload, region_size); } /* RATR - Router Adjacency Table Register * -------------------------------------- * The RATR register is used to configure the Router Adjacency (next-hop) * Table. */ #define MLXSW_REG_RATR_ID 0x8008 #define MLXSW_REG_RATR_LEN 0x2C MLXSW_REG_DEFINE(ratr, MLXSW_REG_RATR_ID, MLXSW_REG_RATR_LEN); enum mlxsw_reg_ratr_op { /* Read */ MLXSW_REG_RATR_OP_QUERY_READ = 0, /* Read and clear activity */ MLXSW_REG_RATR_OP_QUERY_READ_CLEAR = 2, /* Write Adjacency entry */ MLXSW_REG_RATR_OP_WRITE_WRITE_ENTRY = 1, /* Write Adjacency entry only if the activity is cleared. * The write may not succeed if the activity is set. There is not * direct feedback if the write has succeeded or not, however * the get will reveal the actual entry (SW can compare the get * response to the set command). */ MLXSW_REG_RATR_OP_WRITE_WRITE_ENTRY_ON_ACTIVITY = 3, }; /* reg_ratr_op * Note that Write operation may also be used for updating * counter_set_type and counter_index. In this case all other * fields must not be updated. * Access: OP */ MLXSW_ITEM32(reg, ratr, op, 0x00, 28, 4); /* reg_ratr_v * Valid bit. Indicates if the adjacency entry is valid. * Note: the device may need some time before reusing an invalidated * entry. During this time the entry can not be reused. It is * recommended to use another entry before reusing an invalidated * entry (e.g. software can put it at the end of the list for * reusing). Trying to access an invalidated entry not yet cleared * by the device results with failure indicating "Try Again" status. * When valid is '0' then egress_router_interface,trap_action, * adjacency_parameters and counters are reserved * Access: RW */ MLXSW_ITEM32(reg, ratr, v, 0x00, 24, 1); /* reg_ratr_a * Activity. Set for new entries. Set if a packet lookup has hit on * the specific entry. To clear the a bit, use "clear activity". * Access: RO */ MLXSW_ITEM32(reg, ratr, a, 0x00, 16, 1); enum mlxsw_reg_ratr_type { /* Ethernet */ MLXSW_REG_RATR_TYPE_ETHERNET, /* IPoIB Unicast without GRH. * Reserved for Spectrum. */ MLXSW_REG_RATR_TYPE_IPOIB_UC, /* IPoIB Unicast with GRH. Supported only in table 0 (Ethernet unicast * adjacency). * Reserved for Spectrum. */ MLXSW_REG_RATR_TYPE_IPOIB_UC_W_GRH, /* IPoIB Multicast. * Reserved for Spectrum. */ MLXSW_REG_RATR_TYPE_IPOIB_MC, /* MPLS. * Reserved for SwitchX/-2. */ MLXSW_REG_RATR_TYPE_MPLS, /* IPinIP Encap. * Reserved for SwitchX/-2. */ MLXSW_REG_RATR_TYPE_IPIP, }; /* reg_ratr_type * Adjacency entry type. * Access: RW */ MLXSW_ITEM32(reg, ratr, type, 0x04, 28, 4); /* reg_ratr_adjacency_index_low * Bits 15:0 of index into the adjacency table. * For SwitchX and SwitchX-2, the adjacency table is linear and * used for adjacency entries only. * For Spectrum, the index is to the KVD linear. * Access: Index */ MLXSW_ITEM32(reg, ratr, adjacency_index_low, 0x04, 0, 16); /* reg_ratr_egress_router_interface * Range is 0 .. cap_max_router_interfaces - 1 * Access: RW */ MLXSW_ITEM32(reg, ratr, egress_router_interface, 0x08, 0, 16); enum mlxsw_reg_ratr_trap_action { MLXSW_REG_RATR_TRAP_ACTION_NOP, MLXSW_REG_RATR_TRAP_ACTION_TRAP, MLXSW_REG_RATR_TRAP_ACTION_MIRROR_TO_CPU, MLXSW_REG_RATR_TRAP_ACTION_MIRROR, MLXSW_REG_RATR_TRAP_ACTION_DISCARD_ERRORS, }; /* reg_ratr_trap_action * see mlxsw_reg_ratr_trap_action * Access: RW */ MLXSW_ITEM32(reg, ratr, trap_action, 0x0C, 28, 4); /* reg_ratr_adjacency_index_high * Bits 23:16 of the adjacency_index. * Access: Index */ MLXSW_ITEM32(reg, ratr, adjacency_index_high, 0x0C, 16, 8); enum mlxsw_reg_ratr_trap_id { MLXSW_REG_RATR_TRAP_ID_RTR_EGRESS0, MLXSW_REG_RATR_TRAP_ID_RTR_EGRESS1, }; /* reg_ratr_trap_id * Trap ID to be reported to CPU. * Trap-ID is RTR_EGRESS0 or RTR_EGRESS1. * For trap_action of NOP, MIRROR and DISCARD_ERROR * Access: RW */ MLXSW_ITEM32(reg, ratr, trap_id, 0x0C, 0, 8); /* reg_ratr_eth_destination_mac * MAC address of the destination next-hop. * Access: RW */ MLXSW_ITEM_BUF(reg, ratr, eth_destination_mac, 0x12, 6); enum mlxsw_reg_ratr_ipip_type { /* IPv4, address set by mlxsw_reg_ratr_ipip_ipv4_udip. */ MLXSW_REG_RATR_IPIP_TYPE_IPV4, /* IPv6, address set by mlxsw_reg_ratr_ipip_ipv6_ptr. */ MLXSW_REG_RATR_IPIP_TYPE_IPV6, }; /* reg_ratr_ipip_type * Underlay destination ip type. * Note: the type field must match the protocol of the router interface. * Access: RW */ MLXSW_ITEM32(reg, ratr, ipip_type, 0x10, 16, 4); /* reg_ratr_ipip_ipv4_udip * Underlay ipv4 dip. * Reserved when ipip_type is IPv6. * Access: RW */ MLXSW_ITEM32(reg, ratr, ipip_ipv4_udip, 0x18, 0, 32); /* reg_ratr_ipip_ipv6_ptr * Pointer to IPv6 underlay destination ip address. * For Spectrum: Pointer to KVD linear space. * Access: RW */ MLXSW_ITEM32(reg, ratr, ipip_ipv6_ptr, 0x1C, 0, 24); enum mlxsw_reg_flow_counter_set_type { /* No count */ MLXSW_REG_FLOW_COUNTER_SET_TYPE_NO_COUNT = 0x00, /* Count packets and bytes */ MLXSW_REG_FLOW_COUNTER_SET_TYPE_PACKETS_BYTES = 0x03, /* Count only packets */ MLXSW_REG_FLOW_COUNTER_SET_TYPE_PACKETS = 0x05, }; /* reg_ratr_counter_set_type * Counter set type for flow counters * Access: RW */ MLXSW_ITEM32(reg, ratr, counter_set_type, 0x28, 24, 8); /* reg_ratr_counter_index * Counter index for flow counters * Access: RW */ MLXSW_ITEM32(reg, ratr, counter_index, 0x28, 0, 24); static inline void mlxsw_reg_ratr_pack(char *payload, enum mlxsw_reg_ratr_op op, bool valid, enum mlxsw_reg_ratr_type type, u32 adjacency_index, u16 egress_rif) { MLXSW_REG_ZERO(ratr, payload); mlxsw_reg_ratr_op_set(payload, op); mlxsw_reg_ratr_v_set(payload, valid); mlxsw_reg_ratr_type_set(payload, type); mlxsw_reg_ratr_adjacency_index_low_set(payload, adjacency_index); mlxsw_reg_ratr_adjacency_index_high_set(payload, adjacency_index >> 16); mlxsw_reg_ratr_egress_router_interface_set(payload, egress_rif); } static inline void mlxsw_reg_ratr_eth_entry_pack(char *payload, const char *dest_mac) { mlxsw_reg_ratr_eth_destination_mac_memcpy_to(payload, dest_mac); } static inline void mlxsw_reg_ratr_ipip4_entry_pack(char *payload, u32 ipv4_udip) { mlxsw_reg_ratr_ipip_type_set(payload, MLXSW_REG_RATR_IPIP_TYPE_IPV4); mlxsw_reg_ratr_ipip_ipv4_udip_set(payload, ipv4_udip); } static inline void mlxsw_reg_ratr_ipip6_entry_pack(char *payload, u32 ipv6_ptr) { mlxsw_reg_ratr_ipip_type_set(payload, MLXSW_REG_RATR_IPIP_TYPE_IPV6); mlxsw_reg_ratr_ipip_ipv6_ptr_set(payload, ipv6_ptr); } static inline void mlxsw_reg_ratr_counter_pack(char *payload, u64 counter_index, bool counter_enable) { enum mlxsw_reg_flow_counter_set_type set_type; if (counter_enable) set_type = MLXSW_REG_FLOW_COUNTER_SET_TYPE_PACKETS_BYTES; else set_type = MLXSW_REG_FLOW_COUNTER_SET_TYPE_NO_COUNT; mlxsw_reg_ratr_counter_index_set(payload, counter_index); mlxsw_reg_ratr_counter_set_type_set(payload, set_type); } /* RDPM - Router DSCP to Priority Mapping * -------------------------------------- * Controls the mapping from DSCP field to switch priority on routed packets */ #define MLXSW_REG_RDPM_ID 0x8009 #define MLXSW_REG_RDPM_BASE_LEN 0x00 #define MLXSW_REG_RDPM_DSCP_ENTRY_REC_LEN 0x01 #define MLXSW_REG_RDPM_DSCP_ENTRY_REC_MAX_COUNT 64 #define MLXSW_REG_RDPM_LEN 0x40 #define MLXSW_REG_RDPM_LAST_ENTRY (MLXSW_REG_RDPM_BASE_LEN + \ MLXSW_REG_RDPM_LEN - \ MLXSW_REG_RDPM_DSCP_ENTRY_REC_LEN) MLXSW_REG_DEFINE(rdpm, MLXSW_REG_RDPM_ID, MLXSW_REG_RDPM_LEN); /* reg_dscp_entry_e * Enable update of the specific entry * Access: Index */ MLXSW_ITEM8_INDEXED(reg, rdpm, dscp_entry_e, MLXSW_REG_RDPM_LAST_ENTRY, 7, 1, -MLXSW_REG_RDPM_DSCP_ENTRY_REC_LEN, 0x00, false); /* reg_dscp_entry_prio * Switch Priority * Access: RW */ MLXSW_ITEM8_INDEXED(reg, rdpm, dscp_entry_prio, MLXSW_REG_RDPM_LAST_ENTRY, 0, 4, -MLXSW_REG_RDPM_DSCP_ENTRY_REC_LEN, 0x00, false); static inline void mlxsw_reg_rdpm_pack(char *payload, unsigned short index, u8 prio) { mlxsw_reg_rdpm_dscp_entry_e_set(payload, index, 1); mlxsw_reg_rdpm_dscp_entry_prio_set(payload, index, prio); } /* RICNT - Router Interface Counter Register * ----------------------------------------- * The RICNT register retrieves per port performance counters */ #define MLXSW_REG_RICNT_ID 0x800B #define MLXSW_REG_RICNT_LEN 0x100 MLXSW_REG_DEFINE(ricnt, MLXSW_REG_RICNT_ID, MLXSW_REG_RICNT_LEN); /* reg_ricnt_counter_index * Counter index * Access: RW */ MLXSW_ITEM32(reg, ricnt, counter_index, 0x04, 0, 24); enum mlxsw_reg_ricnt_counter_set_type { /* No Count. */ MLXSW_REG_RICNT_COUNTER_SET_TYPE_NO_COUNT = 0x00, /* Basic. Used for router interfaces, counting the following: * - Error and Discard counters. * - Unicast, Multicast and Broadcast counters. Sharing the * same set of counters for the different type of traffic * (IPv4, IPv6 and mpls). */ MLXSW_REG_RICNT_COUNTER_SET_TYPE_BASIC = 0x09, }; /* reg_ricnt_counter_set_type * Counter Set Type for router interface counter * Access: RW */ MLXSW_ITEM32(reg, ricnt, counter_set_type, 0x04, 24, 8); enum mlxsw_reg_ricnt_opcode { /* Nop. Supported only for read access*/ MLXSW_REG_RICNT_OPCODE_NOP = 0x00, /* Clear. Setting the clr bit will reset the counter value for * all counters of the specified Router Interface. */ MLXSW_REG_RICNT_OPCODE_CLEAR = 0x08, }; /* reg_ricnt_opcode * Opcode * Access: RW */ MLXSW_ITEM32(reg, ricnt, op, 0x00, 28, 4); /* reg_ricnt_good_unicast_packets * good unicast packets. * Access: RW */ MLXSW_ITEM64(reg, ricnt, good_unicast_packets, 0x08, 0, 64); /* reg_ricnt_good_multicast_packets * good multicast packets. * Access: RW */ MLXSW_ITEM64(reg, ricnt, good_multicast_packets, 0x10, 0, 64); /* reg_ricnt_good_broadcast_packets * good broadcast packets * Access: RW */ MLXSW_ITEM64(reg, ricnt, good_broadcast_packets, 0x18, 0, 64); /* reg_ricnt_good_unicast_bytes * A count of L3 data and padding octets not including L2 headers * for good unicast frames. * Access: RW */ MLXSW_ITEM64(reg, ricnt, good_unicast_bytes, 0x20, 0, 64); /* reg_ricnt_good_multicast_bytes * A count of L3 data and padding octets not including L2 headers * for good multicast frames. * Access: RW */ MLXSW_ITEM64(reg, ricnt, good_multicast_bytes, 0x28, 0, 64); /* reg_ritr_good_broadcast_bytes * A count of L3 data and padding octets not including L2 headers * for good broadcast frames. * Access: RW */ MLXSW_ITEM64(reg, ricnt, good_broadcast_bytes, 0x30, 0, 64); /* reg_ricnt_error_packets * A count of errored frames that do not pass the router checks. * Access: RW */ MLXSW_ITEM64(reg, ricnt, error_packets, 0x38, 0, 64); /* reg_ricnt_discrad_packets * A count of non-errored frames that do not pass the router checks. * Access: RW */ MLXSW_ITEM64(reg, ricnt, discard_packets, 0x40, 0, 64); /* reg_ricnt_error_bytes * A count of L3 data and padding octets not including L2 headers * for errored frames. * Access: RW */ MLXSW_ITEM64(reg, ricnt, error_bytes, 0x48, 0, 64); /* reg_ricnt_discard_bytes * A count of L3 data and padding octets not including L2 headers * for non-errored frames that do not pass the router checks. * Access: RW */ MLXSW_ITEM64(reg, ricnt, discard_bytes, 0x50, 0, 64); static inline void mlxsw_reg_ricnt_pack(char *payload, u32 index, enum mlxsw_reg_ricnt_opcode op) { MLXSW_REG_ZERO(ricnt, payload); mlxsw_reg_ricnt_op_set(payload, op); mlxsw_reg_ricnt_counter_index_set(payload, index); mlxsw_reg_ricnt_counter_set_type_set(payload, MLXSW_REG_RICNT_COUNTER_SET_TYPE_BASIC); } /* RRCR - Router Rules Copy Register Layout * ---------------------------------------- * This register is used for moving and copying route entry rules. */ #define MLXSW_REG_RRCR_ID 0x800F #define MLXSW_REG_RRCR_LEN 0x24 MLXSW_REG_DEFINE(rrcr, MLXSW_REG_RRCR_ID, MLXSW_REG_RRCR_LEN); enum mlxsw_reg_rrcr_op { /* Move rules */ MLXSW_REG_RRCR_OP_MOVE, /* Copy rules */ MLXSW_REG_RRCR_OP_COPY, }; /* reg_rrcr_op * Access: WO */ MLXSW_ITEM32(reg, rrcr, op, 0x00, 28, 4); /* reg_rrcr_offset * Offset within the region from which to copy/move. * Access: Index */ MLXSW_ITEM32(reg, rrcr, offset, 0x00, 0, 16); /* reg_rrcr_size * The number of rules to copy/move. * Access: WO */ MLXSW_ITEM32(reg, rrcr, size, 0x04, 0, 16); /* reg_rrcr_table_id * Identifier of the table on which to perform the operation. Encoding is the * same as in RTAR.key_type * Access: Index */ MLXSW_ITEM32(reg, rrcr, table_id, 0x10, 0, 4); /* reg_rrcr_dest_offset * Offset within the region to which to copy/move * Access: Index */ MLXSW_ITEM32(reg, rrcr, dest_offset, 0x20, 0, 16); static inline void mlxsw_reg_rrcr_pack(char *payload, enum mlxsw_reg_rrcr_op op, u16 offset, u16 size, enum mlxsw_reg_rtar_key_type table_id, u16 dest_offset) { MLXSW_REG_ZERO(rrcr, payload); mlxsw_reg_rrcr_op_set(payload, op); mlxsw_reg_rrcr_offset_set(payload, offset); mlxsw_reg_rrcr_size_set(payload, size); mlxsw_reg_rrcr_table_id_set(payload, table_id); mlxsw_reg_rrcr_dest_offset_set(payload, dest_offset); } /* RALTA - Router Algorithmic LPM Tree Allocation Register * ------------------------------------------------------- * RALTA is used to allocate the LPM trees of the SHSPM method. */ #define MLXSW_REG_RALTA_ID 0x8010 #define MLXSW_REG_RALTA_LEN 0x04 MLXSW_REG_DEFINE(ralta, MLXSW_REG_RALTA_ID, MLXSW_REG_RALTA_LEN); /* reg_ralta_op * opcode (valid for Write, must be 0 on Read) * 0 - allocate a tree * 1 - deallocate a tree * Access: OP */ MLXSW_ITEM32(reg, ralta, op, 0x00, 28, 2); enum mlxsw_reg_ralxx_protocol { MLXSW_REG_RALXX_PROTOCOL_IPV4, MLXSW_REG_RALXX_PROTOCOL_IPV6, }; /* reg_ralta_protocol * Protocol. * Deallocation opcode: Reserved. * Access: RW */ MLXSW_ITEM32(reg, ralta, protocol, 0x00, 24, 4); /* reg_ralta_tree_id * An identifier (numbered from 1..cap_shspm_max_trees-1) representing * the tree identifier (managed by software). * Note that tree_id 0 is allocated for a default-route tree. * Access: Index */ MLXSW_ITEM32(reg, ralta, tree_id, 0x00, 0, 8); static inline void mlxsw_reg_ralta_pack(char *payload, bool alloc, enum mlxsw_reg_ralxx_protocol protocol, u8 tree_id) { MLXSW_REG_ZERO(ralta, payload); mlxsw_reg_ralta_op_set(payload, !alloc); mlxsw_reg_ralta_protocol_set(payload, protocol); mlxsw_reg_ralta_tree_id_set(payload, tree_id); } /* RALST - Router Algorithmic LPM Structure Tree Register * ------------------------------------------------------ * RALST is used to set and query the structure of an LPM tree. * The structure of the tree must be sorted as a sorted binary tree, while * each node is a bin that is tagged as the length of the prefixes the lookup * will refer to. Therefore, bin X refers to a set of entries with prefixes * of X bits to match with the destination address. The bin 0 indicates * the default action, when there is no match of any prefix. */ #define MLXSW_REG_RALST_ID 0x8011 #define MLXSW_REG_RALST_LEN 0x104 MLXSW_REG_DEFINE(ralst, MLXSW_REG_RALST_ID, MLXSW_REG_RALST_LEN); /* reg_ralst_root_bin * The bin number of the root bin. * 064 the entry consumes * two entries in the physical HW table. * Access: Index */ MLXSW_ITEM32(reg, ralue, prefix_len, 0x08, 0, 8); /* reg_ralue_dip* * The prefix of the route or of the marker that the object of the LPM * is compared with. The most significant bits of the dip are the prefix. * The least significant bits must be '0' if the prefix_len is smaller * than 128 for IPv6 or smaller than 32 for IPv4. * IPv4 address uses bits dip[31:0] and bits dip[127:32] are reserved. * Access: Index */ MLXSW_ITEM32(reg, ralue, dip4, 0x18, 0, 32); MLXSW_ITEM_BUF(reg, ralue, dip6, 0x0C, 16); enum mlxsw_reg_ralue_entry_type { MLXSW_REG_RALUE_ENTRY_TYPE_MARKER_ENTRY = 1, MLXSW_REG_RALUE_ENTRY_TYPE_ROUTE_ENTRY = 2, MLXSW_REG_RALUE_ENTRY_TYPE_MARKER_AND_ROUTE_ENTRY = 3, }; /* reg_ralue_entry_type * Entry type. * Note - for Marker entries, the action_type and action fields are reserved. * Access: RW */ MLXSW_ITEM32(reg, ralue, entry_type, 0x1C, 30, 2); /* reg_ralue_bmp_len * The best match prefix length in the case that there is no match for * longer prefixes. * If (entry_type != MARKER_ENTRY), bmp_len must be equal to prefix_len * Note for any update operation with entry_type modification this * field must be set. * Access: RW */ MLXSW_ITEM32(reg, ralue, bmp_len, 0x1C, 16, 8); enum mlxsw_reg_ralue_action_type { MLXSW_REG_RALUE_ACTION_TYPE_REMOTE, MLXSW_REG_RALUE_ACTION_TYPE_LOCAL, MLXSW_REG_RALUE_ACTION_TYPE_IP2ME, }; /* reg_ralue_action_type * Action Type * Indicates how the IP address is connected. * It can be connected to a local subnet through local_erif or can be * on a remote subnet connected through a next-hop router, * or transmitted to the CPU. * Reserved when entry_type = MARKER_ENTRY * Access: RW */ MLXSW_ITEM32(reg, ralue, action_type, 0x1C, 0, 2); enum mlxsw_reg_ralue_trap_action { MLXSW_REG_RALUE_TRAP_ACTION_NOP, MLXSW_REG_RALUE_TRAP_ACTION_TRAP, MLXSW_REG_RALUE_TRAP_ACTION_MIRROR_TO_CPU, MLXSW_REG_RALUE_TRAP_ACTION_MIRROR, MLXSW_REG_RALUE_TRAP_ACTION_DISCARD_ERROR, }; /* reg_ralue_trap_action * Trap action. * For IP2ME action, only NOP and MIRROR are possible. * Access: RW */ MLXSW_ITEM32(reg, ralue, trap_action, 0x20, 28, 4); /* reg_ralue_trap_id * Trap ID to be reported to CPU. * Trap ID is RTR_INGRESS0 or RTR_INGRESS1. * For trap_action of NOP, MIRROR and DISCARD_ERROR, trap_id is reserved. * Access: RW */ MLXSW_ITEM32(reg, ralue, trap_id, 0x20, 0, 9); /* reg_ralue_adjacency_index * Points to the first entry of the group-based ECMP. * Only relevant in case of REMOTE action. * Access: RW */ MLXSW_ITEM32(reg, ralue, adjacency_index, 0x24, 0, 24); /* reg_ralue_ecmp_size * Amount of sequential entries starting * from the adjacency_index (the number of ECMPs). * The valid range is 1-64, 512, 1024, 2048 and 4096. * Reserved when trap_action is TRAP or DISCARD_ERROR. * Only relevant in case of REMOTE action. * Access: RW */ MLXSW_ITEM32(reg, ralue, ecmp_size, 0x28, 0, 13); /* reg_ralue_local_erif * Egress Router Interface. * Only relevant in case of LOCAL action. * Access: RW */ MLXSW_ITEM32(reg, ralue, local_erif, 0x24, 0, 16); /* reg_ralue_ip2me_v * Valid bit for the tunnel_ptr field. * If valid = 0 then trap to CPU as IP2ME trap ID. * If valid = 1 and the packet format allows NVE or IPinIP tunnel * decapsulation then tunnel decapsulation is done. * If valid = 1 and packet format does not allow NVE or IPinIP tunnel * decapsulation then trap as IP2ME trap ID. * Only relevant in case of IP2ME action. * Access: RW */ MLXSW_ITEM32(reg, ralue, ip2me_v, 0x24, 31, 1); /* reg_ralue_ip2me_tunnel_ptr * Tunnel Pointer for NVE or IPinIP tunnel decapsulation. * For Spectrum, pointer to KVD Linear. * Only relevant in case of IP2ME action. * Access: RW */ MLXSW_ITEM32(reg, ralue, ip2me_tunnel_ptr, 0x24, 0, 24); static inline void mlxsw_reg_ralue_pack(char *payload, enum mlxsw_reg_ralxx_protocol protocol, enum mlxsw_reg_ralue_op op, u16 virtual_router, u8 prefix_len) { MLXSW_REG_ZERO(ralue, payload); mlxsw_reg_ralue_protocol_set(payload, protocol); mlxsw_reg_ralue_op_set(payload, op); mlxsw_reg_ralue_virtual_router_set(payload, virtual_router); mlxsw_reg_ralue_prefix_len_set(payload, prefix_len); mlxsw_reg_ralue_entry_type_set(payload, MLXSW_REG_RALUE_ENTRY_TYPE_ROUTE_ENTRY); mlxsw_reg_ralue_bmp_len_set(payload, prefix_len); } static inline void mlxsw_reg_ralue_pack4(char *payload, enum mlxsw_reg_ralxx_protocol protocol, enum mlxsw_reg_ralue_op op, u16 virtual_router, u8 prefix_len, u32 dip) { mlxsw_reg_ralue_pack(payload, protocol, op, virtual_router, prefix_len); mlxsw_reg_ralue_dip4_set(payload, dip); } static inline void mlxsw_reg_ralue_pack6(char *payload, enum mlxsw_reg_ralxx_protocol protocol, enum mlxsw_reg_ralue_op op, u16 virtual_router, u8 prefix_len, const void *dip) { mlxsw_reg_ralue_pack(payload, protocol, op, virtual_router, prefix_len); mlxsw_reg_ralue_dip6_memcpy_to(payload, dip); } static inline void mlxsw_reg_ralue_act_remote_pack(char *payload, enum mlxsw_reg_ralue_trap_action trap_action, u16 trap_id, u32 adjacency_index, u16 ecmp_size) { mlxsw_reg_ralue_action_type_set(payload, MLXSW_REG_RALUE_ACTION_TYPE_REMOTE); mlxsw_reg_ralue_trap_action_set(payload, trap_action); mlxsw_reg_ralue_trap_id_set(payload, trap_id); mlxsw_reg_ralue_adjacency_index_set(payload, adjacency_index); mlxsw_reg_ralue_ecmp_size_set(payload, ecmp_size); } static inline void mlxsw_reg_ralue_act_local_pack(char *payload, enum mlxsw_reg_ralue_trap_action trap_action, u16 trap_id, u16 local_erif) { mlxsw_reg_ralue_action_type_set(payload, MLXSW_REG_RALUE_ACTION_TYPE_LOCAL); mlxsw_reg_ralue_trap_action_set(payload, trap_action); mlxsw_reg_ralue_trap_id_set(payload, trap_id); mlxsw_reg_ralue_local_erif_set(payload, local_erif); } static inline void mlxsw_reg_ralue_act_ip2me_pack(char *payload) { mlxsw_reg_ralue_action_type_set(payload, MLXSW_REG_RALUE_ACTION_TYPE_IP2ME); } static inline void mlxsw_reg_ralue_act_ip2me_tun_pack(char *payload, u32 tunnel_ptr) { mlxsw_reg_ralue_action_type_set(payload, MLXSW_REG_RALUE_ACTION_TYPE_IP2ME); mlxsw_reg_ralue_ip2me_v_set(payload, 1); mlxsw_reg_ralue_ip2me_tunnel_ptr_set(payload, tunnel_ptr); } /* RAUHT - Router Algorithmic LPM Unicast Host Table Register * ---------------------------------------------------------- * The RAUHT register is used to configure and query the Unicast Host table in * devices that implement the Algorithmic LPM. */ #define MLXSW_REG_RAUHT_ID 0x8014 #define MLXSW_REG_RAUHT_LEN 0x74 MLXSW_REG_DEFINE(rauht, MLXSW_REG_RAUHT_ID, MLXSW_REG_RAUHT_LEN); enum mlxsw_reg_rauht_type { MLXSW_REG_RAUHT_TYPE_IPV4, MLXSW_REG_RAUHT_TYPE_IPV6, }; /* reg_rauht_type * Access: Index */ MLXSW_ITEM32(reg, rauht, type, 0x00, 24, 2); enum mlxsw_reg_rauht_op { MLXSW_REG_RAUHT_OP_QUERY_READ = 0, /* Read operation */ MLXSW_REG_RAUHT_OP_QUERY_CLEAR_ON_READ = 1, /* Clear on read operation. Used to read entry and clear * activity bit. */ MLXSW_REG_RAUHT_OP_WRITE_ADD = 0, /* Add. Used to write a new entry to the table. All R/W fields are * relevant for new entry. Activity bit is set for new entries. */ MLXSW_REG_RAUHT_OP_WRITE_UPDATE = 1, /* Update action. Used to update an existing route entry and * only update the following fields: * trap_action, trap_id, mac, counter_set_type, counter_index */ MLXSW_REG_RAUHT_OP_WRITE_CLEAR_ACTIVITY = 2, /* Clear activity. A bit is cleared for the entry. */ MLXSW_REG_RAUHT_OP_WRITE_DELETE = 3, /* Delete entry */ MLXSW_REG_RAUHT_OP_WRITE_DELETE_ALL = 4, /* Delete all host entries on a RIF. In this command, dip * field is reserved. */ }; /* reg_rauht_op * Access: OP */ MLXSW_ITEM32(reg, rauht, op, 0x00, 20, 3); /* reg_rauht_a * Activity. Set for new entries. Set if a packet lookup has hit on * the specific entry. * To clear the a bit, use "clear activity" op. * Enabled by activity_dis in RGCR * Access: RO */ MLXSW_ITEM32(reg, rauht, a, 0x00, 16, 1); /* reg_rauht_rif * Router Interface * Access: Index */ MLXSW_ITEM32(reg, rauht, rif, 0x00, 0, 16); /* reg_rauht_dip* * Destination address. * Access: Index */ MLXSW_ITEM32(reg, rauht, dip4, 0x1C, 0x0, 32); MLXSW_ITEM_BUF(reg, rauht, dip6, 0x10, 16); enum mlxsw_reg_rauht_trap_action { MLXSW_REG_RAUHT_TRAP_ACTION_NOP, MLXSW_REG_RAUHT_TRAP_ACTION_TRAP, MLXSW_REG_RAUHT_TRAP_ACTION_MIRROR_TO_CPU, MLXSW_REG_RAUHT_TRAP_ACTION_MIRROR, MLXSW_REG_RAUHT_TRAP_ACTION_DISCARD_ERRORS, }; /* reg_rauht_trap_action * Access: RW */ MLXSW_ITEM32(reg, rauht, trap_action, 0x60, 28, 4); enum mlxsw_reg_rauht_trap_id { MLXSW_REG_RAUHT_TRAP_ID_RTR_EGRESS0, MLXSW_REG_RAUHT_TRAP_ID_RTR_EGRESS1, }; /* reg_rauht_trap_id * Trap ID to be reported to CPU. * Trap-ID is RTR_EGRESS0 or RTR_EGRESS1. * For trap_action of NOP, MIRROR and DISCARD_ERROR, * trap_id is reserved. * Access: RW */ MLXSW_ITEM32(reg, rauht, trap_id, 0x60, 0, 9); /* reg_rauht_counter_set_type * Counter set type for flow counters * Access: RW */ MLXSW_ITEM32(reg, rauht, counter_set_type, 0x68, 24, 8); /* reg_rauht_counter_index * Counter index for flow counters * Access: RW */ MLXSW_ITEM32(reg, rauht, counter_index, 0x68, 0, 24); /* reg_rauht_mac * MAC address. * Access: RW */ MLXSW_ITEM_BUF(reg, rauht, mac, 0x6E, 6); static inline void mlxsw_reg_rauht_pack(char *payload, enum mlxsw_reg_rauht_op op, u16 rif, const char *mac) { MLXSW_REG_ZERO(rauht, payload); mlxsw_reg_rauht_op_set(payload, op); mlxsw_reg_rauht_rif_set(payload, rif); mlxsw_reg_rauht_mac_memcpy_to(payload, mac); } static inline void mlxsw_reg_rauht_pack4(char *payload, enum mlxsw_reg_rauht_op op, u16 rif, const char *mac, u32 dip) { mlxsw_reg_rauht_pack(payload, op, rif, mac); mlxsw_reg_rauht_dip4_set(payload, dip); } static inline void mlxsw_reg_rauht_pack6(char *payload, enum mlxsw_reg_rauht_op op, u16 rif, const char *mac, const char *dip) { mlxsw_reg_rauht_pack(payload, op, rif, mac); mlxsw_reg_rauht_type_set(payload, MLXSW_REG_RAUHT_TYPE_IPV6); mlxsw_reg_rauht_dip6_memcpy_to(payload, dip); } static inline void mlxsw_reg_rauht_pack_counter(char *payload, u64 counter_index) { mlxsw_reg_rauht_counter_index_set(payload, counter_index); mlxsw_reg_rauht_counter_set_type_set(payload, MLXSW_REG_FLOW_COUNTER_SET_TYPE_PACKETS_BYTES); } /* RALEU - Router Algorithmic LPM ECMP Update Register * --------------------------------------------------- * The register enables updating the ECMP section in the action for multiple * LPM Unicast entries in a single operation. The update is executed to * all entries of a {virtual router, protocol} tuple using the same ECMP group. */ #define MLXSW_REG_RALEU_ID 0x8015 #define MLXSW_REG_RALEU_LEN 0x28 MLXSW_REG_DEFINE(raleu, MLXSW_REG_RALEU_ID, MLXSW_REG_RALEU_LEN); /* reg_raleu_protocol * Protocol. * Access: Index */ MLXSW_ITEM32(reg, raleu, protocol, 0x00, 24, 4); /* reg_raleu_virtual_router * Virtual Router ID * Range is 0..cap_max_virtual_routers-1 * Access: Index */ MLXSW_ITEM32(reg, raleu, virtual_router, 0x00, 0, 16); /* reg_raleu_adjacency_index * Adjacency Index used for matching on the existing entries. * Access: Index */ MLXSW_ITEM32(reg, raleu, adjacency_index, 0x10, 0, 24); /* reg_raleu_ecmp_size * ECMP Size used for matching on the existing entries. * Access: Index */ MLXSW_ITEM32(reg, raleu, ecmp_size, 0x14, 0, 13); /* reg_raleu_new_adjacency_index * New Adjacency Index. * Access: WO */ MLXSW_ITEM32(reg, raleu, new_adjacency_index, 0x20, 0, 24); /* reg_raleu_new_ecmp_size * New ECMP Size. * Access: WO */ MLXSW_ITEM32(reg, raleu, new_ecmp_size, 0x24, 0, 13); static inline void mlxsw_reg_raleu_pack(char *payload, enum mlxsw_reg_ralxx_protocol protocol, u16 virtual_router, u32 adjacency_index, u16 ecmp_size, u32 new_adjacency_index, u16 new_ecmp_size) { MLXSW_REG_ZERO(raleu, payload); mlxsw_reg_raleu_protocol_set(payload, protocol); mlxsw_reg_raleu_virtual_router_set(payload, virtual_router); mlxsw_reg_raleu_adjacency_index_set(payload, adjacency_index); mlxsw_reg_raleu_ecmp_size_set(payload, ecmp_size); mlxsw_reg_raleu_new_adjacency_index_set(payload, new_adjacency_index); mlxsw_reg_raleu_new_ecmp_size_set(payload, new_ecmp_size); } /* RAUHTD - Router Algorithmic LPM Unicast Host Table Dump Register * ---------------------------------------------------------------- * The RAUHTD register allows dumping entries from the Router Unicast Host * Table. For a given session an entry is dumped no more than one time. The * first RAUHTD access after reset is a new session. A session ends when the * num_rec response is smaller than num_rec request or for IPv4 when the * num_entries is smaller than 4. The clear activity affect the current session * or the last session if a new session has not started. */ #define MLXSW_REG_RAUHTD_ID 0x8018 #define MLXSW_REG_RAUHTD_BASE_LEN 0x20 #define MLXSW_REG_RAUHTD_REC_LEN 0x20 #define MLXSW_REG_RAUHTD_REC_MAX_NUM 32 #define MLXSW_REG_RAUHTD_LEN (MLXSW_REG_RAUHTD_BASE_LEN + \ MLXSW_REG_RAUHTD_REC_MAX_NUM * MLXSW_REG_RAUHTD_REC_LEN) #define MLXSW_REG_RAUHTD_IPV4_ENT_PER_REC 4 MLXSW_REG_DEFINE(rauhtd, MLXSW_REG_RAUHTD_ID, MLXSW_REG_RAUHTD_LEN); #define MLXSW_REG_RAUHTD_FILTER_A BIT(0) #define MLXSW_REG_RAUHTD_FILTER_RIF BIT(3) /* reg_rauhtd_filter_fields * if a bit is '0' then the relevant field is ignored and dump is done * regardless of the field value * Bit0 - filter by activity: entry_a * Bit3 - filter by entry rip: entry_rif * Access: Index */ MLXSW_ITEM32(reg, rauhtd, filter_fields, 0x00, 0, 8); enum mlxsw_reg_rauhtd_op { MLXSW_REG_RAUHTD_OP_DUMP, MLXSW_REG_RAUHTD_OP_DUMP_AND_CLEAR, }; /* reg_rauhtd_op * Access: OP */ MLXSW_ITEM32(reg, rauhtd, op, 0x04, 24, 2); /* reg_rauhtd_num_rec * At request: number of records requested * At response: number of records dumped * For IPv4, each record has 4 entries at request and up to 4 entries * at response * Range is 0..MLXSW_REG_RAUHTD_REC_MAX_NUM * Access: Index */ MLXSW_ITEM32(reg, rauhtd, num_rec, 0x04, 0, 8); /* reg_rauhtd_entry_a * Dump only if activity has value of entry_a * Reserved if filter_fields bit0 is '0' * Access: Index */ MLXSW_ITEM32(reg, rauhtd, entry_a, 0x08, 16, 1); enum mlxsw_reg_rauhtd_type { MLXSW_REG_RAUHTD_TYPE_IPV4, MLXSW_REG_RAUHTD_TYPE_IPV6, }; /* reg_rauhtd_type * Dump only if record type is: * 0 - IPv4 * 1 - IPv6 * Access: Index */ MLXSW_ITEM32(reg, rauhtd, type, 0x08, 0, 4); /* reg_rauhtd_entry_rif * Dump only if RIF has value of entry_rif * Reserved if filter_fields bit3 is '0' * Access: Index */ MLXSW_ITEM32(reg, rauhtd, entry_rif, 0x0C, 0, 16); static inline void mlxsw_reg_rauhtd_pack(char *payload, enum mlxsw_reg_rauhtd_type type) { MLXSW_REG_ZERO(rauhtd, payload); mlxsw_reg_rauhtd_filter_fields_set(payload, MLXSW_REG_RAUHTD_FILTER_A); mlxsw_reg_rauhtd_op_set(payload, MLXSW_REG_RAUHTD_OP_DUMP_AND_CLEAR); mlxsw_reg_rauhtd_num_rec_set(payload, MLXSW_REG_RAUHTD_REC_MAX_NUM); mlxsw_reg_rauhtd_entry_a_set(payload, 1); mlxsw_reg_rauhtd_type_set(payload, type); } /* reg_rauhtd_ipv4_rec_num_entries * Number of valid entries in this record: * 0 - 1 valid entry * 1 - 2 valid entries * 2 - 3 valid entries * 3 - 4 valid entries * Access: RO */ MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv4_rec_num_entries, MLXSW_REG_RAUHTD_BASE_LEN, 28, 2, MLXSW_REG_RAUHTD_REC_LEN, 0x00, false); /* reg_rauhtd_rec_type * Record type. * 0 - IPv4 * 1 - IPv6 * Access: RO */ MLXSW_ITEM32_INDEXED(reg, rauhtd, rec_type, MLXSW_REG_RAUHTD_BASE_LEN, 24, 2, MLXSW_REG_RAUHTD_REC_LEN, 0x00, false); #define MLXSW_REG_RAUHTD_IPV4_ENT_LEN 0x8 /* reg_rauhtd_ipv4_ent_a * Activity. Set for new entries. Set if a packet lookup has hit on the * specific entry. * Access: RO */ MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv4_ent_a, MLXSW_REG_RAUHTD_BASE_LEN, 16, 1, MLXSW_REG_RAUHTD_IPV4_ENT_LEN, 0x00, false); /* reg_rauhtd_ipv4_ent_rif * Router interface. * Access: RO */ MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv4_ent_rif, MLXSW_REG_RAUHTD_BASE_LEN, 0, 16, MLXSW_REG_RAUHTD_IPV4_ENT_LEN, 0x00, false); /* reg_rauhtd_ipv4_ent_dip * Destination IPv4 address. * Access: RO */ MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv4_ent_dip, MLXSW_REG_RAUHTD_BASE_LEN, 0, 32, MLXSW_REG_RAUHTD_IPV4_ENT_LEN, 0x04, false); #define MLXSW_REG_RAUHTD_IPV6_ENT_LEN 0x20 /* reg_rauhtd_ipv6_ent_a * Activity. Set for new entries. Set if a packet lookup has hit on the * specific entry. * Access: RO */ MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv6_ent_a, MLXSW_REG_RAUHTD_BASE_LEN, 16, 1, MLXSW_REG_RAUHTD_IPV6_ENT_LEN, 0x00, false); /* reg_rauhtd_ipv6_ent_rif * Router interface. * Access: RO */ MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv6_ent_rif, MLXSW_REG_RAUHTD_BASE_LEN, 0, 16, MLXSW_REG_RAUHTD_IPV6_ENT_LEN, 0x00, false); /* reg_rauhtd_ipv6_ent_dip * Destination IPv6 address. * Access: RO */ MLXSW_ITEM_BUF_INDEXED(reg, rauhtd, ipv6_ent_dip, MLXSW_REG_RAUHTD_BASE_LEN, 16, MLXSW_REG_RAUHTD_IPV6_ENT_LEN, 0x10); static inline void mlxsw_reg_rauhtd_ent_ipv4_unpack(char *payload, int ent_index, u16 *p_rif, u32 *p_dip) { *p_rif = mlxsw_reg_rauhtd_ipv4_ent_rif_get(payload, ent_index); *p_dip = mlxsw_reg_rauhtd_ipv4_ent_dip_get(payload, ent_index); } static inline void mlxsw_reg_rauhtd_ent_ipv6_unpack(char *payload, int rec_index, u16 *p_rif, char *p_dip) { *p_rif = mlxsw_reg_rauhtd_ipv6_ent_rif_get(payload, rec_index); mlxsw_reg_rauhtd_ipv6_ent_dip_memcpy_from(payload, rec_index, p_dip); } /* RTDP - Routing Tunnel Decap Properties Register * ----------------------------------------------- * The RTDP register is used for configuring the tunnel decap properties of NVE * and IPinIP. */ #define MLXSW_REG_RTDP_ID 0x8020 #define MLXSW_REG_RTDP_LEN 0x44 MLXSW_REG_DEFINE(rtdp, MLXSW_REG_RTDP_ID, MLXSW_REG_RTDP_LEN); enum mlxsw_reg_rtdp_type { MLXSW_REG_RTDP_TYPE_NVE, MLXSW_REG_RTDP_TYPE_IPIP, }; /* reg_rtdp_type * Type of the RTDP entry as per enum mlxsw_reg_rtdp_type. * Access: RW */ MLXSW_ITEM32(reg, rtdp, type, 0x00, 28, 4); /* reg_rtdp_tunnel_index * Index to the Decap entry. * For Spectrum, Index to KVD Linear. * Access: Index */ MLXSW_ITEM32(reg, rtdp, tunnel_index, 0x00, 0, 24); /* reg_rtdp_egress_router_interface * Underlay egress router interface. * Valid range is from 0 to cap_max_router_interfaces - 1 * Access: RW */ MLXSW_ITEM32(reg, rtdp, egress_router_interface, 0x40, 0, 16); /* IPinIP */ /* reg_rtdp_ipip_irif * Ingress Router Interface for the overlay router * Access: RW */ MLXSW_ITEM32(reg, rtdp, ipip_irif, 0x04, 16, 16); enum mlxsw_reg_rtdp_ipip_sip_check { /* No sip checks. */ MLXSW_REG_RTDP_IPIP_SIP_CHECK_NO, /* Filter packet if underlay is not IPv4 or if underlay SIP does not * equal ipv4_usip. */ MLXSW_REG_RTDP_IPIP_SIP_CHECK_FILTER_IPV4, /* Filter packet if underlay is not IPv6 or if underlay SIP does not * equal ipv6_usip. */ MLXSW_REG_RTDP_IPIP_SIP_CHECK_FILTER_IPV6 = 3, }; /* reg_rtdp_ipip_sip_check * SIP check to perform. If decapsulation failed due to these configurations * then trap_id is IPIP_DECAP_ERROR. * Access: RW */ MLXSW_ITEM32(reg, rtdp, ipip_sip_check, 0x04, 0, 3); /* If set, allow decapsulation of IPinIP (without GRE). */ #define MLXSW_REG_RTDP_IPIP_TYPE_CHECK_ALLOW_IPIP BIT(0) /* If set, allow decapsulation of IPinGREinIP without a key. */ #define MLXSW_REG_RTDP_IPIP_TYPE_CHECK_ALLOW_GRE BIT(1) /* If set, allow decapsulation of IPinGREinIP with a key. */ #define MLXSW_REG_RTDP_IPIP_TYPE_CHECK_ALLOW_GRE_KEY BIT(2) /* reg_rtdp_ipip_type_check * Flags as per MLXSW_REG_RTDP_IPIP_TYPE_CHECK_*. If decapsulation failed due to * these configurations then trap_id is IPIP_DECAP_ERROR. * Access: RW */ MLXSW_ITEM32(reg, rtdp, ipip_type_check, 0x08, 24, 3); /* reg_rtdp_ipip_gre_key_check * Whether GRE key should be checked. When check is enabled: * - A packet received as IPinIP (without GRE) will always pass. * - A packet received as IPinGREinIP without a key will not pass the check. * - A packet received as IPinGREinIP with a key will pass the check only if the * key in the packet is equal to expected_gre_key. * If decapsulation failed due to GRE key then trap_id is IPIP_DECAP_ERROR. * Access: RW */ MLXSW_ITEM32(reg, rtdp, ipip_gre_key_check, 0x08, 23, 1); /* reg_rtdp_ipip_ipv4_usip * Underlay IPv4 address for ipv4 source address check. * Reserved when sip_check is not '1'. * Access: RW */ MLXSW_ITEM32(reg, rtdp, ipip_ipv4_usip, 0x0C, 0, 32); /* reg_rtdp_ipip_ipv6_usip_ptr * This field is valid when sip_check is "sipv6 check explicitly". This is a * pointer to the IPv6 DIP which is configured by RIPS. For Spectrum, the index * is to the KVD linear. * Reserved when sip_check is not MLXSW_REG_RTDP_IPIP_SIP_CHECK_FILTER_IPV6. * Access: RW */ MLXSW_ITEM32(reg, rtdp, ipip_ipv6_usip_ptr, 0x10, 0, 24); /* reg_rtdp_ipip_expected_gre_key * GRE key for checking. * Reserved when gre_key_check is '0'. * Access: RW */ MLXSW_ITEM32(reg, rtdp, ipip_expected_gre_key, 0x14, 0, 32); static inline void mlxsw_reg_rtdp_pack(char *payload, enum mlxsw_reg_rtdp_type type, u32 tunnel_index) { MLXSW_REG_ZERO(rtdp, payload); mlxsw_reg_rtdp_type_set(payload, type); mlxsw_reg_rtdp_tunnel_index_set(payload, tunnel_index); } static inline void mlxsw_reg_rtdp_ipip_pack(char *payload, u16 irif, enum mlxsw_reg_rtdp_ipip_sip_check sip_check, unsigned int type_check, bool gre_key_check, u32 expected_gre_key) { mlxsw_reg_rtdp_ipip_irif_set(payload, irif); mlxsw_reg_rtdp_ipip_sip_check_set(payload, sip_check); mlxsw_reg_rtdp_ipip_type_check_set(payload, type_check); mlxsw_reg_rtdp_ipip_gre_key_check_set(payload, gre_key_check); mlxsw_reg_rtdp_ipip_expected_gre_key_set(payload, expected_gre_key); } static inline void mlxsw_reg_rtdp_ipip4_pack(char *payload, u16 irif, enum mlxsw_reg_rtdp_ipip_sip_check sip_check, unsigned int type_check, bool gre_key_check, u32 ipv4_usip, u32 expected_gre_key) { mlxsw_reg_rtdp_ipip_pack(payload, irif, sip_check, type_check, gre_key_check, expected_gre_key); mlxsw_reg_rtdp_ipip_ipv4_usip_set(payload, ipv4_usip); } static inline void mlxsw_reg_rtdp_ipip6_pack(char *payload, u16 irif, enum mlxsw_reg_rtdp_ipip_sip_check sip_check, unsigned int type_check, bool gre_key_check, u32 ipv6_usip_ptr, u32 expected_gre_key) { mlxsw_reg_rtdp_ipip_pack(payload, irif, sip_check, type_check, gre_key_check, expected_gre_key); mlxsw_reg_rtdp_ipip_ipv6_usip_ptr_set(payload, ipv6_usip_ptr); } /* RIPS - Router IP version Six Register * ------------------------------------- * The RIPS register is used to store IPv6 addresses for use by the NVE and * IPinIP */ #define MLXSW_REG_RIPS_ID 0x8021 #define MLXSW_REG_RIPS_LEN 0x14 MLXSW_REG_DEFINE(rips, MLXSW_REG_RIPS_ID, MLXSW_REG_RIPS_LEN); /* reg_rips_index * Index to IPv6 address. * For Spectrum, the index is to the KVD linear. * Access: Index */ MLXSW_ITEM32(reg, rips, index, 0x00, 0, 24); /* reg_rips_ipv6 * IPv6 address * Access: RW */ MLXSW_ITEM_BUF(reg, rips, ipv6, 0x04, 16); static inline void mlxsw_reg_rips_pack(char *payload, u32 index, const struct in6_addr *ipv6) { MLXSW_REG_ZERO(rips, payload); mlxsw_reg_rips_index_set(payload, index); mlxsw_reg_rips_ipv6_memcpy_to(payload, (const char *)ipv6); } /* RATRAD - Router Adjacency Table Activity Dump Register * ------------------------------------------------------ * The RATRAD register is used to dump and optionally clear activity bits of * router adjacency table entries. */ #define MLXSW_REG_RATRAD_ID 0x8022 #define MLXSW_REG_RATRAD_LEN 0x210 MLXSW_REG_DEFINE(ratrad, MLXSW_REG_RATRAD_ID, MLXSW_REG_RATRAD_LEN); enum { /* Read activity */ MLXSW_REG_RATRAD_OP_READ_ACTIVITY, /* Read and clear activity */ MLXSW_REG_RATRAD_OP_READ_CLEAR_ACTIVITY, }; /* reg_ratrad_op * Access: Operation */ MLXSW_ITEM32(reg, ratrad, op, 0x00, 30, 2); /* reg_ratrad_ecmp_size * ecmp_size is the amount of sequential entries from adjacency_index. Valid * ranges: * Spectrum-1: 32-64, 512, 1024, 2048, 4096 * Spectrum-2/3: 32-128, 256, 512, 1024, 2048, 4096 * Access: Index */ MLXSW_ITEM32(reg, ratrad, ecmp_size, 0x00, 0, 13); /* reg_ratrad_adjacency_index * Index into the adjacency table. * Access: Index */ MLXSW_ITEM32(reg, ratrad, adjacency_index, 0x04, 0, 24); /* reg_ratrad_activity_vector * Activity bit per adjacency index. * Bits higher than ecmp_size are reserved. * Access: RO */ MLXSW_ITEM_BIT_ARRAY(reg, ratrad, activity_vector, 0x10, 0x200, 1); static inline void mlxsw_reg_ratrad_pack(char *payload, u32 adjacency_index, u16 ecmp_size) { MLXSW_REG_ZERO(ratrad, payload); mlxsw_reg_ratrad_op_set(payload, MLXSW_REG_RATRAD_OP_READ_CLEAR_ACTIVITY); mlxsw_reg_ratrad_ecmp_size_set(payload, ecmp_size); mlxsw_reg_ratrad_adjacency_index_set(payload, adjacency_index); } /* RIGR-V2 - Router Interface Group Register Version 2 * --------------------------------------------------- * The RIGR_V2 register is used to add, remove and query egress interface list * of a multicast forwarding entry. */ #define MLXSW_REG_RIGR2_ID 0x8023 #define MLXSW_REG_RIGR2_LEN 0xB0 #define MLXSW_REG_RIGR2_MAX_ERIFS 32 MLXSW_REG_DEFINE(rigr2, MLXSW_REG_RIGR2_ID, MLXSW_REG_RIGR2_LEN); /* reg_rigr2_rigr_index * KVD Linear index. * Access: Index */ MLXSW_ITEM32(reg, rigr2, rigr_index, 0x04, 0, 24); /* reg_rigr2_vnext * Next RIGR Index is valid. * Access: RW */ MLXSW_ITEM32(reg, rigr2, vnext, 0x08, 31, 1); /* reg_rigr2_next_rigr_index * Next RIGR Index. The index is to the KVD linear. * Reserved when vnxet = '0'. * Access: RW */ MLXSW_ITEM32(reg, rigr2, next_rigr_index, 0x08, 0, 24); /* reg_rigr2_vrmid * RMID Index is valid. * Access: RW */ MLXSW_ITEM32(reg, rigr2, vrmid, 0x20, 31, 1); /* reg_rigr2_rmid_index * RMID Index. * Range 0 .. max_mid - 1 * Reserved when vrmid = '0'. * The index is to the Port Group Table (PGT) * Access: RW */ MLXSW_ITEM32(reg, rigr2, rmid_index, 0x20, 0, 16); /* reg_rigr2_erif_entry_v * Egress Router Interface is valid. * Note that low-entries must be set if high-entries are set. For * example: if erif_entry[2].v is set then erif_entry[1].v and * erif_entry[0].v must be set. * Index can be from 0 to cap_mc_erif_list_entries-1 * Access: RW */ MLXSW_ITEM32_INDEXED(reg, rigr2, erif_entry_v, 0x24, 31, 1, 4, 0, false); /* reg_rigr2_erif_entry_erif * Egress Router Interface. * Valid range is from 0 to cap_max_router_interfaces - 1 * Index can be from 0 to MLXSW_REG_RIGR2_MAX_ERIFS - 1 * Access: RW */ MLXSW_ITEM32_INDEXED(reg, rigr2, erif_entry_erif, 0x24, 0, 16, 4, 0, false); static inline void mlxsw_reg_rigr2_pack(char *payload, u32 rigr_index, bool vnext, u32 next_rigr_index) { MLXSW_REG_ZERO(rigr2, payload); mlxsw_reg_rigr2_rigr_index_set(payload, rigr_index); mlxsw_reg_rigr2_vnext_set(payload, vnext); mlxsw_reg_rigr2_next_rigr_index_set(payload, next_rigr_index); mlxsw_reg_rigr2_vrmid_set(payload, 0); mlxsw_reg_rigr2_rmid_index_set(payload, 0); } static inline void mlxsw_reg_rigr2_erif_entry_pack(char *payload, int index, bool v, u16 erif) { mlxsw_reg_rigr2_erif_entry_v_set(payload, index, v); mlxsw_reg_rigr2_erif_entry_erif_set(payload, index, erif); } /* RECR-V2 - Router ECMP Configuration Version 2 Register * ------------------------------------------------------ */ #define MLXSW_REG_RECR2_ID 0x8025 #define MLXSW_REG_RECR2_LEN 0x38 MLXSW_REG_DEFINE(recr2, MLXSW_REG_RECR2_ID, MLXSW_REG_RECR2_LEN); /* reg_recr2_pp * Per-port configuration * Access: Index */ MLXSW_ITEM32(reg, recr2, pp, 0x00, 24, 1); /* reg_recr2_sh * Symmetric hash * Access: RW */ MLXSW_ITEM32(reg, recr2, sh, 0x00, 8, 1); /* reg_recr2_seed * Seed * Access: RW */ MLXSW_ITEM32(reg, recr2, seed, 0x08, 0, 32); enum { /* Enable IPv4 fields if packet is not TCP and not UDP */ MLXSW_REG_RECR2_IPV4_EN_NOT_TCP_NOT_UDP = 3, /* Enable IPv4 fields if packet is TCP or UDP */ MLXSW_REG_RECR2_IPV4_EN_TCP_UDP = 4, /* Enable IPv6 fields if packet is not TCP and not UDP */ MLXSW_REG_RECR2_IPV6_EN_NOT_TCP_NOT_UDP = 5, /* Enable IPv6 fields if packet is TCP or UDP */ MLXSW_REG_RECR2_IPV6_EN_TCP_UDP = 6, /* Enable TCP/UDP header fields if packet is IPv4 */ MLXSW_REG_RECR2_TCP_UDP_EN_IPV4 = 7, /* Enable TCP/UDP header fields if packet is IPv6 */ MLXSW_REG_RECR2_TCP_UDP_EN_IPV6 = 8, __MLXSW_REG_RECR2_HEADER_CNT, }; /* reg_recr2_outer_header_enables * Bit mask where each bit enables a specific layer to be included in * the hash calculation. * Access: RW */ MLXSW_ITEM_BIT_ARRAY(reg, recr2, outer_header_enables, 0x10, 0x04, 1); enum { /* IPv4 Source IP */ MLXSW_REG_RECR2_IPV4_SIP0 = 9, MLXSW_REG_RECR2_IPV4_SIP3 = 12, /* IPv4 Destination IP */ MLXSW_REG_RECR2_IPV4_DIP0 = 13, MLXSW_REG_RECR2_IPV4_DIP3 = 16, /* IP Protocol */ MLXSW_REG_RECR2_IPV4_PROTOCOL = 17, /* IPv6 Source IP */ MLXSW_REG_RECR2_IPV6_SIP0_7 = 21, MLXSW_REG_RECR2_IPV6_SIP8 = 29, MLXSW_REG_RECR2_IPV6_SIP15 = 36, /* IPv6 Destination IP */ MLXSW_REG_RECR2_IPV6_DIP0_7 = 37, MLXSW_REG_RECR2_IPV6_DIP8 = 45, MLXSW_REG_RECR2_IPV6_DIP15 = 52, /* IPv6 Next Header */ MLXSW_REG_RECR2_IPV6_NEXT_HEADER = 53, /* IPv6 Flow Label */ MLXSW_REG_RECR2_IPV6_FLOW_LABEL = 57, /* TCP/UDP Source Port */ MLXSW_REG_RECR2_TCP_UDP_SPORT = 74, /* TCP/UDP Destination Port */ MLXSW_REG_RECR2_TCP_UDP_DPORT = 75, __MLXSW_REG_RECR2_FIELD_CNT, }; /* reg_recr2_outer_header_fields_enable * Packet fields to enable for ECMP hash subject to outer_header_enable. * Access: RW */ MLXSW_ITEM_BIT_ARRAY(reg, recr2, outer_header_fields_enable, 0x14, 0x14, 1); /* reg_recr2_inner_header_enables * Bit mask where each bit enables a specific inner layer to be included in the * hash calculation. Same values as reg_recr2_outer_header_enables. * Access: RW */ MLXSW_ITEM_BIT_ARRAY(reg, recr2, inner_header_enables, 0x2C, 0x04, 1); enum { /* Inner IPv4 Source IP */ MLXSW_REG_RECR2_INNER_IPV4_SIP0 = 3, MLXSW_REG_RECR2_INNER_IPV4_SIP3 = 6, /* Inner IPv4 Destination IP */ MLXSW_REG_RECR2_INNER_IPV4_DIP0 = 7, MLXSW_REG_RECR2_INNER_IPV4_DIP3 = 10, /* Inner IP Protocol */ MLXSW_REG_RECR2_INNER_IPV4_PROTOCOL = 11, /* Inner IPv6 Source IP */ MLXSW_REG_RECR2_INNER_IPV6_SIP0_7 = 12, MLXSW_REG_RECR2_INNER_IPV6_SIP8 = 20, MLXSW_REG_RECR2_INNER_IPV6_SIP15 = 27, /* Inner IPv6 Destination IP */ MLXSW_REG_RECR2_INNER_IPV6_DIP0_7 = 28, MLXSW_REG_RECR2_INNER_IPV6_DIP8 = 36, MLXSW_REG_RECR2_INNER_IPV6_DIP15 = 43, /* Inner IPv6 Next Header */ MLXSW_REG_RECR2_INNER_IPV6_NEXT_HEADER = 44, /* Inner IPv6 Flow Label */ MLXSW_REG_RECR2_INNER_IPV6_FLOW_LABEL = 45, /* Inner TCP/UDP Source Port */ MLXSW_REG_RECR2_INNER_TCP_UDP_SPORT = 46, /* Inner TCP/UDP Destination Port */ MLXSW_REG_RECR2_INNER_TCP_UDP_DPORT = 47, __MLXSW_REG_RECR2_INNER_FIELD_CNT, }; /* reg_recr2_inner_header_fields_enable * Inner packet fields to enable for ECMP hash subject to inner_header_enables. * Access: RW */ MLXSW_ITEM_BIT_ARRAY(reg, recr2, inner_header_fields_enable, 0x30, 0x08, 1); static inline void mlxsw_reg_recr2_pack(char *payload, u32 seed) { MLXSW_REG_ZERO(recr2, payload); mlxsw_reg_recr2_pp_set(payload, false); mlxsw_reg_recr2_sh_set(payload, true); mlxsw_reg_recr2_seed_set(payload, seed); } /* RMFT-V2 - Router Multicast Forwarding Table Version 2 Register * -------------------------------------------------------------- * The RMFT_V2 register is used to configure and query the multicast table. */ #define MLXSW_REG_RMFT2_ID 0x8027 #define MLXSW_REG_RMFT2_LEN 0x174 MLXSW_REG_DEFINE(rmft2, MLXSW_REG_RMFT2_ID, MLXSW_REG_RMFT2_LEN); /* reg_rmft2_v * Valid * Access: RW */ MLXSW_ITEM32(reg, rmft2, v, 0x00, 31, 1); enum mlxsw_reg_rmft2_type { MLXSW_REG_RMFT2_TYPE_IPV4, MLXSW_REG_RMFT2_TYPE_IPV6 }; /* reg_rmft2_type * Access: Index */ MLXSW_ITEM32(reg, rmft2, type, 0x00, 28, 2); enum mlxsw_sp_reg_rmft2_op { /* For Write: * Write operation. Used to write a new entry to the table. All RW * fields are relevant for new entry. Activity bit is set for new * entries - Note write with v (Valid) 0 will delete the entry. * For Query: * Read operation */ MLXSW_REG_RMFT2_OP_READ_WRITE, }; /* reg_rmft2_op * Operation. * Access: OP */ MLXSW_ITEM32(reg, rmft2, op, 0x00, 20, 2); /* reg_rmft2_a * Activity. Set for new entries. Set if a packet lookup has hit on the specific * entry. * Access: RO */ MLXSW_ITEM32(reg, rmft2, a, 0x00, 16, 1); /* reg_rmft2_offset * Offset within the multicast forwarding table to write to. * Access: Index */ MLXSW_ITEM32(reg, rmft2, offset, 0x00, 0, 16); /* reg_rmft2_virtual_router * Virtual Router ID. Range from 0..cap_max_virtual_routers-1 * Access: RW */ MLXSW_ITEM32(reg, rmft2, virtual_router, 0x04, 0, 16); enum mlxsw_reg_rmft2_irif_mask { MLXSW_REG_RMFT2_IRIF_MASK_IGNORE, MLXSW_REG_RMFT2_IRIF_MASK_COMPARE }; /* reg_rmft2_irif_mask * Ingress RIF mask. * Access: RW */ MLXSW_ITEM32(reg, rmft2, irif_mask, 0x08, 24, 1); /* reg_rmft2_irif * Ingress RIF index. * Access: RW */ MLXSW_ITEM32(reg, rmft2, irif, 0x08, 0, 16); /* reg_rmft2_dip{4,6} * Destination IPv4/6 address * Access: RW */ MLXSW_ITEM_BUF(reg, rmft2, dip6, 0x10, 16); MLXSW_ITEM32(reg, rmft2, dip4, 0x1C, 0, 32); /* reg_rmft2_dip{4,6}_mask * A bit that is set directs the TCAM to compare the corresponding bit in key. A * bit that is clear directs the TCAM to ignore the corresponding bit in key. * Access: RW */ MLXSW_ITEM_BUF(reg, rmft2, dip6_mask, 0x20, 16); MLXSW_ITEM32(reg, rmft2, dip4_mask, 0x2C, 0, 32); /* reg_rmft2_sip{4,6} * Source IPv4/6 address * Access: RW */ MLXSW_ITEM_BUF(reg, rmft2, sip6, 0x30, 16); MLXSW_ITEM32(reg, rmft2, sip4, 0x3C, 0, 32); /* reg_rmft2_sip{4,6}_mask * A bit that is set directs the TCAM to compare the corresponding bit in key. A * bit that is clear directs the TCAM to ignore the corresponding bit in key. * Access: RW */ MLXSW_ITEM_BUF(reg, rmft2, sip6_mask, 0x40, 16); MLXSW_ITEM32(reg, rmft2, sip4_mask, 0x4C, 0, 32); /* reg_rmft2_flexible_action_set * ACL action set. The only supported action types in this field and in any * action-set pointed from here are as follows: * 00h: ACTION_NULL * 01h: ACTION_MAC_TTL, only TTL configuration is supported. * 03h: ACTION_TRAP * 06h: ACTION_QOS * 08h: ACTION_POLICING_MONITORING * 10h: ACTION_ROUTER_MC * Access: RW */ MLXSW_ITEM_BUF(reg, rmft2, flexible_action_set, 0x80, MLXSW_REG_FLEX_ACTION_SET_LEN); static inline void mlxsw_reg_rmft2_common_pack(char *payload, bool v, u16 offset, u16 virtual_router, enum mlxsw_reg_rmft2_irif_mask irif_mask, u16 irif, const char *flex_action_set) { MLXSW_REG_ZERO(rmft2, payload); mlxsw_reg_rmft2_v_set(payload, v); mlxsw_reg_rmft2_op_set(payload, MLXSW_REG_RMFT2_OP_READ_WRITE); mlxsw_reg_rmft2_offset_set(payload, offset); mlxsw_reg_rmft2_virtual_router_set(payload, virtual_router); mlxsw_reg_rmft2_irif_mask_set(payload, irif_mask); mlxsw_reg_rmft2_irif_set(payload, irif); if (flex_action_set) mlxsw_reg_rmft2_flexible_action_set_memcpy_to(payload, flex_action_set); } static inline void mlxsw_reg_rmft2_ipv4_pack(char *payload, bool v, u16 offset, u16 virtual_router, enum mlxsw_reg_rmft2_irif_mask irif_mask, u16 irif, u32 dip4, u32 dip4_mask, u32 sip4, u32 sip4_mask, const char *flexible_action_set) { mlxsw_reg_rmft2_common_pack(payload, v, offset, virtual_router, irif_mask, irif, flexible_action_set); mlxsw_reg_rmft2_type_set(payload, MLXSW_REG_RMFT2_TYPE_IPV4); mlxsw_reg_rmft2_dip4_set(payload, dip4); mlxsw_reg_rmft2_dip4_mask_set(payload, dip4_mask); mlxsw_reg_rmft2_sip4_set(payload, sip4); mlxsw_reg_rmft2_sip4_mask_set(payload, sip4_mask); } static inline void mlxsw_reg_rmft2_ipv6_pack(char *payload, bool v, u16 offset, u16 virtual_router, enum mlxsw_reg_rmft2_irif_mask irif_mask, u16 irif, struct in6_addr dip6, struct in6_addr dip6_mask, struct in6_addr sip6, struct in6_addr sip6_mask, const char *flexible_action_set) { mlxsw_reg_rmft2_common_pack(payload, v, offset, virtual_router, irif_mask, irif, flexible_action_set); mlxsw_reg_rmft2_type_set(payload, MLXSW_REG_RMFT2_TYPE_IPV6); mlxsw_reg_rmft2_dip6_memcpy_to(payload, (void *)&dip6); mlxsw_reg_rmft2_dip6_mask_memcpy_to(payload, (void *)&dip6_mask); mlxsw_reg_rmft2_sip6_memcpy_to(payload, (void *)&sip6); mlxsw_reg_rmft2_sip6_mask_memcpy_to(payload, (void *)&sip6_mask); } /* REIV - Router Egress Interface to VID Register * ---------------------------------------------- * The REIV register maps {eRIF, egress_port} -> VID. * This mapping is done at the egress, after the ACLs. * This mapping always takes effect after router, regardless of cast * (for unicast/multicast/port-base multicast), regardless of eRIF type and * regardless of bridge decisions (e.g. SFD for unicast or SMPE). * Reserved when the RIF is a loopback RIF. * * Note: Reserved when legacy bridge model is used. */ #define MLXSW_REG_REIV_ID 0x8034 #define MLXSW_REG_REIV_BASE_LEN 0x20 /* base length, without records */ #define MLXSW_REG_REIV_REC_LEN 0x04 /* record length */ #define MLXSW_REG_REIV_REC_MAX_COUNT 256 /* firmware limitation */ #define MLXSW_REG_REIV_LEN (MLXSW_REG_REIV_BASE_LEN + \ MLXSW_REG_REIV_REC_LEN * \ MLXSW_REG_REIV_REC_MAX_COUNT) MLXSW_REG_DEFINE(reiv, MLXSW_REG_REIV_ID, MLXSW_REG_REIV_LEN); /* reg_reiv_port_page * Port page - elport_record[0] is 256*port_page. * Access: Index */ MLXSW_ITEM32(reg, reiv, port_page, 0x00, 0, 4); /* reg_reiv_erif * Egress RIF. * Range is 0..cap_max_router_interfaces-1. * Access: Index */ MLXSW_ITEM32(reg, reiv, erif, 0x04, 0, 16); /* reg_reiv_rec_update * Update enable (when write): * 0 - Do not update the entry. * 1 - Update the entry. * Access: OP */ MLXSW_ITEM32_INDEXED(reg, reiv, rec_update, MLXSW_REG_REIV_BASE_LEN, 31, 1, MLXSW_REG_REIV_REC_LEN, 0x00, false); /* reg_reiv_rec_evid * Egress VID. * Range is 0..4095. * Access: RW */ MLXSW_ITEM32_INDEXED(reg, reiv, rec_evid, MLXSW_REG_REIV_BASE_LEN, 0, 12, MLXSW_REG_REIV_REC_LEN, 0x00, false); static inline void mlxsw_reg_reiv_pack(char *payload, u8 port_page, u16 erif) { MLXSW_REG_ZERO(reiv, payload); mlxsw_reg_reiv_port_page_set(payload, port_page); mlxsw_reg_reiv_erif_set(payload, erif); } /* MFCR - Management Fan Control Register * -------------------------------------- * This register controls the settings of the Fan Speed PWM mechanism. */ #define MLXSW_REG_MFCR_ID 0x9001 #define MLXSW_REG_MFCR_LEN 0x08 MLXSW_REG_DEFINE(mfcr, MLXSW_REG_MFCR_ID, MLXSW_REG_MFCR_LEN); enum mlxsw_reg_mfcr_pwm_frequency { MLXSW_REG_MFCR_PWM_FEQ_11HZ = 0x00, MLXSW_REG_MFCR_PWM_FEQ_14_7HZ = 0x01, MLXSW_REG_MFCR_PWM_FEQ_22_1HZ = 0x02, MLXSW_REG_MFCR_PWM_FEQ_1_4KHZ = 0x40, MLXSW_REG_MFCR_PWM_FEQ_5KHZ = 0x41, MLXSW_REG_MFCR_PWM_FEQ_20KHZ = 0x42, MLXSW_REG_MFCR_PWM_FEQ_22_5KHZ = 0x43, MLXSW_REG_MFCR_PWM_FEQ_25KHZ = 0x44, }; /* reg_mfcr_pwm_frequency * Controls the frequency of the PWM signal. * Access: RW */ MLXSW_ITEM32(reg, mfcr, pwm_frequency, 0x00, 0, 7); #define MLXSW_MFCR_TACHOS_MAX 10 /* reg_mfcr_tacho_active * Indicates which of the tachometer is active (bit per tachometer). * Access: RO */ MLXSW_ITEM32(reg, mfcr, tacho_active, 0x04, 16, MLXSW_MFCR_TACHOS_MAX); #define MLXSW_MFCR_PWMS_MAX 5 /* reg_mfcr_pwm_active * Indicates which of the PWM control is active (bit per PWM). * Access: RO */ MLXSW_ITEM32(reg, mfcr, pwm_active, 0x04, 0, MLXSW_MFCR_PWMS_MAX); static inline void mlxsw_reg_mfcr_pack(char *payload, enum mlxsw_reg_mfcr_pwm_frequency pwm_frequency) { MLXSW_REG_ZERO(mfcr, payload); mlxsw_reg_mfcr_pwm_frequency_set(payload, pwm_frequency); } static inline void mlxsw_reg_mfcr_unpack(char *payload, enum mlxsw_reg_mfcr_pwm_frequency *p_pwm_frequency, u16 *p_tacho_active, u8 *p_pwm_active) { *p_pwm_frequency = mlxsw_reg_mfcr_pwm_frequency_get(payload); *p_tacho_active = mlxsw_reg_mfcr_tacho_active_get(payload); *p_pwm_active = mlxsw_reg_mfcr_pwm_active_get(payload); } /* MFSC - Management Fan Speed Control Register * -------------------------------------------- * This register controls the settings of the Fan Speed PWM mechanism. */ #define MLXSW_REG_MFSC_ID 0x9002 #define MLXSW_REG_MFSC_LEN 0x08 MLXSW_REG_DEFINE(mfsc, MLXSW_REG_MFSC_ID, MLXSW_REG_MFSC_LEN); /* reg_mfsc_pwm * Fan pwm to control / monitor. * Access: Index */ MLXSW_ITEM32(reg, mfsc, pwm, 0x00, 24, 3); /* reg_mfsc_pwm_duty_cycle * Controls the duty cycle of the PWM. Value range from 0..255 to * represent duty cycle of 0%...100%. * Access: RW */ MLXSW_ITEM32(reg, mfsc, pwm_duty_cycle, 0x04, 0, 8); static inline void mlxsw_reg_mfsc_pack(char *payload, u8 pwm, u8 pwm_duty_cycle) { MLXSW_REG_ZERO(mfsc, payload); mlxsw_reg_mfsc_pwm_set(payload, pwm); mlxsw_reg_mfsc_pwm_duty_cycle_set(payload, pwm_duty_cycle); } /* MFSM - Management Fan Speed Measurement * --------------------------------------- * This register controls the settings of the Tacho measurements and * enables reading the Tachometer measurements. */ #define MLXSW_REG_MFSM_ID 0x9003 #define MLXSW_REG_MFSM_LEN 0x08 MLXSW_REG_DEFINE(mfsm, MLXSW_REG_MFSM_ID, MLXSW_REG_MFSM_LEN); /* reg_mfsm_tacho * Fan tachometer index. * Access: Index */ MLXSW_ITEM32(reg, mfsm, tacho, 0x00, 24, 4); /* reg_mfsm_rpm * Fan speed (round per minute). * Access: RO */ MLXSW_ITEM32(reg, mfsm, rpm, 0x04, 0, 16); static inline void mlxsw_reg_mfsm_pack(char *payload, u8 tacho) { MLXSW_REG_ZERO(mfsm, payload); mlxsw_reg_mfsm_tacho_set(payload, tacho); } /* MFSL - Management Fan Speed Limit Register * ------------------------------------------ * The Fan Speed Limit register is used to configure the fan speed * event / interrupt notification mechanism. Fan speed threshold are * defined for both under-speed and over-speed. */ #define MLXSW_REG_MFSL_ID 0x9004 #define MLXSW_REG_MFSL_LEN 0x0C MLXSW_REG_DEFINE(mfsl, MLXSW_REG_MFSL_ID, MLXSW_REG_MFSL_LEN); /* reg_mfsl_tacho * Fan tachometer index. * Access: Index */ MLXSW_ITEM32(reg, mfsl, tacho, 0x00, 24, 4); /* reg_mfsl_tach_min * Tachometer minimum value (minimum RPM). * Access: RW */ MLXSW_ITEM32(reg, mfsl, tach_min, 0x04, 0, 16); /* reg_mfsl_tach_max * Tachometer maximum value (maximum RPM). * Access: RW */ MLXSW_ITEM32(reg, mfsl, tach_max, 0x08, 0, 16); static inline void mlxsw_reg_mfsl_pack(char *payload, u8 tacho, u16 tach_min, u16 tach_max) { MLXSW_REG_ZERO(mfsl, payload); mlxsw_reg_mfsl_tacho_set(payload, tacho); mlxsw_reg_mfsl_tach_min_set(payload, tach_min); mlxsw_reg_mfsl_tach_max_set(payload, tach_max); } static inline void mlxsw_reg_mfsl_unpack(char *payload, u8 tacho, u16 *p_tach_min, u16 *p_tach_max) { if (p_tach_min) *p_tach_min = mlxsw_reg_mfsl_tach_min_get(payload); if (p_tach_max) *p_tach_max = mlxsw_reg_mfsl_tach_max_get(payload); } /* FORE - Fan Out of Range Event Register * -------------------------------------- * This register reports the status of the controlled fans compared to the * range defined by the MFSL register. */ #define MLXSW_REG_FORE_ID 0x9007 #define MLXSW_REG_FORE_LEN 0x0C MLXSW_REG_DEFINE(fore, MLXSW_REG_FORE_ID, MLXSW_REG_FORE_LEN); /* fan_under_limit * Fan speed is below the low limit defined in MFSL register. Each bit relates * to a single tachometer and indicates the specific tachometer reading is * below the threshold. * Access: RO */ MLXSW_ITEM32(reg, fore, fan_under_limit, 0x00, 16, 10); static inline void mlxsw_reg_fore_unpack(char *payload, u8 tacho, bool *fault) { u16 limit; if (fault) { limit = mlxsw_reg_fore_fan_under_limit_get(payload); *fault = limit & BIT(tacho); } } /* MTCAP - Management Temperature Capabilities * ------------------------------------------- * This register exposes the capabilities of the device and * system temperature sensing. */ #define MLXSW_REG_MTCAP_ID 0x9009 #define MLXSW_REG_MTCAP_LEN 0x08 MLXSW_REG_DEFINE(mtcap, MLXSW_REG_MTCAP_ID, MLXSW_REG_MTCAP_LEN); /* reg_mtcap_sensor_count * Number of sensors supported by the device. * This includes the QSFP module sensors (if exists in the QSFP module). * Access: RO */ MLXSW_ITEM32(reg, mtcap, sensor_count, 0x00, 0, 7); /* MTMP - Management Temperature * ----------------------------- * This register controls the settings of the temperature measurements * and enables reading the temperature measurements. Note that temperature * is in 0.125 degrees Celsius. */ #define MLXSW_REG_MTMP_ID 0x900A #define MLXSW_REG_MTMP_LEN 0x20 MLXSW_REG_DEFINE(mtmp, MLXSW_REG_MTMP_ID, MLXSW_REG_MTMP_LEN); /* reg_mtmp_slot_index * Slot index (0: Main board). * Access: Index */ MLXSW_ITEM32(reg, mtmp, slot_index, 0x00, 16, 4); #define MLXSW_REG_MTMP_MODULE_INDEX_MIN 64 #define MLXSW_REG_MTMP_GBOX_INDEX_MIN 256 /* reg_mtmp_sensor_index * Sensors index to access. * 64-127 of sensor_index are mapped to the SFP+/QSFP modules sequentially * (module 0 is mapped to sensor_index 64). * Access: Index */ MLXSW_ITEM32(reg, mtmp, sensor_index, 0x00, 0, 12); /* Convert to milli degrees Celsius */ #define MLXSW_REG_MTMP_TEMP_TO_MC(val) ({ typeof(val) v_ = (val); \ ((v_) >= 0) ? ((v_) * 125) : \ ((s16)((GENMASK(15, 0) + (v_) + 1) \ * 125)); }) /* reg_mtmp_max_operational_temperature * The highest temperature in the nominal operational range. Reading is in * 0.125 Celsius degrees units. * In case of module this is SFF critical temperature threshold. * Access: RO */ MLXSW_ITEM32(reg, mtmp, max_operational_temperature, 0x04, 16, 16); /* reg_mtmp_temperature * Temperature reading from the sensor. Reading is in 0.125 Celsius * degrees units. * Access: RO */ MLXSW_ITEM32(reg, mtmp, temperature, 0x04, 0, 16); /* reg_mtmp_mte * Max Temperature Enable - enables measuring the max temperature on a sensor. * Access: RW */ MLXSW_ITEM32(reg, mtmp, mte, 0x08, 31, 1); /* reg_mtmp_mtr * Max Temperature Reset - clears the value of the max temperature register. * Access: WO */ MLXSW_ITEM32(reg, mtmp, mtr, 0x08, 30, 1); /* reg_mtmp_max_temperature * The highest measured temperature from the sensor. * When the bit mte is cleared, the field max_temperature is reserved. * Access: RO */ MLXSW_ITEM32(reg, mtmp, max_temperature, 0x08, 0, 16); /* reg_mtmp_tee * Temperature Event Enable. * 0 - Do not generate event * 1 - Generate event * 2 - Generate single event * Access: RW */ enum mlxsw_reg_mtmp_tee { MLXSW_REG_MTMP_TEE_NO_EVENT, MLXSW_REG_MTMP_TEE_GENERATE_EVENT, MLXSW_REG_MTMP_TEE_GENERATE_SINGLE_EVENT, }; MLXSW_ITEM32(reg, mtmp, tee, 0x0C, 30, 2); #define MLXSW_REG_MTMP_THRESH_HI 0x348 /* 105 Celsius */ /* reg_mtmp_temperature_threshold_hi * High threshold for Temperature Warning Event. In 0.125 Celsius. * Access: RW */ MLXSW_ITEM32(reg, mtmp, temperature_threshold_hi, 0x0C, 0, 16); #define MLXSW_REG_MTMP_HYSTERESIS_TEMP 0x28 /* 5 Celsius */ /* reg_mtmp_temperature_threshold_lo * Low threshold for Temperature Warning Event. In 0.125 Celsius. * Access: RW */ MLXSW_ITEM32(reg, mtmp, temperature_threshold_lo, 0x10, 0, 16); #define MLXSW_REG_MTMP_SENSOR_NAME_SIZE 8 /* reg_mtmp_sensor_name * Sensor Name * Access: RO */ MLXSW_ITEM_BUF(reg, mtmp, sensor_name, 0x18, MLXSW_REG_MTMP_SENSOR_NAME_SIZE); static inline void mlxsw_reg_mtmp_pack(char *payload, u8 slot_index, u16 sensor_index, bool max_temp_enable, bool max_temp_reset) { MLXSW_REG_ZERO(mtmp, payload); mlxsw_reg_mtmp_slot_index_set(payload, slot_index); mlxsw_reg_mtmp_sensor_index_set(payload, sensor_index); mlxsw_reg_mtmp_mte_set(payload, max_temp_enable); mlxsw_reg_mtmp_mtr_set(payload, max_temp_reset); mlxsw_reg_mtmp_temperature_threshold_hi_set(payload, MLXSW_REG_MTMP_THRESH_HI); } static inline void mlxsw_reg_mtmp_unpack(char *payload, int *p_temp, int *p_max_temp, int *p_temp_hi, int *p_max_oper_temp, char *sensor_name) { s16 temp; if (p_temp) { temp = mlxsw_reg_mtmp_temperature_get(payload); *p_temp = MLXSW_REG_MTMP_TEMP_TO_MC(temp); } if (p_max_temp) { temp = mlxsw_reg_mtmp_max_temperature_get(payload); *p_max_temp = MLXSW_REG_MTMP_TEMP_TO_MC(temp); } if (p_temp_hi) { temp = mlxsw_reg_mtmp_temperature_threshold_hi_get(payload); *p_temp_hi = MLXSW_REG_MTMP_TEMP_TO_MC(temp); } if (p_max_oper_temp) { temp = mlxsw_reg_mtmp_max_operational_temperature_get(payload); *p_max_oper_temp = MLXSW_REG_MTMP_TEMP_TO_MC(temp); } if (sensor_name) mlxsw_reg_mtmp_sensor_name_memcpy_from(payload, sensor_name); } /* MTWE - Management Temperature Warning Event * ------------------------------------------- * This register is used for over temperature warning. */ #define MLXSW_REG_MTWE_ID 0x900B #define MLXSW_REG_MTWE_LEN 0x10 MLXSW_REG_DEFINE(mtwe, MLXSW_REG_MTWE_ID, MLXSW_REG_MTWE_LEN); /* reg_mtwe_sensor_warning * Bit vector indicating which of the sensor reading is above threshold. * Address 00h bit31 is sensor_warning[127]. * Address 0Ch bit0 is sensor_warning[0]. * Access: RO */ MLXSW_ITEM_BIT_ARRAY(reg, mtwe, sensor_warning, 0x0, 0x10, 1); /* MTBR - Management Temperature Bulk Register * ------------------------------------------- * This register is used for bulk temperature reading. */ #define MLXSW_REG_MTBR_ID 0x900F #define MLXSW_REG_MTBR_BASE_LEN 0x10 /* base length, without records */ #define MLXSW_REG_MTBR_REC_LEN 0x04 /* record length */ #define MLXSW_REG_MTBR_REC_MAX_COUNT 47 /* firmware limitation */ #define MLXSW_REG_MTBR_LEN (MLXSW_REG_MTBR_BASE_LEN + \ MLXSW_REG_MTBR_REC_LEN * \ MLXSW_REG_MTBR_REC_MAX_COUNT) MLXSW_REG_DEFINE(mtbr, MLXSW_REG_MTBR_ID, MLXSW_REG_MTBR_LEN); /* reg_mtbr_slot_index * Slot index (0: Main board). * Access: Index */ MLXSW_ITEM32(reg, mtbr, slot_index, 0x00, 16, 4); /* reg_mtbr_base_sensor_index * Base sensors index to access (0 - ASIC sensor, 1-63 - ambient sensors, * 64-127 are mapped to the SFP+/QSFP modules sequentially). * Access: Index */ MLXSW_ITEM32(reg, mtbr, base_sensor_index, 0x00, 0, 12); /* reg_mtbr_num_rec * Request: Number of records to read * Response: Number of records read * See above description for more details. * Range 1..255 * Access: RW */ MLXSW_ITEM32(reg, mtbr, num_rec, 0x04, 0, 8); /* reg_mtbr_rec_max_temp * The highest measured temperature from the sensor. * When the bit mte is cleared, the field max_temperature is reserved. * Access: RO */ MLXSW_ITEM32_INDEXED(reg, mtbr, rec_max_temp, MLXSW_REG_MTBR_BASE_LEN, 16, 16, MLXSW_REG_MTBR_REC_LEN, 0x00, false); /* reg_mtbr_rec_temp * Temperature reading from the sensor. Reading is in 0..125 Celsius * degrees units. * Access: RO */ MLXSW_ITEM32_INDEXED(reg, mtbr, rec_temp, MLXSW_REG_MTBR_BASE_LEN, 0, 16, MLXSW_REG_MTBR_REC_LEN, 0x00, false); static inline void mlxsw_reg_mtbr_pack(char *payload, u8 slot_index, u16 base_sensor_index, u8 num_rec) { MLXSW_REG_ZERO(mtbr, payload); mlxsw_reg_mtbr_slot_index_set(payload, slot_index); mlxsw_reg_mtbr_base_sensor_index_set(payload, base_sensor_index); mlxsw_reg_mtbr_num_rec_set(payload, num_rec); } /* Error codes from temperatute reading */ enum mlxsw_reg_mtbr_temp_status { MLXSW_REG_MTBR_NO_CONN = 0x8000, MLXSW_REG_MTBR_NO_TEMP_SENS = 0x8001, MLXSW_REG_MTBR_INDEX_NA = 0x8002, MLXSW_REG_MTBR_BAD_SENS_INFO = 0x8003, }; /* Base index for reading modules temperature */ #define MLXSW_REG_MTBR_BASE_MODULE_INDEX 64 static inline void mlxsw_reg_mtbr_temp_unpack(char *payload, int rec_ind, u16 *p_temp, u16 *p_max_temp) { if (p_temp) *p_temp = mlxsw_reg_mtbr_rec_temp_get(payload, rec_ind); if (p_max_temp) *p_max_temp = mlxsw_reg_mtbr_rec_max_temp_get(payload, rec_ind); } /* MCIA - Management Cable Info Access * ----------------------------------- * MCIA register is used to access the SFP+ and QSFP connector's EPROM. */ #define MLXSW_REG_MCIA_ID 0x9014 #define MLXSW_REG_MCIA_LEN 0x40 MLXSW_REG_DEFINE(mcia, MLXSW_REG_MCIA_ID, MLXSW_REG_MCIA_LEN); /* reg_mcia_l * Lock bit. Setting this bit will lock the access to the specific * cable. Used for updating a full page in a cable EPROM. Any access * other then subsequence writes will fail while the port is locked. * Access: RW */ MLXSW_ITEM32(reg, mcia, l, 0x00, 31, 1); /* reg_mcia_module * Module number. * Access: Index */ MLXSW_ITEM32(reg, mcia, module, 0x00, 16, 8); /* reg_mcia_slot_index * Slot index (0: Main board) * Access: Index */ MLXSW_ITEM32(reg, mcia, slot, 0x00, 12, 4); enum { MLXSW_REG_MCIA_STATUS_GOOD = 0, /* No response from module's EEPROM. */ MLXSW_REG_MCIA_STATUS_NO_EEPROM_MODULE = 1, /* Module type not supported by the device. */ MLXSW_REG_MCIA_STATUS_MODULE_NOT_SUPPORTED = 2, /* No module present indication. */ MLXSW_REG_MCIA_STATUS_MODULE_NOT_CONNECTED = 3, /* Error occurred while trying to access module's EEPROM using I2C. */ MLXSW_REG_MCIA_STATUS_I2C_ERROR = 9, /* Module is disabled. */ MLXSW_REG_MCIA_STATUS_MODULE_DISABLED = 16, }; /* reg_mcia_status * Module status. * Access: RO */ MLXSW_ITEM32(reg, mcia, status, 0x00, 0, 8); /* reg_mcia_i2c_device_address * I2C device address. * Access: RW */ MLXSW_ITEM32(reg, mcia, i2c_device_address, 0x04, 24, 8); /* reg_mcia_page_number * Page number. * Access: RW */ MLXSW_ITEM32(reg, mcia, page_number, 0x04, 16, 8); /* reg_mcia_device_address * Device address. * Access: RW */ MLXSW_ITEM32(reg, mcia, device_address, 0x04, 0, 16); /* reg_mcia_bank_number * Bank number. * Access: Index */ MLXSW_ITEM32(reg, mcia, bank_number, 0x08, 16, 8); /* reg_mcia_size * Number of bytes to read/write (up to 48 bytes). * Access: RW */ MLXSW_ITEM32(reg, mcia, size, 0x08, 0, 16); #define MLXSW_REG_MCIA_EEPROM_PAGE_LENGTH 256 #define MLXSW_REG_MCIA_EEPROM_UP_PAGE_LENGTH 128 #define MLXSW_REG_MCIA_EEPROM_SIZE 48 #define MLXSW_REG_MCIA_I2C_ADDR_LOW 0x50 #define MLXSW_REG_MCIA_I2C_ADDR_HIGH 0x51 #define MLXSW_REG_MCIA_PAGE0_LO_OFF 0xa0 #define MLXSW_REG_MCIA_TH_ITEM_SIZE 2 #define MLXSW_REG_MCIA_TH_PAGE_NUM 3 #define MLXSW_REG_MCIA_TH_PAGE_CMIS_NUM 2 #define MLXSW_REG_MCIA_PAGE0_LO 0 #define MLXSW_REG_MCIA_TH_PAGE_OFF 0x80 #define MLXSW_REG_MCIA_EEPROM_CMIS_FLAT_MEMORY BIT(7) enum mlxsw_reg_mcia_eeprom_module_info_rev_id { MLXSW_REG_MCIA_EEPROM_MODULE_INFO_REV_ID_UNSPC = 0x00, MLXSW_REG_MCIA_EEPROM_MODULE_INFO_REV_ID_8436 = 0x01, MLXSW_REG_MCIA_EEPROM_MODULE_INFO_REV_ID_8636 = 0x03, }; enum mlxsw_reg_mcia_eeprom_module_info_id { MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_SFP = 0x03, MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_QSFP = 0x0C, MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_QSFP_PLUS = 0x0D, MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_QSFP28 = 0x11, MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_QSFP_DD = 0x18, MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_OSFP = 0x19, }; enum mlxsw_reg_mcia_eeprom_module_info { MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID, MLXSW_REG_MCIA_EEPROM_MODULE_INFO_REV_ID, MLXSW_REG_MCIA_EEPROM_MODULE_INFO_TYPE_ID, MLXSW_REG_MCIA_EEPROM_MODULE_INFO_SIZE, }; /* reg_mcia_eeprom * Bytes to read/write. * Access: RW */ MLXSW_ITEM_BUF(reg, mcia, eeprom, 0x10, MLXSW_REG_MCIA_EEPROM_SIZE); /* This is used to access the optional upper pages (1-3) in the QSFP+ * memory map. Page 1 is available on offset 256 through 383, page 2 - * on offset 384 through 511, page 3 - on offset 512 through 639. */ #define MLXSW_REG_MCIA_PAGE_GET(off) (((off) - \ MLXSW_REG_MCIA_EEPROM_PAGE_LENGTH) / \ MLXSW_REG_MCIA_EEPROM_UP_PAGE_LENGTH + 1) static inline void mlxsw_reg_mcia_pack(char *payload, u8 slot_index, u8 module, u8 lock, u8 page_number, u16 device_addr, u8 size, u8 i2c_device_addr) { MLXSW_REG_ZERO(mcia, payload); mlxsw_reg_mcia_slot_set(payload, slot_index); mlxsw_reg_mcia_module_set(payload, module); mlxsw_reg_mcia_l_set(payload, lock); mlxsw_reg_mcia_page_number_set(payload, page_number); mlxsw_reg_mcia_device_address_set(payload, device_addr); mlxsw_reg_mcia_size_set(payload, size); mlxsw_reg_mcia_i2c_device_address_set(payload, i2c_device_addr); } /* MPAT - Monitoring Port Analyzer Table * ------------------------------------- * MPAT Register is used to query and configure the Switch PortAnalyzer Table. * For an enabled analyzer, all fields except e (enable) cannot be modified. */ #define MLXSW_REG_MPAT_ID 0x901A #define MLXSW_REG_MPAT_LEN 0x78 MLXSW_REG_DEFINE(mpat, MLXSW_REG_MPAT_ID, MLXSW_REG_MPAT_LEN); /* reg_mpat_pa_id * Port Analyzer ID. * Access: Index */ MLXSW_ITEM32(reg, mpat, pa_id, 0x00, 28, 4); /* reg_mpat_session_id * Mirror Session ID. * Used for MIRROR_SESSION trap. * Access: RW */ MLXSW_ITEM32(reg, mpat, session_id, 0x00, 24, 4); /* reg_mpat_system_port * A unique port identifier for the final destination of the packet. * Access: RW */ MLXSW_ITEM32(reg, mpat, system_port, 0x00, 0, 16); /* reg_mpat_e * Enable. Indicating the Port Analyzer is enabled. * Access: RW */ MLXSW_ITEM32(reg, mpat, e, 0x04, 31, 1); /* reg_mpat_qos * Quality Of Service Mode. * 0: CONFIGURED - QoS parameters (Switch Priority, and encapsulation * PCP, DEI, DSCP or VL) are configured. * 1: MAINTAIN - QoS parameters (Switch Priority, Color) are the * same as in the original packet that has triggered the mirroring. For * SPAN also the pcp,dei are maintained. * Access: RW */ MLXSW_ITEM32(reg, mpat, qos, 0x04, 26, 1); /* reg_mpat_be * Best effort mode. Indicates mirroring traffic should not cause packet * drop or back pressure, but will discard the mirrored packets. Mirrored * packets will be forwarded on a best effort manner. * 0: Do not discard mirrored packets * 1: Discard mirrored packets if causing congestion * Access: RW */ MLXSW_ITEM32(reg, mpat, be, 0x04, 25, 1); enum mlxsw_reg_mpat_span_type { /* Local SPAN Ethernet. * The original packet is not encapsulated. */ MLXSW_REG_MPAT_SPAN_TYPE_LOCAL_ETH = 0x0, /* Remote SPAN Ethernet VLAN. * The packet is forwarded to the monitoring port on the monitoring * VLAN. */ MLXSW_REG_MPAT_SPAN_TYPE_REMOTE_ETH = 0x1, /* Encapsulated Remote SPAN Ethernet L3 GRE. * The packet is encapsulated with GRE header. */ MLXSW_REG_MPAT_SPAN_TYPE_REMOTE_ETH_L3 = 0x3, }; /* reg_mpat_span_type * SPAN type. * Access: RW */ MLXSW_ITEM32(reg, mpat, span_type, 0x04, 0, 4); /* reg_mpat_pide * Policer enable. * Access: RW */ MLXSW_ITEM32(reg, mpat, pide, 0x0C, 15, 1); /* reg_mpat_pid * Policer ID. * Access: RW */ MLXSW_ITEM32(reg, mpat, pid, 0x0C, 0, 14); /* Remote SPAN - Ethernet VLAN * - - - - - - - - - - - - - - */ /* reg_mpat_eth_rspan_vid * Encapsulation header VLAN ID. * Access: RW */ MLXSW_ITEM32(reg, mpat, eth_rspan_vid, 0x18, 0, 12); /* Encapsulated Remote SPAN - Ethernet L2 * - - - - - - - - - - - - - - - - - - - */ enum mlxsw_reg_mpat_eth_rspan_version { MLXSW_REG_MPAT_ETH_RSPAN_VERSION_NO_HEADER = 15, }; /* reg_mpat_eth_rspan_version * RSPAN mirror header version. * Access: RW */ MLXSW_ITEM32(reg, mpat, eth_rspan_version, 0x10, 18, 4); /* reg_mpat_eth_rspan_mac * Destination MAC address. * Access: RW */ MLXSW_ITEM_BUF(reg, mpat, eth_rspan_mac, 0x12, 6); /* reg_mpat_eth_rspan_tp * Tag Packet. Indicates whether the mirroring header should be VLAN tagged. * Access: RW */ MLXSW_ITEM32(reg, mpat, eth_rspan_tp, 0x18, 16, 1); /* Encapsulated Remote SPAN - Ethernet L3 * - - - - - - - - - - - - - - - - - - - */ enum mlxsw_reg_mpat_eth_rspan_protocol { MLXSW_REG_MPAT_ETH_RSPAN_PROTOCOL_IPV4, MLXSW_REG_MPAT_ETH_RSPAN_PROTOCOL_IPV6, }; /* reg_mpat_eth_rspan_protocol * SPAN encapsulation protocol. * Access: RW */ MLXSW_ITEM32(reg, mpat, eth_rspan_protocol, 0x18, 24, 4); /* reg_mpat_eth_rspan_ttl * Encapsulation header Time-to-Live/HopLimit. * Access: RW */ MLXSW_ITEM32(reg, mpat, eth_rspan_ttl, 0x1C, 4, 8); /* reg_mpat_eth_rspan_smac * Source MAC address * Access: RW */ MLXSW_ITEM_BUF(reg, mpat, eth_rspan_smac, 0x22, 6); /* reg_mpat_eth_rspan_dip* * Destination IP address. The IP version is configured by protocol. * Access: RW */ MLXSW_ITEM32(reg, mpat, eth_rspan_dip4, 0x4C, 0, 32); MLXSW_ITEM_BUF(reg, mpat, eth_rspan_dip6, 0x40, 16); /* reg_mpat_eth_rspan_sip* * Source IP address. The IP version is configured by protocol. * Access: RW */ MLXSW_ITEM32(reg, mpat, eth_rspan_sip4, 0x5C, 0, 32); MLXSW_ITEM_BUF(reg, mpat, eth_rspan_sip6, 0x50, 16); static inline void mlxsw_reg_mpat_pack(char *payload, u8 pa_id, u16 system_port, bool e, enum mlxsw_reg_mpat_span_type span_type) { MLXSW_REG_ZERO(mpat, payload); mlxsw_reg_mpat_pa_id_set(payload, pa_id); mlxsw_reg_mpat_system_port_set(payload, system_port); mlxsw_reg_mpat_e_set(payload, e); mlxsw_reg_mpat_qos_set(payload, 1); mlxsw_reg_mpat_be_set(payload, 1); mlxsw_reg_mpat_span_type_set(payload, span_type); } static inline void mlxsw_reg_mpat_eth_rspan_pack(char *payload, u16 vid) { mlxsw_reg_mpat_eth_rspan_vid_set(payload, vid); } static inline void mlxsw_reg_mpat_eth_rspan_l2_pack(char *payload, enum mlxsw_reg_mpat_eth_rspan_version version, const char *mac, bool tp) { mlxsw_reg_mpat_eth_rspan_version_set(payload, version); mlxsw_reg_mpat_eth_rspan_mac_memcpy_to(payload, mac); mlxsw_reg_mpat_eth_rspan_tp_set(payload, tp); } static inline void mlxsw_reg_mpat_eth_rspan_l3_ipv4_pack(char *payload, u8 ttl, const char *smac, u32 sip, u32 dip) { mlxsw_reg_mpat_eth_rspan_ttl_set(payload, ttl); mlxsw_reg_mpat_eth_rspan_smac_memcpy_to(payload, smac); mlxsw_reg_mpat_eth_rspan_protocol_set(payload, MLXSW_REG_MPAT_ETH_RSPAN_PROTOCOL_IPV4); mlxsw_reg_mpat_eth_rspan_sip4_set(payload, sip); mlxsw_reg_mpat_eth_rspan_dip4_set(payload, dip); } static inline void mlxsw_reg_mpat_eth_rspan_l3_ipv6_pack(char *payload, u8 ttl, const char *smac, struct in6_addr sip, struct in6_addr dip) { mlxsw_reg_mpat_eth_rspan_ttl_set(payload, ttl); mlxsw_reg_mpat_eth_rspan_smac_memcpy_to(payload, smac); mlxsw_reg_mpat_eth_rspan_protocol_set(payload, MLXSW_REG_MPAT_ETH_RSPAN_PROTOCOL_IPV6); mlxsw_reg_mpat_eth_rspan_sip6_memcpy_to(payload, (void *)&sip); mlxsw_reg_mpat_eth_rspan_dip6_memcpy_to(payload, (void *)&dip); } /* MPAR - Monitoring Port Analyzer Register * ---------------------------------------- * MPAR register is used to query and configure the port analyzer port mirroring * properties. */ #define MLXSW_REG_MPAR_ID 0x901B #define MLXSW_REG_MPAR_LEN 0x0C MLXSW_REG_DEFINE(mpar, MLXSW_REG_MPAR_ID, MLXSW_REG_MPAR_LEN); /* reg_mpar_local_port * The local port to mirror the packets from. * Access: Index */ MLXSW_ITEM32_LP(reg, mpar, 0x00, 16, 0x00, 4); enum mlxsw_reg_mpar_i_e { MLXSW_REG_MPAR_TYPE_EGRESS, MLXSW_REG_MPAR_TYPE_INGRESS, }; /* reg_mpar_i_e * Ingress/Egress * Access: Index */ MLXSW_ITEM32(reg, mpar, i_e, 0x00, 0, 4); /* reg_mpar_enable * Enable mirroring * By default, port mirroring is disabled for all ports. * Access: RW */ MLXSW_ITEM32(reg, mpar, enable, 0x04, 31, 1); /* reg_mpar_pa_id * Port Analyzer ID. * Access: RW */ MLXSW_ITEM32(reg, mpar, pa_id, 0x04, 0, 4); #define MLXSW_REG_MPAR_RATE_MAX 3500000000UL /* reg_mpar_probability_rate * Sampling rate. * Valid values are: 1 to 3.5*10^9 * Value of 1 means "sample all". Default is 1. * Reserved when Spectrum-1. * Access: RW */ MLXSW_ITEM32(reg, mpar, probability_rate, 0x08, 0, 32); static inline void mlxsw_reg_mpar_pack(char *payload, u16 local_port, enum mlxsw_reg_mpar_i_e i_e, bool enable, u8 pa_id, u32 probability_rate) { MLXSW_REG_ZERO(mpar, payload); mlxsw_reg_mpar_local_port_set(payload, local_port); mlxsw_reg_mpar_enable_set(payload, enable); mlxsw_reg_mpar_i_e_set(payload, i_e); mlxsw_reg_mpar_pa_id_set(payload, pa_id); mlxsw_reg_mpar_probability_rate_set(payload, probability_rate); } /* MGIR - Management General Information Register * ---------------------------------------------- * MGIR register allows software to query the hardware and firmware general * information. */ #define MLXSW_REG_MGIR_ID 0x9020 #define MLXSW_REG_MGIR_LEN 0x9C MLXSW_REG_DEFINE(mgir, MLXSW_REG_MGIR_ID, MLXSW_REG_MGIR_LEN); /* reg_mgir_hw_info_device_hw_revision * Access: RO */ MLXSW_ITEM32(reg, mgir, hw_info_device_hw_revision, 0x0, 16, 16); /* reg_mgir_fw_info_latency_tlv * When set, latency-TLV is supported. * Access: RO */ MLXSW_ITEM32(reg, mgir, fw_info_latency_tlv, 0x20, 29, 1); /* reg_mgir_fw_info_string_tlv * When set, string-TLV is supported. * Access: RO */ MLXSW_ITEM32(reg, mgir, fw_info_string_tlv, 0x20, 28, 1); #define MLXSW_REG_MGIR_FW_INFO_PSID_SIZE 16 /* reg_mgir_fw_info_psid * PSID (ASCII string). * Access: RO */ MLXSW_ITEM_BUF(reg, mgir, fw_info_psid, 0x30, MLXSW_REG_MGIR_FW_INFO_PSID_SIZE); /* reg_mgir_fw_info_extended_major * Access: RO */ MLXSW_ITEM32(reg, mgir, fw_info_extended_major, 0x44, 0, 32); /* reg_mgir_fw_info_extended_minor * Access: RO */ MLXSW_ITEM32(reg, mgir, fw_info_extended_minor, 0x48, 0, 32); /* reg_mgir_fw_info_extended_sub_minor * Access: RO */ MLXSW_ITEM32(reg, mgir, fw_info_extended_sub_minor, 0x4C, 0, 32); static inline void mlxsw_reg_mgir_pack(char *payload) { MLXSW_REG_ZERO(mgir, payload); } static inline void mlxsw_reg_mgir_unpack(char *payload, u32 *hw_rev, char *fw_info_psid, u32 *fw_major, u32 *fw_minor, u32 *fw_sub_minor) { *hw_rev = mlxsw_reg_mgir_hw_info_device_hw_revision_get(payload); mlxsw_reg_mgir_fw_info_psid_memcpy_from(payload, fw_info_psid); *fw_major = mlxsw_reg_mgir_fw_info_extended_major_get(payload); *fw_minor = mlxsw_reg_mgir_fw_info_extended_minor_get(payload); *fw_sub_minor = mlxsw_reg_mgir_fw_info_extended_sub_minor_get(payload); } /* MRSR - Management Reset and Shutdown Register * --------------------------------------------- * MRSR register is used to reset or shutdown the switch or * the entire system (when applicable). */ #define MLXSW_REG_MRSR_ID 0x9023 #define MLXSW_REG_MRSR_LEN 0x08 MLXSW_REG_DEFINE(mrsr, MLXSW_REG_MRSR_ID, MLXSW_REG_MRSR_LEN); /* reg_mrsr_command * Reset/shutdown command * 0 - do nothing * 1 - software reset * Access: WO */ MLXSW_ITEM32(reg, mrsr, command, 0x00, 0, 4); static inline void mlxsw_reg_mrsr_pack(char *payload) { MLXSW_REG_ZERO(mrsr, payload); mlxsw_reg_mrsr_command_set(payload, 1); } /* MLCR - Management LED Control Register * -------------------------------------- * Controls the system LEDs. */ #define MLXSW_REG_MLCR_ID 0x902B #define MLXSW_REG_MLCR_LEN 0x0C MLXSW_REG_DEFINE(mlcr, MLXSW_REG_MLCR_ID, MLXSW_REG_MLCR_LEN); /* reg_mlcr_local_port * Local port number. * Access: RW */ MLXSW_ITEM32_LP(reg, mlcr, 0x00, 16, 0x00, 24); #define MLXSW_REG_MLCR_DURATION_MAX 0xFFFF /* reg_mlcr_beacon_duration * Duration of the beacon to be active, in seconds. * 0x0 - Will turn off the beacon. * 0xFFFF - Will turn on the beacon until explicitly turned off. * Access: RW */ MLXSW_ITEM32(reg, mlcr, beacon_duration, 0x04, 0, 16); /* reg_mlcr_beacon_remain * Remaining duration of the beacon, in seconds. * 0xFFFF indicates an infinite amount of time. * Access: RO */ MLXSW_ITEM32(reg, mlcr, beacon_remain, 0x08, 0, 16); static inline void mlxsw_reg_mlcr_pack(char *payload, u16 local_port, bool active) { MLXSW_REG_ZERO(mlcr, payload); mlxsw_reg_mlcr_local_port_set(payload, local_port); mlxsw_reg_mlcr_beacon_duration_set(payload, active ? MLXSW_REG_MLCR_DURATION_MAX : 0); } /* MCION - Management Cable IO and Notifications Register * ------------------------------------------------------ * The MCION register is used to query transceiver modules' IO pins and other * notifications. */ #define MLXSW_REG_MCION_ID 0x9052 #define MLXSW_REG_MCION_LEN 0x18 MLXSW_REG_DEFINE(mcion, MLXSW_REG_MCION_ID, MLXSW_REG_MCION_LEN); /* reg_mcion_module * Module number. * Access: Index */ MLXSW_ITEM32(reg, mcion, module, 0x00, 16, 8); /* reg_mcion_slot_index * Slot index. * Access: Index */ MLXSW_ITEM32(reg, mcion, slot_index, 0x00, 12, 4); enum { MLXSW_REG_MCION_MODULE_STATUS_BITS_PRESENT_MASK = BIT(0), MLXSW_REG_MCION_MODULE_STATUS_BITS_LOW_POWER_MASK = BIT(8), }; /* reg_mcion_module_status_bits * Module IO status as defined by SFF. * Access: RO */ MLXSW_ITEM32(reg, mcion, module_status_bits, 0x04, 0, 16); static inline void mlxsw_reg_mcion_pack(char *payload, u8 slot_index, u8 module) { MLXSW_REG_ZERO(mcion, payload); mlxsw_reg_mcion_slot_index_set(payload, slot_index); mlxsw_reg_mcion_module_set(payload, module); } /* MTPPS - Management Pulse Per Second Register * -------------------------------------------- * This register provides the device PPS capabilities, configure the PPS in and * out modules and holds the PPS in time stamp. */ #define MLXSW_REG_MTPPS_ID 0x9053 #define MLXSW_REG_MTPPS_LEN 0x3C MLXSW_REG_DEFINE(mtpps, MLXSW_REG_MTPPS_ID, MLXSW_REG_MTPPS_LEN); /* reg_mtpps_enable * Enables the PPS functionality the specific pin. * A boolean variable. * Access: RW */ MLXSW_ITEM32(reg, mtpps, enable, 0x20, 31, 1); enum mlxsw_reg_mtpps_pin_mode { MLXSW_REG_MTPPS_PIN_MODE_VIRTUAL_PIN = 0x2, }; /* reg_mtpps_pin_mode * Pin mode to be used. The mode must comply with the supported modes of the * requested pin. * Access: RW */ MLXSW_ITEM32(reg, mtpps, pin_mode, 0x20, 8, 4); #define MLXSW_REG_MTPPS_PIN_SP_VIRTUAL_PIN 7 /* reg_mtpps_pin * Pin to be configured or queried out of the supported pins. * Access: Index */ MLXSW_ITEM32(reg, mtpps, pin, 0x20, 0, 8); /* reg_mtpps_time_stamp * When pin_mode = pps_in, the latched device time when it was triggered from * the external GPIO pin. * When pin_mode = pps_out or virtual_pin or pps_out_and_virtual_pin, the target * time to generate next output signal. * Time is in units of device clock. * Access: RW */ MLXSW_ITEM64(reg, mtpps, time_stamp, 0x28, 0, 64); static inline void mlxsw_reg_mtpps_vpin_pack(char *payload, u64 time_stamp) { MLXSW_REG_ZERO(mtpps, payload); mlxsw_reg_mtpps_pin_set(payload, MLXSW_REG_MTPPS_PIN_SP_VIRTUAL_PIN); mlxsw_reg_mtpps_pin_mode_set(payload, MLXSW_REG_MTPPS_PIN_MODE_VIRTUAL_PIN); mlxsw_reg_mtpps_enable_set(payload, true); mlxsw_reg_mtpps_time_stamp_set(payload, time_stamp); } /* MTUTC - Management UTC Register * ------------------------------- * Configures the HW UTC counter. */ #define MLXSW_REG_MTUTC_ID 0x9055 #define MLXSW_REG_MTUTC_LEN 0x1C MLXSW_REG_DEFINE(mtutc, MLXSW_REG_MTUTC_ID, MLXSW_REG_MTUTC_LEN); enum mlxsw_reg_mtutc_operation { MLXSW_REG_MTUTC_OPERATION_SET_TIME_AT_NEXT_SEC = 0, MLXSW_REG_MTUTC_OPERATION_SET_TIME_IMMEDIATE = 1, MLXSW_REG_MTUTC_OPERATION_ADJUST_TIME = 2, MLXSW_REG_MTUTC_OPERATION_ADJUST_FREQ = 3, }; /* reg_mtutc_operation * Operation. * Access: OP */ MLXSW_ITEM32(reg, mtutc, operation, 0x00, 0, 4); /* reg_mtutc_freq_adjustment * Frequency adjustment: Every PPS the HW frequency will be * adjusted by this value. Units of HW clock, where HW counts * 10^9 HW clocks for 1 HW second. Range is from -50,000,000 to +50,000,000. * In Spectrum-2, the field is reversed, positive values mean to decrease the * frequency. * Access: RW */ MLXSW_ITEM32(reg, mtutc, freq_adjustment, 0x04, 0, 32); #define MLXSW_REG_MTUTC_MAX_FREQ_ADJ (50 * 1000 * 1000) /* reg_mtutc_utc_sec * UTC seconds. * Access: WO */ MLXSW_ITEM32(reg, mtutc, utc_sec, 0x10, 0, 32); /* reg_mtutc_utc_nsec * UTC nSecs. * Range 0..(10^9-1) * Updated when operation is SET_TIME_IMMEDIATE. * Reserved on Spectrum-1. * Access: WO */ MLXSW_ITEM32(reg, mtutc, utc_nsec, 0x14, 0, 30); /* reg_mtutc_time_adjustment * Time adjustment. * Units of nSec. * Range is from -32768 to +32767. * Updated when operation is ADJUST_TIME. * Reserved on Spectrum-1. * Access: WO */ MLXSW_ITEM32(reg, mtutc, time_adjustment, 0x18, 0, 32); static inline void mlxsw_reg_mtutc_pack(char *payload, enum mlxsw_reg_mtutc_operation oper, u32 freq_adj, u32 utc_sec, u32 utc_nsec, u32 time_adj) { MLXSW_REG_ZERO(mtutc, payload); mlxsw_reg_mtutc_operation_set(payload, oper); mlxsw_reg_mtutc_freq_adjustment_set(payload, freq_adj); mlxsw_reg_mtutc_utc_sec_set(payload, utc_sec); mlxsw_reg_mtutc_utc_nsec_set(payload, utc_nsec); mlxsw_reg_mtutc_time_adjustment_set(payload, time_adj); } /* MCQI - Management Component Query Information * --------------------------------------------- * This register allows querying information about firmware components. */ #define MLXSW_REG_MCQI_ID 0x9061 #define MLXSW_REG_MCQI_BASE_LEN 0x18 #define MLXSW_REG_MCQI_CAP_LEN 0x14 #define MLXSW_REG_MCQI_LEN (MLXSW_REG_MCQI_BASE_LEN + MLXSW_REG_MCQI_CAP_LEN) MLXSW_REG_DEFINE(mcqi, MLXSW_REG_MCQI_ID, MLXSW_REG_MCQI_LEN); /* reg_mcqi_component_index * Index of the accessed component. * Access: Index */ MLXSW_ITEM32(reg, mcqi, component_index, 0x00, 0, 16); enum mlxfw_reg_mcqi_info_type { MLXSW_REG_MCQI_INFO_TYPE_CAPABILITIES, }; /* reg_mcqi_info_type * Component properties set. * Access: RW */ MLXSW_ITEM32(reg, mcqi, info_type, 0x08, 0, 5); /* reg_mcqi_offset * The requested/returned data offset from the section start, given in bytes. * Must be DWORD aligned. * Access: RW */ MLXSW_ITEM32(reg, mcqi, offset, 0x10, 0, 32); /* reg_mcqi_data_size * The requested/returned data size, given in bytes. If data_size is not DWORD * aligned, the last bytes are zero padded. * Access: RW */ MLXSW_ITEM32(reg, mcqi, data_size, 0x14, 0, 16); /* reg_mcqi_cap_max_component_size * Maximum size for this component, given in bytes. * Access: RO */ MLXSW_ITEM32(reg, mcqi, cap_max_component_size, 0x20, 0, 32); /* reg_mcqi_cap_log_mcda_word_size * Log 2 of the access word size in bytes. Read and write access must be aligned * to the word size. Write access must be done for an integer number of words. * Access: RO */ MLXSW_ITEM32(reg, mcqi, cap_log_mcda_word_size, 0x24, 28, 4); /* reg_mcqi_cap_mcda_max_write_size * Maximal write size for MCDA register * Access: RO */ MLXSW_ITEM32(reg, mcqi, cap_mcda_max_write_size, 0x24, 0, 16); static inline void mlxsw_reg_mcqi_pack(char *payload, u16 component_index) { MLXSW_REG_ZERO(mcqi, payload); mlxsw_reg_mcqi_component_index_set(payload, component_index); mlxsw_reg_mcqi_info_type_set(payload, MLXSW_REG_MCQI_INFO_TYPE_CAPABILITIES); mlxsw_reg_mcqi_offset_set(payload, 0); mlxsw_reg_mcqi_data_size_set(payload, MLXSW_REG_MCQI_CAP_LEN); } static inline void mlxsw_reg_mcqi_unpack(char *payload, u32 *p_cap_max_component_size, u8 *p_cap_log_mcda_word_size, u16 *p_cap_mcda_max_write_size) { *p_cap_max_component_size = mlxsw_reg_mcqi_cap_max_component_size_get(payload); *p_cap_log_mcda_word_size = mlxsw_reg_mcqi_cap_log_mcda_word_size_get(payload); *p_cap_mcda_max_write_size = mlxsw_reg_mcqi_cap_mcda_max_write_size_get(payload); } /* MCC - Management Component Control * ---------------------------------- * Controls the firmware component and updates the FSM. */ #define MLXSW_REG_MCC_ID 0x9062 #define MLXSW_REG_MCC_LEN 0x1C MLXSW_REG_DEFINE(mcc, MLXSW_REG_MCC_ID, MLXSW_REG_MCC_LEN); enum mlxsw_reg_mcc_instruction { MLXSW_REG_MCC_INSTRUCTION_LOCK_UPDATE_HANDLE = 0x01, MLXSW_REG_MCC_INSTRUCTION_RELEASE_UPDATE_HANDLE = 0x02, MLXSW_REG_MCC_INSTRUCTION_UPDATE_COMPONENT = 0x03, MLXSW_REG_MCC_INSTRUCTION_VERIFY_COMPONENT = 0x04, MLXSW_REG_MCC_INSTRUCTION_ACTIVATE = 0x06, MLXSW_REG_MCC_INSTRUCTION_CANCEL = 0x08, }; /* reg_mcc_instruction * Command to be executed by the FSM. * Applicable for write operation only. * Access: RW */ MLXSW_ITEM32(reg, mcc, instruction, 0x00, 0, 8); /* reg_mcc_component_index * Index of the accessed component. Applicable only for commands that * refer to components. Otherwise, this field is reserved. * Access: Index */ MLXSW_ITEM32(reg, mcc, component_index, 0x04, 0, 16); /* reg_mcc_update_handle * Token representing the current flow executed by the FSM. * Access: WO */ MLXSW_ITEM32(reg, mcc, update_handle, 0x08, 0, 24); /* reg_mcc_error_code * Indicates the successful completion of the instruction, or the reason it * failed * Access: RO */ MLXSW_ITEM32(reg, mcc, error_code, 0x0C, 8, 8); /* reg_mcc_control_state * Current FSM state * Access: RO */ MLXSW_ITEM32(reg, mcc, control_state, 0x0C, 0, 4); /* reg_mcc_component_size * Component size in bytes. Valid for UPDATE_COMPONENT instruction. Specifying * the size may shorten the update time. Value 0x0 means that size is * unspecified. * Access: WO */ MLXSW_ITEM32(reg, mcc, component_size, 0x10, 0, 32); static inline void mlxsw_reg_mcc_pack(char *payload, enum mlxsw_reg_mcc_instruction instr, u16 component_index, u32 update_handle, u32 component_size) { MLXSW_REG_ZERO(mcc, payload); mlxsw_reg_mcc_instruction_set(payload, instr); mlxsw_reg_mcc_component_index_set(payload, component_index); mlxsw_reg_mcc_update_handle_set(payload, update_handle); mlxsw_reg_mcc_component_size_set(payload, component_size); } static inline void mlxsw_reg_mcc_unpack(char *payload, u32 *p_update_handle, u8 *p_error_code, u8 *p_control_state) { if (p_update_handle) *p_update_handle = mlxsw_reg_mcc_update_handle_get(payload); if (p_error_code) *p_error_code = mlxsw_reg_mcc_error_code_get(payload); if (p_control_state) *p_control_state = mlxsw_reg_mcc_control_state_get(payload); } /* MCDA - Management Component Data Access * --------------------------------------- * This register allows reading and writing a firmware component. */ #define MLXSW_REG_MCDA_ID 0x9063 #define MLXSW_REG_MCDA_BASE_LEN 0x10 #define MLXSW_REG_MCDA_MAX_DATA_LEN 0x80 #define MLXSW_REG_MCDA_LEN \ (MLXSW_REG_MCDA_BASE_LEN + MLXSW_REG_MCDA_MAX_DATA_LEN) MLXSW_REG_DEFINE(mcda, MLXSW_REG_MCDA_ID, MLXSW_REG_MCDA_LEN); /* reg_mcda_update_handle * Token representing the current flow executed by the FSM. * Access: RW */ MLXSW_ITEM32(reg, mcda, update_handle, 0x00, 0, 24); /* reg_mcda_offset * Offset of accessed address relative to component start. Accesses must be in * accordance to log_mcda_word_size in MCQI reg. * Access: RW */ MLXSW_ITEM32(reg, mcda, offset, 0x04, 0, 32); /* reg_mcda_size * Size of the data accessed, given in bytes. * Access: RW */ MLXSW_ITEM32(reg, mcda, size, 0x08, 0, 16); /* reg_mcda_data * Data block accessed. * Access: RW */ MLXSW_ITEM32_INDEXED(reg, mcda, data, 0x10, 0, 32, 4, 0, false); static inline void mlxsw_reg_mcda_pack(char *payload, u32 update_handle, u32 offset, u16 size, u8 *data) { int i; MLXSW_REG_ZERO(mcda, payload); mlxsw_reg_mcda_update_handle_set(payload, update_handle); mlxsw_reg_mcda_offset_set(payload, offset); mlxsw_reg_mcda_size_set(payload, size); for (i = 0; i < size / 4; i++) mlxsw_reg_mcda_data_set(payload, i, *(u32 *) &data[i * 4]); } /* MPSC - Monitoring Packet Sampling Configuration Register * -------------------------------------------------------- * MPSC Register is used to configure the Packet Sampling mechanism. */ #define MLXSW_REG_MPSC_ID 0x9080 #define MLXSW_REG_MPSC_LEN 0x1C MLXSW_REG_DEFINE(mpsc, MLXSW_REG_MPSC_ID, MLXSW_REG_MPSC_LEN); /* reg_mpsc_local_port * Local port number * Not supported for CPU port * Access: Index */ MLXSW_ITEM32_LP(reg, mpsc, 0x00, 16, 0x00, 12); /* reg_mpsc_e * Enable sampling on port local_port * Access: RW */ MLXSW_ITEM32(reg, mpsc, e, 0x04, 30, 1); #define MLXSW_REG_MPSC_RATE_MAX 3500000000UL /* reg_mpsc_rate * Sampling rate = 1 out of rate packets (with randomization around * the point). Valid values are: 1 to MLXSW_REG_MPSC_RATE_MAX * Access: RW */ MLXSW_ITEM32(reg, mpsc, rate, 0x08, 0, 32); static inline void mlxsw_reg_mpsc_pack(char *payload, u16 local_port, bool e, u32 rate) { MLXSW_REG_ZERO(mpsc, payload); mlxsw_reg_mpsc_local_port_set(payload, local_port); mlxsw_reg_mpsc_e_set(payload, e); mlxsw_reg_mpsc_rate_set(payload, rate); } /* MGPC - Monitoring General Purpose Counter Set Register * The MGPC register retrieves and sets the General Purpose Counter Set. */ #define MLXSW_REG_MGPC_ID 0x9081 #define MLXSW_REG_MGPC_LEN 0x18 MLXSW_REG_DEFINE(mgpc, MLXSW_REG_MGPC_ID, MLXSW_REG_MGPC_LEN); /* reg_mgpc_counter_set_type * Counter set type. * Access: OP */ MLXSW_ITEM32(reg, mgpc, counter_set_type, 0x00, 24, 8); /* reg_mgpc_counter_index * Counter index. * Access: Index */ MLXSW_ITEM32(reg, mgpc, counter_index, 0x00, 0, 24); enum mlxsw_reg_mgpc_opcode { /* Nop */ MLXSW_REG_MGPC_OPCODE_NOP = 0x00, /* Clear counters */ MLXSW_REG_MGPC_OPCODE_CLEAR = 0x08, }; /* reg_mgpc_opcode * Opcode. * Access: OP */ MLXSW_ITEM32(reg, mgpc, opcode, 0x04, 28, 4); /* reg_mgpc_byte_counter * Byte counter value. * Access: RW */ MLXSW_ITEM64(reg, mgpc, byte_counter, 0x08, 0, 64); /* reg_mgpc_packet_counter * Packet counter value. * Access: RW */ MLXSW_ITEM64(reg, mgpc, packet_counter, 0x10, 0, 64); static inline void mlxsw_reg_mgpc_pack(char *payload, u32 counter_index, enum mlxsw_reg_mgpc_opcode opcode, enum mlxsw_reg_flow_counter_set_type set_type) { MLXSW_REG_ZERO(mgpc, payload); mlxsw_reg_mgpc_counter_index_set(payload, counter_index); mlxsw_reg_mgpc_counter_set_type_set(payload, set_type); mlxsw_reg_mgpc_opcode_set(payload, opcode); } /* MPRS - Monitoring Parsing State Register * ---------------------------------------- * The MPRS register is used for setting up the parsing for hash, * policy-engine and routing. */ #define MLXSW_REG_MPRS_ID 0x9083 #define MLXSW_REG_MPRS_LEN 0x14 MLXSW_REG_DEFINE(mprs, MLXSW_REG_MPRS_ID, MLXSW_REG_MPRS_LEN); /* reg_mprs_parsing_depth * Minimum parsing depth. * Need to enlarge parsing depth according to L3, MPLS, tunnels, ACL * rules, traps, hash, etc. Default is 96 bytes. Reserved when SwitchX-2. * Access: RW */ MLXSW_ITEM32(reg, mprs, parsing_depth, 0x00, 0, 16); /* reg_mprs_parsing_en * Parsing enable. * Bit 0 - Enable parsing of NVE of types VxLAN, VxLAN-GPE, GENEVE and * NVGRE. Default is enabled. Reserved when SwitchX-2. * Access: RW */ MLXSW_ITEM32(reg, mprs, parsing_en, 0x04, 0, 16); /* reg_mprs_vxlan_udp_dport * VxLAN UDP destination port. * Used for identifying VxLAN packets and for dport field in * encapsulation. Default is 4789. * Access: RW */ MLXSW_ITEM32(reg, mprs, vxlan_udp_dport, 0x10, 0, 16); static inline void mlxsw_reg_mprs_pack(char *payload, u16 parsing_depth, u16 vxlan_udp_dport) { MLXSW_REG_ZERO(mprs, payload); mlxsw_reg_mprs_parsing_depth_set(payload, parsing_depth); mlxsw_reg_mprs_parsing_en_set(payload, true); mlxsw_reg_mprs_vxlan_udp_dport_set(payload, vxlan_udp_dport); } /* MOGCR - Monitoring Global Configuration Register * ------------------------------------------------ */ #define MLXSW_REG_MOGCR_ID 0x9086 #define MLXSW_REG_MOGCR_LEN 0x20 MLXSW_REG_DEFINE(mogcr, MLXSW_REG_MOGCR_ID, MLXSW_REG_MOGCR_LEN); /* reg_mogcr_ptp_iftc * PTP Ingress FIFO Trap Clear * The PTP_ING_FIFO trap provides MTPPTR with clr according * to this value. Default 0. * Reserved when IB switches and when SwitchX/-2, Spectrum-2 * Access: RW */ MLXSW_ITEM32(reg, mogcr, ptp_iftc, 0x00, 1, 1); /* reg_mogcr_ptp_eftc * PTP Egress FIFO Trap Clear * The PTP_EGR_FIFO trap provides MTPPTR with clr according * to this value. Default 0. * Reserved when IB switches and when SwitchX/-2, Spectrum-2 * Access: RW */ MLXSW_ITEM32(reg, mogcr, ptp_eftc, 0x00, 0, 1); /* reg_mogcr_mirroring_pid_base * Base policer id for mirroring policers. * Must have an even value (e.g. 1000, not 1001). * Reserved when SwitchX/-2, Switch-IB/2, Spectrum-1 and Quantum. * Access: RW */ MLXSW_ITEM32(reg, mogcr, mirroring_pid_base, 0x0C, 0, 14); /* MPAGR - Monitoring Port Analyzer Global Register * ------------------------------------------------ * This register is used for global port analyzer configurations. * Note: This register is not supported by current FW versions for Spectrum-1. */ #define MLXSW_REG_MPAGR_ID 0x9089 #define MLXSW_REG_MPAGR_LEN 0x0C MLXSW_REG_DEFINE(mpagr, MLXSW_REG_MPAGR_ID, MLXSW_REG_MPAGR_LEN); enum mlxsw_reg_mpagr_trigger { MLXSW_REG_MPAGR_TRIGGER_EGRESS, MLXSW_REG_MPAGR_TRIGGER_INGRESS, MLXSW_REG_MPAGR_TRIGGER_INGRESS_WRED, MLXSW_REG_MPAGR_TRIGGER_INGRESS_SHARED_BUFFER, MLXSW_REG_MPAGR_TRIGGER_INGRESS_ING_CONG, MLXSW_REG_MPAGR_TRIGGER_INGRESS_EGR_CONG, MLXSW_REG_MPAGR_TRIGGER_EGRESS_ECN, MLXSW_REG_MPAGR_TRIGGER_EGRESS_HIGH_LATENCY, }; /* reg_mpagr_trigger * Mirror trigger. * Access: Index */ MLXSW_ITEM32(reg, mpagr, trigger, 0x00, 0, 4); /* reg_mpagr_pa_id * Port analyzer ID. * Access: RW */ MLXSW_ITEM32(reg, mpagr, pa_id, 0x04, 0, 4); #define MLXSW_REG_MPAGR_RATE_MAX 3500000000UL /* reg_mpagr_probability_rate * Sampling rate. * Valid values are: 1 to 3.5*10^9 * Value of 1 means "sample all". Default is 1. * Access: RW */ MLXSW_ITEM32(reg, mpagr, probability_rate, 0x08, 0, 32); static inline void mlxsw_reg_mpagr_pack(char *payload, enum mlxsw_reg_mpagr_trigger trigger, u8 pa_id, u32 probability_rate) { MLXSW_REG_ZERO(mpagr, payload); mlxsw_reg_mpagr_trigger_set(payload, trigger); mlxsw_reg_mpagr_pa_id_set(payload, pa_id); mlxsw_reg_mpagr_probability_rate_set(payload, probability_rate); } /* MOMTE - Monitoring Mirror Trigger Enable Register * ------------------------------------------------- * This register is used to configure the mirror enable for different mirror * reasons. */ #define MLXSW_REG_MOMTE_ID 0x908D #define MLXSW_REG_MOMTE_LEN 0x10 MLXSW_REG_DEFINE(momte, MLXSW_REG_MOMTE_ID, MLXSW_REG_MOMTE_LEN); /* reg_momte_local_port * Local port number. * Access: Index */ MLXSW_ITEM32_LP(reg, momte, 0x00, 16, 0x00, 12); enum mlxsw_reg_momte_type { MLXSW_REG_MOMTE_TYPE_WRED = 0x20, MLXSW_REG_MOMTE_TYPE_SHARED_BUFFER_TCLASS = 0x31, MLXSW_REG_MOMTE_TYPE_SHARED_BUFFER_TCLASS_DESCRIPTORS = 0x32, MLXSW_REG_MOMTE_TYPE_SHARED_BUFFER_EGRESS_PORT = 0x33, MLXSW_REG_MOMTE_TYPE_ING_CONG = 0x40, MLXSW_REG_MOMTE_TYPE_EGR_CONG = 0x50, MLXSW_REG_MOMTE_TYPE_ECN = 0x60, MLXSW_REG_MOMTE_TYPE_HIGH_LATENCY = 0x70, }; /* reg_momte_type * Type of mirroring. * Access: Index */ MLXSW_ITEM32(reg, momte, type, 0x04, 0, 8); /* reg_momte_tclass_en * TClass/PG mirror enable. Each bit represents corresponding tclass. * 0: disable (default) * 1: enable * Access: RW */ MLXSW_ITEM_BIT_ARRAY(reg, momte, tclass_en, 0x08, 0x08, 1); static inline void mlxsw_reg_momte_pack(char *payload, u16 local_port, enum mlxsw_reg_momte_type type) { MLXSW_REG_ZERO(momte, payload); mlxsw_reg_momte_local_port_set(payload, local_port); mlxsw_reg_momte_type_set(payload, type); } /* MTPPPC - Time Precision Packet Port Configuration * ------------------------------------------------- * This register serves for configuration of which PTP messages should be * timestamped. This is a global configuration, despite the register name. * * Reserved when Spectrum-2. */ #define MLXSW_REG_MTPPPC_ID 0x9090 #define MLXSW_REG_MTPPPC_LEN 0x28 MLXSW_REG_DEFINE(mtpppc, MLXSW_REG_MTPPPC_ID, MLXSW_REG_MTPPPC_LEN); /* reg_mtpppc_ing_timestamp_message_type * Bitwise vector of PTP message types to timestamp at ingress. * MessageType field as defined by IEEE 1588 * Each bit corresponds to a value (e.g. Bit0: Sync, Bit1: Delay_Req) * Default all 0 * Access: RW */ MLXSW_ITEM32(reg, mtpppc, ing_timestamp_message_type, 0x08, 0, 16); /* reg_mtpppc_egr_timestamp_message_type * Bitwise vector of PTP message types to timestamp at egress. * MessageType field as defined by IEEE 1588 * Each bit corresponds to a value (e.g. Bit0: Sync, Bit1: Delay_Req) * Default all 0 * Access: RW */ MLXSW_ITEM32(reg, mtpppc, egr_timestamp_message_type, 0x0C, 0, 16); static inline void mlxsw_reg_mtpppc_pack(char *payload, u16 ing, u16 egr) { MLXSW_REG_ZERO(mtpppc, payload); mlxsw_reg_mtpppc_ing_timestamp_message_type_set(payload, ing); mlxsw_reg_mtpppc_egr_timestamp_message_type_set(payload, egr); } /* MTPPTR - Time Precision Packet Timestamping Reading * --------------------------------------------------- * The MTPPTR is used for reading the per port PTP timestamp FIFO. * There is a trap for packets which are latched to the timestamp FIFO, thus the * SW knows which FIFO to read. Note that packets enter the FIFO before been * trapped. The sequence number is used to synchronize the timestamp FIFO * entries and the trapped packets. * Reserved when Spectrum-2. */ #define MLXSW_REG_MTPPTR_ID 0x9091 #define MLXSW_REG_MTPPTR_BASE_LEN 0x10 /* base length, without records */ #define MLXSW_REG_MTPPTR_REC_LEN 0x10 /* record length */ #define MLXSW_REG_MTPPTR_REC_MAX_COUNT 4 #define MLXSW_REG_MTPPTR_LEN (MLXSW_REG_MTPPTR_BASE_LEN + \ MLXSW_REG_MTPPTR_REC_LEN * MLXSW_REG_MTPPTR_REC_MAX_COUNT) MLXSW_REG_DEFINE(mtpptr, MLXSW_REG_MTPPTR_ID, MLXSW_REG_MTPPTR_LEN); /* reg_mtpptr_local_port * Not supported for CPU port. * Access: Index */ MLXSW_ITEM32_LP(reg, mtpptr, 0x00, 16, 0x00, 12); enum mlxsw_reg_mtpptr_dir { MLXSW_REG_MTPPTR_DIR_INGRESS, MLXSW_REG_MTPPTR_DIR_EGRESS, }; /* reg_mtpptr_dir * Direction. * Access: Index */ MLXSW_ITEM32(reg, mtpptr, dir, 0x00, 0, 1); /* reg_mtpptr_clr * Clear the records. * Access: OP */ MLXSW_ITEM32(reg, mtpptr, clr, 0x04, 31, 1); /* reg_mtpptr_num_rec * Number of valid records in the response * Range 0.. cap_ptp_timestamp_fifo * Access: RO */ MLXSW_ITEM32(reg, mtpptr, num_rec, 0x08, 0, 4); /* reg_mtpptr_rec_message_type * MessageType field as defined by IEEE 1588 Each bit corresponds to a value * (e.g. Bit0: Sync, Bit1: Delay_Req) * Access: RO */ MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_message_type, MLXSW_REG_MTPPTR_BASE_LEN, 8, 4, MLXSW_REG_MTPPTR_REC_LEN, 0, false); /* reg_mtpptr_rec_domain_number * DomainNumber field as defined by IEEE 1588 * Access: RO */ MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_domain_number, MLXSW_REG_MTPPTR_BASE_LEN, 0, 8, MLXSW_REG_MTPPTR_REC_LEN, 0, false); /* reg_mtpptr_rec_sequence_id * SequenceId field as defined by IEEE 1588 * Access: RO */ MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_sequence_id, MLXSW_REG_MTPPTR_BASE_LEN, 0, 16, MLXSW_REG_MTPPTR_REC_LEN, 0x4, false); /* reg_mtpptr_rec_timestamp_high * Timestamp of when the PTP packet has passed through the port Units of PLL * clock time. * For Spectrum-1 the PLL clock is 156.25Mhz and PLL clock time is 6.4nSec. * Access: RO */ MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_timestamp_high, MLXSW_REG_MTPPTR_BASE_LEN, 0, 32, MLXSW_REG_MTPPTR_REC_LEN, 0x8, false); /* reg_mtpptr_rec_timestamp_low * See rec_timestamp_high. * Access: RO */ MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_timestamp_low, MLXSW_REG_MTPPTR_BASE_LEN, 0, 32, MLXSW_REG_MTPPTR_REC_LEN, 0xC, false); static inline void mlxsw_reg_mtpptr_unpack(const char *payload, unsigned int rec, u8 *p_message_type, u8 *p_domain_number, u16 *p_sequence_id, u64 *p_timestamp) { u32 timestamp_high, timestamp_low; *p_message_type = mlxsw_reg_mtpptr_rec_message_type_get(payload, rec); *p_domain_number = mlxsw_reg_mtpptr_rec_domain_number_get(payload, rec); *p_sequence_id = mlxsw_reg_mtpptr_rec_sequence_id_get(payload, rec); timestamp_high = mlxsw_reg_mtpptr_rec_timestamp_high_get(payload, rec); timestamp_low = mlxsw_reg_mtpptr_rec_timestamp_low_get(payload, rec); *p_timestamp = (u64)timestamp_high << 32 | timestamp_low; } /* MTPTPT - Monitoring Precision Time Protocol Trap Register * --------------------------------------------------------- * This register is used for configuring under which trap to deliver PTP * packets depending on type of the packet. */ #define MLXSW_REG_MTPTPT_ID 0x9092 #define MLXSW_REG_MTPTPT_LEN 0x08 MLXSW_REG_DEFINE(mtptpt, MLXSW_REG_MTPTPT_ID, MLXSW_REG_MTPTPT_LEN); enum mlxsw_reg_mtptpt_trap_id { MLXSW_REG_MTPTPT_TRAP_ID_PTP0, MLXSW_REG_MTPTPT_TRAP_ID_PTP1, }; /* reg_mtptpt_trap_id * Trap id. * Access: Index */ MLXSW_ITEM32(reg, mtptpt, trap_id, 0x00, 0, 4); /* reg_mtptpt_message_type * Bitwise vector of PTP message types to trap. This is a necessary but * non-sufficient condition since need to enable also per port. See MTPPPC. * Message types are defined by IEEE 1588 Each bit corresponds to a value (e.g. * Bit0: Sync, Bit1: Delay_Req) */ MLXSW_ITEM32(reg, mtptpt, message_type, 0x04, 0, 16); static inline void mlxsw_reg_mtptpt_pack(char *payload, enum mlxsw_reg_mtptpt_trap_id trap_id, u16 message_type) { MLXSW_REG_ZERO(mtptpt, payload); mlxsw_reg_mtptpt_trap_id_set(payload, trap_id); mlxsw_reg_mtptpt_message_type_set(payload, message_type); } /* MTPCPC - Monitoring Time Precision Correction Port Configuration Register * ------------------------------------------------------------------------- */ #define MLXSW_REG_MTPCPC_ID 0x9093 #define MLXSW_REG_MTPCPC_LEN 0x2C MLXSW_REG_DEFINE(mtpcpc, MLXSW_REG_MTPCPC_ID, MLXSW_REG_MTPCPC_LEN); /* reg_mtpcpc_pport * Per port: * 0: config is global. When reading - the local_port is 1. * 1: config is per port. * Access: Index */ MLXSW_ITEM32(reg, mtpcpc, pport, 0x00, 31, 1); /* reg_mtpcpc_local_port * Local port number. * Supported to/from CPU port. * Reserved when pport = 0. * Access: Index */ MLXSW_ITEM32_LP(reg, mtpcpc, 0x00, 16, 0x00, 12); /* reg_mtpcpc_ptp_trap_en * Enable PTP traps. * The trap_id is configured by MTPTPT. * Access: RW */ MLXSW_ITEM32(reg, mtpcpc, ptp_trap_en, 0x04, 0, 1); /* reg_mtpcpc_ing_correction_message_type * Bitwise vector of PTP message types to update correction-field at ingress. * MessageType field as defined by IEEE 1588 Each bit corresponds to a value * (e.g. Bit0: Sync, Bit1: Delay_Req). Supported also from CPU port. * Default all 0 * Access: RW */ MLXSW_ITEM32(reg, mtpcpc, ing_correction_message_type, 0x10, 0, 16); /* reg_mtpcpc_egr_correction_message_type * Bitwise vector of PTP message types to update correction-field at egress. * MessageType field as defined by IEEE 1588 Each bit corresponds to a value * (e.g. Bit0: Sync, Bit1: Delay_Req). Supported also from CPU port. * Default all 0 * Access: RW */ MLXSW_ITEM32(reg, mtpcpc, egr_correction_message_type, 0x14, 0, 16); static inline void mlxsw_reg_mtpcpc_pack(char *payload, bool pport, u16 local_port, bool ptp_trap_en, u16 ing, u16 egr) { MLXSW_REG_ZERO(mtpcpc, payload); mlxsw_reg_mtpcpc_pport_set(payload, pport); mlxsw_reg_mtpcpc_local_port_set(payload, pport ? local_port : 0); mlxsw_reg_mtpcpc_ptp_trap_en_set(payload, ptp_trap_en); mlxsw_reg_mtpcpc_ing_correction_message_type_set(payload, ing); mlxsw_reg_mtpcpc_egr_correction_message_type_set(payload, egr); } /* MFGD - Monitoring FW General Debug Register * ------------------------------------------- */ #define MLXSW_REG_MFGD_ID 0x90F0 #define MLXSW_REG_MFGD_LEN 0x0C MLXSW_REG_DEFINE(mfgd, MLXSW_REG_MFGD_ID, MLXSW_REG_MFGD_LEN); /* reg_mfgd_fw_fatal_event_mode * 0 - don't check FW fatal (default) * 1 - check FW fatal - enable MFDE trap * Access: RW */ MLXSW_ITEM32(reg, mfgd, fatal_event_mode, 0x00, 9, 2); /* reg_mfgd_trigger_test * Access: WO */ MLXSW_ITEM32(reg, mfgd, trigger_test, 0x00, 11, 1); /* MGPIR - Management General Peripheral Information Register * ---------------------------------------------------------- * MGPIR register allows software to query the hardware and * firmware general information of peripheral entities. */ #define MLXSW_REG_MGPIR_ID 0x9100 #define MLXSW_REG_MGPIR_LEN 0xA0 MLXSW_REG_DEFINE(mgpir, MLXSW_REG_MGPIR_ID, MLXSW_REG_MGPIR_LEN); enum mlxsw_reg_mgpir_device_type { MLXSW_REG_MGPIR_DEVICE_TYPE_NONE, MLXSW_REG_MGPIR_DEVICE_TYPE_GEARBOX_DIE, }; /* mgpir_slot_index * Slot index (0: Main board). * Access: Index */ MLXSW_ITEM32(reg, mgpir, slot_index, 0x00, 28, 4); /* mgpir_device_type * Access: RO */ MLXSW_ITEM32(reg, mgpir, device_type, 0x00, 24, 4); /* mgpir_devices_per_flash * Number of devices of device_type per flash (can be shared by few devices). * Access: RO */ MLXSW_ITEM32(reg, mgpir, devices_per_flash, 0x00, 16, 8); /* mgpir_num_of_devices * Number of devices of device_type. * Access: RO */ MLXSW_ITEM32(reg, mgpir, num_of_devices, 0x00, 0, 8); /* max_modules_per_slot * Maximum number of modules that can be connected per slot. * Access: RO */ MLXSW_ITEM32(reg, mgpir, max_modules_per_slot, 0x04, 16, 8); /* mgpir_num_of_slots * Number of slots in the system. * Access: RO */ MLXSW_ITEM32(reg, mgpir, num_of_slots, 0x04, 8, 8); /* mgpir_num_of_modules * Number of modules. * Access: RO */ MLXSW_ITEM32(reg, mgpir, num_of_modules, 0x04, 0, 8); static inline void mlxsw_reg_mgpir_pack(char *payload, u8 slot_index) { MLXSW_REG_ZERO(mgpir, payload); mlxsw_reg_mgpir_slot_index_set(payload, slot_index); } static inline void mlxsw_reg_mgpir_unpack(char *payload, u8 *num_of_devices, enum mlxsw_reg_mgpir_device_type *device_type, u8 *devices_per_flash, u8 *num_of_modules, u8 *num_of_slots) { if (num_of_devices) *num_of_devices = mlxsw_reg_mgpir_num_of_devices_get(payload); if (device_type) *device_type = mlxsw_reg_mgpir_device_type_get(payload); if (devices_per_flash) *devices_per_flash = mlxsw_reg_mgpir_devices_per_flash_get(payload); if (num_of_modules) *num_of_modules = mlxsw_reg_mgpir_num_of_modules_get(payload); if (num_of_slots) *num_of_slots = mlxsw_reg_mgpir_num_of_slots_get(payload); } /* MBCT - Management Binary Code Transfer Register * ----------------------------------------------- * This register allows to transfer binary codes from the host to * the management FW by transferring it by chunks of maximum 1KB. */ #define MLXSW_REG_MBCT_ID 0x9120 #define MLXSW_REG_MBCT_LEN 0x420 MLXSW_REG_DEFINE(mbct, MLXSW_REG_MBCT_ID, MLXSW_REG_MBCT_LEN); /* reg_mbct_slot_index * Slot index. 0 is reserved. * Access: Index */ MLXSW_ITEM32(reg, mbct, slot_index, 0x00, 0, 4); /* reg_mbct_data_size * Actual data field size in bytes for the current data transfer. * Access: WO */ MLXSW_ITEM32(reg, mbct, data_size, 0x04, 0, 11); enum mlxsw_reg_mbct_op { MLXSW_REG_MBCT_OP_ERASE_INI_IMAGE = 1, MLXSW_REG_MBCT_OP_DATA_TRANSFER, /* Download */ MLXSW_REG_MBCT_OP_ACTIVATE, MLXSW_REG_MBCT_OP_CLEAR_ERRORS = 6, MLXSW_REG_MBCT_OP_QUERY_STATUS, }; /* reg_mbct_op * Access: WO */ MLXSW_ITEM32(reg, mbct, op, 0x08, 28, 4); /* reg_mbct_last * Indicates that the current data field is the last chunk of the INI. * Access: WO */ MLXSW_ITEM32(reg, mbct, last, 0x08, 26, 1); /* reg_mbct_oee * Opcode Event Enable. When set a BCTOE event will be sent once the opcode * was executed and the fsm_state has changed. * Access: WO */ MLXSW_ITEM32(reg, mbct, oee, 0x08, 25, 1); enum mlxsw_reg_mbct_status { /* Partial data transfer completed successfully and ready for next * data transfer. */ MLXSW_REG_MBCT_STATUS_PART_DATA = 2, MLXSW_REG_MBCT_STATUS_LAST_DATA, MLXSW_REG_MBCT_STATUS_ERASE_COMPLETE, /* Error - trying to erase INI while it being used. */ MLXSW_REG_MBCT_STATUS_ERROR_INI_IN_USE, /* Last data transfer completed, applying magic pattern. */ MLXSW_REG_MBCT_STATUS_ERASE_FAILED = 7, MLXSW_REG_MBCT_STATUS_INI_ERROR, MLXSW_REG_MBCT_STATUS_ACTIVATION_FAILED, MLXSW_REG_MBCT_STATUS_ILLEGAL_OPERATION = 11, }; /* reg_mbct_status * Status. * Access: RO */ MLXSW_ITEM32(reg, mbct, status, 0x0C, 24, 5); enum mlxsw_reg_mbct_fsm_state { MLXSW_REG_MBCT_FSM_STATE_INI_IN_USE = 5, MLXSW_REG_MBCT_FSM_STATE_ERROR, }; /* reg_mbct_fsm_state * FSM state. * Access: RO */ MLXSW_ITEM32(reg, mbct, fsm_state, 0x0C, 16, 4); #define MLXSW_REG_MBCT_DATA_LEN 1024 /* reg_mbct_data * Up to 1KB of data. * Access: WO */ MLXSW_ITEM_BUF(reg, mbct, data, 0x20, MLXSW_REG_MBCT_DATA_LEN); static inline void mlxsw_reg_mbct_pack(char *payload, u8 slot_index, enum mlxsw_reg_mbct_op op, bool oee) { MLXSW_REG_ZERO(mbct, payload); mlxsw_reg_mbct_slot_index_set(payload, slot_index); mlxsw_reg_mbct_op_set(payload, op); mlxsw_reg_mbct_oee_set(payload, oee); } static inline void mlxsw_reg_mbct_dt_pack(char *payload, u16 data_size, bool last, const char *data) { if (WARN_ON(data_size > MLXSW_REG_MBCT_DATA_LEN)) return; mlxsw_reg_mbct_data_size_set(payload, data_size); mlxsw_reg_mbct_last_set(payload, last); mlxsw_reg_mbct_data_memcpy_to(payload, data); } static inline void mlxsw_reg_mbct_unpack(const char *payload, u8 *p_slot_index, enum mlxsw_reg_mbct_status *p_status, enum mlxsw_reg_mbct_fsm_state *p_fsm_state) { if (p_slot_index) *p_slot_index = mlxsw_reg_mbct_slot_index_get(payload); *p_status = mlxsw_reg_mbct_status_get(payload); if (p_fsm_state) *p_fsm_state = mlxsw_reg_mbct_fsm_state_get(payload); } /* MDDT - Management DownStream Device Tunneling Register * ------------------------------------------------------ * This register allows to deliver query and request messages (PRM registers, * commands) to a DownStream device. */ #define MLXSW_REG_MDDT_ID 0x9160 #define MLXSW_REG_MDDT_LEN 0x110 MLXSW_REG_DEFINE(mddt, MLXSW_REG_MDDT_ID, MLXSW_REG_MDDT_LEN); /* reg_mddt_slot_index * Slot index. * Access: Index */ MLXSW_ITEM32(reg, mddt, slot_index, 0x00, 8, 4); /* reg_mddt_device_index * Device index. * Access: Index */ MLXSW_ITEM32(reg, mddt, device_index, 0x00, 0, 8); /* reg_mddt_read_size * Read size in D-Words. * Access: OP */ MLXSW_ITEM32(reg, mddt, read_size, 0x04, 24, 8); /* reg_mddt_write_size * Write size in D-Words. * Access: OP */ MLXSW_ITEM32(reg, mddt, write_size, 0x04, 16, 8); enum mlxsw_reg_mddt_status { MLXSW_REG_MDDT_STATUS_OK, }; /* reg_mddt_status * Return code of the Downstream Device to the register that was sent. * Access: RO */ MLXSW_ITEM32(reg, mddt, status, 0x0C, 24, 8); enum mlxsw_reg_mddt_method { MLXSW_REG_MDDT_METHOD_QUERY, MLXSW_REG_MDDT_METHOD_WRITE, }; /* reg_mddt_method * Access: OP */ MLXSW_ITEM32(reg, mddt, method, 0x0C, 22, 2); /* reg_mddt_register_id * Access: Index */ MLXSW_ITEM32(reg, mddt, register_id, 0x0C, 0, 16); #define MLXSW_REG_MDDT_PAYLOAD_OFFSET 0x0C #define MLXSW_REG_MDDT_PRM_REGISTER_HEADER_LEN 4 static inline char *mlxsw_reg_mddt_inner_payload(char *payload) { return payload + MLXSW_REG_MDDT_PAYLOAD_OFFSET + MLXSW_REG_MDDT_PRM_REGISTER_HEADER_LEN; } static inline void mlxsw_reg_mddt_pack(char *payload, u8 slot_index, u8 device_index, enum mlxsw_reg_mddt_method method, const struct mlxsw_reg_info *reg, char **inner_payload) { int len = reg->len + MLXSW_REG_MDDT_PRM_REGISTER_HEADER_LEN; if (WARN_ON(len + MLXSW_REG_MDDT_PAYLOAD_OFFSET > MLXSW_REG_MDDT_LEN)) len = MLXSW_REG_MDDT_LEN - MLXSW_REG_MDDT_PAYLOAD_OFFSET; MLXSW_REG_ZERO(mddt, payload); mlxsw_reg_mddt_slot_index_set(payload, slot_index); mlxsw_reg_mddt_device_index_set(payload, device_index); mlxsw_reg_mddt_method_set(payload, method); mlxsw_reg_mddt_register_id_set(payload, reg->id); mlxsw_reg_mddt_read_size_set(payload, len / 4); mlxsw_reg_mddt_write_size_set(payload, len / 4); *inner_payload = mlxsw_reg_mddt_inner_payload(payload); } /* MDDQ - Management DownStream Device Query Register * -------------------------------------------------- * This register allows to query the DownStream device properties. The desired * information is chosen upon the query_type field and is delivered by 32B * of data blocks. */ #define MLXSW_REG_MDDQ_ID 0x9161 #define MLXSW_REG_MDDQ_LEN 0x30 MLXSW_REG_DEFINE(mddq, MLXSW_REG_MDDQ_ID, MLXSW_REG_MDDQ_LEN); /* reg_mddq_sie * Slot info event enable. * When set to '1', each change in the slot_info.provisioned / sr_valid / * active / ready will generate a DSDSC event. * Access: RW */ MLXSW_ITEM32(reg, mddq, sie, 0x00, 31, 1); enum mlxsw_reg_mddq_query_type { MLXSW_REG_MDDQ_QUERY_TYPE_SLOT_INFO = 1, MLXSW_REG_MDDQ_QUERY_TYPE_DEVICE_INFO, /* If there are no devices * on the slot, data_valid * will be '0'. */ MLXSW_REG_MDDQ_QUERY_TYPE_SLOT_NAME, }; /* reg_mddq_query_type * Access: Index */ MLXSW_ITEM32(reg, mddq, query_type, 0x00, 16, 8); /* reg_mddq_slot_index * Slot index. 0 is reserved. * Access: Index */ MLXSW_ITEM32(reg, mddq, slot_index, 0x00, 0, 4); /* reg_mddq_response_msg_seq * Response message sequential number. For a specific request, the response * message sequential number is the following one. In addition, the last * message should be 0. * Access: RO */ MLXSW_ITEM32(reg, mddq, response_msg_seq, 0x04, 16, 8); /* reg_mddq_request_msg_seq * Request message sequential number. * The first message number should be 0. * Access: Index */ MLXSW_ITEM32(reg, mddq, request_msg_seq, 0x04, 0, 8); /* reg_mddq_data_valid * If set, the data in the data field is valid and contain the information * for the queried index. * Access: RO */ MLXSW_ITEM32(reg, mddq, data_valid, 0x08, 31, 1); /* reg_mddq_slot_info_provisioned * If set, the INI file is applied and the card is provisioned. * Access: RO */ MLXSW_ITEM32(reg, mddq, slot_info_provisioned, 0x10, 31, 1); /* reg_mddq_slot_info_sr_valid * If set, Shift Register is valid (after being provisioned) and data * can be sent from the switch ASIC to the line-card CPLD over Shift-Register. * Access: RO */ MLXSW_ITEM32(reg, mddq, slot_info_sr_valid, 0x10, 30, 1); enum mlxsw_reg_mddq_slot_info_ready { MLXSW_REG_MDDQ_SLOT_INFO_READY_NOT_READY, MLXSW_REG_MDDQ_SLOT_INFO_READY_READY, MLXSW_REG_MDDQ_SLOT_INFO_READY_ERROR, }; /* reg_mddq_slot_info_lc_ready * If set, the LC is powered on, matching the INI version and a new FW * version can be burnt (if necessary). * Access: RO */ MLXSW_ITEM32(reg, mddq, slot_info_lc_ready, 0x10, 28, 2); /* reg_mddq_slot_info_active * If set, the FW has completed the MDDC.device_enable command. * Access: RO */ MLXSW_ITEM32(reg, mddq, slot_info_active, 0x10, 27, 1); /* reg_mddq_slot_info_hw_revision * Major user-configured version number of the current INI file. * Valid only when active or ready are '1'. * Access: RO */ MLXSW_ITEM32(reg, mddq, slot_info_hw_revision, 0x14, 16, 16); /* reg_mddq_slot_info_ini_file_version * User-configured version number of the current INI file. * Valid only when active or lc_ready are '1'. * Access: RO */ MLXSW_ITEM32(reg, mddq, slot_info_ini_file_version, 0x14, 0, 16); /* reg_mddq_slot_info_card_type * Access: RO */ MLXSW_ITEM32(reg, mddq, slot_info_card_type, 0x18, 0, 8); static inline void __mlxsw_reg_mddq_pack(char *payload, u8 slot_index, enum mlxsw_reg_mddq_query_type query_type) { MLXSW_REG_ZERO(mddq, payload); mlxsw_reg_mddq_slot_index_set(payload, slot_index); mlxsw_reg_mddq_query_type_set(payload, query_type); } static inline void mlxsw_reg_mddq_slot_info_pack(char *payload, u8 slot_index, bool sie) { __mlxsw_reg_mddq_pack(payload, slot_index, MLXSW_REG_MDDQ_QUERY_TYPE_SLOT_INFO); mlxsw_reg_mddq_sie_set(payload, sie); } static inline void mlxsw_reg_mddq_slot_info_unpack(const char *payload, u8 *p_slot_index, bool *p_provisioned, bool *p_sr_valid, enum mlxsw_reg_mddq_slot_info_ready *p_lc_ready, bool *p_active, u16 *p_hw_revision, u16 *p_ini_file_version, u8 *p_card_type) { *p_slot_index = mlxsw_reg_mddq_slot_index_get(payload); *p_provisioned = mlxsw_reg_mddq_slot_info_provisioned_get(payload); *p_sr_valid = mlxsw_reg_mddq_slot_info_sr_valid_get(payload); *p_lc_ready = mlxsw_reg_mddq_slot_info_lc_ready_get(payload); *p_active = mlxsw_reg_mddq_slot_info_active_get(payload); *p_hw_revision = mlxsw_reg_mddq_slot_info_hw_revision_get(payload); *p_ini_file_version = mlxsw_reg_mddq_slot_info_ini_file_version_get(payload); *p_card_type = mlxsw_reg_mddq_slot_info_card_type_get(payload); } /* reg_mddq_device_info_flash_owner * If set, the device is the flash owner. Otherwise, a shared flash * is used by this device (another device is the flash owner). * Access: RO */ MLXSW_ITEM32(reg, mddq, device_info_flash_owner, 0x10, 30, 1); /* reg_mddq_device_info_device_index * Device index. The first device should number 0. * Access: RO */ MLXSW_ITEM32(reg, mddq, device_info_device_index, 0x10, 0, 8); /* reg_mddq_device_info_fw_major * Major FW version number. * Access: RO */ MLXSW_ITEM32(reg, mddq, device_info_fw_major, 0x14, 16, 16); /* reg_mddq_device_info_fw_minor * Minor FW version number. * Access: RO */ MLXSW_ITEM32(reg, mddq, device_info_fw_minor, 0x18, 16, 16); /* reg_mddq_device_info_fw_sub_minor * Sub-minor FW version number. * Access: RO */ MLXSW_ITEM32(reg, mddq, device_info_fw_sub_minor, 0x18, 0, 16); static inline void mlxsw_reg_mddq_device_info_pack(char *payload, u8 slot_index, u8 request_msg_seq) { __mlxsw_reg_mddq_pack(payload, slot_index, MLXSW_REG_MDDQ_QUERY_TYPE_DEVICE_INFO); mlxsw_reg_mddq_request_msg_seq_set(payload, request_msg_seq); } static inline void mlxsw_reg_mddq_device_info_unpack(const char *payload, u8 *p_response_msg_seq, bool *p_data_valid, bool *p_flash_owner, u8 *p_device_index, u16 *p_fw_major, u16 *p_fw_minor, u16 *p_fw_sub_minor) { *p_response_msg_seq = mlxsw_reg_mddq_response_msg_seq_get(payload); *p_data_valid = mlxsw_reg_mddq_data_valid_get(payload); *p_flash_owner = mlxsw_reg_mddq_device_info_flash_owner_get(payload); *p_device_index = mlxsw_reg_mddq_device_info_device_index_get(payload); *p_fw_major = mlxsw_reg_mddq_device_info_fw_major_get(payload); *p_fw_minor = mlxsw_reg_mddq_device_info_fw_minor_get(payload); *p_fw_sub_minor = mlxsw_reg_mddq_device_info_fw_sub_minor_get(payload); } #define MLXSW_REG_MDDQ_SLOT_ASCII_NAME_LEN 20 /* reg_mddq_slot_ascii_name * Slot's ASCII name. * Access: RO */ MLXSW_ITEM_BUF(reg, mddq, slot_ascii_name, 0x10, MLXSW_REG_MDDQ_SLOT_ASCII_NAME_LEN); static inline void mlxsw_reg_mddq_slot_name_pack(char *payload, u8 slot_index) { __mlxsw_reg_mddq_pack(payload, slot_index, MLXSW_REG_MDDQ_QUERY_TYPE_SLOT_NAME); } static inline void mlxsw_reg_mddq_slot_name_unpack(const char *payload, char *slot_ascii_name) { mlxsw_reg_mddq_slot_ascii_name_memcpy_from(payload, slot_ascii_name); } /* MDDC - Management DownStream Device Control Register * ---------------------------------------------------- * This register allows to control downstream devices and line cards. */ #define MLXSW_REG_MDDC_ID 0x9163 #define MLXSW_REG_MDDC_LEN 0x30 MLXSW_REG_DEFINE(mddc, MLXSW_REG_MDDC_ID, MLXSW_REG_MDDC_LEN); /* reg_mddc_slot_index * Slot index. 0 is reserved. * Access: Index */ MLXSW_ITEM32(reg, mddc, slot_index, 0x00, 0, 4); /* reg_mddc_rst * Reset request. * Access: OP */ MLXSW_ITEM32(reg, mddc, rst, 0x04, 29, 1); /* reg_mddc_device_enable * When set, FW is the manager and allowed to program the downstream device. * Access: RW */ MLXSW_ITEM32(reg, mddc, device_enable, 0x04, 28, 1); static inline void mlxsw_reg_mddc_pack(char *payload, u8 slot_index, bool rst, bool device_enable) { MLXSW_REG_ZERO(mddc, payload); mlxsw_reg_mddc_slot_index_set(payload, slot_index); mlxsw_reg_mddc_rst_set(payload, rst); mlxsw_reg_mddc_device_enable_set(payload, device_enable); } /* MFDE - Monitoring FW Debug Register * ----------------------------------- */ #define MLXSW_REG_MFDE_ID 0x9200 #define MLXSW_REG_MFDE_LEN 0x30 MLXSW_REG_DEFINE(mfde, MLXSW_REG_MFDE_ID, MLXSW_REG_MFDE_LEN); /* reg_mfde_irisc_id * Which irisc triggered the event * Access: RO */ MLXSW_ITEM32(reg, mfde, irisc_id, 0x00, 24, 8); enum mlxsw_reg_mfde_severity { /* Unrecoverable switch behavior */ MLXSW_REG_MFDE_SEVERITY_FATL = 2, /* Unexpected state with possible systemic failure */ MLXSW_REG_MFDE_SEVERITY_NRML = 3, /* Unexpected state without systemic failure */ MLXSW_REG_MFDE_SEVERITY_INTR = 5, }; /* reg_mfde_severity * The severity of the event. * Access: RO */ MLXSW_ITEM32(reg, mfde, severity, 0x00, 16, 8); enum mlxsw_reg_mfde_event_id { /* CRspace timeout */ MLXSW_REG_MFDE_EVENT_ID_CRSPACE_TO = 1, /* KVD insertion machine stopped */ MLXSW_REG_MFDE_EVENT_ID_KVD_IM_STOP, /* Triggered by MFGD.trigger_test */ MLXSW_REG_MFDE_EVENT_ID_TEST, /* Triggered when firmware hits an assert */ MLXSW_REG_MFDE_EVENT_ID_FW_ASSERT, /* Fatal error interrupt from hardware */ MLXSW_REG_MFDE_EVENT_ID_FATAL_CAUSE, }; /* reg_mfde_event_id * Access: RO */ MLXSW_ITEM32(reg, mfde, event_id, 0x00, 0, 16); enum mlxsw_reg_mfde_method { MLXSW_REG_MFDE_METHOD_QUERY, MLXSW_REG_MFDE_METHOD_WRITE, }; /* reg_mfde_method * Access: RO */ MLXSW_ITEM32(reg, mfde, method, 0x04, 29, 1); /* reg_mfde_long_process * Indicates if the command is in long_process mode. * Access: RO */ MLXSW_ITEM32(reg, mfde, long_process, 0x04, 28, 1); enum mlxsw_reg_mfde_command_type { MLXSW_REG_MFDE_COMMAND_TYPE_MAD, MLXSW_REG_MFDE_COMMAND_TYPE_EMAD, MLXSW_REG_MFDE_COMMAND_TYPE_CMDIF, }; /* reg_mfde_command_type * Access: RO */ MLXSW_ITEM32(reg, mfde, command_type, 0x04, 24, 2); /* reg_mfde_reg_attr_id * EMAD - register id, MAD - attibute id * Access: RO */ MLXSW_ITEM32(reg, mfde, reg_attr_id, 0x04, 0, 16); /* reg_mfde_crspace_to_log_address * crspace address accessed, which resulted in timeout. * Access: RO */ MLXSW_ITEM32(reg, mfde, crspace_to_log_address, 0x10, 0, 32); /* reg_mfde_crspace_to_oe * 0 - New event * 1 - Old event, occurred before MFGD activation. * Access: RO */ MLXSW_ITEM32(reg, mfde, crspace_to_oe, 0x14, 24, 1); /* reg_mfde_crspace_to_log_id * Which irisc triggered the timeout. * Access: RO */ MLXSW_ITEM32(reg, mfde, crspace_to_log_id, 0x14, 0, 4); /* reg_mfde_crspace_to_log_ip * IP (instruction pointer) that triggered the timeout. * Access: RO */ MLXSW_ITEM64(reg, mfde, crspace_to_log_ip, 0x18, 0, 64); /* reg_mfde_kvd_im_stop_oe * 0 - New event * 1 - Old event, occurred before MFGD activation. * Access: RO */ MLXSW_ITEM32(reg, mfde, kvd_im_stop_oe, 0x10, 24, 1); /* reg_mfde_kvd_im_stop_pipes_mask * Bit per kvh pipe. * Access: RO */ MLXSW_ITEM32(reg, mfde, kvd_im_stop_pipes_mask, 0x10, 0, 16); /* reg_mfde_fw_assert_var0-4 * Variables passed to assert. * Access: RO */ MLXSW_ITEM32(reg, mfde, fw_assert_var0, 0x10, 0, 32); MLXSW_ITEM32(reg, mfde, fw_assert_var1, 0x14, 0, 32); MLXSW_ITEM32(reg, mfde, fw_assert_var2, 0x18, 0, 32); MLXSW_ITEM32(reg, mfde, fw_assert_var3, 0x1C, 0, 32); MLXSW_ITEM32(reg, mfde, fw_assert_var4, 0x20, 0, 32); /* reg_mfde_fw_assert_existptr * The instruction pointer when assert was triggered. * Access: RO */ MLXSW_ITEM32(reg, mfde, fw_assert_existptr, 0x24, 0, 32); /* reg_mfde_fw_assert_callra * The return address after triggering assert. * Access: RO */ MLXSW_ITEM32(reg, mfde, fw_assert_callra, 0x28, 0, 32); /* reg_mfde_fw_assert_oe * 0 - New event * 1 - Old event, occurred before MFGD activation. * Access: RO */ MLXSW_ITEM32(reg, mfde, fw_assert_oe, 0x2C, 24, 1); /* reg_mfde_fw_assert_tile_v * 0: The assert was from main * 1: The assert was from a tile * Access: RO */ MLXSW_ITEM32(reg, mfde, fw_assert_tile_v, 0x2C, 23, 1); /* reg_mfde_fw_assert_tile_index * When tile_v=1, the tile_index that caused the assert. * Access: RO */ MLXSW_ITEM32(reg, mfde, fw_assert_tile_index, 0x2C, 16, 6); /* reg_mfde_fw_assert_ext_synd * A generated one-to-one identifier which is specific per-assert. * Access: RO */ MLXSW_ITEM32(reg, mfde, fw_assert_ext_synd, 0x2C, 0, 16); /* reg_mfde_fatal_cause_id * HW interrupt cause id. * Access: RO */ MLXSW_ITEM32(reg, mfde, fatal_cause_id, 0x10, 0, 18); /* reg_mfde_fatal_cause_tile_v * 0: The assert was from main * 1: The assert was from a tile * Access: RO */ MLXSW_ITEM32(reg, mfde, fatal_cause_tile_v, 0x14, 23, 1); /* reg_mfde_fatal_cause_tile_index * When tile_v=1, the tile_index that caused the assert. * Access: RO */ MLXSW_ITEM32(reg, mfde, fatal_cause_tile_index, 0x14, 16, 6); /* TNGCR - Tunneling NVE General Configuration Register * ---------------------------------------------------- * The TNGCR register is used for setting up the NVE Tunneling configuration. */ #define MLXSW_REG_TNGCR_ID 0xA001 #define MLXSW_REG_TNGCR_LEN 0x44 MLXSW_REG_DEFINE(tngcr, MLXSW_REG_TNGCR_ID, MLXSW_REG_TNGCR_LEN); enum mlxsw_reg_tngcr_type { MLXSW_REG_TNGCR_TYPE_VXLAN, MLXSW_REG_TNGCR_TYPE_VXLAN_GPE, MLXSW_REG_TNGCR_TYPE_GENEVE, MLXSW_REG_TNGCR_TYPE_NVGRE, }; /* reg_tngcr_type * Tunnel type for encapsulation and decapsulation. The types are mutually * exclusive. * Note: For Spectrum the NVE parsing must be enabled in MPRS. * Access: RW */ MLXSW_ITEM32(reg, tngcr, type, 0x00, 0, 4); /* reg_tngcr_nve_valid * The VTEP is valid. Allows adding FDB entries for tunnel encapsulation. * Access: RW */ MLXSW_ITEM32(reg, tngcr, nve_valid, 0x04, 31, 1); /* reg_tngcr_nve_ttl_uc * The TTL for NVE tunnel encapsulation underlay unicast packets. * Access: RW */ MLXSW_ITEM32(reg, tngcr, nve_ttl_uc, 0x04, 0, 8); /* reg_tngcr_nve_ttl_mc * The TTL for NVE tunnel encapsulation underlay multicast packets. * Access: RW */ MLXSW_ITEM32(reg, tngcr, nve_ttl_mc, 0x08, 0, 8); enum { /* Do not copy flow label. Calculate flow label using nve_flh. */ MLXSW_REG_TNGCR_FL_NO_COPY, /* Copy flow label from inner packet if packet is IPv6 and * encapsulation is by IPv6. Otherwise, calculate flow label using * nve_flh. */ MLXSW_REG_TNGCR_FL_COPY, }; /* reg_tngcr_nve_flc * For NVE tunnel encapsulation: Flow label copy from inner packet. * Access: RW */ MLXSW_ITEM32(reg, tngcr, nve_flc, 0x0C, 25, 1); enum { /* Flow label is static. In Spectrum this means '0'. Spectrum-2 * uses {nve_fl_prefix, nve_fl_suffix}. */ MLXSW_REG_TNGCR_FL_NO_HASH, /* 8 LSBs of the flow label are calculated from ECMP hash of the * inner packet. 12 MSBs are configured by nve_fl_prefix. */ MLXSW_REG_TNGCR_FL_HASH, }; /* reg_tngcr_nve_flh * NVE flow label hash. * Access: RW */ MLXSW_ITEM32(reg, tngcr, nve_flh, 0x0C, 24, 1); /* reg_tngcr_nve_fl_prefix * NVE flow label prefix. Constant 12 MSBs of the flow label. * Access: RW */ MLXSW_ITEM32(reg, tngcr, nve_fl_prefix, 0x0C, 8, 12); /* reg_tngcr_nve_fl_suffix * NVE flow label suffix. Constant 8 LSBs of the flow label. * Reserved when nve_flh=1 and for Spectrum. * Access: RW */ MLXSW_ITEM32(reg, tngcr, nve_fl_suffix, 0x0C, 0, 8); enum { /* Source UDP port is fixed (default '0') */ MLXSW_REG_TNGCR_UDP_SPORT_NO_HASH, /* Source UDP port is calculated based on hash */ MLXSW_REG_TNGCR_UDP_SPORT_HASH, }; /* reg_tngcr_nve_udp_sport_type * NVE UDP source port type. * Spectrum uses LAG hash (SLCRv2). Spectrum-2 uses ECMP hash (RECRv2). * When the source UDP port is calculated based on hash, then the 8 LSBs * are calculated from hash the 8 MSBs are configured by * nve_udp_sport_prefix. * Access: RW */ MLXSW_ITEM32(reg, tngcr, nve_udp_sport_type, 0x10, 24, 1); /* reg_tngcr_nve_udp_sport_prefix * NVE UDP source port prefix. Constant 8 MSBs of the UDP source port. * Reserved when NVE type is NVGRE. * Access: RW */ MLXSW_ITEM32(reg, tngcr, nve_udp_sport_prefix, 0x10, 8, 8); /* reg_tngcr_nve_group_size_mc * The amount of sequential linked lists of MC entries. The first linked * list is configured by SFD.underlay_mc_ptr. * Valid values: 1, 2, 4, 8, 16, 32, 64 * The linked list are configured by TNUMT. * The hash is set by LAG hash. * Access: RW */ MLXSW_ITEM32(reg, tngcr, nve_group_size_mc, 0x18, 0, 8); /* reg_tngcr_nve_group_size_flood * The amount of sequential linked lists of flooding entries. The first * linked list is configured by SFMR.nve_tunnel_flood_ptr * Valid values: 1, 2, 4, 8, 16, 32, 64 * The linked list are configured by TNUMT. * The hash is set by LAG hash. * Access: RW */ MLXSW_ITEM32(reg, tngcr, nve_group_size_flood, 0x1C, 0, 8); /* reg_tngcr_learn_enable * During decapsulation, whether to learn from NVE port. * Reserved when Spectrum-2. See TNPC. * Access: RW */ MLXSW_ITEM32(reg, tngcr, learn_enable, 0x20, 31, 1); /* reg_tngcr_underlay_virtual_router * Underlay virtual router. * Reserved when Spectrum-2. * Access: RW */ MLXSW_ITEM32(reg, tngcr, underlay_virtual_router, 0x20, 0, 16); /* reg_tngcr_underlay_rif * Underlay ingress router interface. RIF type should be loopback generic. * Reserved when Spectrum. * Access: RW */ MLXSW_ITEM32(reg, tngcr, underlay_rif, 0x24, 0, 16); /* reg_tngcr_usipv4 * Underlay source IPv4 address of the NVE. * Access: RW */ MLXSW_ITEM32(reg, tngcr, usipv4, 0x28, 0, 32); /* reg_tngcr_usipv6 * Underlay source IPv6 address of the NVE. For Spectrum, must not be * modified under traffic of NVE tunneling encapsulation. * Access: RW */ MLXSW_ITEM_BUF(reg, tngcr, usipv6, 0x30, 16); static inline void mlxsw_reg_tngcr_pack(char *payload, enum mlxsw_reg_tngcr_type type, bool valid, u8 ttl) { MLXSW_REG_ZERO(tngcr, payload); mlxsw_reg_tngcr_type_set(payload, type); mlxsw_reg_tngcr_nve_valid_set(payload, valid); mlxsw_reg_tngcr_nve_ttl_uc_set(payload, ttl); mlxsw_reg_tngcr_nve_ttl_mc_set(payload, ttl); mlxsw_reg_tngcr_nve_flc_set(payload, MLXSW_REG_TNGCR_FL_NO_COPY); mlxsw_reg_tngcr_nve_flh_set(payload, 0); mlxsw_reg_tngcr_nve_udp_sport_type_set(payload, MLXSW_REG_TNGCR_UDP_SPORT_HASH); mlxsw_reg_tngcr_nve_udp_sport_prefix_set(payload, 0); mlxsw_reg_tngcr_nve_group_size_mc_set(payload, 1); mlxsw_reg_tngcr_nve_group_size_flood_set(payload, 1); } /* TNUMT - Tunneling NVE Underlay Multicast Table Register * ------------------------------------------------------- * The TNUMT register is for building the underlay MC table. It is used * for MC, flooding and BC traffic into the NVE tunnel. */ #define MLXSW_REG_TNUMT_ID 0xA003 #define MLXSW_REG_TNUMT_LEN 0x20 MLXSW_REG_DEFINE(tnumt, MLXSW_REG_TNUMT_ID, MLXSW_REG_TNUMT_LEN); enum mlxsw_reg_tnumt_record_type { MLXSW_REG_TNUMT_RECORD_TYPE_IPV4, MLXSW_REG_TNUMT_RECORD_TYPE_IPV6, MLXSW_REG_TNUMT_RECORD_TYPE_LABEL, }; /* reg_tnumt_record_type * Record type. * Access: RW */ MLXSW_ITEM32(reg, tnumt, record_type, 0x00, 28, 4); /* reg_tnumt_tunnel_port * Tunnel port. * Access: RW */ MLXSW_ITEM32(reg, tnumt, tunnel_port, 0x00, 24, 4); /* reg_tnumt_underlay_mc_ptr * Index to the underlay multicast table. * For Spectrum the index is to the KVD linear. * Access: Index */ MLXSW_ITEM32(reg, tnumt, underlay_mc_ptr, 0x00, 0, 24); /* reg_tnumt_vnext * The next_underlay_mc_ptr is valid. * Access: RW */ MLXSW_ITEM32(reg, tnumt, vnext, 0x04, 31, 1); /* reg_tnumt_next_underlay_mc_ptr * The next index to the underlay multicast table. * Access: RW */ MLXSW_ITEM32(reg, tnumt, next_underlay_mc_ptr, 0x04, 0, 24); /* reg_tnumt_record_size * Number of IP addresses in the record. * Range is 1..cap_max_nve_mc_entries_ipv{4,6} * Access: RW */ MLXSW_ITEM32(reg, tnumt, record_size, 0x08, 0, 3); /* reg_tnumt_udip * The underlay IPv4 addresses. udip[i] is reserved if i >= size * Access: RW */ MLXSW_ITEM32_INDEXED(reg, tnumt, udip, 0x0C, 0, 32, 0x04, 0x00, false); /* reg_tnumt_udip_ptr * The pointer to the underlay IPv6 addresses. udip_ptr[i] is reserved if * i >= size. The IPv6 addresses are configured by RIPS. * Access: RW */ MLXSW_ITEM32_INDEXED(reg, tnumt, udip_ptr, 0x0C, 0, 24, 0x04, 0x00, false); static inline void mlxsw_reg_tnumt_pack(char *payload, enum mlxsw_reg_tnumt_record_type type, enum mlxsw_reg_tunnel_port tport, u32 underlay_mc_ptr, bool vnext, u32 next_underlay_mc_ptr, u8 record_size) { MLXSW_REG_ZERO(tnumt, payload); mlxsw_reg_tnumt_record_type_set(payload, type); mlxsw_reg_tnumt_tunnel_port_set(payload, tport); mlxsw_reg_tnumt_underlay_mc_ptr_set(payload, underlay_mc_ptr); mlxsw_reg_tnumt_vnext_set(payload, vnext); mlxsw_reg_tnumt_next_underlay_mc_ptr_set(payload, next_underlay_mc_ptr); mlxsw_reg_tnumt_record_size_set(payload, record_size); } /* TNQCR - Tunneling NVE QoS Configuration Register * ------------------------------------------------ * The TNQCR register configures how QoS is set in encapsulation into the * underlay network. */ #define MLXSW_REG_TNQCR_ID 0xA010 #define MLXSW_REG_TNQCR_LEN 0x0C MLXSW_REG_DEFINE(tnqcr, MLXSW_REG_TNQCR_ID, MLXSW_REG_TNQCR_LEN); /* reg_tnqcr_enc_set_dscp * For encapsulation: How to set DSCP field: * 0 - Copy the DSCP from the overlay (inner) IP header to the underlay * (outer) IP header. If there is no IP header, use TNQDR.dscp * 1 - Set the DSCP field as TNQDR.dscp * Access: RW */ MLXSW_ITEM32(reg, tnqcr, enc_set_dscp, 0x04, 28, 1); static inline void mlxsw_reg_tnqcr_pack(char *payload) { MLXSW_REG_ZERO(tnqcr, payload); mlxsw_reg_tnqcr_enc_set_dscp_set(payload, 0); } /* TNQDR - Tunneling NVE QoS Default Register * ------------------------------------------ * The TNQDR register configures the default QoS settings for NVE * encapsulation. */ #define MLXSW_REG_TNQDR_ID 0xA011 #define MLXSW_REG_TNQDR_LEN 0x08 MLXSW_REG_DEFINE(tnqdr, MLXSW_REG_TNQDR_ID, MLXSW_REG_TNQDR_LEN); /* reg_tnqdr_local_port * Local port number (receive port). CPU port is supported. * Access: Index */ MLXSW_ITEM32_LP(reg, tnqdr, 0x00, 16, 0x00, 12); /* reg_tnqdr_dscp * For encapsulation, the default DSCP. * Access: RW */ MLXSW_ITEM32(reg, tnqdr, dscp, 0x04, 0, 6); static inline void mlxsw_reg_tnqdr_pack(char *payload, u16 local_port) { MLXSW_REG_ZERO(tnqdr, payload); mlxsw_reg_tnqdr_local_port_set(payload, local_port); mlxsw_reg_tnqdr_dscp_set(payload, 0); } /* TNEEM - Tunneling NVE Encapsulation ECN Mapping Register * -------------------------------------------------------- * The TNEEM register maps ECN of the IP header at the ingress to the * encapsulation to the ECN of the underlay network. */ #define MLXSW_REG_TNEEM_ID 0xA012 #define MLXSW_REG_TNEEM_LEN 0x0C MLXSW_REG_DEFINE(tneem, MLXSW_REG_TNEEM_ID, MLXSW_REG_TNEEM_LEN); /* reg_tneem_overlay_ecn * ECN of the IP header in the overlay network. * Access: Index */ MLXSW_ITEM32(reg, tneem, overlay_ecn, 0x04, 24, 2); /* reg_tneem_underlay_ecn * ECN of the IP header in the underlay network. * Access: RW */ MLXSW_ITEM32(reg, tneem, underlay_ecn, 0x04, 16, 2); static inline void mlxsw_reg_tneem_pack(char *payload, u8 overlay_ecn, u8 underlay_ecn) { MLXSW_REG_ZERO(tneem, payload); mlxsw_reg_tneem_overlay_ecn_set(payload, overlay_ecn); mlxsw_reg_tneem_underlay_ecn_set(payload, underlay_ecn); } /* TNDEM - Tunneling NVE Decapsulation ECN Mapping Register * -------------------------------------------------------- * The TNDEM register configures the actions that are done in the * decapsulation. */ #define MLXSW_REG_TNDEM_ID 0xA013 #define MLXSW_REG_TNDEM_LEN 0x0C MLXSW_REG_DEFINE(tndem, MLXSW_REG_TNDEM_ID, MLXSW_REG_TNDEM_LEN); /* reg_tndem_underlay_ecn * ECN field of the IP header in the underlay network. * Access: Index */ MLXSW_ITEM32(reg, tndem, underlay_ecn, 0x04, 24, 2); /* reg_tndem_overlay_ecn * ECN field of the IP header in the overlay network. * Access: Index */ MLXSW_ITEM32(reg, tndem, overlay_ecn, 0x04, 16, 2); /* reg_tndem_eip_ecn * Egress IP ECN. ECN field of the IP header of the packet which goes out * from the decapsulation. * Access: RW */ MLXSW_ITEM32(reg, tndem, eip_ecn, 0x04, 8, 2); /* reg_tndem_trap_en * Trap enable: * 0 - No trap due to decap ECN * 1 - Trap enable with trap_id * Access: RW */ MLXSW_ITEM32(reg, tndem, trap_en, 0x08, 28, 4); /* reg_tndem_trap_id * Trap ID. Either DECAP_ECN0 or DECAP_ECN1. * Reserved when trap_en is '0'. * Access: RW */ MLXSW_ITEM32(reg, tndem, trap_id, 0x08, 0, 9); static inline void mlxsw_reg_tndem_pack(char *payload, u8 underlay_ecn, u8 overlay_ecn, u8 ecn, bool trap_en, u16 trap_id) { MLXSW_REG_ZERO(tndem, payload); mlxsw_reg_tndem_underlay_ecn_set(payload, underlay_ecn); mlxsw_reg_tndem_overlay_ecn_set(payload, overlay_ecn); mlxsw_reg_tndem_eip_ecn_set(payload, ecn); mlxsw_reg_tndem_trap_en_set(payload, trap_en); mlxsw_reg_tndem_trap_id_set(payload, trap_id); } /* TNPC - Tunnel Port Configuration Register * ----------------------------------------- * The TNPC register is used for tunnel port configuration. * Reserved when Spectrum. */ #define MLXSW_REG_TNPC_ID 0xA020 #define MLXSW_REG_TNPC_LEN 0x18 MLXSW_REG_DEFINE(tnpc, MLXSW_REG_TNPC_ID, MLXSW_REG_TNPC_LEN); /* reg_tnpc_tunnel_port * Tunnel port. * Access: Index */ MLXSW_ITEM32(reg, tnpc, tunnel_port, 0x00, 0, 4); /* reg_tnpc_learn_enable_v6 * During IPv6 underlay decapsulation, whether to learn from tunnel port. * Access: RW */ MLXSW_ITEM32(reg, tnpc, learn_enable_v6, 0x04, 1, 1); /* reg_tnpc_learn_enable_v4 * During IPv4 underlay decapsulation, whether to learn from tunnel port. * Access: RW */ MLXSW_ITEM32(reg, tnpc, learn_enable_v4, 0x04, 0, 1); static inline void mlxsw_reg_tnpc_pack(char *payload, enum mlxsw_reg_tunnel_port tport, bool learn_enable) { MLXSW_REG_ZERO(tnpc, payload); mlxsw_reg_tnpc_tunnel_port_set(payload, tport); mlxsw_reg_tnpc_learn_enable_v4_set(payload, learn_enable); mlxsw_reg_tnpc_learn_enable_v6_set(payload, learn_enable); } /* TIGCR - Tunneling IPinIP General Configuration Register * ------------------------------------------------------- * The TIGCR register is used for setting up the IPinIP Tunnel configuration. */ #define MLXSW_REG_TIGCR_ID 0xA801 #define MLXSW_REG_TIGCR_LEN 0x10 MLXSW_REG_DEFINE(tigcr, MLXSW_REG_TIGCR_ID, MLXSW_REG_TIGCR_LEN); /* reg_tigcr_ipip_ttlc * For IPinIP Tunnel encapsulation: whether to copy the ttl from the packet * header. * Access: RW */ MLXSW_ITEM32(reg, tigcr, ttlc, 0x04, 8, 1); /* reg_tigcr_ipip_ttl_uc * The TTL for IPinIP Tunnel encapsulation of unicast packets if * reg_tigcr_ipip_ttlc is unset. * Access: RW */ MLXSW_ITEM32(reg, tigcr, ttl_uc, 0x04, 0, 8); static inline void mlxsw_reg_tigcr_pack(char *payload, bool ttlc, u8 ttl_uc) { MLXSW_REG_ZERO(tigcr, payload); mlxsw_reg_tigcr_ttlc_set(payload, ttlc); mlxsw_reg_tigcr_ttl_uc_set(payload, ttl_uc); } /* TIEEM - Tunneling IPinIP Encapsulation ECN Mapping Register * ----------------------------------------------------------- * The TIEEM register maps ECN of the IP header at the ingress to the * encapsulation to the ECN of the underlay network. */ #define MLXSW_REG_TIEEM_ID 0xA812 #define MLXSW_REG_TIEEM_LEN 0x0C MLXSW_REG_DEFINE(tieem, MLXSW_REG_TIEEM_ID, MLXSW_REG_TIEEM_LEN); /* reg_tieem_overlay_ecn * ECN of the IP header in the overlay network. * Access: Index */ MLXSW_ITEM32(reg, tieem, overlay_ecn, 0x04, 24, 2); /* reg_tineem_underlay_ecn * ECN of the IP header in the underlay network. * Access: RW */ MLXSW_ITEM32(reg, tieem, underlay_ecn, 0x04, 16, 2); static inline void mlxsw_reg_tieem_pack(char *payload, u8 overlay_ecn, u8 underlay_ecn) { MLXSW_REG_ZERO(tieem, payload); mlxsw_reg_tieem_overlay_ecn_set(payload, overlay_ecn); mlxsw_reg_tieem_underlay_ecn_set(payload, underlay_ecn); } /* TIDEM - Tunneling IPinIP Decapsulation ECN Mapping Register * ----------------------------------------------------------- * The TIDEM register configures the actions that are done in the * decapsulation. */ #define MLXSW_REG_TIDEM_ID 0xA813 #define MLXSW_REG_TIDEM_LEN 0x0C MLXSW_REG_DEFINE(tidem, MLXSW_REG_TIDEM_ID, MLXSW_REG_TIDEM_LEN); /* reg_tidem_underlay_ecn * ECN field of the IP header in the underlay network. * Access: Index */ MLXSW_ITEM32(reg, tidem, underlay_ecn, 0x04, 24, 2); /* reg_tidem_overlay_ecn * ECN field of the IP header in the overlay network. * Access: Index */ MLXSW_ITEM32(reg, tidem, overlay_ecn, 0x04, 16, 2); /* reg_tidem_eip_ecn * Egress IP ECN. ECN field of the IP header of the packet which goes out * from the decapsulation. * Access: RW */ MLXSW_ITEM32(reg, tidem, eip_ecn, 0x04, 8, 2); /* reg_tidem_trap_en * Trap enable: * 0 - No trap due to decap ECN * 1 - Trap enable with trap_id * Access: RW */ MLXSW_ITEM32(reg, tidem, trap_en, 0x08, 28, 4); /* reg_tidem_trap_id * Trap ID. Either DECAP_ECN0 or DECAP_ECN1. * Reserved when trap_en is '0'. * Access: RW */ MLXSW_ITEM32(reg, tidem, trap_id, 0x08, 0, 9); static inline void mlxsw_reg_tidem_pack(char *payload, u8 underlay_ecn, u8 overlay_ecn, u8 eip_ecn, bool trap_en, u16 trap_id) { MLXSW_REG_ZERO(tidem, payload); mlxsw_reg_tidem_underlay_ecn_set(payload, underlay_ecn); mlxsw_reg_tidem_overlay_ecn_set(payload, overlay_ecn); mlxsw_reg_tidem_eip_ecn_set(payload, eip_ecn); mlxsw_reg_tidem_trap_en_set(payload, trap_en); mlxsw_reg_tidem_trap_id_set(payload, trap_id); } /* SBPR - Shared Buffer Pools Register * ----------------------------------- * The SBPR configures and retrieves the shared buffer pools and configuration. */ #define MLXSW_REG_SBPR_ID 0xB001 #define MLXSW_REG_SBPR_LEN 0x14 MLXSW_REG_DEFINE(sbpr, MLXSW_REG_SBPR_ID, MLXSW_REG_SBPR_LEN); /* reg_sbpr_desc * When set, configures descriptor buffer. * Access: Index */ MLXSW_ITEM32(reg, sbpr, desc, 0x00, 31, 1); /* shared direstion enum for SBPR, SBCM, SBPM */ enum mlxsw_reg_sbxx_dir { MLXSW_REG_SBXX_DIR_INGRESS, MLXSW_REG_SBXX_DIR_EGRESS, }; /* reg_sbpr_dir * Direction. * Access: Index */ MLXSW_ITEM32(reg, sbpr, dir, 0x00, 24, 2); /* reg_sbpr_pool * Pool index. * Access: Index */ MLXSW_ITEM32(reg, sbpr, pool, 0x00, 0, 4); /* reg_sbpr_infi_size * Size is infinite. * Access: RW */ MLXSW_ITEM32(reg, sbpr, infi_size, 0x04, 31, 1); /* reg_sbpr_size * Pool size in buffer cells. * Reserved when infi_size = 1. * Access: RW */ MLXSW_ITEM32(reg, sbpr, size, 0x04, 0, 24); enum mlxsw_reg_sbpr_mode { MLXSW_REG_SBPR_MODE_STATIC, MLXSW_REG_SBPR_MODE_DYNAMIC, }; /* reg_sbpr_mode * Pool quota calculation mode. * Access: RW */ MLXSW_ITEM32(reg, sbpr, mode, 0x08, 0, 4); static inline void mlxsw_reg_sbpr_pack(char *payload, u8 pool, enum mlxsw_reg_sbxx_dir dir, enum mlxsw_reg_sbpr_mode mode, u32 size, bool infi_size) { MLXSW_REG_ZERO(sbpr, payload); mlxsw_reg_sbpr_pool_set(payload, pool); mlxsw_reg_sbpr_dir_set(payload, dir); mlxsw_reg_sbpr_mode_set(payload, mode); mlxsw_reg_sbpr_size_set(payload, size); mlxsw_reg_sbpr_infi_size_set(payload, infi_size); } /* SBCM - Shared Buffer Class Management Register * ---------------------------------------------- * The SBCM register configures and retrieves the shared buffer allocation * and configuration according to Port-PG, including the binding to pool * and definition of the associated quota. */ #define MLXSW_REG_SBCM_ID 0xB002 #define MLXSW_REG_SBCM_LEN 0x28 MLXSW_REG_DEFINE(sbcm, MLXSW_REG_SBCM_ID, MLXSW_REG_SBCM_LEN); /* reg_sbcm_local_port * Local port number. * For Ingress: excludes CPU port and Router port * For Egress: excludes IP Router * Access: Index */ MLXSW_ITEM32_LP(reg, sbcm, 0x00, 16, 0x00, 4); /* reg_sbcm_pg_buff * PG buffer - Port PG (dir=ingress) / traffic class (dir=egress) * For PG buffer: range is 0..cap_max_pg_buffers - 1 * For traffic class: range is 0..cap_max_tclass - 1 * Note that when traffic class is in MC aware mode then the traffic * classes which are MC aware cannot be configured. * Access: Index */ MLXSW_ITEM32(reg, sbcm, pg_buff, 0x00, 8, 6); /* reg_sbcm_dir * Direction. * Access: Index */ MLXSW_ITEM32(reg, sbcm, dir, 0x00, 0, 2); /* reg_sbcm_min_buff * Minimum buffer size for the limiter, in cells. * Access: RW */ MLXSW_ITEM32(reg, sbcm, min_buff, 0x18, 0, 24); /* shared max_buff limits for dynamic threshold for SBCM, SBPM */ #define MLXSW_REG_SBXX_DYN_MAX_BUFF_MIN 1 #define MLXSW_REG_SBXX_DYN_MAX_BUFF_MAX 14 /* reg_sbcm_infi_max * Max buffer is infinite. * Access: RW */ MLXSW_ITEM32(reg, sbcm, infi_max, 0x1C, 31, 1); /* reg_sbcm_max_buff * When the pool associated to the port-pg/tclass is configured to * static, Maximum buffer size for the limiter configured in cells. * When the pool associated to the port-pg/tclass is configured to * dynamic, the max_buff holds the "alpha" parameter, supporting * the following values: * 0: 0 * i: (1/128)*2^(i-1), for i=1..14 * 0xFF: Infinity * Reserved when infi_max = 1. * Access: RW */ MLXSW_ITEM32(reg, sbcm, max_buff, 0x1C, 0, 24); /* reg_sbcm_pool * Association of the port-priority to a pool. * Access: RW */ MLXSW_ITEM32(reg, sbcm, pool, 0x24, 0, 4); static inline void mlxsw_reg_sbcm_pack(char *payload, u16 local_port, u8 pg_buff, enum mlxsw_reg_sbxx_dir dir, u32 min_buff, u32 max_buff, bool infi_max, u8 pool) { MLXSW_REG_ZERO(sbcm, payload); mlxsw_reg_sbcm_local_port_set(payload, local_port); mlxsw_reg_sbcm_pg_buff_set(payload, pg_buff); mlxsw_reg_sbcm_dir_set(payload, dir); mlxsw_reg_sbcm_min_buff_set(payload, min_buff); mlxsw_reg_sbcm_max_buff_set(payload, max_buff); mlxsw_reg_sbcm_infi_max_set(payload, infi_max); mlxsw_reg_sbcm_pool_set(payload, pool); } /* SBPM - Shared Buffer Port Management Register * --------------------------------------------- * The SBPM register configures and retrieves the shared buffer allocation * and configuration according to Port-Pool, including the definition * of the associated quota. */ #define MLXSW_REG_SBPM_ID 0xB003 #define MLXSW_REG_SBPM_LEN 0x28 MLXSW_REG_DEFINE(sbpm, MLXSW_REG_SBPM_ID, MLXSW_REG_SBPM_LEN); /* reg_sbpm_local_port * Local port number. * For Ingress: excludes CPU port and Router port * For Egress: excludes IP Router * Access: Index */ MLXSW_ITEM32_LP(reg, sbpm, 0x00, 16, 0x00, 12); /* reg_sbpm_pool * The pool associated to quota counting on the local_port. * Access: Index */ MLXSW_ITEM32(reg, sbpm, pool, 0x00, 8, 4); /* reg_sbpm_dir * Direction. * Access: Index */ MLXSW_ITEM32(reg, sbpm, dir, 0x00, 0, 2); /* reg_sbpm_buff_occupancy * Current buffer occupancy in cells. * Access: RO */ MLXSW_ITEM32(reg, sbpm, buff_occupancy, 0x10, 0, 24); /* reg_sbpm_clr * Clear Max Buffer Occupancy * When this bit is set, max_buff_occupancy field is cleared (and a * new max value is tracked from the time the clear was performed). * Access: OP */ MLXSW_ITEM32(reg, sbpm, clr, 0x14, 31, 1); /* reg_sbpm_max_buff_occupancy * Maximum value of buffer occupancy in cells monitored. Cleared by * writing to the clr field. * Access: RO */ MLXSW_ITEM32(reg, sbpm, max_buff_occupancy, 0x14, 0, 24); /* reg_sbpm_min_buff * Minimum buffer size for the limiter, in cells. * Access: RW */ MLXSW_ITEM32(reg, sbpm, min_buff, 0x18, 0, 24); /* reg_sbpm_max_buff * When the pool associated to the port-pg/tclass is configured to * static, Maximum buffer size for the limiter configured in cells. * When the pool associated to the port-pg/tclass is configured to * dynamic, the max_buff holds the "alpha" parameter, supporting * the following values: * 0: 0 * i: (1/128)*2^(i-1), for i=1..14 * 0xFF: Infinity * Access: RW */ MLXSW_ITEM32(reg, sbpm, max_buff, 0x1C, 0, 24); static inline void mlxsw_reg_sbpm_pack(char *payload, u16 local_port, u8 pool, enum mlxsw_reg_sbxx_dir dir, bool clr, u32 min_buff, u32 max_buff) { MLXSW_REG_ZERO(sbpm, payload); mlxsw_reg_sbpm_local_port_set(payload, local_port); mlxsw_reg_sbpm_pool_set(payload, pool); mlxsw_reg_sbpm_dir_set(payload, dir); mlxsw_reg_sbpm_clr_set(payload, clr); mlxsw_reg_sbpm_min_buff_set(payload, min_buff); mlxsw_reg_sbpm_max_buff_set(payload, max_buff); } static inline void mlxsw_reg_sbpm_unpack(char *payload, u32 *p_buff_occupancy, u32 *p_max_buff_occupancy) { *p_buff_occupancy = mlxsw_reg_sbpm_buff_occupancy_get(payload); *p_max_buff_occupancy = mlxsw_reg_sbpm_max_buff_occupancy_get(payload); } /* SBMM - Shared Buffer Multicast Management Register * -------------------------------------------------- * The SBMM register configures and retrieves the shared buffer allocation * and configuration for MC packets according to Switch-Priority, including * the binding to pool and definition of the associated quota. */ #define MLXSW_REG_SBMM_ID 0xB004 #define MLXSW_REG_SBMM_LEN 0x28 MLXSW_REG_DEFINE(sbmm, MLXSW_REG_SBMM_ID, MLXSW_REG_SBMM_LEN); /* reg_sbmm_prio * Switch Priority. * Access: Index */ MLXSW_ITEM32(reg, sbmm, prio, 0x00, 8, 4); /* reg_sbmm_min_buff * Minimum buffer size for the limiter, in cells. * Access: RW */ MLXSW_ITEM32(reg, sbmm, min_buff, 0x18, 0, 24); /* reg_sbmm_max_buff * When the pool associated to the port-pg/tclass is configured to * static, Maximum buffer size for the limiter configured in cells. * When the pool associated to the port-pg/tclass is configured to * dynamic, the max_buff holds the "alpha" parameter, supporting * the following values: * 0: 0 * i: (1/128)*2^(i-1), for i=1..14 * 0xFF: Infinity * Access: RW */ MLXSW_ITEM32(reg, sbmm, max_buff, 0x1C, 0, 24); /* reg_sbmm_pool * Association of the port-priority to a pool. * Access: RW */ MLXSW_ITEM32(reg, sbmm, pool, 0x24, 0, 4); static inline void mlxsw_reg_sbmm_pack(char *payload, u8 prio, u32 min_buff, u32 max_buff, u8 pool) { MLXSW_REG_ZERO(sbmm, payload); mlxsw_reg_sbmm_prio_set(payload, prio); mlxsw_reg_sbmm_min_buff_set(payload, min_buff); mlxsw_reg_sbmm_max_buff_set(payload, max_buff); mlxsw_reg_sbmm_pool_set(payload, pool); } /* SBSR - Shared Buffer Status Register * ------------------------------------ * The SBSR register retrieves the shared buffer occupancy according to * Port-Pool. Note that this register enables reading a large amount of data. * It is the user's responsibility to limit the amount of data to ensure the * response can match the maximum transfer unit. In case the response exceeds * the maximum transport unit, it will be truncated with no special notice. */ #define MLXSW_REG_SBSR_ID 0xB005 #define MLXSW_REG_SBSR_BASE_LEN 0x5C /* base length, without records */ #define MLXSW_REG_SBSR_REC_LEN 0x8 /* record length */ #define MLXSW_REG_SBSR_REC_MAX_COUNT 120 #define MLXSW_REG_SBSR_LEN (MLXSW_REG_SBSR_BASE_LEN + \ MLXSW_REG_SBSR_REC_LEN * \ MLXSW_REG_SBSR_REC_MAX_COUNT) MLXSW_REG_DEFINE(sbsr, MLXSW_REG_SBSR_ID, MLXSW_REG_SBSR_LEN); /* reg_sbsr_clr * Clear Max Buffer Occupancy. When this bit is set, the max_buff_occupancy * field is cleared (and a new max value is tracked from the time the clear * was performed). * Access: OP */ MLXSW_ITEM32(reg, sbsr, clr, 0x00, 31, 1); #define MLXSW_REG_SBSR_NUM_PORTS_IN_PAGE 256 /* reg_sbsr_port_page * Determines the range of the ports specified in the 'ingress_port_mask' * and 'egress_port_mask' bit masks. * {ingress,egress}_port_mask[x] is (256 * port_page) + x * Access: Index */ MLXSW_ITEM32(reg, sbsr, port_page, 0x04, 0, 4); /* reg_sbsr_ingress_port_mask * Bit vector for all ingress network ports. * Indicates which of the ports (for which the relevant bit is set) * are affected by the set operation. Configuration of any other port * does not change. * Access: Index */ MLXSW_ITEM_BIT_ARRAY(reg, sbsr, ingress_port_mask, 0x10, 0x20, 1); /* reg_sbsr_pg_buff_mask * Bit vector for all switch priority groups. * Indicates which of the priorities (for which the relevant bit is set) * are affected by the set operation. Configuration of any other priority * does not change. * Range is 0..cap_max_pg_buffers - 1 * Access: Index */ MLXSW_ITEM_BIT_ARRAY(reg, sbsr, pg_buff_mask, 0x30, 0x4, 1); /* reg_sbsr_egress_port_mask * Bit vector for all egress network ports. * Indicates which of the ports (for which the relevant bit is set) * are affected by the set operation. Configuration of any other port * does not change. * Access: Index */ MLXSW_ITEM_BIT_ARRAY(reg, sbsr, egress_port_mask, 0x34, 0x20, 1); /* reg_sbsr_tclass_mask * Bit vector for all traffic classes. * Indicates which of the traffic classes (for which the relevant bit is * set) are affected by the set operation. Configuration of any other * traffic class does not change. * Range is 0..cap_max_tclass - 1 * Access: Index */ MLXSW_ITEM_BIT_ARRAY(reg, sbsr, tclass_mask, 0x54, 0x8, 1); static inline void mlxsw_reg_sbsr_pack(char *payload, bool clr) { MLXSW_REG_ZERO(sbsr, payload); mlxsw_reg_sbsr_clr_set(payload, clr); } /* reg_sbsr_rec_buff_occupancy * Current buffer occupancy in cells. * Access: RO */ MLXSW_ITEM32_INDEXED(reg, sbsr, rec_buff_occupancy, MLXSW_REG_SBSR_BASE_LEN, 0, 24, MLXSW_REG_SBSR_REC_LEN, 0x00, false); /* reg_sbsr_rec_max_buff_occupancy * Maximum value of buffer occupancy in cells monitored. Cleared by * writing to the clr field. * Access: RO */ MLXSW_ITEM32_INDEXED(reg, sbsr, rec_max_buff_occupancy, MLXSW_REG_SBSR_BASE_LEN, 0, 24, MLXSW_REG_SBSR_REC_LEN, 0x04, false); static inline void mlxsw_reg_sbsr_rec_unpack(char *payload, int rec_index, u32 *p_buff_occupancy, u32 *p_max_buff_occupancy) { *p_buff_occupancy = mlxsw_reg_sbsr_rec_buff_occupancy_get(payload, rec_index); *p_max_buff_occupancy = mlxsw_reg_sbsr_rec_max_buff_occupancy_get(payload, rec_index); } /* SBIB - Shared Buffer Internal Buffer Register * --------------------------------------------- * The SBIB register configures per port buffers for internal use. The internal * buffers consume memory on the port buffers (note that the port buffers are * used also by PBMC). * * For Spectrum this is used for egress mirroring. */ #define MLXSW_REG_SBIB_ID 0xB006 #define MLXSW_REG_SBIB_LEN 0x10 MLXSW_REG_DEFINE(sbib, MLXSW_REG_SBIB_ID, MLXSW_REG_SBIB_LEN); /* reg_sbib_local_port * Local port number * Not supported for CPU port and router port * Access: Index */ MLXSW_ITEM32_LP(reg, sbib, 0x00, 16, 0x00, 12); /* reg_sbib_buff_size * Units represented in cells * Allowed range is 0 to (cap_max_headroom_size - 1) * Default is 0 * Access: RW */ MLXSW_ITEM32(reg, sbib, buff_size, 0x08, 0, 24); static inline void mlxsw_reg_sbib_pack(char *payload, u16 local_port, u32 buff_size) { MLXSW_REG_ZERO(sbib, payload); mlxsw_reg_sbib_local_port_set(payload, local_port); mlxsw_reg_sbib_buff_size_set(payload, buff_size); } static const struct mlxsw_reg_info *mlxsw_reg_infos[] = { MLXSW_REG(sgcr), MLXSW_REG(spad), MLXSW_REG(sspr), MLXSW_REG(sfdat), MLXSW_REG(sfd), MLXSW_REG(sfn), MLXSW_REG(spms), MLXSW_REG(spvid), MLXSW_REG(spvm), MLXSW_REG(spaft), MLXSW_REG(sfgc), MLXSW_REG(sfdf), MLXSW_REG(sldr), MLXSW_REG(slcr), MLXSW_REG(slcor), MLXSW_REG(spmlr), MLXSW_REG(svfa), MLXSW_REG(spvtr), MLXSW_REG(svpe), MLXSW_REG(sfmr), MLXSW_REG(spvmlr), MLXSW_REG(spfsr), MLXSW_REG(spvc), MLXSW_REG(spevet), MLXSW_REG(smpe), MLXSW_REG(smid2), MLXSW_REG(cwtp), MLXSW_REG(cwtpm), MLXSW_REG(pgcr), MLXSW_REG(ppbt), MLXSW_REG(pacl), MLXSW_REG(pagt), MLXSW_REG(ptar), MLXSW_REG(ppbs), MLXSW_REG(prcr), MLXSW_REG(pefa), MLXSW_REG(pemrbt), MLXSW_REG(ptce2), MLXSW_REG(perpt), MLXSW_REG(peabfe), MLXSW_REG(perar), MLXSW_REG(ptce3), MLXSW_REG(percr), MLXSW_REG(pererp), MLXSW_REG(iedr), MLXSW_REG(qpts), MLXSW_REG(qpcr), MLXSW_REG(qtct), MLXSW_REG(qeec), MLXSW_REG(qrwe), MLXSW_REG(qpdsm), MLXSW_REG(qpdp), MLXSW_REG(qpdpm), MLXSW_REG(qtctm), MLXSW_REG(qpsc), MLXSW_REG(pmlp), MLXSW_REG(pmtu), MLXSW_REG(ptys), MLXSW_REG(ppad), MLXSW_REG(paos), MLXSW_REG(pfcc), MLXSW_REG(ppcnt), MLXSW_REG(pptb), MLXSW_REG(pbmc), MLXSW_REG(pspa), MLXSW_REG(pmaos), MLXSW_REG(pplr), MLXSW_REG(pmtdb), MLXSW_REG(pmecr), MLXSW_REG(pmpe), MLXSW_REG(pddr), MLXSW_REG(pmmp), MLXSW_REG(pllp), MLXSW_REG(pmtm), MLXSW_REG(htgt), MLXSW_REG(hpkt), MLXSW_REG(rgcr), MLXSW_REG(ritr), MLXSW_REG(rtar), MLXSW_REG(ratr), MLXSW_REG(rtdp), MLXSW_REG(rips), MLXSW_REG(ratrad), MLXSW_REG(rdpm), MLXSW_REG(ricnt), MLXSW_REG(rrcr), MLXSW_REG(ralta), MLXSW_REG(ralst), MLXSW_REG(raltb), MLXSW_REG(ralue), MLXSW_REG(rauht), MLXSW_REG(raleu), MLXSW_REG(rauhtd), MLXSW_REG(rigr2), MLXSW_REG(recr2), MLXSW_REG(rmft2), MLXSW_REG(reiv), MLXSW_REG(mfcr), MLXSW_REG(mfsc), MLXSW_REG(mfsm), MLXSW_REG(mfsl), MLXSW_REG(fore), MLXSW_REG(mtcap), MLXSW_REG(mtmp), MLXSW_REG(mtwe), MLXSW_REG(mtbr), MLXSW_REG(mcia), MLXSW_REG(mpat), MLXSW_REG(mpar), MLXSW_REG(mgir), MLXSW_REG(mrsr), MLXSW_REG(mlcr), MLXSW_REG(mcion), MLXSW_REG(mtpps), MLXSW_REG(mtutc), MLXSW_REG(mpsc), MLXSW_REG(mcqi), MLXSW_REG(mcc), MLXSW_REG(mcda), MLXSW_REG(mgpc), MLXSW_REG(mprs), MLXSW_REG(mogcr), MLXSW_REG(mpagr), MLXSW_REG(momte), MLXSW_REG(mtpppc), MLXSW_REG(mtpptr), MLXSW_REG(mtptpt), MLXSW_REG(mtpcpc), MLXSW_REG(mfgd), MLXSW_REG(mgpir), MLXSW_REG(mbct), MLXSW_REG(mddt), MLXSW_REG(mddq), MLXSW_REG(mddc), MLXSW_REG(mfde), MLXSW_REG(tngcr), MLXSW_REG(tnumt), MLXSW_REG(tnqcr), MLXSW_REG(tnqdr), MLXSW_REG(tneem), MLXSW_REG(tndem), MLXSW_REG(tnpc), MLXSW_REG(tigcr), MLXSW_REG(tieem), MLXSW_REG(tidem), MLXSW_REG(sbpr), MLXSW_REG(sbcm), MLXSW_REG(sbpm), MLXSW_REG(sbmm), MLXSW_REG(sbsr), MLXSW_REG(sbib), }; static inline const char *mlxsw_reg_id_str(u16 reg_id) { const struct mlxsw_reg_info *reg_info; int i; for (i = 0; i < ARRAY_SIZE(mlxsw_reg_infos); i++) { reg_info = mlxsw_reg_infos[i]; if (reg_info->id == reg_id) return reg_info->name; } return "*UNKNOWN*"; } /* PUDE - Port Up / Down Event * --------------------------- * Reports the operational state change of a port. */ #define MLXSW_REG_PUDE_LEN 0x10 /* reg_pude_swid * Switch partition ID with which to associate the port. * Access: Index */ MLXSW_ITEM32(reg, pude, swid, 0x00, 24, 8); /* reg_pude_local_port * Local port number. * Access: Index */ MLXSW_ITEM32_LP(reg, pude, 0x00, 16, 0x00, 12); /* reg_pude_admin_status * Port administrative state (the desired state). * 1 - Up. * 2 - Down. * 3 - Up once. This means that in case of link failure, the port won't go * into polling mode, but will wait to be re-enabled by software. * 4 - Disabled by system. Can only be set by hardware. * Access: RO */ MLXSW_ITEM32(reg, pude, admin_status, 0x00, 8, 4); /* reg_pude_oper_status * Port operatioanl state. * 1 - Up. * 2 - Down. * 3 - Down by port failure. This means that the device will not let the * port up again until explicitly specified by software. * Access: RO */ MLXSW_ITEM32(reg, pude, oper_status, 0x00, 0, 4); #endif