// SPDX-License-Identifier: GPL-2.0 /* Texas Instruments K3 AM65 Ethernet QoS submodule * Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com/ * * quality of service module includes: * Enhanced Scheduler Traffic (EST - P802.1Qbv/D2.2) */ #include #include #include #include "am65-cpsw-nuss.h" #include "am65-cpsw-qos.h" #include "am65-cpts.h" #include "cpsw_ale.h" #define AM65_CPSW_REG_CTL 0x004 #define AM65_CPSW_PN_REG_CTL 0x004 #define AM65_CPSW_PN_REG_FIFO_STATUS 0x050 #define AM65_CPSW_PN_REG_EST_CTL 0x060 #define AM65_CPSW_PN_REG_PRI_CIR(pri) (0x140 + 4 * (pri)) /* AM65_CPSW_REG_CTL register fields */ #define AM65_CPSW_CTL_EST_EN BIT(18) /* AM65_CPSW_PN_REG_CTL register fields */ #define AM65_CPSW_PN_CTL_EST_PORT_EN BIT(17) /* AM65_CPSW_PN_REG_EST_CTL register fields */ #define AM65_CPSW_PN_EST_ONEBUF BIT(0) #define AM65_CPSW_PN_EST_BUFSEL BIT(1) #define AM65_CPSW_PN_EST_TS_EN BIT(2) #define AM65_CPSW_PN_EST_TS_FIRST BIT(3) #define AM65_CPSW_PN_EST_ONEPRI BIT(4) #define AM65_CPSW_PN_EST_TS_PRI_MSK GENMASK(7, 5) /* AM65_CPSW_PN_REG_FIFO_STATUS register fields */ #define AM65_CPSW_PN_FST_TX_PRI_ACTIVE_MSK GENMASK(7, 0) #define AM65_CPSW_PN_FST_TX_E_MAC_ALLOW_MSK GENMASK(15, 8) #define AM65_CPSW_PN_FST_EST_CNT_ERR BIT(16) #define AM65_CPSW_PN_FST_EST_ADD_ERR BIT(17) #define AM65_CPSW_PN_FST_EST_BUFACT BIT(18) /* EST FETCH COMMAND RAM */ #define AM65_CPSW_FETCH_RAM_CMD_NUM 0x80 #define AM65_CPSW_FETCH_CNT_MSK GENMASK(21, 8) #define AM65_CPSW_FETCH_CNT_MAX (AM65_CPSW_FETCH_CNT_MSK >> 8) #define AM65_CPSW_FETCH_CNT_OFFSET 8 #define AM65_CPSW_FETCH_ALLOW_MSK GENMASK(7, 0) #define AM65_CPSW_FETCH_ALLOW_MAX AM65_CPSW_FETCH_ALLOW_MSK enum timer_act { TACT_PROG, /* need program timer */ TACT_NEED_STOP, /* need stop first */ TACT_SKIP_PROG, /* just buffer can be updated */ }; static int am65_cpsw_port_est_enabled(struct am65_cpsw_port *port) { return port->qos.est_oper || port->qos.est_admin; } static void am65_cpsw_est_enable(struct am65_cpsw_common *common, int enable) { u32 val; val = readl(common->cpsw_base + AM65_CPSW_REG_CTL); if (enable) val |= AM65_CPSW_CTL_EST_EN; else val &= ~AM65_CPSW_CTL_EST_EN; writel(val, common->cpsw_base + AM65_CPSW_REG_CTL); common->est_enabled = enable; } static void am65_cpsw_port_est_enable(struct am65_cpsw_port *port, int enable) { u32 val; val = readl(port->port_base + AM65_CPSW_PN_REG_CTL); if (enable) val |= AM65_CPSW_PN_CTL_EST_PORT_EN; else val &= ~AM65_CPSW_PN_CTL_EST_PORT_EN; writel(val, port->port_base + AM65_CPSW_PN_REG_CTL); } /* target new EST RAM buffer, actual toggle happens after cycle completion */ static void am65_cpsw_port_est_assign_buf_num(struct net_device *ndev, int buf_num) { struct am65_cpsw_port *port = am65_ndev_to_port(ndev); u32 val; val = readl(port->port_base + AM65_CPSW_PN_REG_EST_CTL); if (buf_num) val |= AM65_CPSW_PN_EST_BUFSEL; else val &= ~AM65_CPSW_PN_EST_BUFSEL; writel(val, port->port_base + AM65_CPSW_PN_REG_EST_CTL); } /* am65_cpsw_port_est_is_swapped() - Indicate if h/w is transitioned * admin -> oper or not * * Return true if already transitioned. i.e oper is equal to admin and buf * numbers match (est_oper->buf match with est_admin->buf). * false if before transition. i.e oper is not equal to admin, (i.e a * previous admin command is waiting to be transitioned to oper state * and est_oper->buf not match with est_oper->buf). */ static int am65_cpsw_port_est_is_swapped(struct net_device *ndev, int *oper, int *admin) { struct am65_cpsw_port *port = am65_ndev_to_port(ndev); u32 val; val = readl(port->port_base + AM65_CPSW_PN_REG_FIFO_STATUS); *oper = !!(val & AM65_CPSW_PN_FST_EST_BUFACT); val = readl(port->port_base + AM65_CPSW_PN_REG_EST_CTL); *admin = !!(val & AM65_CPSW_PN_EST_BUFSEL); return *admin == *oper; } /* am65_cpsw_port_est_get_free_buf_num() - Get free buffer number for * Admin to program the new schedule. * * Logic as follows:- * If oper is same as admin, return the other buffer (!oper) as the admin * buffer. If oper is not the same, driver let the current oper to continue * as it is in the process of transitioning from admin -> oper. So keep the * oper by selecting the same oper buffer by writing to EST_BUFSEL bit in * EST CTL register. In the second iteration they will match and code returns. * The actual buffer to write command is selected later before it is ready * to update the schedule. */ static int am65_cpsw_port_est_get_free_buf_num(struct net_device *ndev) { int oper, admin; int roll = 2; while (roll--) { if (am65_cpsw_port_est_is_swapped(ndev, &oper, &admin)) return !oper; /* admin is not set, so hinder transition as it's not allowed * to touch memory in-flight, by targeting same oper buf. */ am65_cpsw_port_est_assign_buf_num(ndev, oper); dev_info(&ndev->dev, "Prev. EST admin cycle is in transit %d -> %d\n", oper, admin); } return admin; } static void am65_cpsw_admin_to_oper(struct net_device *ndev) { struct am65_cpsw_port *port = am65_ndev_to_port(ndev); devm_kfree(&ndev->dev, port->qos.est_oper); port->qos.est_oper = port->qos.est_admin; port->qos.est_admin = NULL; } static void am65_cpsw_port_est_get_buf_num(struct net_device *ndev, struct am65_cpsw_est *est_new) { struct am65_cpsw_port *port = am65_ndev_to_port(ndev); u32 val; val = readl(port->port_base + AM65_CPSW_PN_REG_EST_CTL); val &= ~AM65_CPSW_PN_EST_ONEBUF; writel(val, port->port_base + AM65_CPSW_PN_REG_EST_CTL); est_new->buf = am65_cpsw_port_est_get_free_buf_num(ndev); /* rolled buf num means changed buf while configuring */ if (port->qos.est_oper && port->qos.est_admin && est_new->buf == port->qos.est_oper->buf) am65_cpsw_admin_to_oper(ndev); } static void am65_cpsw_est_set(struct net_device *ndev, int enable) { struct am65_cpsw_port *port = am65_ndev_to_port(ndev); struct am65_cpsw_common *common = port->common; int common_enable = 0; int i; am65_cpsw_port_est_enable(port, enable); for (i = 0; i < common->port_num; i++) common_enable |= am65_cpsw_port_est_enabled(&common->ports[i]); common_enable |= enable; am65_cpsw_est_enable(common, common_enable); } /* This update is supposed to be used in any routine before getting real state * of admin -> oper transition, particularly it's supposed to be used in some * generic routine for providing real state to Taprio Qdisc. */ static void am65_cpsw_est_update_state(struct net_device *ndev) { struct am65_cpsw_port *port = am65_ndev_to_port(ndev); int oper, admin; if (!port->qos.est_admin) return; if (!am65_cpsw_port_est_is_swapped(ndev, &oper, &admin)) return; am65_cpsw_admin_to_oper(ndev); } /* Fetch command count it's number of bytes in Gigabit mode or nibbles in * 10/100Mb mode. So, having speed and time in ns, recalculate ns to number of * bytes/nibbles that can be sent while transmission on given speed. */ static int am65_est_cmd_ns_to_cnt(u64 ns, int link_speed) { u64 temp; temp = ns * link_speed; if (link_speed < SPEED_1000) temp <<= 1; return DIV_ROUND_UP(temp, 8 * 1000); } static void __iomem *am65_cpsw_est_set_sched_cmds(void __iomem *addr, int fetch_cnt, int fetch_allow) { u32 prio_mask, cmd_fetch_cnt, cmd; do { if (fetch_cnt > AM65_CPSW_FETCH_CNT_MAX) { fetch_cnt -= AM65_CPSW_FETCH_CNT_MAX; cmd_fetch_cnt = AM65_CPSW_FETCH_CNT_MAX; } else { cmd_fetch_cnt = fetch_cnt; /* fetch count can't be less than 16? */ if (cmd_fetch_cnt && cmd_fetch_cnt < 16) cmd_fetch_cnt = 16; fetch_cnt = 0; } prio_mask = fetch_allow & AM65_CPSW_FETCH_ALLOW_MSK; cmd = (cmd_fetch_cnt << AM65_CPSW_FETCH_CNT_OFFSET) | prio_mask; writel(cmd, addr); addr += 4; } while (fetch_cnt); return addr; } static int am65_cpsw_est_calc_cmd_num(struct net_device *ndev, struct tc_taprio_qopt_offload *taprio, int link_speed) { int i, cmd_cnt, cmd_sum = 0; u32 fetch_cnt; for (i = 0; i < taprio->num_entries; i++) { if (taprio->entries[i].command != TC_TAPRIO_CMD_SET_GATES) { dev_err(&ndev->dev, "Only SET command is supported"); return -EINVAL; } fetch_cnt = am65_est_cmd_ns_to_cnt(taprio->entries[i].interval, link_speed); cmd_cnt = DIV_ROUND_UP(fetch_cnt, AM65_CPSW_FETCH_CNT_MAX); if (!cmd_cnt) cmd_cnt++; cmd_sum += cmd_cnt; if (!fetch_cnt) break; } return cmd_sum; } static int am65_cpsw_est_check_scheds(struct net_device *ndev, struct am65_cpsw_est *est_new) { struct am65_cpsw_port *port = am65_ndev_to_port(ndev); int cmd_num; cmd_num = am65_cpsw_est_calc_cmd_num(ndev, &est_new->taprio, port->qos.link_speed); if (cmd_num < 0) return cmd_num; if (cmd_num > AM65_CPSW_FETCH_RAM_CMD_NUM / 2) { dev_err(&ndev->dev, "No fetch RAM"); return -ENOMEM; } return 0; } static void am65_cpsw_est_set_sched_list(struct net_device *ndev, struct am65_cpsw_est *est_new) { struct am65_cpsw_port *port = am65_ndev_to_port(ndev); u32 fetch_cnt, fetch_allow, all_fetch_allow = 0; void __iomem *ram_addr, *max_ram_addr; struct tc_taprio_sched_entry *entry; int i, ram_size; ram_addr = port->fetch_ram_base; ram_size = AM65_CPSW_FETCH_RAM_CMD_NUM * 2; ram_addr += est_new->buf * ram_size; max_ram_addr = ram_size + ram_addr; for (i = 0; i < est_new->taprio.num_entries; i++) { entry = &est_new->taprio.entries[i]; fetch_cnt = am65_est_cmd_ns_to_cnt(entry->interval, port->qos.link_speed); fetch_allow = entry->gate_mask; if (fetch_allow > AM65_CPSW_FETCH_ALLOW_MAX) dev_dbg(&ndev->dev, "fetch_allow > 8 bits: %d\n", fetch_allow); ram_addr = am65_cpsw_est_set_sched_cmds(ram_addr, fetch_cnt, fetch_allow); if (!fetch_cnt && i < est_new->taprio.num_entries - 1) { dev_info(&ndev->dev, "next scheds after %d have no impact", i + 1); break; } all_fetch_allow |= fetch_allow; } /* end cmd, enabling non-timed queues for potential over cycle time */ if (ram_addr < max_ram_addr) writel(~all_fetch_allow & AM65_CPSW_FETCH_ALLOW_MSK, ram_addr); } /* * Enable ESTf periodic output, set cycle start time and interval. */ static int am65_cpsw_timer_set(struct net_device *ndev, struct am65_cpsw_est *est_new) { struct am65_cpsw_port *port = am65_ndev_to_port(ndev); struct am65_cpsw_common *common = port->common; struct am65_cpts *cpts = common->cpts; struct am65_cpts_estf_cfg cfg; cfg.ns_period = est_new->taprio.cycle_time; cfg.ns_start = est_new->taprio.base_time; return am65_cpts_estf_enable(cpts, port->port_id - 1, &cfg); } static void am65_cpsw_timer_stop(struct net_device *ndev) { struct am65_cpsw_port *port = am65_ndev_to_port(ndev); struct am65_cpts *cpts = port->common->cpts; am65_cpts_estf_disable(cpts, port->port_id - 1); } static enum timer_act am65_cpsw_timer_act(struct net_device *ndev, struct am65_cpsw_est *est_new) { struct tc_taprio_qopt_offload *taprio_oper, *taprio_new; struct am65_cpsw_port *port = am65_ndev_to_port(ndev); struct am65_cpts *cpts = port->common->cpts; u64 cur_time; s64 diff; if (!port->qos.est_oper) return TACT_PROG; taprio_new = &est_new->taprio; taprio_oper = &port->qos.est_oper->taprio; if (taprio_new->cycle_time != taprio_oper->cycle_time) return TACT_NEED_STOP; /* in order to avoid timer reset get base_time form oper taprio */ if (!taprio_new->base_time && taprio_oper) taprio_new->base_time = taprio_oper->base_time; if (taprio_new->base_time == taprio_oper->base_time) return TACT_SKIP_PROG; /* base times are cycle synchronized */ diff = taprio_new->base_time - taprio_oper->base_time; diff = diff < 0 ? -diff : diff; if (diff % taprio_new->cycle_time) return TACT_NEED_STOP; cur_time = am65_cpts_ns_gettime(cpts); if (taprio_new->base_time <= cur_time + taprio_new->cycle_time) return TACT_SKIP_PROG; /* TODO: Admin schedule at future time is not currently supported */ return TACT_NEED_STOP; } static void am65_cpsw_stop_est(struct net_device *ndev) { am65_cpsw_est_set(ndev, 0); am65_cpsw_timer_stop(ndev); } static void am65_cpsw_purge_est(struct net_device *ndev) { struct am65_cpsw_port *port = am65_ndev_to_port(ndev); am65_cpsw_stop_est(ndev); devm_kfree(&ndev->dev, port->qos.est_admin); devm_kfree(&ndev->dev, port->qos.est_oper); port->qos.est_oper = NULL; port->qos.est_admin = NULL; } static int am65_cpsw_configure_taprio(struct net_device *ndev, struct am65_cpsw_est *est_new) { struct am65_cpsw_common *common = am65_ndev_to_common(ndev); struct am65_cpts *cpts = common->cpts; int ret = 0, tact = TACT_PROG; am65_cpsw_est_update_state(ndev); if (est_new->taprio.cmd == TAPRIO_CMD_DESTROY) { am65_cpsw_stop_est(ndev); return ret; } ret = am65_cpsw_est_check_scheds(ndev, est_new); if (ret < 0) return ret; tact = am65_cpsw_timer_act(ndev, est_new); if (tact == TACT_NEED_STOP) { dev_err(&ndev->dev, "Can't toggle estf timer, stop taprio first"); return -EINVAL; } if (tact == TACT_PROG) am65_cpsw_timer_stop(ndev); if (!est_new->taprio.base_time) est_new->taprio.base_time = am65_cpts_ns_gettime(cpts); am65_cpsw_port_est_get_buf_num(ndev, est_new); am65_cpsw_est_set_sched_list(ndev, est_new); am65_cpsw_port_est_assign_buf_num(ndev, est_new->buf); am65_cpsw_est_set(ndev, est_new->taprio.cmd == TAPRIO_CMD_REPLACE); if (tact == TACT_PROG) { ret = am65_cpsw_timer_set(ndev, est_new); if (ret) { dev_err(&ndev->dev, "Failed to set cycle time"); return ret; } } return ret; } static void am65_cpsw_cp_taprio(struct tc_taprio_qopt_offload *from, struct tc_taprio_qopt_offload *to) { int i; *to = *from; for (i = 0; i < from->num_entries; i++) to->entries[i] = from->entries[i]; } static int am65_cpsw_set_taprio(struct net_device *ndev, void *type_data) { struct am65_cpsw_port *port = am65_ndev_to_port(ndev); struct tc_taprio_qopt_offload *taprio = type_data; struct am65_cpsw_est *est_new; int ret = 0; if (taprio->cycle_time_extension) { dev_err(&ndev->dev, "Failed to set cycle time extension"); return -EOPNOTSUPP; } est_new = devm_kzalloc(&ndev->dev, struct_size(est_new, taprio.entries, taprio->num_entries), GFP_KERNEL); if (!est_new) return -ENOMEM; am65_cpsw_cp_taprio(taprio, &est_new->taprio); ret = am65_cpsw_configure_taprio(ndev, est_new); if (!ret) { if (taprio->cmd == TAPRIO_CMD_REPLACE) { devm_kfree(&ndev->dev, port->qos.est_admin); port->qos.est_admin = est_new; } else { devm_kfree(&ndev->dev, est_new); am65_cpsw_purge_est(ndev); } } else { devm_kfree(&ndev->dev, est_new); } return ret; } static void am65_cpsw_est_link_up(struct net_device *ndev, int link_speed) { struct am65_cpsw_port *port = am65_ndev_to_port(ndev); ktime_t cur_time; s64 delta; port->qos.link_speed = link_speed; if (!am65_cpsw_port_est_enabled(port)) return; if (port->qos.link_down_time) { cur_time = ktime_get(); delta = ktime_us_delta(cur_time, port->qos.link_down_time); if (delta > USEC_PER_SEC) { dev_err(&ndev->dev, "Link has been lost too long, stopping TAS"); goto purge_est; } } return; purge_est: am65_cpsw_purge_est(ndev); } static int am65_cpsw_setup_taprio(struct net_device *ndev, void *type_data) { struct am65_cpsw_port *port = am65_ndev_to_port(ndev); struct tc_taprio_qopt_offload *taprio = type_data; struct am65_cpsw_common *common = port->common; if (taprio->cmd != TAPRIO_CMD_REPLACE && taprio->cmd != TAPRIO_CMD_DESTROY) return -EOPNOTSUPP; if (!IS_ENABLED(CONFIG_TI_AM65_CPSW_TAS)) return -ENODEV; if (!netif_running(ndev)) { dev_err(&ndev->dev, "interface is down, link speed unknown\n"); return -ENETDOWN; } if (common->pf_p0_rx_ptype_rrobin) { dev_err(&ndev->dev, "p0-rx-ptype-rrobin flag conflicts with taprio qdisc\n"); return -EINVAL; } if (port->qos.link_speed == SPEED_UNKNOWN) return -ENOLINK; return am65_cpsw_set_taprio(ndev, type_data); } static int am65_cpsw_tc_query_caps(struct net_device *ndev, void *type_data) { struct tc_query_caps_base *base = type_data; switch (base->type) { case TC_SETUP_QDISC_TAPRIO: { struct tc_taprio_caps *caps = base->caps; if (!IS_ENABLED(CONFIG_TI_AM65_CPSW_TAS)) return -EOPNOTSUPP; caps->gate_mask_per_txq = true; return 0; } default: return -EOPNOTSUPP; } } static int am65_cpsw_qos_clsflower_add_policer(struct am65_cpsw_port *port, struct netlink_ext_ack *extack, struct flow_cls_offload *cls, u64 rate_pkt_ps) { struct flow_rule *rule = flow_cls_offload_flow_rule(cls); struct flow_dissector *dissector = rule->match.dissector; static const u8 mc_mac[] = {0x01, 0x00, 0x00, 0x00, 0x00, 0x00}; struct am65_cpsw_qos *qos = &port->qos; struct flow_match_eth_addrs match; int ret; if (dissector->used_keys & ~(BIT(FLOW_DISSECTOR_KEY_BASIC) | BIT(FLOW_DISSECTOR_KEY_CONTROL) | BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS))) { NL_SET_ERR_MSG_MOD(extack, "Unsupported keys used"); return -EOPNOTSUPP; } if (!flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { NL_SET_ERR_MSG_MOD(extack, "Not matching on eth address"); return -EOPNOTSUPP; } flow_rule_match_eth_addrs(rule, &match); if (!is_zero_ether_addr(match.mask->src)) { NL_SET_ERR_MSG_MOD(extack, "Matching on source MAC not supported"); return -EOPNOTSUPP; } if (is_broadcast_ether_addr(match.key->dst) && is_broadcast_ether_addr(match.mask->dst)) { ret = cpsw_ale_rx_ratelimit_bc(port->common->ale, port->port_id, rate_pkt_ps); if (ret) return ret; qos->ale_bc_ratelimit.cookie = cls->cookie; qos->ale_bc_ratelimit.rate_packet_ps = rate_pkt_ps; } else if (ether_addr_equal_unaligned(match.key->dst, mc_mac) && ether_addr_equal_unaligned(match.mask->dst, mc_mac)) { ret = cpsw_ale_rx_ratelimit_mc(port->common->ale, port->port_id, rate_pkt_ps); if (ret) return ret; qos->ale_mc_ratelimit.cookie = cls->cookie; qos->ale_mc_ratelimit.rate_packet_ps = rate_pkt_ps; } else { NL_SET_ERR_MSG_MOD(extack, "Not supported matching key"); return -EOPNOTSUPP; } return 0; } static int am65_cpsw_qos_clsflower_policer_validate(const struct flow_action *action, const struct flow_action_entry *act, struct netlink_ext_ack *extack) { if (act->police.exceed.act_id != FLOW_ACTION_DROP) { NL_SET_ERR_MSG_MOD(extack, "Offload not supported when exceed action is not drop"); return -EOPNOTSUPP; } if (act->police.notexceed.act_id != FLOW_ACTION_PIPE && act->police.notexceed.act_id != FLOW_ACTION_ACCEPT) { NL_SET_ERR_MSG_MOD(extack, "Offload not supported when conform action is not pipe or ok"); return -EOPNOTSUPP; } if (act->police.notexceed.act_id == FLOW_ACTION_ACCEPT && !flow_action_is_last_entry(action, act)) { NL_SET_ERR_MSG_MOD(extack, "Offload not supported when conform action is ok, but action is not last"); return -EOPNOTSUPP; } if (act->police.rate_bytes_ps || act->police.peakrate_bytes_ps || act->police.avrate || act->police.overhead) { NL_SET_ERR_MSG_MOD(extack, "Offload not supported when bytes per second/peakrate/avrate/overhead is configured"); return -EOPNOTSUPP; } return 0; } static int am65_cpsw_qos_configure_clsflower(struct am65_cpsw_port *port, struct flow_cls_offload *cls) { struct flow_rule *rule = flow_cls_offload_flow_rule(cls); struct netlink_ext_ack *extack = cls->common.extack; const struct flow_action_entry *act; int i, ret; flow_action_for_each(i, act, &rule->action) { switch (act->id) { case FLOW_ACTION_POLICE: ret = am65_cpsw_qos_clsflower_policer_validate(&rule->action, act, extack); if (ret) return ret; return am65_cpsw_qos_clsflower_add_policer(port, extack, cls, act->police.rate_pkt_ps); default: NL_SET_ERR_MSG_MOD(extack, "Action not supported"); return -EOPNOTSUPP; } } return -EOPNOTSUPP; } static int am65_cpsw_qos_delete_clsflower(struct am65_cpsw_port *port, struct flow_cls_offload *cls) { struct am65_cpsw_qos *qos = &port->qos; if (cls->cookie == qos->ale_bc_ratelimit.cookie) { qos->ale_bc_ratelimit.cookie = 0; qos->ale_bc_ratelimit.rate_packet_ps = 0; cpsw_ale_rx_ratelimit_bc(port->common->ale, port->port_id, 0); } if (cls->cookie == qos->ale_mc_ratelimit.cookie) { qos->ale_mc_ratelimit.cookie = 0; qos->ale_mc_ratelimit.rate_packet_ps = 0; cpsw_ale_rx_ratelimit_mc(port->common->ale, port->port_id, 0); } return 0; } static int am65_cpsw_qos_setup_tc_clsflower(struct am65_cpsw_port *port, struct flow_cls_offload *cls_flower) { switch (cls_flower->command) { case FLOW_CLS_REPLACE: return am65_cpsw_qos_configure_clsflower(port, cls_flower); case FLOW_CLS_DESTROY: return am65_cpsw_qos_delete_clsflower(port, cls_flower); default: return -EOPNOTSUPP; } } static int am65_cpsw_qos_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) { struct am65_cpsw_port *port = cb_priv; if (!tc_cls_can_offload_and_chain0(port->ndev, type_data)) return -EOPNOTSUPP; switch (type) { case TC_SETUP_CLSFLOWER: return am65_cpsw_qos_setup_tc_clsflower(port, type_data); default: return -EOPNOTSUPP; } } static LIST_HEAD(am65_cpsw_qos_block_cb_list); static int am65_cpsw_qos_setup_tc_block(struct net_device *ndev, struct flow_block_offload *f) { struct am65_cpsw_port *port = am65_ndev_to_port(ndev); return flow_block_cb_setup_simple(f, &am65_cpsw_qos_block_cb_list, am65_cpsw_qos_setup_tc_block_cb, port, port, true); } int am65_cpsw_qos_ndo_setup_tc(struct net_device *ndev, enum tc_setup_type type, void *type_data) { switch (type) { case TC_QUERY_CAPS: return am65_cpsw_tc_query_caps(ndev, type_data); case TC_SETUP_QDISC_TAPRIO: return am65_cpsw_setup_taprio(ndev, type_data); case TC_SETUP_BLOCK: return am65_cpsw_qos_setup_tc_block(ndev, type_data); default: return -EOPNOTSUPP; } } void am65_cpsw_qos_link_up(struct net_device *ndev, int link_speed) { struct am65_cpsw_port *port = am65_ndev_to_port(ndev); if (!IS_ENABLED(CONFIG_TI_AM65_CPSW_TAS)) return; am65_cpsw_est_link_up(ndev, link_speed); port->qos.link_down_time = 0; } void am65_cpsw_qos_link_down(struct net_device *ndev) { struct am65_cpsw_port *port = am65_ndev_to_port(ndev); if (!IS_ENABLED(CONFIG_TI_AM65_CPSW_TAS)) return; if (!port->qos.link_down_time) port->qos.link_down_time = ktime_get(); port->qos.link_speed = SPEED_UNKNOWN; } static u32 am65_cpsw_qos_tx_rate_calc(u32 rate_mbps, unsigned long bus_freq) { u32 ir; bus_freq /= 1000000; ir = DIV_ROUND_UP(((u64)rate_mbps * 32768), bus_freq); return ir; } static void am65_cpsw_qos_tx_p0_rate_apply(struct am65_cpsw_common *common, int tx_ch, u32 rate_mbps) { struct am65_cpsw_host *host = am65_common_get_host(common); u32 ch_cir; int i; ch_cir = am65_cpsw_qos_tx_rate_calc(rate_mbps, common->bus_freq); writel(ch_cir, host->port_base + AM65_CPSW_PN_REG_PRI_CIR(tx_ch)); /* update rates for every port tx queues */ for (i = 0; i < common->port_num; i++) { struct net_device *ndev = common->ports[i].ndev; if (!ndev) continue; netdev_get_tx_queue(ndev, tx_ch)->tx_maxrate = rate_mbps; } } int am65_cpsw_qos_ndo_tx_p0_set_maxrate(struct net_device *ndev, int queue, u32 rate_mbps) { struct am65_cpsw_port *port = am65_ndev_to_port(ndev); struct am65_cpsw_common *common = port->common; struct am65_cpsw_tx_chn *tx_chn; u32 ch_rate, tx_ch_rate_msk_new; u32 ch_msk = 0; int ret; dev_dbg(common->dev, "apply TX%d rate limiting %uMbps tx_rate_msk%x\n", queue, rate_mbps, common->tx_ch_rate_msk); if (common->pf_p0_rx_ptype_rrobin) { dev_err(common->dev, "TX Rate Limiting failed - rrobin mode\n"); return -EINVAL; } ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate; if (ch_rate == rate_mbps) return 0; ret = pm_runtime_get_sync(common->dev); if (ret < 0) { pm_runtime_put_noidle(common->dev); return ret; } ret = 0; tx_ch_rate_msk_new = common->tx_ch_rate_msk; if (rate_mbps && !(tx_ch_rate_msk_new & BIT(queue))) { tx_ch_rate_msk_new |= BIT(queue); ch_msk = GENMASK(common->tx_ch_num - 1, queue); ch_msk = tx_ch_rate_msk_new ^ ch_msk; } else if (!rate_mbps) { tx_ch_rate_msk_new &= ~BIT(queue); ch_msk = queue ? GENMASK(queue - 1, 0) : 0; ch_msk = tx_ch_rate_msk_new & ch_msk; } if (ch_msk) { dev_err(common->dev, "TX rate limiting has to be enabled sequentially hi->lo tx_rate_msk:%x tx_rate_msk_new:%x\n", common->tx_ch_rate_msk, tx_ch_rate_msk_new); ret = -EINVAL; goto exit_put; } tx_chn = &common->tx_chns[queue]; tx_chn->rate_mbps = rate_mbps; common->tx_ch_rate_msk = tx_ch_rate_msk_new; if (!common->usage_count) /* will be applied on next netif up */ goto exit_put; am65_cpsw_qos_tx_p0_rate_apply(common, queue, rate_mbps); exit_put: pm_runtime_put(common->dev); return ret; } void am65_cpsw_qos_tx_p0_rate_init(struct am65_cpsw_common *common) { struct am65_cpsw_host *host = am65_common_get_host(common); int tx_ch; for (tx_ch = 0; tx_ch < common->tx_ch_num; tx_ch++) { struct am65_cpsw_tx_chn *tx_chn = &common->tx_chns[tx_ch]; u32 ch_cir; if (!tx_chn->rate_mbps) continue; ch_cir = am65_cpsw_qos_tx_rate_calc(tx_chn->rate_mbps, common->bus_freq); writel(ch_cir, host->port_base + AM65_CPSW_PN_REG_PRI_CIR(tx_ch)); } }