// SPDX-License-Identifier: BSD-3-Clause-Clear /* * Copyright (c) 2018-2021 The Linux Foundation. All rights reserved. * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include "core.h" #include "debug.h" #include "mac.h" #include "hw.h" #include "peer.h" struct ath12k_wmi_svc_ready_parse { bool wmi_svc_bitmap_done; }; struct ath12k_wmi_dma_ring_caps_parse { struct ath12k_wmi_dma_ring_caps_params *dma_ring_caps; u32 n_dma_ring_caps; }; struct ath12k_wmi_service_ext_arg { u32 default_conc_scan_config_bits; u32 default_fw_config_bits; struct ath12k_wmi_ppe_threshold_arg ppet; u32 he_cap_info; u32 mpdu_density; u32 max_bssid_rx_filters; u32 num_hw_modes; u32 num_phy; }; struct ath12k_wmi_svc_rdy_ext_parse { struct ath12k_wmi_service_ext_arg arg; const struct ath12k_wmi_soc_mac_phy_hw_mode_caps_params *hw_caps; const struct ath12k_wmi_hw_mode_cap_params *hw_mode_caps; u32 n_hw_mode_caps; u32 tot_phy_id; struct ath12k_wmi_hw_mode_cap_params pref_hw_mode_caps; struct ath12k_wmi_mac_phy_caps_params *mac_phy_caps; u32 n_mac_phy_caps; const struct ath12k_wmi_soc_hal_reg_caps_params *soc_hal_reg_caps; const struct ath12k_wmi_hal_reg_caps_ext_params *ext_hal_reg_caps; u32 n_ext_hal_reg_caps; struct ath12k_wmi_dma_ring_caps_parse dma_caps_parse; bool hw_mode_done; bool mac_phy_done; bool ext_hal_reg_done; bool mac_phy_chainmask_combo_done; bool mac_phy_chainmask_cap_done; bool oem_dma_ring_cap_done; bool dma_ring_cap_done; }; struct ath12k_wmi_svc_rdy_ext2_parse { struct ath12k_wmi_dma_ring_caps_parse dma_caps_parse; bool dma_ring_cap_done; }; struct ath12k_wmi_rdy_parse { u32 num_extra_mac_addr; }; struct ath12k_wmi_dma_buf_release_arg { struct ath12k_wmi_dma_buf_release_fixed_params fixed; const struct ath12k_wmi_dma_buf_release_entry_params *buf_entry; const struct ath12k_wmi_dma_buf_release_meta_data_params *meta_data; u32 num_buf_entry; u32 num_meta; bool buf_entry_done; bool meta_data_done; }; struct ath12k_wmi_tlv_policy { size_t min_len; }; struct wmi_tlv_mgmt_rx_parse { const struct ath12k_wmi_mgmt_rx_params *fixed; const u8 *frame_buf; bool frame_buf_done; }; static const struct ath12k_wmi_tlv_policy ath12k_wmi_tlv_policies[] = { [WMI_TAG_ARRAY_BYTE] = { .min_len = 0 }, [WMI_TAG_ARRAY_UINT32] = { .min_len = 0 }, [WMI_TAG_SERVICE_READY_EVENT] = { .min_len = sizeof(struct wmi_service_ready_event) }, [WMI_TAG_SERVICE_READY_EXT_EVENT] = { .min_len = sizeof(struct wmi_service_ready_ext_event) }, [WMI_TAG_SOC_MAC_PHY_HW_MODE_CAPS] = { .min_len = sizeof(struct ath12k_wmi_soc_mac_phy_hw_mode_caps_params) }, [WMI_TAG_SOC_HAL_REG_CAPABILITIES] = { .min_len = sizeof(struct ath12k_wmi_soc_hal_reg_caps_params) }, [WMI_TAG_VDEV_START_RESPONSE_EVENT] = { .min_len = sizeof(struct wmi_vdev_start_resp_event) }, [WMI_TAG_PEER_DELETE_RESP_EVENT] = { .min_len = sizeof(struct wmi_peer_delete_resp_event) }, [WMI_TAG_OFFLOAD_BCN_TX_STATUS_EVENT] = { .min_len = sizeof(struct wmi_bcn_tx_status_event) }, [WMI_TAG_VDEV_STOPPED_EVENT] = { .min_len = sizeof(struct wmi_vdev_stopped_event) }, [WMI_TAG_REG_CHAN_LIST_CC_EXT_EVENT] = { .min_len = sizeof(struct wmi_reg_chan_list_cc_ext_event) }, [WMI_TAG_MGMT_RX_HDR] = { .min_len = sizeof(struct ath12k_wmi_mgmt_rx_params) }, [WMI_TAG_MGMT_TX_COMPL_EVENT] = { .min_len = sizeof(struct wmi_mgmt_tx_compl_event) }, [WMI_TAG_SCAN_EVENT] = { .min_len = sizeof(struct wmi_scan_event) }, [WMI_TAG_PEER_STA_KICKOUT_EVENT] = { .min_len = sizeof(struct wmi_peer_sta_kickout_event) }, [WMI_TAG_ROAM_EVENT] = { .min_len = sizeof(struct wmi_roam_event) }, [WMI_TAG_CHAN_INFO_EVENT] = { .min_len = sizeof(struct wmi_chan_info_event) }, [WMI_TAG_PDEV_BSS_CHAN_INFO_EVENT] = { .min_len = sizeof(struct wmi_pdev_bss_chan_info_event) }, [WMI_TAG_VDEV_INSTALL_KEY_COMPLETE_EVENT] = { .min_len = sizeof(struct wmi_vdev_install_key_compl_event) }, [WMI_TAG_READY_EVENT] = { .min_len = sizeof(struct ath12k_wmi_ready_event_min_params) }, [WMI_TAG_SERVICE_AVAILABLE_EVENT] = { .min_len = sizeof(struct wmi_service_available_event) }, [WMI_TAG_PEER_ASSOC_CONF_EVENT] = { .min_len = sizeof(struct wmi_peer_assoc_conf_event) }, [WMI_TAG_PDEV_CTL_FAILSAFE_CHECK_EVENT] = { .min_len = sizeof(struct wmi_pdev_ctl_failsafe_chk_event) }, [WMI_TAG_HOST_SWFDA_EVENT] = { .min_len = sizeof(struct wmi_fils_discovery_event) }, [WMI_TAG_OFFLOAD_PRB_RSP_TX_STATUS_EVENT] = { .min_len = sizeof(struct wmi_probe_resp_tx_status_event) }, [WMI_TAG_VDEV_DELETE_RESP_EVENT] = { .min_len = sizeof(struct wmi_vdev_delete_resp_event) }, }; static __le32 ath12k_wmi_tlv_hdr(u32 cmd, u32 len) { return le32_encode_bits(cmd, WMI_TLV_TAG) | le32_encode_bits(len, WMI_TLV_LEN); } static __le32 ath12k_wmi_tlv_cmd_hdr(u32 cmd, u32 len) { return ath12k_wmi_tlv_hdr(cmd, len - TLV_HDR_SIZE); } void ath12k_wmi_init_qcn9274(struct ath12k_base *ab, struct ath12k_wmi_resource_config_arg *config) { config->num_vdevs = ab->num_radios * TARGET_NUM_VDEVS; if (ab->num_radios == 2) { config->num_peers = TARGET_NUM_PEERS(DBS); config->num_tids = TARGET_NUM_TIDS(DBS); } else if (ab->num_radios == 3) { config->num_peers = TARGET_NUM_PEERS(DBS_SBS); config->num_tids = TARGET_NUM_TIDS(DBS_SBS); } else { /* Control should not reach here */ config->num_peers = TARGET_NUM_PEERS(SINGLE); config->num_tids = TARGET_NUM_TIDS(SINGLE); } config->num_offload_peers = TARGET_NUM_OFFLD_PEERS; config->num_offload_reorder_buffs = TARGET_NUM_OFFLD_REORDER_BUFFS; config->num_peer_keys = TARGET_NUM_PEER_KEYS; config->ast_skid_limit = TARGET_AST_SKID_LIMIT; config->tx_chain_mask = (1 << ab->target_caps.num_rf_chains) - 1; config->rx_chain_mask = (1 << ab->target_caps.num_rf_chains) - 1; config->rx_timeout_pri[0] = TARGET_RX_TIMEOUT_LO_PRI; config->rx_timeout_pri[1] = TARGET_RX_TIMEOUT_LO_PRI; config->rx_timeout_pri[2] = TARGET_RX_TIMEOUT_LO_PRI; config->rx_timeout_pri[3] = TARGET_RX_TIMEOUT_HI_PRI; if (test_bit(ATH12K_FLAG_RAW_MODE, &ab->dev_flags)) config->rx_decap_mode = TARGET_DECAP_MODE_RAW; else config->rx_decap_mode = TARGET_DECAP_MODE_NATIVE_WIFI; config->scan_max_pending_req = TARGET_SCAN_MAX_PENDING_REQS; config->bmiss_offload_max_vdev = TARGET_BMISS_OFFLOAD_MAX_VDEV; config->roam_offload_max_vdev = TARGET_ROAM_OFFLOAD_MAX_VDEV; config->roam_offload_max_ap_profiles = TARGET_ROAM_OFFLOAD_MAX_AP_PROFILES; config->num_mcast_groups = TARGET_NUM_MCAST_GROUPS; config->num_mcast_table_elems = TARGET_NUM_MCAST_TABLE_ELEMS; config->mcast2ucast_mode = TARGET_MCAST2UCAST_MODE; config->tx_dbg_log_size = TARGET_TX_DBG_LOG_SIZE; config->num_wds_entries = TARGET_NUM_WDS_ENTRIES; config->dma_burst_size = TARGET_DMA_BURST_SIZE; config->rx_skip_defrag_timeout_dup_detection_check = TARGET_RX_SKIP_DEFRAG_TIMEOUT_DUP_DETECTION_CHECK; config->vow_config = TARGET_VOW_CONFIG; config->gtk_offload_max_vdev = TARGET_GTK_OFFLOAD_MAX_VDEV; config->num_msdu_desc = TARGET_NUM_MSDU_DESC; config->beacon_tx_offload_max_vdev = ab->num_radios * TARGET_MAX_BCN_OFFLD; config->rx_batchmode = TARGET_RX_BATCHMODE; /* Indicates host supports peer map v3 and unmap v2 support */ config->peer_map_unmap_version = 0x32; config->twt_ap_pdev_count = ab->num_radios; config->twt_ap_sta_count = 1000; } void ath12k_wmi_init_wcn7850(struct ath12k_base *ab, struct ath12k_wmi_resource_config_arg *config) { config->num_vdevs = 4; config->num_peers = 16; config->num_tids = 32; config->num_offload_peers = 3; config->num_offload_reorder_buffs = 3; config->num_peer_keys = TARGET_NUM_PEER_KEYS; config->ast_skid_limit = TARGET_AST_SKID_LIMIT; config->tx_chain_mask = (1 << ab->target_caps.num_rf_chains) - 1; config->rx_chain_mask = (1 << ab->target_caps.num_rf_chains) - 1; config->rx_timeout_pri[0] = TARGET_RX_TIMEOUT_LO_PRI; config->rx_timeout_pri[1] = TARGET_RX_TIMEOUT_LO_PRI; config->rx_timeout_pri[2] = TARGET_RX_TIMEOUT_LO_PRI; config->rx_timeout_pri[3] = TARGET_RX_TIMEOUT_HI_PRI; config->rx_decap_mode = TARGET_DECAP_MODE_NATIVE_WIFI; config->scan_max_pending_req = TARGET_SCAN_MAX_PENDING_REQS; config->bmiss_offload_max_vdev = TARGET_BMISS_OFFLOAD_MAX_VDEV; config->roam_offload_max_vdev = TARGET_ROAM_OFFLOAD_MAX_VDEV; config->roam_offload_max_ap_profiles = TARGET_ROAM_OFFLOAD_MAX_AP_PROFILES; config->num_mcast_groups = 0; config->num_mcast_table_elems = 0; config->mcast2ucast_mode = 0; config->tx_dbg_log_size = TARGET_TX_DBG_LOG_SIZE; config->num_wds_entries = 0; config->dma_burst_size = 0; config->rx_skip_defrag_timeout_dup_detection_check = 0; config->vow_config = TARGET_VOW_CONFIG; config->gtk_offload_max_vdev = 2; config->num_msdu_desc = 0x400; config->beacon_tx_offload_max_vdev = 2; config->rx_batchmode = TARGET_RX_BATCHMODE; config->peer_map_unmap_version = 0x1; config->use_pdev_id = 1; config->max_frag_entries = 0xa; config->num_tdls_vdevs = 0x1; config->num_tdls_conn_table_entries = 8; config->beacon_tx_offload_max_vdev = 0x2; config->num_multicast_filter_entries = 0x20; config->num_wow_filters = 0x16; config->num_keep_alive_pattern = 0; } #define PRIMAP(_hw_mode_) \ [_hw_mode_] = _hw_mode_##_PRI static const int ath12k_hw_mode_pri_map[] = { PRIMAP(WMI_HOST_HW_MODE_SINGLE), PRIMAP(WMI_HOST_HW_MODE_DBS), PRIMAP(WMI_HOST_HW_MODE_SBS_PASSIVE), PRIMAP(WMI_HOST_HW_MODE_SBS), PRIMAP(WMI_HOST_HW_MODE_DBS_SBS), PRIMAP(WMI_HOST_HW_MODE_DBS_OR_SBS), /* keep last */ PRIMAP(WMI_HOST_HW_MODE_MAX), }; static int ath12k_wmi_tlv_iter(struct ath12k_base *ab, const void *ptr, size_t len, int (*iter)(struct ath12k_base *ab, u16 tag, u16 len, const void *ptr, void *data), void *data) { const void *begin = ptr; const struct wmi_tlv *tlv; u16 tlv_tag, tlv_len; int ret; while (len > 0) { if (len < sizeof(*tlv)) { ath12k_err(ab, "wmi tlv parse failure at byte %zd (%zu bytes left, %zu expected)\n", ptr - begin, len, sizeof(*tlv)); return -EINVAL; } tlv = ptr; tlv_tag = le32_get_bits(tlv->header, WMI_TLV_TAG); tlv_len = le32_get_bits(tlv->header, WMI_TLV_LEN); ptr += sizeof(*tlv); len -= sizeof(*tlv); if (tlv_len > len) { ath12k_err(ab, "wmi tlv parse failure of tag %u at byte %zd (%zu bytes left, %u expected)\n", tlv_tag, ptr - begin, len, tlv_len); return -EINVAL; } if (tlv_tag < ARRAY_SIZE(ath12k_wmi_tlv_policies) && ath12k_wmi_tlv_policies[tlv_tag].min_len && ath12k_wmi_tlv_policies[tlv_tag].min_len > tlv_len) { ath12k_err(ab, "wmi tlv parse failure of tag %u at byte %zd (%u bytes is less than min length %zu)\n", tlv_tag, ptr - begin, tlv_len, ath12k_wmi_tlv_policies[tlv_tag].min_len); return -EINVAL; } ret = iter(ab, tlv_tag, tlv_len, ptr, data); if (ret) return ret; ptr += tlv_len; len -= tlv_len; } return 0; } static int ath12k_wmi_tlv_iter_parse(struct ath12k_base *ab, u16 tag, u16 len, const void *ptr, void *data) { const void **tb = data; if (tag < WMI_TAG_MAX) tb[tag] = ptr; return 0; } static int ath12k_wmi_tlv_parse(struct ath12k_base *ar, const void **tb, const void *ptr, size_t len) { return ath12k_wmi_tlv_iter(ar, ptr, len, ath12k_wmi_tlv_iter_parse, (void *)tb); } static const void ** ath12k_wmi_tlv_parse_alloc(struct ath12k_base *ab, const void *ptr, size_t len, gfp_t gfp) { const void **tb; int ret; tb = kcalloc(WMI_TAG_MAX, sizeof(*tb), gfp); if (!tb) return ERR_PTR(-ENOMEM); ret = ath12k_wmi_tlv_parse(ab, tb, ptr, len); if (ret) { kfree(tb); return ERR_PTR(ret); } return tb; } static int ath12k_wmi_cmd_send_nowait(struct ath12k_wmi_pdev *wmi, struct sk_buff *skb, u32 cmd_id) { struct ath12k_skb_cb *skb_cb = ATH12K_SKB_CB(skb); struct ath12k_base *ab = wmi->wmi_ab->ab; struct wmi_cmd_hdr *cmd_hdr; int ret; if (!skb_push(skb, sizeof(struct wmi_cmd_hdr))) return -ENOMEM; cmd_hdr = (struct wmi_cmd_hdr *)skb->data; cmd_hdr->cmd_id = le32_encode_bits(cmd_id, WMI_CMD_HDR_CMD_ID); memset(skb_cb, 0, sizeof(*skb_cb)); ret = ath12k_htc_send(&ab->htc, wmi->eid, skb); if (ret) goto err_pull; return 0; err_pull: skb_pull(skb, sizeof(struct wmi_cmd_hdr)); return ret; } int ath12k_wmi_cmd_send(struct ath12k_wmi_pdev *wmi, struct sk_buff *skb, u32 cmd_id) { struct ath12k_wmi_base *wmi_sc = wmi->wmi_ab; int ret = -EOPNOTSUPP; might_sleep(); wait_event_timeout(wmi_sc->tx_credits_wq, ({ ret = ath12k_wmi_cmd_send_nowait(wmi, skb, cmd_id); if (ret && test_bit(ATH12K_FLAG_CRASH_FLUSH, &wmi_sc->ab->dev_flags)) ret = -ESHUTDOWN; (ret != -EAGAIN); }), WMI_SEND_TIMEOUT_HZ); if (ret == -EAGAIN) ath12k_warn(wmi_sc->ab, "wmi command %d timeout\n", cmd_id); return ret; } static int ath12k_pull_svc_ready_ext(struct ath12k_wmi_pdev *wmi_handle, const void *ptr, struct ath12k_wmi_service_ext_arg *arg) { const struct wmi_service_ready_ext_event *ev = ptr; int i; if (!ev) return -EINVAL; /* Move this to host based bitmap */ arg->default_conc_scan_config_bits = le32_to_cpu(ev->default_conc_scan_config_bits); arg->default_fw_config_bits = le32_to_cpu(ev->default_fw_config_bits); arg->he_cap_info = le32_to_cpu(ev->he_cap_info); arg->mpdu_density = le32_to_cpu(ev->mpdu_density); arg->max_bssid_rx_filters = le32_to_cpu(ev->max_bssid_rx_filters); arg->ppet.numss_m1 = le32_to_cpu(ev->ppet.numss_m1); arg->ppet.ru_bit_mask = le32_to_cpu(ev->ppet.ru_info); for (i = 0; i < WMI_MAX_NUM_SS; i++) arg->ppet.ppet16_ppet8_ru3_ru0[i] = le32_to_cpu(ev->ppet.ppet16_ppet8_ru3_ru0[i]); return 0; } static int ath12k_pull_mac_phy_cap_svc_ready_ext(struct ath12k_wmi_pdev *wmi_handle, struct ath12k_wmi_svc_rdy_ext_parse *svc, u8 hw_mode_id, u8 phy_id, struct ath12k_pdev *pdev) { const struct ath12k_wmi_mac_phy_caps_params *mac_caps; const struct ath12k_wmi_soc_mac_phy_hw_mode_caps_params *hw_caps = svc->hw_caps; const struct ath12k_wmi_hw_mode_cap_params *wmi_hw_mode_caps = svc->hw_mode_caps; const struct ath12k_wmi_mac_phy_caps_params *wmi_mac_phy_caps = svc->mac_phy_caps; struct ath12k_band_cap *cap_band; struct ath12k_pdev_cap *pdev_cap = &pdev->cap; u32 phy_map; u32 hw_idx, phy_idx = 0; int i; if (!hw_caps || !wmi_hw_mode_caps || !svc->soc_hal_reg_caps) return -EINVAL; for (hw_idx = 0; hw_idx < le32_to_cpu(hw_caps->num_hw_modes); hw_idx++) { if (hw_mode_id == le32_to_cpu(wmi_hw_mode_caps[hw_idx].hw_mode_id)) break; phy_map = le32_to_cpu(wmi_hw_mode_caps[hw_idx].phy_id_map); phy_idx = fls(phy_map); } if (hw_idx == le32_to_cpu(hw_caps->num_hw_modes)) return -EINVAL; phy_idx += phy_id; if (phy_id >= le32_to_cpu(svc->soc_hal_reg_caps->num_phy)) return -EINVAL; mac_caps = wmi_mac_phy_caps + phy_idx; pdev->pdev_id = le32_to_cpu(mac_caps->pdev_id); pdev_cap->supported_bands |= le32_to_cpu(mac_caps->supported_bands); pdev_cap->ampdu_density = le32_to_cpu(mac_caps->ampdu_density); /* Take non-zero tx/rx chainmask. If tx/rx chainmask differs from * band to band for a single radio, need to see how this should be * handled. */ if (le32_to_cpu(mac_caps->supported_bands) & WMI_HOST_WLAN_2G_CAP) { pdev_cap->tx_chain_mask = le32_to_cpu(mac_caps->tx_chain_mask_2g); pdev_cap->rx_chain_mask = le32_to_cpu(mac_caps->rx_chain_mask_2g); } else if (le32_to_cpu(mac_caps->supported_bands) & WMI_HOST_WLAN_5G_CAP) { pdev_cap->vht_cap = le32_to_cpu(mac_caps->vht_cap_info_5g); pdev_cap->vht_mcs = le32_to_cpu(mac_caps->vht_supp_mcs_5g); pdev_cap->he_mcs = le32_to_cpu(mac_caps->he_supp_mcs_5g); pdev_cap->tx_chain_mask = le32_to_cpu(mac_caps->tx_chain_mask_5g); pdev_cap->rx_chain_mask = le32_to_cpu(mac_caps->rx_chain_mask_5g); } else { return -EINVAL; } /* tx/rx chainmask reported from fw depends on the actual hw chains used, * For example, for 4x4 capable macphys, first 4 chains can be used for first * mac and the remaining 4 chains can be used for the second mac or vice-versa. * In this case, tx/rx chainmask 0xf will be advertised for first mac and 0xf0 * will be advertised for second mac or vice-versa. Compute the shift value * for tx/rx chainmask which will be used to advertise supported ht/vht rates to * mac80211. */ pdev_cap->tx_chain_mask_shift = find_first_bit((unsigned long *)&pdev_cap->tx_chain_mask, 32); pdev_cap->rx_chain_mask_shift = find_first_bit((unsigned long *)&pdev_cap->rx_chain_mask, 32); if (le32_to_cpu(mac_caps->supported_bands) & WMI_HOST_WLAN_2G_CAP) { cap_band = &pdev_cap->band[NL80211_BAND_2GHZ]; cap_band->phy_id = le32_to_cpu(mac_caps->phy_id); cap_band->max_bw_supported = le32_to_cpu(mac_caps->max_bw_supported_2g); cap_band->ht_cap_info = le32_to_cpu(mac_caps->ht_cap_info_2g); cap_band->he_cap_info[0] = le32_to_cpu(mac_caps->he_cap_info_2g); cap_band->he_cap_info[1] = le32_to_cpu(mac_caps->he_cap_info_2g_ext); cap_band->he_mcs = le32_to_cpu(mac_caps->he_supp_mcs_2g); for (i = 0; i < WMI_MAX_HECAP_PHY_SIZE; i++) cap_band->he_cap_phy_info[i] = le32_to_cpu(mac_caps->he_cap_phy_info_2g[i]); cap_band->he_ppet.numss_m1 = le32_to_cpu(mac_caps->he_ppet2g.numss_m1); cap_band->he_ppet.ru_bit_mask = le32_to_cpu(mac_caps->he_ppet2g.ru_info); for (i = 0; i < WMI_MAX_NUM_SS; i++) cap_band->he_ppet.ppet16_ppet8_ru3_ru0[i] = le32_to_cpu(mac_caps->he_ppet2g.ppet16_ppet8_ru3_ru0[i]); } if (le32_to_cpu(mac_caps->supported_bands) & WMI_HOST_WLAN_5G_CAP) { cap_band = &pdev_cap->band[NL80211_BAND_5GHZ]; cap_band->phy_id = le32_to_cpu(mac_caps->phy_id); cap_band->max_bw_supported = le32_to_cpu(mac_caps->max_bw_supported_5g); cap_band->ht_cap_info = le32_to_cpu(mac_caps->ht_cap_info_5g); cap_band->he_cap_info[0] = le32_to_cpu(mac_caps->he_cap_info_5g); cap_band->he_cap_info[1] = le32_to_cpu(mac_caps->he_cap_info_5g_ext); cap_band->he_mcs = le32_to_cpu(mac_caps->he_supp_mcs_5g); for (i = 0; i < WMI_MAX_HECAP_PHY_SIZE; i++) cap_band->he_cap_phy_info[i] = le32_to_cpu(mac_caps->he_cap_phy_info_5g[i]); cap_band->he_ppet.numss_m1 = le32_to_cpu(mac_caps->he_ppet5g.numss_m1); cap_band->he_ppet.ru_bit_mask = le32_to_cpu(mac_caps->he_ppet5g.ru_info); for (i = 0; i < WMI_MAX_NUM_SS; i++) cap_band->he_ppet.ppet16_ppet8_ru3_ru0[i] = le32_to_cpu(mac_caps->he_ppet5g.ppet16_ppet8_ru3_ru0[i]); cap_band = &pdev_cap->band[NL80211_BAND_6GHZ]; cap_band->max_bw_supported = le32_to_cpu(mac_caps->max_bw_supported_5g); cap_band->ht_cap_info = le32_to_cpu(mac_caps->ht_cap_info_5g); cap_band->he_cap_info[0] = le32_to_cpu(mac_caps->he_cap_info_5g); cap_band->he_cap_info[1] = le32_to_cpu(mac_caps->he_cap_info_5g_ext); cap_band->he_mcs = le32_to_cpu(mac_caps->he_supp_mcs_5g); for (i = 0; i < WMI_MAX_HECAP_PHY_SIZE; i++) cap_band->he_cap_phy_info[i] = le32_to_cpu(mac_caps->he_cap_phy_info_5g[i]); cap_band->he_ppet.numss_m1 = le32_to_cpu(mac_caps->he_ppet5g.numss_m1); cap_band->he_ppet.ru_bit_mask = le32_to_cpu(mac_caps->he_ppet5g.ru_info); for (i = 0; i < WMI_MAX_NUM_SS; i++) cap_band->he_ppet.ppet16_ppet8_ru3_ru0[i] = le32_to_cpu(mac_caps->he_ppet5g.ppet16_ppet8_ru3_ru0[i]); } return 0; } static int ath12k_pull_reg_cap_svc_rdy_ext(struct ath12k_wmi_pdev *wmi_handle, const struct ath12k_wmi_soc_hal_reg_caps_params *reg_caps, const struct ath12k_wmi_hal_reg_caps_ext_params *ext_caps, u8 phy_idx, struct ath12k_wmi_hal_reg_capabilities_ext_arg *param) { const struct ath12k_wmi_hal_reg_caps_ext_params *ext_reg_cap; if (!reg_caps || !ext_caps) return -EINVAL; if (phy_idx >= le32_to_cpu(reg_caps->num_phy)) return -EINVAL; ext_reg_cap = &ext_caps[phy_idx]; param->phy_id = le32_to_cpu(ext_reg_cap->phy_id); param->eeprom_reg_domain = le32_to_cpu(ext_reg_cap->eeprom_reg_domain); param->eeprom_reg_domain_ext = le32_to_cpu(ext_reg_cap->eeprom_reg_domain_ext); param->regcap1 = le32_to_cpu(ext_reg_cap->regcap1); param->regcap2 = le32_to_cpu(ext_reg_cap->regcap2); /* check if param->wireless_mode is needed */ param->low_2ghz_chan = le32_to_cpu(ext_reg_cap->low_2ghz_chan); param->high_2ghz_chan = le32_to_cpu(ext_reg_cap->high_2ghz_chan); param->low_5ghz_chan = le32_to_cpu(ext_reg_cap->low_5ghz_chan); param->high_5ghz_chan = le32_to_cpu(ext_reg_cap->high_5ghz_chan); return 0; } static int ath12k_pull_service_ready_tlv(struct ath12k_base *ab, const void *evt_buf, struct ath12k_wmi_target_cap_arg *cap) { const struct wmi_service_ready_event *ev = evt_buf; if (!ev) { ath12k_err(ab, "%s: failed by NULL param\n", __func__); return -EINVAL; } cap->phy_capability = le32_to_cpu(ev->phy_capability); cap->max_frag_entry = le32_to_cpu(ev->max_frag_entry); cap->num_rf_chains = le32_to_cpu(ev->num_rf_chains); cap->ht_cap_info = le32_to_cpu(ev->ht_cap_info); cap->vht_cap_info = le32_to_cpu(ev->vht_cap_info); cap->vht_supp_mcs = le32_to_cpu(ev->vht_supp_mcs); cap->hw_min_tx_power = le32_to_cpu(ev->hw_min_tx_power); cap->hw_max_tx_power = le32_to_cpu(ev->hw_max_tx_power); cap->sys_cap_info = le32_to_cpu(ev->sys_cap_info); cap->min_pkt_size_enable = le32_to_cpu(ev->min_pkt_size_enable); cap->max_bcn_ie_size = le32_to_cpu(ev->max_bcn_ie_size); cap->max_num_scan_channels = le32_to_cpu(ev->max_num_scan_channels); cap->max_supported_macs = le32_to_cpu(ev->max_supported_macs); cap->wmi_fw_sub_feat_caps = le32_to_cpu(ev->wmi_fw_sub_feat_caps); cap->txrx_chainmask = le32_to_cpu(ev->txrx_chainmask); cap->default_dbs_hw_mode_index = le32_to_cpu(ev->default_dbs_hw_mode_index); cap->num_msdu_desc = le32_to_cpu(ev->num_msdu_desc); return 0; } /* Save the wmi_service_bitmap into a linear bitmap. The wmi_services in * wmi_service ready event are advertised in b0-b3 (LSB 4-bits) of each * 4-byte word. */ static void ath12k_wmi_service_bitmap_copy(struct ath12k_wmi_pdev *wmi, const u32 *wmi_svc_bm) { int i, j; for (i = 0, j = 0; i < WMI_SERVICE_BM_SIZE && j < WMI_MAX_SERVICE; i++) { do { if (wmi_svc_bm[i] & BIT(j % WMI_SERVICE_BITS_IN_SIZE32)) set_bit(j, wmi->wmi_ab->svc_map); } while (++j % WMI_SERVICE_BITS_IN_SIZE32); } } static int ath12k_wmi_svc_rdy_parse(struct ath12k_base *ab, u16 tag, u16 len, const void *ptr, void *data) { struct ath12k_wmi_svc_ready_parse *svc_ready = data; struct ath12k_wmi_pdev *wmi_handle = &ab->wmi_ab.wmi[0]; u16 expect_len; switch (tag) { case WMI_TAG_SERVICE_READY_EVENT: if (ath12k_pull_service_ready_tlv(ab, ptr, &ab->target_caps)) return -EINVAL; break; case WMI_TAG_ARRAY_UINT32: if (!svc_ready->wmi_svc_bitmap_done) { expect_len = WMI_SERVICE_BM_SIZE * sizeof(u32); if (len < expect_len) { ath12k_warn(ab, "invalid len %d for the tag 0x%x\n", len, tag); return -EINVAL; } ath12k_wmi_service_bitmap_copy(wmi_handle, ptr); svc_ready->wmi_svc_bitmap_done = true; } break; default: break; } return 0; } static int ath12k_service_ready_event(struct ath12k_base *ab, struct sk_buff *skb) { struct ath12k_wmi_svc_ready_parse svc_ready = { }; int ret; ret = ath12k_wmi_tlv_iter(ab, skb->data, skb->len, ath12k_wmi_svc_rdy_parse, &svc_ready); if (ret) { ath12k_warn(ab, "failed to parse tlv %d\n", ret); return ret; } return 0; } struct sk_buff *ath12k_wmi_alloc_skb(struct ath12k_wmi_base *wmi_sc, u32 len) { struct sk_buff *skb; struct ath12k_base *ab = wmi_sc->ab; u32 round_len = roundup(len, 4); skb = ath12k_htc_alloc_skb(ab, WMI_SKB_HEADROOM + round_len); if (!skb) return NULL; skb_reserve(skb, WMI_SKB_HEADROOM); if (!IS_ALIGNED((unsigned long)skb->data, 4)) ath12k_warn(ab, "unaligned WMI skb data\n"); skb_put(skb, round_len); memset(skb->data, 0, round_len); return skb; } int ath12k_wmi_mgmt_send(struct ath12k *ar, u32 vdev_id, u32 buf_id, struct sk_buff *frame) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct wmi_mgmt_send_cmd *cmd; struct wmi_tlv *frame_tlv; struct sk_buff *skb; u32 buf_len; int ret, len; buf_len = min_t(int, frame->len, WMI_MGMT_SEND_DOWNLD_LEN); len = sizeof(*cmd) + sizeof(*frame_tlv) + roundup(buf_len, 4); skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_mgmt_send_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_MGMT_TX_SEND_CMD, sizeof(*cmd)); cmd->vdev_id = cpu_to_le32(vdev_id); cmd->desc_id = cpu_to_le32(buf_id); cmd->chanfreq = 0; cmd->paddr_lo = cpu_to_le32(lower_32_bits(ATH12K_SKB_CB(frame)->paddr)); cmd->paddr_hi = cpu_to_le32(upper_32_bits(ATH12K_SKB_CB(frame)->paddr)); cmd->frame_len = cpu_to_le32(frame->len); cmd->buf_len = cpu_to_le32(buf_len); cmd->tx_params_valid = 0; frame_tlv = (struct wmi_tlv *)(skb->data + sizeof(*cmd)); frame_tlv->header = ath12k_wmi_tlv_hdr(WMI_TAG_ARRAY_BYTE, buf_len); memcpy(frame_tlv->value, frame->data, buf_len); ret = ath12k_wmi_cmd_send(wmi, skb, WMI_MGMT_TX_SEND_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to submit WMI_MGMT_TX_SEND_CMDID cmd\n"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_vdev_create(struct ath12k *ar, u8 *macaddr, struct ath12k_wmi_vdev_create_arg *args) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct wmi_vdev_create_cmd *cmd; struct sk_buff *skb; struct ath12k_wmi_vdev_txrx_streams_params *txrx_streams; struct wmi_tlv *tlv; int ret, len; void *ptr; /* It can be optimized my sending tx/rx chain configuration * only for supported bands instead of always sending it for * both the bands. */ len = sizeof(*cmd) + TLV_HDR_SIZE + (WMI_NUM_SUPPORTED_BAND_MAX * sizeof(*txrx_streams)); skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_vdev_create_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_VDEV_CREATE_CMD, sizeof(*cmd)); cmd->vdev_id = cpu_to_le32(args->if_id); cmd->vdev_type = cpu_to_le32(args->type); cmd->vdev_subtype = cpu_to_le32(args->subtype); cmd->num_cfg_txrx_streams = cpu_to_le32(WMI_NUM_SUPPORTED_BAND_MAX); cmd->pdev_id = cpu_to_le32(args->pdev_id); cmd->vdev_stats_id = cpu_to_le32(args->if_stats_id); ether_addr_copy(cmd->vdev_macaddr.addr, macaddr); ptr = skb->data + sizeof(*cmd); len = WMI_NUM_SUPPORTED_BAND_MAX * sizeof(*txrx_streams); tlv = ptr; tlv->header = ath12k_wmi_tlv_hdr(WMI_TAG_ARRAY_STRUCT, len); ptr += TLV_HDR_SIZE; txrx_streams = ptr; len = sizeof(*txrx_streams); txrx_streams->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_VDEV_TXRX_STREAMS, len); txrx_streams->band = WMI_TPC_CHAINMASK_CONFIG_BAND_2G; txrx_streams->supported_tx_streams = args->chains[NL80211_BAND_2GHZ].tx; txrx_streams->supported_rx_streams = args->chains[NL80211_BAND_2GHZ].rx; txrx_streams++; txrx_streams->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_VDEV_TXRX_STREAMS, len); txrx_streams->band = WMI_TPC_CHAINMASK_CONFIG_BAND_5G; txrx_streams->supported_tx_streams = args->chains[NL80211_BAND_5GHZ].tx; txrx_streams->supported_rx_streams = args->chains[NL80211_BAND_5GHZ].rx; ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "WMI vdev create: id %d type %d subtype %d macaddr %pM pdevid %d\n", args->if_id, args->type, args->subtype, macaddr, args->pdev_id); ret = ath12k_wmi_cmd_send(wmi, skb, WMI_VDEV_CREATE_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to submit WMI_VDEV_CREATE_CMDID\n"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_vdev_delete(struct ath12k *ar, u8 vdev_id) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct wmi_vdev_delete_cmd *cmd; struct sk_buff *skb; int ret; skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_vdev_delete_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_VDEV_DELETE_CMD, sizeof(*cmd)); cmd->vdev_id = cpu_to_le32(vdev_id); ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "WMI vdev delete id %d\n", vdev_id); ret = ath12k_wmi_cmd_send(wmi, skb, WMI_VDEV_DELETE_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to submit WMI_VDEV_DELETE_CMDID\n"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_vdev_stop(struct ath12k *ar, u8 vdev_id) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct wmi_vdev_stop_cmd *cmd; struct sk_buff *skb; int ret; skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_vdev_stop_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_VDEV_STOP_CMD, sizeof(*cmd)); cmd->vdev_id = cpu_to_le32(vdev_id); ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "WMI vdev stop id 0x%x\n", vdev_id); ret = ath12k_wmi_cmd_send(wmi, skb, WMI_VDEV_STOP_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to submit WMI_VDEV_STOP cmd\n"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_vdev_down(struct ath12k *ar, u8 vdev_id) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct wmi_vdev_down_cmd *cmd; struct sk_buff *skb; int ret; skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_vdev_down_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_VDEV_DOWN_CMD, sizeof(*cmd)); cmd->vdev_id = cpu_to_le32(vdev_id); ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "WMI vdev down id 0x%x\n", vdev_id); ret = ath12k_wmi_cmd_send(wmi, skb, WMI_VDEV_DOWN_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to submit WMI_VDEV_DOWN cmd\n"); dev_kfree_skb(skb); } return ret; } static void ath12k_wmi_put_wmi_channel(struct ath12k_wmi_channel_params *chan, struct wmi_vdev_start_req_arg *arg) { memset(chan, 0, sizeof(*chan)); chan->mhz = cpu_to_le32(arg->freq); chan->band_center_freq1 = cpu_to_le32(arg->band_center_freq1); if (arg->mode == MODE_11AC_VHT80_80) chan->band_center_freq2 = cpu_to_le32(arg->band_center_freq2); else chan->band_center_freq2 = 0; chan->info |= le32_encode_bits(arg->mode, WMI_CHAN_INFO_MODE); if (arg->passive) chan->info |= cpu_to_le32(WMI_CHAN_INFO_PASSIVE); if (arg->allow_ibss) chan->info |= cpu_to_le32(WMI_CHAN_INFO_ADHOC_ALLOWED); if (arg->allow_ht) chan->info |= cpu_to_le32(WMI_CHAN_INFO_ALLOW_HT); if (arg->allow_vht) chan->info |= cpu_to_le32(WMI_CHAN_INFO_ALLOW_VHT); if (arg->allow_he) chan->info |= cpu_to_le32(WMI_CHAN_INFO_ALLOW_HE); if (arg->ht40plus) chan->info |= cpu_to_le32(WMI_CHAN_INFO_HT40_PLUS); if (arg->chan_radar) chan->info |= cpu_to_le32(WMI_CHAN_INFO_DFS); if (arg->freq2_radar) chan->info |= cpu_to_le32(WMI_CHAN_INFO_DFS_FREQ2); chan->reg_info_1 = le32_encode_bits(arg->max_power, WMI_CHAN_REG_INFO1_MAX_PWR) | le32_encode_bits(arg->max_reg_power, WMI_CHAN_REG_INFO1_MAX_REG_PWR); chan->reg_info_2 = le32_encode_bits(arg->max_antenna_gain, WMI_CHAN_REG_INFO2_ANT_MAX) | le32_encode_bits(arg->max_power, WMI_CHAN_REG_INFO2_MAX_TX_PWR); } int ath12k_wmi_vdev_start(struct ath12k *ar, struct wmi_vdev_start_req_arg *arg, bool restart) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct wmi_vdev_start_request_cmd *cmd; struct sk_buff *skb; struct ath12k_wmi_channel_params *chan; struct wmi_tlv *tlv; void *ptr; int ret, len; if (WARN_ON(arg->ssid_len > sizeof(cmd->ssid.ssid))) return -EINVAL; len = sizeof(*cmd) + sizeof(*chan) + TLV_HDR_SIZE; skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_vdev_start_request_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_VDEV_START_REQUEST_CMD, sizeof(*cmd)); cmd->vdev_id = cpu_to_le32(arg->vdev_id); cmd->beacon_interval = cpu_to_le32(arg->bcn_intval); cmd->bcn_tx_rate = cpu_to_le32(arg->bcn_tx_rate); cmd->dtim_period = cpu_to_le32(arg->dtim_period); cmd->num_noa_descriptors = cpu_to_le32(arg->num_noa_descriptors); cmd->preferred_rx_streams = cpu_to_le32(arg->pref_rx_streams); cmd->preferred_tx_streams = cpu_to_le32(arg->pref_tx_streams); cmd->cac_duration_ms = cpu_to_le32(arg->cac_duration_ms); cmd->regdomain = cpu_to_le32(arg->regdomain); cmd->he_ops = cpu_to_le32(arg->he_ops); if (!restart) { if (arg->ssid) { cmd->ssid.ssid_len = cpu_to_le32(arg->ssid_len); memcpy(cmd->ssid.ssid, arg->ssid, arg->ssid_len); } if (arg->hidden_ssid) cmd->flags |= cpu_to_le32(WMI_VDEV_START_HIDDEN_SSID); if (arg->pmf_enabled) cmd->flags |= cpu_to_le32(WMI_VDEV_START_PMF_ENABLED); } cmd->flags |= cpu_to_le32(WMI_VDEV_START_LDPC_RX_ENABLED); ptr = skb->data + sizeof(*cmd); chan = ptr; ath12k_wmi_put_wmi_channel(chan, arg); chan->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_CHANNEL, sizeof(*chan)); ptr += sizeof(*chan); tlv = ptr; tlv->header = ath12k_wmi_tlv_hdr(WMI_TAG_ARRAY_STRUCT, 0); /* Note: This is a nested TLV containing: * [wmi_tlv][wmi_p2p_noa_descriptor][wmi_tlv].. */ ptr += sizeof(*tlv); ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "vdev %s id 0x%x freq 0x%x mode 0x%x\n", restart ? "restart" : "start", arg->vdev_id, arg->freq, arg->mode); if (restart) ret = ath12k_wmi_cmd_send(wmi, skb, WMI_VDEV_RESTART_REQUEST_CMDID); else ret = ath12k_wmi_cmd_send(wmi, skb, WMI_VDEV_START_REQUEST_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to submit vdev_%s cmd\n", restart ? "restart" : "start"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_vdev_up(struct ath12k *ar, u32 vdev_id, u32 aid, const u8 *bssid) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct wmi_vdev_up_cmd *cmd; struct sk_buff *skb; int ret; skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_vdev_up_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_VDEV_UP_CMD, sizeof(*cmd)); cmd->vdev_id = cpu_to_le32(vdev_id); cmd->vdev_assoc_id = cpu_to_le32(aid); ether_addr_copy(cmd->vdev_bssid.addr, bssid); ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "WMI mgmt vdev up id 0x%x assoc id %d bssid %pM\n", vdev_id, aid, bssid); ret = ath12k_wmi_cmd_send(wmi, skb, WMI_VDEV_UP_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to submit WMI_VDEV_UP cmd\n"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_send_peer_create_cmd(struct ath12k *ar, struct ath12k_wmi_peer_create_arg *arg) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct wmi_peer_create_cmd *cmd; struct sk_buff *skb; int ret; skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_peer_create_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_PEER_CREATE_CMD, sizeof(*cmd)); ether_addr_copy(cmd->peer_macaddr.addr, arg->peer_addr); cmd->peer_type = cpu_to_le32(arg->peer_type); cmd->vdev_id = cpu_to_le32(arg->vdev_id); ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "WMI peer create vdev_id %d peer_addr %pM\n", arg->vdev_id, arg->peer_addr); ret = ath12k_wmi_cmd_send(wmi, skb, WMI_PEER_CREATE_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to submit WMI_PEER_CREATE cmd\n"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_send_peer_delete_cmd(struct ath12k *ar, const u8 *peer_addr, u8 vdev_id) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct wmi_peer_delete_cmd *cmd; struct sk_buff *skb; int ret; skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_peer_delete_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_PEER_DELETE_CMD, sizeof(*cmd)); ether_addr_copy(cmd->peer_macaddr.addr, peer_addr); cmd->vdev_id = cpu_to_le32(vdev_id); ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "WMI peer delete vdev_id %d peer_addr %pM\n", vdev_id, peer_addr); ret = ath12k_wmi_cmd_send(wmi, skb, WMI_PEER_DELETE_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to send WMI_PEER_DELETE cmd\n"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_send_pdev_set_regdomain(struct ath12k *ar, struct ath12k_wmi_pdev_set_regdomain_arg *arg) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct wmi_pdev_set_regdomain_cmd *cmd; struct sk_buff *skb; int ret; skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_pdev_set_regdomain_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_PDEV_SET_REGDOMAIN_CMD, sizeof(*cmd)); cmd->reg_domain = cpu_to_le32(arg->current_rd_in_use); cmd->reg_domain_2g = cpu_to_le32(arg->current_rd_2g); cmd->reg_domain_5g = cpu_to_le32(arg->current_rd_5g); cmd->conformance_test_limit_2g = cpu_to_le32(arg->ctl_2g); cmd->conformance_test_limit_5g = cpu_to_le32(arg->ctl_5g); cmd->dfs_domain = cpu_to_le32(arg->dfs_domain); cmd->pdev_id = cpu_to_le32(arg->pdev_id); ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "WMI pdev regd rd %d rd2g %d rd5g %d domain %d pdev id %d\n", arg->current_rd_in_use, arg->current_rd_2g, arg->current_rd_5g, arg->dfs_domain, arg->pdev_id); ret = ath12k_wmi_cmd_send(wmi, skb, WMI_PDEV_SET_REGDOMAIN_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to send WMI_PDEV_SET_REGDOMAIN cmd\n"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_set_peer_param(struct ath12k *ar, const u8 *peer_addr, u32 vdev_id, u32 param_id, u32 param_val) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct wmi_peer_set_param_cmd *cmd; struct sk_buff *skb; int ret; skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_peer_set_param_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_PEER_SET_PARAM_CMD, sizeof(*cmd)); ether_addr_copy(cmd->peer_macaddr.addr, peer_addr); cmd->vdev_id = cpu_to_le32(vdev_id); cmd->param_id = cpu_to_le32(param_id); cmd->param_value = cpu_to_le32(param_val); ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "WMI vdev %d peer 0x%pM set param %d value %d\n", vdev_id, peer_addr, param_id, param_val); ret = ath12k_wmi_cmd_send(wmi, skb, WMI_PEER_SET_PARAM_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to send WMI_PEER_SET_PARAM cmd\n"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_send_peer_flush_tids_cmd(struct ath12k *ar, u8 peer_addr[ETH_ALEN], u32 peer_tid_bitmap, u8 vdev_id) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct wmi_peer_flush_tids_cmd *cmd; struct sk_buff *skb; int ret; skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_peer_flush_tids_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_PEER_FLUSH_TIDS_CMD, sizeof(*cmd)); ether_addr_copy(cmd->peer_macaddr.addr, peer_addr); cmd->peer_tid_bitmap = cpu_to_le32(peer_tid_bitmap); cmd->vdev_id = cpu_to_le32(vdev_id); ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "WMI peer flush vdev_id %d peer_addr %pM tids %08x\n", vdev_id, peer_addr, peer_tid_bitmap); ret = ath12k_wmi_cmd_send(wmi, skb, WMI_PEER_FLUSH_TIDS_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to send WMI_PEER_FLUSH_TIDS cmd\n"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_peer_rx_reorder_queue_setup(struct ath12k *ar, int vdev_id, const u8 *addr, dma_addr_t paddr, u8 tid, u8 ba_window_size_valid, u32 ba_window_size) { struct wmi_peer_reorder_queue_setup_cmd *cmd; struct sk_buff *skb; int ret; skb = ath12k_wmi_alloc_skb(ar->wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_peer_reorder_queue_setup_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_REORDER_QUEUE_SETUP_CMD, sizeof(*cmd)); ether_addr_copy(cmd->peer_macaddr.addr, addr); cmd->vdev_id = cpu_to_le32(vdev_id); cmd->tid = cpu_to_le32(tid); cmd->queue_ptr_lo = cpu_to_le32(lower_32_bits(paddr)); cmd->queue_ptr_hi = cpu_to_le32(upper_32_bits(paddr)); cmd->queue_no = cpu_to_le32(tid); cmd->ba_window_size_valid = cpu_to_le32(ba_window_size_valid); cmd->ba_window_size = cpu_to_le32(ba_window_size); ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "wmi rx reorder queue setup addr %pM vdev_id %d tid %d\n", addr, vdev_id, tid); ret = ath12k_wmi_cmd_send(ar->wmi, skb, WMI_PEER_REORDER_QUEUE_SETUP_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to send WMI_PEER_REORDER_QUEUE_SETUP\n"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_rx_reord_queue_remove(struct ath12k *ar, struct ath12k_wmi_rx_reorder_queue_remove_arg *arg) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct wmi_peer_reorder_queue_remove_cmd *cmd; struct sk_buff *skb; int ret; skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_peer_reorder_queue_remove_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_REORDER_QUEUE_REMOVE_CMD, sizeof(*cmd)); ether_addr_copy(cmd->peer_macaddr.addr, arg->peer_macaddr); cmd->vdev_id = cpu_to_le32(arg->vdev_id); cmd->tid_mask = cpu_to_le32(arg->peer_tid_bitmap); ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "%s: peer_macaddr %pM vdev_id %d, tid_map %d", __func__, arg->peer_macaddr, arg->vdev_id, arg->peer_tid_bitmap); ret = ath12k_wmi_cmd_send(wmi, skb, WMI_PEER_REORDER_QUEUE_REMOVE_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to send WMI_PEER_REORDER_QUEUE_REMOVE_CMDID"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_pdev_set_param(struct ath12k *ar, u32 param_id, u32 param_value, u8 pdev_id) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct wmi_pdev_set_param_cmd *cmd; struct sk_buff *skb; int ret; skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_pdev_set_param_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_PDEV_SET_PARAM_CMD, sizeof(*cmd)); cmd->pdev_id = cpu_to_le32(pdev_id); cmd->param_id = cpu_to_le32(param_id); cmd->param_value = cpu_to_le32(param_value); ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "WMI pdev set param %d pdev id %d value %d\n", param_id, pdev_id, param_value); ret = ath12k_wmi_cmd_send(wmi, skb, WMI_PDEV_SET_PARAM_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to send WMI_PDEV_SET_PARAM cmd\n"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_pdev_set_ps_mode(struct ath12k *ar, int vdev_id, u32 enable) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct wmi_pdev_set_ps_mode_cmd *cmd; struct sk_buff *skb; int ret; skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_pdev_set_ps_mode_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_STA_POWERSAVE_MODE_CMD, sizeof(*cmd)); cmd->vdev_id = cpu_to_le32(vdev_id); cmd->sta_ps_mode = cpu_to_le32(enable); ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "WMI vdev set psmode %d vdev id %d\n", enable, vdev_id); ret = ath12k_wmi_cmd_send(wmi, skb, WMI_STA_POWERSAVE_MODE_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to send WMI_PDEV_SET_PARAM cmd\n"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_pdev_suspend(struct ath12k *ar, u32 suspend_opt, u32 pdev_id) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct wmi_pdev_suspend_cmd *cmd; struct sk_buff *skb; int ret; skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_pdev_suspend_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_PDEV_SUSPEND_CMD, sizeof(*cmd)); cmd->suspend_opt = cpu_to_le32(suspend_opt); cmd->pdev_id = cpu_to_le32(pdev_id); ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "WMI pdev suspend pdev_id %d\n", pdev_id); ret = ath12k_wmi_cmd_send(wmi, skb, WMI_PDEV_SUSPEND_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to send WMI_PDEV_SUSPEND cmd\n"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_pdev_resume(struct ath12k *ar, u32 pdev_id) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct wmi_pdev_resume_cmd *cmd; struct sk_buff *skb; int ret; skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_pdev_resume_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_PDEV_RESUME_CMD, sizeof(*cmd)); cmd->pdev_id = cpu_to_le32(pdev_id); ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "WMI pdev resume pdev id %d\n", pdev_id); ret = ath12k_wmi_cmd_send(wmi, skb, WMI_PDEV_RESUME_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to send WMI_PDEV_RESUME cmd\n"); dev_kfree_skb(skb); } return ret; } /* TODO FW Support for the cmd is not available yet. * Can be tested once the command and corresponding * event is implemented in FW */ int ath12k_wmi_pdev_bss_chan_info_request(struct ath12k *ar, enum wmi_bss_chan_info_req_type type) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct wmi_pdev_bss_chan_info_req_cmd *cmd; struct sk_buff *skb; int ret; skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_pdev_bss_chan_info_req_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_PDEV_BSS_CHAN_INFO_REQUEST, sizeof(*cmd)); cmd->req_type = cpu_to_le32(type); ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "WMI bss chan info req type %d\n", type); ret = ath12k_wmi_cmd_send(wmi, skb, WMI_PDEV_BSS_CHAN_INFO_REQUEST_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to send WMI_PDEV_BSS_CHAN_INFO_REQUEST cmd\n"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_send_set_ap_ps_param_cmd(struct ath12k *ar, u8 *peer_addr, struct ath12k_wmi_ap_ps_arg *arg) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct wmi_ap_ps_peer_cmd *cmd; struct sk_buff *skb; int ret; skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_ap_ps_peer_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_AP_PS_PEER_CMD, sizeof(*cmd)); cmd->vdev_id = cpu_to_le32(arg->vdev_id); ether_addr_copy(cmd->peer_macaddr.addr, peer_addr); cmd->param = cpu_to_le32(arg->param); cmd->value = cpu_to_le32(arg->value); ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "WMI set ap ps vdev id %d peer %pM param %d value %d\n", arg->vdev_id, peer_addr, arg->param, arg->value); ret = ath12k_wmi_cmd_send(wmi, skb, WMI_AP_PS_PEER_PARAM_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to send WMI_AP_PS_PEER_PARAM_CMDID\n"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_set_sta_ps_param(struct ath12k *ar, u32 vdev_id, u32 param, u32 param_value) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct wmi_sta_powersave_param_cmd *cmd; struct sk_buff *skb; int ret; skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_sta_powersave_param_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_STA_POWERSAVE_PARAM_CMD, sizeof(*cmd)); cmd->vdev_id = cpu_to_le32(vdev_id); cmd->param = cpu_to_le32(param); cmd->value = cpu_to_le32(param_value); ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "WMI set sta ps vdev_id %d param %d value %d\n", vdev_id, param, param_value); ret = ath12k_wmi_cmd_send(wmi, skb, WMI_STA_POWERSAVE_PARAM_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to send WMI_STA_POWERSAVE_PARAM_CMDID"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_force_fw_hang_cmd(struct ath12k *ar, u32 type, u32 delay_time_ms) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct wmi_force_fw_hang_cmd *cmd; struct sk_buff *skb; int ret, len; len = sizeof(*cmd); skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_force_fw_hang_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_FORCE_FW_HANG_CMD, len); cmd->type = cpu_to_le32(type); cmd->delay_time_ms = cpu_to_le32(delay_time_ms); ret = ath12k_wmi_cmd_send(wmi, skb, WMI_FORCE_FW_HANG_CMDID); if (ret) { ath12k_warn(ar->ab, "Failed to send WMI_FORCE_FW_HANG_CMDID"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_vdev_set_param_cmd(struct ath12k *ar, u32 vdev_id, u32 param_id, u32 param_value) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct wmi_vdev_set_param_cmd *cmd; struct sk_buff *skb; int ret; skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_vdev_set_param_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_VDEV_SET_PARAM_CMD, sizeof(*cmd)); cmd->vdev_id = cpu_to_le32(vdev_id); cmd->param_id = cpu_to_le32(param_id); cmd->param_value = cpu_to_le32(param_value); ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "WMI vdev id 0x%x set param %d value %d\n", vdev_id, param_id, param_value); ret = ath12k_wmi_cmd_send(wmi, skb, WMI_VDEV_SET_PARAM_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to send WMI_VDEV_SET_PARAM_CMDID\n"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_send_pdev_temperature_cmd(struct ath12k *ar) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct wmi_get_pdev_temperature_cmd *cmd; struct sk_buff *skb; int ret; skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_get_pdev_temperature_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_PDEV_GET_TEMPERATURE_CMD, sizeof(*cmd)); cmd->pdev_id = cpu_to_le32(ar->pdev->pdev_id); ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "WMI pdev get temperature for pdev_id %d\n", ar->pdev->pdev_id); ret = ath12k_wmi_cmd_send(wmi, skb, WMI_PDEV_GET_TEMPERATURE_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to send WMI_PDEV_GET_TEMPERATURE cmd\n"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_send_bcn_offload_control_cmd(struct ath12k *ar, u32 vdev_id, u32 bcn_ctrl_op) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct wmi_bcn_offload_ctrl_cmd *cmd; struct sk_buff *skb; int ret; skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_bcn_offload_ctrl_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_BCN_OFFLOAD_CTRL_CMD, sizeof(*cmd)); cmd->vdev_id = cpu_to_le32(vdev_id); cmd->bcn_ctrl_op = cpu_to_le32(bcn_ctrl_op); ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "WMI bcn ctrl offload vdev id %d ctrl_op %d\n", vdev_id, bcn_ctrl_op); ret = ath12k_wmi_cmd_send(wmi, skb, WMI_BCN_OFFLOAD_CTRL_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to send WMI_BCN_OFFLOAD_CTRL_CMDID\n"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_bcn_tmpl(struct ath12k *ar, u32 vdev_id, struct ieee80211_mutable_offsets *offs, struct sk_buff *bcn) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct wmi_bcn_tmpl_cmd *cmd; struct ath12k_wmi_bcn_prb_info_params *bcn_prb_info; struct wmi_tlv *tlv; struct sk_buff *skb; void *ptr; int ret, len; size_t aligned_len = roundup(bcn->len, 4); len = sizeof(*cmd) + sizeof(*bcn_prb_info) + TLV_HDR_SIZE + aligned_len; skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_bcn_tmpl_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_BCN_TMPL_CMD, sizeof(*cmd)); cmd->vdev_id = cpu_to_le32(vdev_id); cmd->tim_ie_offset = cpu_to_le32(offs->tim_offset); cmd->csa_switch_count_offset = cpu_to_le32(offs->cntdwn_counter_offs[0]); cmd->ext_csa_switch_count_offset = cpu_to_le32(offs->cntdwn_counter_offs[1]); cmd->buf_len = cpu_to_le32(bcn->len); ptr = skb->data + sizeof(*cmd); bcn_prb_info = ptr; len = sizeof(*bcn_prb_info); bcn_prb_info->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_BCN_PRB_INFO, len); bcn_prb_info->caps = 0; bcn_prb_info->erp = 0; ptr += sizeof(*bcn_prb_info); tlv = ptr; tlv->header = ath12k_wmi_tlv_hdr(WMI_TAG_ARRAY_BYTE, aligned_len); memcpy(tlv->value, bcn->data, bcn->len); ret = ath12k_wmi_cmd_send(wmi, skb, WMI_BCN_TMPL_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to send WMI_BCN_TMPL_CMDID\n"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_vdev_install_key(struct ath12k *ar, struct wmi_vdev_install_key_arg *arg) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct wmi_vdev_install_key_cmd *cmd; struct wmi_tlv *tlv; struct sk_buff *skb; int ret, len, key_len_aligned; /* WMI_TAG_ARRAY_BYTE needs to be aligned with 4, the actual key * length is specified in cmd->key_len. */ key_len_aligned = roundup(arg->key_len, 4); len = sizeof(*cmd) + TLV_HDR_SIZE + key_len_aligned; skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_vdev_install_key_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_VDEV_INSTALL_KEY_CMD, sizeof(*cmd)); cmd->vdev_id = cpu_to_le32(arg->vdev_id); ether_addr_copy(cmd->peer_macaddr.addr, arg->macaddr); cmd->key_idx = cpu_to_le32(arg->key_idx); cmd->key_flags = cpu_to_le32(arg->key_flags); cmd->key_cipher = cpu_to_le32(arg->key_cipher); cmd->key_len = cpu_to_le32(arg->key_len); cmd->key_txmic_len = cpu_to_le32(arg->key_txmic_len); cmd->key_rxmic_len = cpu_to_le32(arg->key_rxmic_len); if (arg->key_rsc_counter) cmd->key_rsc_counter = cpu_to_le64(arg->key_rsc_counter); tlv = (struct wmi_tlv *)(skb->data + sizeof(*cmd)); tlv->header = ath12k_wmi_tlv_hdr(WMI_TAG_ARRAY_BYTE, key_len_aligned); memcpy(tlv->value, arg->key_data, arg->key_len); ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "WMI vdev install key idx %d cipher %d len %d\n", arg->key_idx, arg->key_cipher, arg->key_len); ret = ath12k_wmi_cmd_send(wmi, skb, WMI_VDEV_INSTALL_KEY_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to send WMI_VDEV_INSTALL_KEY cmd\n"); dev_kfree_skb(skb); } return ret; } static void ath12k_wmi_copy_peer_flags(struct wmi_peer_assoc_complete_cmd *cmd, struct ath12k_wmi_peer_assoc_arg *arg, bool hw_crypto_disabled) { cmd->peer_flags = 0; if (arg->is_wme_set) { if (arg->qos_flag) cmd->peer_flags |= cpu_to_le32(WMI_PEER_QOS); if (arg->apsd_flag) cmd->peer_flags |= cpu_to_le32(WMI_PEER_APSD); if (arg->ht_flag) cmd->peer_flags |= cpu_to_le32(WMI_PEER_HT); if (arg->bw_40) cmd->peer_flags |= cpu_to_le32(WMI_PEER_40MHZ); if (arg->bw_80) cmd->peer_flags |= cpu_to_le32(WMI_PEER_80MHZ); if (arg->bw_160) cmd->peer_flags |= cpu_to_le32(WMI_PEER_160MHZ); /* Typically if STBC is enabled for VHT it should be enabled * for HT as well **/ if (arg->stbc_flag) cmd->peer_flags |= cpu_to_le32(WMI_PEER_STBC); /* Typically if LDPC is enabled for VHT it should be enabled * for HT as well **/ if (arg->ldpc_flag) cmd->peer_flags |= cpu_to_le32(WMI_PEER_LDPC); if (arg->static_mimops_flag) cmd->peer_flags |= cpu_to_le32(WMI_PEER_STATIC_MIMOPS); if (arg->dynamic_mimops_flag) cmd->peer_flags |= cpu_to_le32(WMI_PEER_DYN_MIMOPS); if (arg->spatial_mux_flag) cmd->peer_flags |= cpu_to_le32(WMI_PEER_SPATIAL_MUX); if (arg->vht_flag) cmd->peer_flags |= cpu_to_le32(WMI_PEER_VHT); if (arg->he_flag) cmd->peer_flags |= cpu_to_le32(WMI_PEER_HE); if (arg->twt_requester) cmd->peer_flags |= cpu_to_le32(WMI_PEER_TWT_REQ); if (arg->twt_responder) cmd->peer_flags |= cpu_to_le32(WMI_PEER_TWT_RESP); } /* Suppress authorization for all AUTH modes that need 4-way handshake * (during re-association). * Authorization will be done for these modes on key installation. */ if (arg->auth_flag) cmd->peer_flags |= cpu_to_le32(WMI_PEER_AUTH); if (arg->need_ptk_4_way) { cmd->peer_flags |= cpu_to_le32(WMI_PEER_NEED_PTK_4_WAY); if (!hw_crypto_disabled) cmd->peer_flags &= cpu_to_le32(~WMI_PEER_AUTH); } if (arg->need_gtk_2_way) cmd->peer_flags |= cpu_to_le32(WMI_PEER_NEED_GTK_2_WAY); /* safe mode bypass the 4-way handshake */ if (arg->safe_mode_enabled) cmd->peer_flags &= cpu_to_le32(~(WMI_PEER_NEED_PTK_4_WAY | WMI_PEER_NEED_GTK_2_WAY)); if (arg->is_pmf_enabled) cmd->peer_flags |= cpu_to_le32(WMI_PEER_PMF); /* Disable AMSDU for station transmit, if user configures it */ /* Disable AMSDU for AP transmit to 11n Stations, if user configures * it * if (arg->amsdu_disable) Add after FW support **/ /* Target asserts if node is marked HT and all MCS is set to 0. * Mark the node as non-HT if all the mcs rates are disabled through * iwpriv **/ if (arg->peer_ht_rates.num_rates == 0) cmd->peer_flags &= cpu_to_le32(~WMI_PEER_HT); } int ath12k_wmi_send_peer_assoc_cmd(struct ath12k *ar, struct ath12k_wmi_peer_assoc_arg *arg) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct wmi_peer_assoc_complete_cmd *cmd; struct ath12k_wmi_vht_rate_set_params *mcs; struct ath12k_wmi_he_rate_set_params *he_mcs; struct sk_buff *skb; struct wmi_tlv *tlv; void *ptr; u32 peer_legacy_rates_align; u32 peer_ht_rates_align; int i, ret, len; peer_legacy_rates_align = roundup(arg->peer_legacy_rates.num_rates, sizeof(u32)); peer_ht_rates_align = roundup(arg->peer_ht_rates.num_rates, sizeof(u32)); len = sizeof(*cmd) + TLV_HDR_SIZE + (peer_legacy_rates_align * sizeof(u8)) + TLV_HDR_SIZE + (peer_ht_rates_align * sizeof(u8)) + sizeof(*mcs) + TLV_HDR_SIZE + (sizeof(*he_mcs) * arg->peer_he_mcs_count); skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; ptr = skb->data; cmd = ptr; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_PEER_ASSOC_COMPLETE_CMD, sizeof(*cmd)); cmd->vdev_id = cpu_to_le32(arg->vdev_id); cmd->peer_new_assoc = cpu_to_le32(arg->peer_new_assoc); cmd->peer_associd = cpu_to_le32(arg->peer_associd); ath12k_wmi_copy_peer_flags(cmd, arg, test_bit(ATH12K_FLAG_HW_CRYPTO_DISABLED, &ar->ab->dev_flags)); ether_addr_copy(cmd->peer_macaddr.addr, arg->peer_mac); cmd->peer_rate_caps = cpu_to_le32(arg->peer_rate_caps); cmd->peer_caps = cpu_to_le32(arg->peer_caps); cmd->peer_listen_intval = cpu_to_le32(arg->peer_listen_intval); cmd->peer_ht_caps = cpu_to_le32(arg->peer_ht_caps); cmd->peer_max_mpdu = cpu_to_le32(arg->peer_max_mpdu); cmd->peer_mpdu_density = cpu_to_le32(arg->peer_mpdu_density); cmd->peer_vht_caps = cpu_to_le32(arg->peer_vht_caps); cmd->peer_phymode = cpu_to_le32(arg->peer_phymode); /* Update 11ax capabilities */ cmd->peer_he_cap_info = cpu_to_le32(arg->peer_he_cap_macinfo[0]); cmd->peer_he_cap_info_ext = cpu_to_le32(arg->peer_he_cap_macinfo[1]); cmd->peer_he_cap_info_internal = cpu_to_le32(arg->peer_he_cap_macinfo_internal); cmd->peer_he_caps_6ghz = cpu_to_le32(arg->peer_he_caps_6ghz); cmd->peer_he_ops = cpu_to_le32(arg->peer_he_ops); for (i = 0; i < WMI_MAX_HECAP_PHY_SIZE; i++) cmd->peer_he_cap_phy[i] = cpu_to_le32(arg->peer_he_cap_phyinfo[i]); cmd->peer_ppet.numss_m1 = cpu_to_le32(arg->peer_ppet.numss_m1); cmd->peer_ppet.ru_info = cpu_to_le32(arg->peer_ppet.ru_bit_mask); for (i = 0; i < WMI_MAX_NUM_SS; i++) cmd->peer_ppet.ppet16_ppet8_ru3_ru0[i] = cpu_to_le32(arg->peer_ppet.ppet16_ppet8_ru3_ru0[i]); /* Update peer legacy rate information */ ptr += sizeof(*cmd); tlv = ptr; tlv->header = ath12k_wmi_tlv_hdr(WMI_TAG_ARRAY_BYTE, peer_legacy_rates_align); ptr += TLV_HDR_SIZE; cmd->num_peer_legacy_rates = cpu_to_le32(arg->peer_legacy_rates.num_rates); memcpy(ptr, arg->peer_legacy_rates.rates, arg->peer_legacy_rates.num_rates); /* Update peer HT rate information */ ptr += peer_legacy_rates_align; tlv = ptr; tlv->header = ath12k_wmi_tlv_hdr(WMI_TAG_ARRAY_BYTE, peer_ht_rates_align); ptr += TLV_HDR_SIZE; cmd->num_peer_ht_rates = cpu_to_le32(arg->peer_ht_rates.num_rates); memcpy(ptr, arg->peer_ht_rates.rates, arg->peer_ht_rates.num_rates); /* VHT Rates */ ptr += peer_ht_rates_align; mcs = ptr; mcs->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_VHT_RATE_SET, sizeof(*mcs)); cmd->peer_nss = cpu_to_le32(arg->peer_nss); /* Update bandwidth-NSS mapping */ cmd->peer_bw_rxnss_override = 0; cmd->peer_bw_rxnss_override |= cpu_to_le32(arg->peer_bw_rxnss_override); if (arg->vht_capable) { mcs->rx_max_rate = cpu_to_le32(arg->rx_max_rate); mcs->rx_mcs_set = cpu_to_le32(arg->rx_mcs_set); mcs->tx_max_rate = cpu_to_le32(arg->tx_max_rate); mcs->tx_mcs_set = cpu_to_le32(arg->tx_mcs_set); } /* HE Rates */ cmd->peer_he_mcs = cpu_to_le32(arg->peer_he_mcs_count); cmd->min_data_rate = cpu_to_le32(arg->min_data_rate); ptr += sizeof(*mcs); len = arg->peer_he_mcs_count * sizeof(*he_mcs); tlv = ptr; tlv->header = ath12k_wmi_tlv_hdr(WMI_TAG_ARRAY_STRUCT, len); ptr += TLV_HDR_SIZE; /* Loop through the HE rate set */ for (i = 0; i < arg->peer_he_mcs_count; i++) { he_mcs = ptr; he_mcs->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_HE_RATE_SET, sizeof(*he_mcs)); he_mcs->rx_mcs_set = cpu_to_le32(arg->peer_he_rx_mcs_set[i]); he_mcs->tx_mcs_set = cpu_to_le32(arg->peer_he_tx_mcs_set[i]); ptr += sizeof(*he_mcs); } ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "wmi peer assoc vdev id %d assoc id %d peer mac %pM peer_flags %x rate_caps %x peer_caps %x listen_intval %d ht_caps %x max_mpdu %d nss %d phymode %d peer_mpdu_density %d vht_caps %x he cap_info %x he ops %x he cap_info_ext %x he phy %x %x %x peer_bw_rxnss_override %x\n", cmd->vdev_id, cmd->peer_associd, arg->peer_mac, cmd->peer_flags, cmd->peer_rate_caps, cmd->peer_caps, cmd->peer_listen_intval, cmd->peer_ht_caps, cmd->peer_max_mpdu, cmd->peer_nss, cmd->peer_phymode, cmd->peer_mpdu_density, cmd->peer_vht_caps, cmd->peer_he_cap_info, cmd->peer_he_ops, cmd->peer_he_cap_info_ext, cmd->peer_he_cap_phy[0], cmd->peer_he_cap_phy[1], cmd->peer_he_cap_phy[2], cmd->peer_bw_rxnss_override); ret = ath12k_wmi_cmd_send(wmi, skb, WMI_PEER_ASSOC_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to send WMI_PEER_ASSOC_CMDID\n"); dev_kfree_skb(skb); } return ret; } void ath12k_wmi_start_scan_init(struct ath12k *ar, struct ath12k_wmi_scan_req_arg *arg) { /* setup commonly used values */ arg->scan_req_id = 1; arg->scan_priority = WMI_SCAN_PRIORITY_LOW; arg->dwell_time_active = 50; arg->dwell_time_active_2g = 0; arg->dwell_time_passive = 150; arg->dwell_time_active_6g = 40; arg->dwell_time_passive_6g = 30; arg->min_rest_time = 50; arg->max_rest_time = 500; arg->repeat_probe_time = 0; arg->probe_spacing_time = 0; arg->idle_time = 0; arg->max_scan_time = 20000; arg->probe_delay = 5; arg->notify_scan_events = WMI_SCAN_EVENT_STARTED | WMI_SCAN_EVENT_COMPLETED | WMI_SCAN_EVENT_BSS_CHANNEL | WMI_SCAN_EVENT_FOREIGN_CHAN | WMI_SCAN_EVENT_DEQUEUED; arg->scan_flags |= WMI_SCAN_CHAN_STAT_EVENT; arg->num_bssid = 1; /* fill bssid_list[0] with 0xff, otherwise bssid and RA will be * ZEROs in probe request */ eth_broadcast_addr(arg->bssid_list[0].addr); } static void ath12k_wmi_copy_scan_event_cntrl_flags(struct wmi_start_scan_cmd *cmd, struct ath12k_wmi_scan_req_arg *arg) { /* Scan events subscription */ if (arg->scan_ev_started) cmd->notify_scan_events |= cpu_to_le32(WMI_SCAN_EVENT_STARTED); if (arg->scan_ev_completed) cmd->notify_scan_events |= cpu_to_le32(WMI_SCAN_EVENT_COMPLETED); if (arg->scan_ev_bss_chan) cmd->notify_scan_events |= cpu_to_le32(WMI_SCAN_EVENT_BSS_CHANNEL); if (arg->scan_ev_foreign_chan) cmd->notify_scan_events |= cpu_to_le32(WMI_SCAN_EVENT_FOREIGN_CHAN); if (arg->scan_ev_dequeued) cmd->notify_scan_events |= cpu_to_le32(WMI_SCAN_EVENT_DEQUEUED); if (arg->scan_ev_preempted) cmd->notify_scan_events |= cpu_to_le32(WMI_SCAN_EVENT_PREEMPTED); if (arg->scan_ev_start_failed) cmd->notify_scan_events |= cpu_to_le32(WMI_SCAN_EVENT_START_FAILED); if (arg->scan_ev_restarted) cmd->notify_scan_events |= cpu_to_le32(WMI_SCAN_EVENT_RESTARTED); if (arg->scan_ev_foreign_chn_exit) cmd->notify_scan_events |= cpu_to_le32(WMI_SCAN_EVENT_FOREIGN_CHAN_EXIT); if (arg->scan_ev_suspended) cmd->notify_scan_events |= cpu_to_le32(WMI_SCAN_EVENT_SUSPENDED); if (arg->scan_ev_resumed) cmd->notify_scan_events |= cpu_to_le32(WMI_SCAN_EVENT_RESUMED); /** Set scan control flags */ cmd->scan_ctrl_flags = 0; if (arg->scan_f_passive) cmd->scan_ctrl_flags |= cpu_to_le32(WMI_SCAN_FLAG_PASSIVE); if (arg->scan_f_strict_passive_pch) cmd->scan_ctrl_flags |= cpu_to_le32(WMI_SCAN_FLAG_STRICT_PASSIVE_ON_PCHN); if (arg->scan_f_promisc_mode) cmd->scan_ctrl_flags |= cpu_to_le32(WMI_SCAN_FILTER_PROMISCUOS); if (arg->scan_f_capture_phy_err) cmd->scan_ctrl_flags |= cpu_to_le32(WMI_SCAN_CAPTURE_PHY_ERROR); if (arg->scan_f_half_rate) cmd->scan_ctrl_flags |= cpu_to_le32(WMI_SCAN_FLAG_HALF_RATE_SUPPORT); if (arg->scan_f_quarter_rate) cmd->scan_ctrl_flags |= cpu_to_le32(WMI_SCAN_FLAG_QUARTER_RATE_SUPPORT); if (arg->scan_f_cck_rates) cmd->scan_ctrl_flags |= cpu_to_le32(WMI_SCAN_ADD_CCK_RATES); if (arg->scan_f_ofdm_rates) cmd->scan_ctrl_flags |= cpu_to_le32(WMI_SCAN_ADD_OFDM_RATES); if (arg->scan_f_chan_stat_evnt) cmd->scan_ctrl_flags |= cpu_to_le32(WMI_SCAN_CHAN_STAT_EVENT); if (arg->scan_f_filter_prb_req) cmd->scan_ctrl_flags |= cpu_to_le32(WMI_SCAN_FILTER_PROBE_REQ); if (arg->scan_f_bcast_probe) cmd->scan_ctrl_flags |= cpu_to_le32(WMI_SCAN_ADD_BCAST_PROBE_REQ); if (arg->scan_f_offchan_mgmt_tx) cmd->scan_ctrl_flags |= cpu_to_le32(WMI_SCAN_OFFCHAN_MGMT_TX); if (arg->scan_f_offchan_data_tx) cmd->scan_ctrl_flags |= cpu_to_le32(WMI_SCAN_OFFCHAN_DATA_TX); if (arg->scan_f_force_active_dfs_chn) cmd->scan_ctrl_flags |= cpu_to_le32(WMI_SCAN_FLAG_FORCE_ACTIVE_ON_DFS); if (arg->scan_f_add_tpc_ie_in_probe) cmd->scan_ctrl_flags |= cpu_to_le32(WMI_SCAN_ADD_TPC_IE_IN_PROBE_REQ); if (arg->scan_f_add_ds_ie_in_probe) cmd->scan_ctrl_flags |= cpu_to_le32(WMI_SCAN_ADD_DS_IE_IN_PROBE_REQ); if (arg->scan_f_add_spoofed_mac_in_probe) cmd->scan_ctrl_flags |= cpu_to_le32(WMI_SCAN_ADD_SPOOF_MAC_IN_PROBE_REQ); if (arg->scan_f_add_rand_seq_in_probe) cmd->scan_ctrl_flags |= cpu_to_le32(WMI_SCAN_RANDOM_SEQ_NO_IN_PROBE_REQ); if (arg->scan_f_en_ie_whitelist_in_probe) cmd->scan_ctrl_flags |= cpu_to_le32(WMI_SCAN_ENABLE_IE_WHTELIST_IN_PROBE_REQ); cmd->scan_ctrl_flags |= le32_encode_bits(arg->adaptive_dwell_time_mode, WMI_SCAN_DWELL_MODE_MASK); } int ath12k_wmi_send_scan_start_cmd(struct ath12k *ar, struct ath12k_wmi_scan_req_arg *arg) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct wmi_start_scan_cmd *cmd; struct ath12k_wmi_ssid_params *ssid = NULL; struct ath12k_wmi_mac_addr_params *bssid; struct sk_buff *skb; struct wmi_tlv *tlv; void *ptr; int i, ret, len; u32 *tmp_ptr, extraie_len_with_pad = 0; struct ath12k_wmi_hint_short_ssid_arg *s_ssid = NULL; struct ath12k_wmi_hint_bssid_arg *hint_bssid = NULL; len = sizeof(*cmd); len += TLV_HDR_SIZE; if (arg->num_chan) len += arg->num_chan * sizeof(u32); len += TLV_HDR_SIZE; if (arg->num_ssids) len += arg->num_ssids * sizeof(*ssid); len += TLV_HDR_SIZE; if (arg->num_bssid) len += sizeof(*bssid) * arg->num_bssid; if (arg->num_hint_bssid) len += TLV_HDR_SIZE + arg->num_hint_bssid * sizeof(*hint_bssid); if (arg->num_hint_s_ssid) len += TLV_HDR_SIZE + arg->num_hint_s_ssid * sizeof(*s_ssid); len += TLV_HDR_SIZE; if (arg->extraie.len) extraie_len_with_pad = roundup(arg->extraie.len, sizeof(u32)); if (extraie_len_with_pad <= (wmi->wmi_ab->max_msg_len[ar->pdev_idx] - len)) { len += extraie_len_with_pad; } else { ath12k_warn(ar->ab, "discard large size %d bytes extraie for scan start\n", arg->extraie.len); extraie_len_with_pad = 0; } skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; ptr = skb->data; cmd = ptr; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_START_SCAN_CMD, sizeof(*cmd)); cmd->scan_id = cpu_to_le32(arg->scan_id); cmd->scan_req_id = cpu_to_le32(arg->scan_req_id); cmd->vdev_id = cpu_to_le32(arg->vdev_id); cmd->scan_priority = cpu_to_le32(arg->scan_priority); cmd->notify_scan_events = cpu_to_le32(arg->notify_scan_events); ath12k_wmi_copy_scan_event_cntrl_flags(cmd, arg); cmd->dwell_time_active = cpu_to_le32(arg->dwell_time_active); cmd->dwell_time_active_2g = cpu_to_le32(arg->dwell_time_active_2g); cmd->dwell_time_passive = cpu_to_le32(arg->dwell_time_passive); cmd->dwell_time_active_6g = cpu_to_le32(arg->dwell_time_active_6g); cmd->dwell_time_passive_6g = cpu_to_le32(arg->dwell_time_passive_6g); cmd->min_rest_time = cpu_to_le32(arg->min_rest_time); cmd->max_rest_time = cpu_to_le32(arg->max_rest_time); cmd->repeat_probe_time = cpu_to_le32(arg->repeat_probe_time); cmd->probe_spacing_time = cpu_to_le32(arg->probe_spacing_time); cmd->idle_time = cpu_to_le32(arg->idle_time); cmd->max_scan_time = cpu_to_le32(arg->max_scan_time); cmd->probe_delay = cpu_to_le32(arg->probe_delay); cmd->burst_duration = cpu_to_le32(arg->burst_duration); cmd->num_chan = cpu_to_le32(arg->num_chan); cmd->num_bssid = cpu_to_le32(arg->num_bssid); cmd->num_ssids = cpu_to_le32(arg->num_ssids); cmd->ie_len = cpu_to_le32(arg->extraie.len); cmd->n_probes = cpu_to_le32(arg->n_probes); ptr += sizeof(*cmd); len = arg->num_chan * sizeof(u32); tlv = ptr; tlv->header = ath12k_wmi_tlv_hdr(WMI_TAG_ARRAY_UINT32, len); ptr += TLV_HDR_SIZE; tmp_ptr = (u32 *)ptr; memcpy(tmp_ptr, arg->chan_list, arg->num_chan * 4); ptr += len; len = arg->num_ssids * sizeof(*ssid); tlv = ptr; tlv->header = ath12k_wmi_tlv_hdr(WMI_TAG_ARRAY_FIXED_STRUCT, len); ptr += TLV_HDR_SIZE; if (arg->num_ssids) { ssid = ptr; for (i = 0; i < arg->num_ssids; ++i) { ssid->ssid_len = cpu_to_le32(arg->ssid[i].ssid_len); memcpy(ssid->ssid, arg->ssid[i].ssid, arg->ssid[i].ssid_len); ssid++; } } ptr += (arg->num_ssids * sizeof(*ssid)); len = arg->num_bssid * sizeof(*bssid); tlv = ptr; tlv->header = ath12k_wmi_tlv_hdr(WMI_TAG_ARRAY_FIXED_STRUCT, len); ptr += TLV_HDR_SIZE; bssid = ptr; if (arg->num_bssid) { for (i = 0; i < arg->num_bssid; ++i) { ether_addr_copy(bssid->addr, arg->bssid_list[i].addr); bssid++; } } ptr += arg->num_bssid * sizeof(*bssid); len = extraie_len_with_pad; tlv = ptr; tlv->header = ath12k_wmi_tlv_hdr(WMI_TAG_ARRAY_BYTE, len); ptr += TLV_HDR_SIZE; if (extraie_len_with_pad) memcpy(ptr, arg->extraie.ptr, arg->extraie.len); ptr += extraie_len_with_pad; if (arg->num_hint_s_ssid) { len = arg->num_hint_s_ssid * sizeof(*s_ssid); tlv = ptr; tlv->header = ath12k_wmi_tlv_hdr(WMI_TAG_ARRAY_FIXED_STRUCT, len); ptr += TLV_HDR_SIZE; s_ssid = ptr; for (i = 0; i < arg->num_hint_s_ssid; ++i) { s_ssid->freq_flags = arg->hint_s_ssid[i].freq_flags; s_ssid->short_ssid = arg->hint_s_ssid[i].short_ssid; s_ssid++; } ptr += len; } if (arg->num_hint_bssid) { len = arg->num_hint_bssid * sizeof(struct ath12k_wmi_hint_bssid_arg); tlv = ptr; tlv->header = ath12k_wmi_tlv_hdr(WMI_TAG_ARRAY_FIXED_STRUCT, len); ptr += TLV_HDR_SIZE; hint_bssid = ptr; for (i = 0; i < arg->num_hint_bssid; ++i) { hint_bssid->freq_flags = arg->hint_bssid[i].freq_flags; ether_addr_copy(&arg->hint_bssid[i].bssid.addr[0], &hint_bssid->bssid.addr[0]); hint_bssid++; } } ret = ath12k_wmi_cmd_send(wmi, skb, WMI_START_SCAN_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to send WMI_START_SCAN_CMDID\n"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_send_scan_stop_cmd(struct ath12k *ar, struct ath12k_wmi_scan_cancel_arg *arg) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct wmi_stop_scan_cmd *cmd; struct sk_buff *skb; int ret; skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_stop_scan_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_STOP_SCAN_CMD, sizeof(*cmd)); cmd->vdev_id = cpu_to_le32(arg->vdev_id); cmd->requestor = cpu_to_le32(arg->requester); cmd->scan_id = cpu_to_le32(arg->scan_id); cmd->pdev_id = cpu_to_le32(arg->pdev_id); /* stop the scan with the corresponding scan_id */ if (arg->req_type == WLAN_SCAN_CANCEL_PDEV_ALL) { /* Cancelling all scans */ cmd->req_type = cpu_to_le32(WMI_SCAN_STOP_ALL); } else if (arg->req_type == WLAN_SCAN_CANCEL_VDEV_ALL) { /* Cancelling VAP scans */ cmd->req_type = cpu_to_le32(WMI_SCAN_STOP_VAP_ALL); } else if (arg->req_type == WLAN_SCAN_CANCEL_SINGLE) { /* Cancelling specific scan */ cmd->req_type = WMI_SCAN_STOP_ONE; } else { ath12k_warn(ar->ab, "invalid scan cancel req_type %d", arg->req_type); dev_kfree_skb(skb); return -EINVAL; } ret = ath12k_wmi_cmd_send(wmi, skb, WMI_STOP_SCAN_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to send WMI_STOP_SCAN_CMDID\n"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_send_scan_chan_list_cmd(struct ath12k *ar, struct ath12k_wmi_scan_chan_list_arg *arg) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct wmi_scan_chan_list_cmd *cmd; struct sk_buff *skb; struct ath12k_wmi_channel_params *chan_info; struct ath12k_wmi_channel_arg *channel_arg; struct wmi_tlv *tlv; void *ptr; int i, ret, len; u16 num_send_chans, num_sends = 0, max_chan_limit = 0; __le32 *reg1, *reg2; channel_arg = &arg->channel[0]; while (arg->nallchans) { len = sizeof(*cmd) + TLV_HDR_SIZE; max_chan_limit = (wmi->wmi_ab->max_msg_len[ar->pdev_idx] - len) / sizeof(*chan_info); num_send_chans = min(arg->nallchans, max_chan_limit); arg->nallchans -= num_send_chans; len += sizeof(*chan_info) * num_send_chans; skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_scan_chan_list_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_SCAN_CHAN_LIST_CMD, sizeof(*cmd)); cmd->pdev_id = cpu_to_le32(arg->pdev_id); cmd->num_scan_chans = cpu_to_le32(num_send_chans); if (num_sends) cmd->flags |= cpu_to_le32(WMI_APPEND_TO_EXISTING_CHAN_LIST_FLAG); ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "WMI no.of chan = %d len = %d pdev_id = %d num_sends = %d\n", num_send_chans, len, cmd->pdev_id, num_sends); ptr = skb->data + sizeof(*cmd); len = sizeof(*chan_info) * num_send_chans; tlv = ptr; tlv->header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_ARRAY_STRUCT, len); ptr += TLV_HDR_SIZE; for (i = 0; i < num_send_chans; ++i) { chan_info = ptr; memset(chan_info, 0, sizeof(*chan_info)); len = sizeof(*chan_info); chan_info->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_CHANNEL, len); reg1 = &chan_info->reg_info_1; reg2 = &chan_info->reg_info_2; chan_info->mhz = cpu_to_le32(channel_arg->mhz); chan_info->band_center_freq1 = cpu_to_le32(channel_arg->cfreq1); chan_info->band_center_freq2 = cpu_to_le32(channel_arg->cfreq2); if (channel_arg->is_chan_passive) chan_info->info |= cpu_to_le32(WMI_CHAN_INFO_PASSIVE); if (channel_arg->allow_he) chan_info->info |= cpu_to_le32(WMI_CHAN_INFO_ALLOW_HE); else if (channel_arg->allow_vht) chan_info->info |= cpu_to_le32(WMI_CHAN_INFO_ALLOW_VHT); else if (channel_arg->allow_ht) chan_info->info |= cpu_to_le32(WMI_CHAN_INFO_ALLOW_HT); if (channel_arg->half_rate) chan_info->info |= cpu_to_le32(WMI_CHAN_INFO_HALF_RATE); if (channel_arg->quarter_rate) chan_info->info |= cpu_to_le32(WMI_CHAN_INFO_QUARTER_RATE); if (channel_arg->psc_channel) chan_info->info |= cpu_to_le32(WMI_CHAN_INFO_PSC); if (channel_arg->dfs_set) chan_info->info |= cpu_to_le32(WMI_CHAN_INFO_DFS); chan_info->info |= le32_encode_bits(channel_arg->phy_mode, WMI_CHAN_INFO_MODE); *reg1 |= le32_encode_bits(channel_arg->minpower, WMI_CHAN_REG_INFO1_MIN_PWR); *reg1 |= le32_encode_bits(channel_arg->maxpower, WMI_CHAN_REG_INFO1_MAX_PWR); *reg1 |= le32_encode_bits(channel_arg->maxregpower, WMI_CHAN_REG_INFO1_MAX_REG_PWR); *reg1 |= le32_encode_bits(channel_arg->reg_class_id, WMI_CHAN_REG_INFO1_REG_CLS); *reg2 |= le32_encode_bits(channel_arg->antennamax, WMI_CHAN_REG_INFO2_ANT_MAX); ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "WMI chan scan list chan[%d] = %u, chan_info->info %8x\n", i, chan_info->mhz, chan_info->info); ptr += sizeof(*chan_info); channel_arg++; } ret = ath12k_wmi_cmd_send(wmi, skb, WMI_SCAN_CHAN_LIST_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to send WMI_SCAN_CHAN_LIST cmd\n"); dev_kfree_skb(skb); return ret; } num_sends++; } return 0; } int ath12k_wmi_send_wmm_update_cmd(struct ath12k *ar, u32 vdev_id, struct wmi_wmm_params_all_arg *param) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct wmi_vdev_set_wmm_params_cmd *cmd; struct wmi_wmm_params *wmm_param; struct wmi_wmm_params_arg *wmi_wmm_arg; struct sk_buff *skb; int ret, ac; skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_vdev_set_wmm_params_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_VDEV_SET_WMM_PARAMS_CMD, sizeof(*cmd)); cmd->vdev_id = cpu_to_le32(vdev_id); cmd->wmm_param_type = 0; for (ac = 0; ac < WME_NUM_AC; ac++) { switch (ac) { case WME_AC_BE: wmi_wmm_arg = ¶m->ac_be; break; case WME_AC_BK: wmi_wmm_arg = ¶m->ac_bk; break; case WME_AC_VI: wmi_wmm_arg = ¶m->ac_vi; break; case WME_AC_VO: wmi_wmm_arg = ¶m->ac_vo; break; } wmm_param = (struct wmi_wmm_params *)&cmd->wmm_params[ac]; wmm_param->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_VDEV_SET_WMM_PARAMS_CMD, sizeof(*wmm_param)); wmm_param->aifs = cpu_to_le32(wmi_wmm_arg->aifs); wmm_param->cwmin = cpu_to_le32(wmi_wmm_arg->cwmin); wmm_param->cwmax = cpu_to_le32(wmi_wmm_arg->cwmax); wmm_param->txoplimit = cpu_to_le32(wmi_wmm_arg->txop); wmm_param->acm = cpu_to_le32(wmi_wmm_arg->acm); wmm_param->no_ack = cpu_to_le32(wmi_wmm_arg->no_ack); ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "wmi wmm set ac %d aifs %d cwmin %d cwmax %d txop %d acm %d no_ack %d\n", ac, wmm_param->aifs, wmm_param->cwmin, wmm_param->cwmax, wmm_param->txoplimit, wmm_param->acm, wmm_param->no_ack); } ret = ath12k_wmi_cmd_send(wmi, skb, WMI_VDEV_SET_WMM_PARAMS_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to send WMI_VDEV_SET_WMM_PARAMS_CMDID"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_send_dfs_phyerr_offload_enable_cmd(struct ath12k *ar, u32 pdev_id) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct wmi_dfs_phyerr_offload_cmd *cmd; struct sk_buff *skb; int ret; skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_dfs_phyerr_offload_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_PDEV_DFS_PHYERR_OFFLOAD_ENABLE_CMD, sizeof(*cmd)); cmd->pdev_id = cpu_to_le32(pdev_id); ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "WMI dfs phy err offload enable pdev id %d\n", pdev_id); ret = ath12k_wmi_cmd_send(wmi, skb, WMI_PDEV_DFS_PHYERR_OFFLOAD_ENABLE_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to send WMI_PDEV_DFS_PHYERR_OFFLOAD_ENABLE cmd\n"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_delba_send(struct ath12k *ar, u32 vdev_id, const u8 *mac, u32 tid, u32 initiator, u32 reason) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct wmi_delba_send_cmd *cmd; struct sk_buff *skb; int ret; skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_delba_send_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_DELBA_SEND_CMD, sizeof(*cmd)); cmd->vdev_id = cpu_to_le32(vdev_id); ether_addr_copy(cmd->peer_macaddr.addr, mac); cmd->tid = cpu_to_le32(tid); cmd->initiator = cpu_to_le32(initiator); cmd->reasoncode = cpu_to_le32(reason); ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "wmi delba send vdev_id 0x%X mac_addr %pM tid %u initiator %u reason %u\n", vdev_id, mac, tid, initiator, reason); ret = ath12k_wmi_cmd_send(wmi, skb, WMI_DELBA_SEND_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to send WMI_DELBA_SEND_CMDID cmd\n"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_addba_set_resp(struct ath12k *ar, u32 vdev_id, const u8 *mac, u32 tid, u32 status) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct wmi_addba_setresponse_cmd *cmd; struct sk_buff *skb; int ret; skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_addba_setresponse_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_ADDBA_SETRESPONSE_CMD, sizeof(*cmd)); cmd->vdev_id = cpu_to_le32(vdev_id); ether_addr_copy(cmd->peer_macaddr.addr, mac); cmd->tid = cpu_to_le32(tid); cmd->statuscode = cpu_to_le32(status); ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "wmi addba set resp vdev_id 0x%X mac_addr %pM tid %u status %u\n", vdev_id, mac, tid, status); ret = ath12k_wmi_cmd_send(wmi, skb, WMI_ADDBA_SET_RESP_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to send WMI_ADDBA_SET_RESP_CMDID cmd\n"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_addba_send(struct ath12k *ar, u32 vdev_id, const u8 *mac, u32 tid, u32 buf_size) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct wmi_addba_send_cmd *cmd; struct sk_buff *skb; int ret; skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_addba_send_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_ADDBA_SEND_CMD, sizeof(*cmd)); cmd->vdev_id = cpu_to_le32(vdev_id); ether_addr_copy(cmd->peer_macaddr.addr, mac); cmd->tid = cpu_to_le32(tid); cmd->buffersize = cpu_to_le32(buf_size); ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "wmi addba send vdev_id 0x%X mac_addr %pM tid %u bufsize %u\n", vdev_id, mac, tid, buf_size); ret = ath12k_wmi_cmd_send(wmi, skb, WMI_ADDBA_SEND_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to send WMI_ADDBA_SEND_CMDID cmd\n"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_addba_clear_resp(struct ath12k *ar, u32 vdev_id, const u8 *mac) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct wmi_addba_clear_resp_cmd *cmd; struct sk_buff *skb; int ret; skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_addba_clear_resp_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_ADDBA_CLEAR_RESP_CMD, sizeof(*cmd)); cmd->vdev_id = cpu_to_le32(vdev_id); ether_addr_copy(cmd->peer_macaddr.addr, mac); ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "wmi addba clear resp vdev_id 0x%X mac_addr %pM\n", vdev_id, mac); ret = ath12k_wmi_cmd_send(wmi, skb, WMI_ADDBA_CLEAR_RESP_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to send WMI_ADDBA_CLEAR_RESP_CMDID cmd\n"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_send_init_country_cmd(struct ath12k *ar, struct ath12k_wmi_init_country_arg *arg) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct wmi_init_country_cmd *cmd; struct sk_buff *skb; int ret; skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_init_country_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_SET_INIT_COUNTRY_CMD, sizeof(*cmd)); cmd->pdev_id = cpu_to_le32(ar->pdev->pdev_id); switch (arg->flags) { case ALPHA_IS_SET: cmd->init_cc_type = WMI_COUNTRY_INFO_TYPE_ALPHA; memcpy(&cmd->cc_info.alpha2, arg->cc_info.alpha2, 3); break; case CC_IS_SET: cmd->init_cc_type = cpu_to_le32(WMI_COUNTRY_INFO_TYPE_COUNTRY_CODE); cmd->cc_info.country_code = cpu_to_le32(arg->cc_info.country_code); break; case REGDMN_IS_SET: cmd->init_cc_type = cpu_to_le32(WMI_COUNTRY_INFO_TYPE_REGDOMAIN); cmd->cc_info.regdom_id = cpu_to_le32(arg->cc_info.regdom_id); break; default: ret = -EINVAL; goto out; } ret = ath12k_wmi_cmd_send(wmi, skb, WMI_SET_INIT_COUNTRY_CMDID); out: if (ret) { ath12k_warn(ar->ab, "failed to send WMI_SET_INIT_COUNTRY CMD :%d\n", ret); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_send_twt_enable_cmd(struct ath12k *ar, u32 pdev_id) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct ath12k_base *ab = wmi->wmi_ab->ab; struct wmi_twt_enable_params_cmd *cmd; struct sk_buff *skb; int ret, len; len = sizeof(*cmd); skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_twt_enable_params_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_TWT_ENABLE_CMD, len); cmd->pdev_id = cpu_to_le32(pdev_id); cmd->sta_cong_timer_ms = cpu_to_le32(ATH12K_TWT_DEF_STA_CONG_TIMER_MS); cmd->default_slot_size = cpu_to_le32(ATH12K_TWT_DEF_DEFAULT_SLOT_SIZE); cmd->congestion_thresh_setup = cpu_to_le32(ATH12K_TWT_DEF_CONGESTION_THRESH_SETUP); cmd->congestion_thresh_teardown = cpu_to_le32(ATH12K_TWT_DEF_CONGESTION_THRESH_TEARDOWN); cmd->congestion_thresh_critical = cpu_to_le32(ATH12K_TWT_DEF_CONGESTION_THRESH_CRITICAL); cmd->interference_thresh_teardown = cpu_to_le32(ATH12K_TWT_DEF_INTERFERENCE_THRESH_TEARDOWN); cmd->interference_thresh_setup = cpu_to_le32(ATH12K_TWT_DEF_INTERFERENCE_THRESH_SETUP); cmd->min_no_sta_setup = cpu_to_le32(ATH12K_TWT_DEF_MIN_NO_STA_SETUP); cmd->min_no_sta_teardown = cpu_to_le32(ATH12K_TWT_DEF_MIN_NO_STA_TEARDOWN); cmd->no_of_bcast_mcast_slots = cpu_to_le32(ATH12K_TWT_DEF_NO_OF_BCAST_MCAST_SLOTS); cmd->min_no_twt_slots = cpu_to_le32(ATH12K_TWT_DEF_MIN_NO_TWT_SLOTS); cmd->max_no_sta_twt = cpu_to_le32(ATH12K_TWT_DEF_MAX_NO_STA_TWT); cmd->mode_check_interval = cpu_to_le32(ATH12K_TWT_DEF_MODE_CHECK_INTERVAL); cmd->add_sta_slot_interval = cpu_to_le32(ATH12K_TWT_DEF_ADD_STA_SLOT_INTERVAL); cmd->remove_sta_slot_interval = cpu_to_le32(ATH12K_TWT_DEF_REMOVE_STA_SLOT_INTERVAL); /* TODO add MBSSID support */ cmd->mbss_support = 0; ret = ath12k_wmi_cmd_send(wmi, skb, WMI_TWT_ENABLE_CMDID); if (ret) { ath12k_warn(ab, "Failed to send WMI_TWT_ENABLE_CMDID"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_send_twt_disable_cmd(struct ath12k *ar, u32 pdev_id) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct ath12k_base *ab = wmi->wmi_ab->ab; struct wmi_twt_disable_params_cmd *cmd; struct sk_buff *skb; int ret, len; len = sizeof(*cmd); skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_twt_disable_params_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_TWT_DISABLE_CMD, len); cmd->pdev_id = cpu_to_le32(pdev_id); ret = ath12k_wmi_cmd_send(wmi, skb, WMI_TWT_DISABLE_CMDID); if (ret) { ath12k_warn(ab, "Failed to send WMI_TWT_DISABLE_CMDID"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_send_obss_spr_cmd(struct ath12k *ar, u32 vdev_id, struct ieee80211_he_obss_pd *he_obss_pd) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct ath12k_base *ab = wmi->wmi_ab->ab; struct wmi_obss_spatial_reuse_params_cmd *cmd; struct sk_buff *skb; int ret, len; len = sizeof(*cmd); skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_obss_spatial_reuse_params_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_OBSS_SPATIAL_REUSE_SET_CMD, len); cmd->vdev_id = cpu_to_le32(vdev_id); cmd->enable = cpu_to_le32(he_obss_pd->enable); cmd->obss_min = a_cpu_to_sle32(he_obss_pd->min_offset); cmd->obss_max = a_cpu_to_sle32(he_obss_pd->max_offset); ret = ath12k_wmi_cmd_send(wmi, skb, WMI_PDEV_OBSS_PD_SPATIAL_REUSE_CMDID); if (ret) { ath12k_warn(ab, "Failed to send WMI_PDEV_OBSS_PD_SPATIAL_REUSE_CMDID"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_obss_color_cfg_cmd(struct ath12k *ar, u32 vdev_id, u8 bss_color, u32 period, bool enable) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct ath12k_base *ab = wmi->wmi_ab->ab; struct wmi_obss_color_collision_cfg_params_cmd *cmd; struct sk_buff *skb; int ret, len; len = sizeof(*cmd); skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_obss_color_collision_cfg_params_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_OBSS_COLOR_COLLISION_DET_CONFIG, len); cmd->vdev_id = cpu_to_le32(vdev_id); cmd->evt_type = enable ? cpu_to_le32(ATH12K_OBSS_COLOR_COLLISION_DETECTION) : cpu_to_le32(ATH12K_OBSS_COLOR_COLLISION_DETECTION_DISABLE); cmd->current_bss_color = cpu_to_le32(bss_color); cmd->detection_period_ms = cpu_to_le32(period); cmd->scan_period_ms = cpu_to_le32(ATH12K_BSS_COLOR_COLLISION_SCAN_PERIOD_MS); cmd->free_slot_expiry_time_ms = 0; cmd->flags = 0; ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "wmi_send_obss_color_collision_cfg id %d type %d bss_color %d detect_period %d scan_period %d\n", cmd->vdev_id, cmd->evt_type, cmd->current_bss_color, cmd->detection_period_ms, cmd->scan_period_ms); ret = ath12k_wmi_cmd_send(wmi, skb, WMI_OBSS_COLOR_COLLISION_DET_CONFIG_CMDID); if (ret) { ath12k_warn(ab, "Failed to send WMI_OBSS_COLOR_COLLISION_DET_CONFIG_CMDID"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_send_bss_color_change_enable_cmd(struct ath12k *ar, u32 vdev_id, bool enable) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct ath12k_base *ab = wmi->wmi_ab->ab; struct wmi_bss_color_change_enable_params_cmd *cmd; struct sk_buff *skb; int ret, len; len = sizeof(*cmd); skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_bss_color_change_enable_params_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_BSS_COLOR_CHANGE_ENABLE, len); cmd->vdev_id = cpu_to_le32(vdev_id); cmd->enable = enable ? cpu_to_le32(1) : 0; ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "wmi_send_bss_color_change_enable id %d enable %d\n", cmd->vdev_id, cmd->enable); ret = ath12k_wmi_cmd_send(wmi, skb, WMI_BSS_COLOR_CHANGE_ENABLE_CMDID); if (ret) { ath12k_warn(ab, "Failed to send WMI_BSS_COLOR_CHANGE_ENABLE_CMDID"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_fils_discovery_tmpl(struct ath12k *ar, u32 vdev_id, struct sk_buff *tmpl) { struct wmi_tlv *tlv; struct sk_buff *skb; void *ptr; int ret, len; size_t aligned_len; struct wmi_fils_discovery_tmpl_cmd *cmd; aligned_len = roundup(tmpl->len, 4); len = sizeof(*cmd) + TLV_HDR_SIZE + aligned_len; ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "WMI vdev %i set FILS discovery template\n", vdev_id); skb = ath12k_wmi_alloc_skb(ar->wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_fils_discovery_tmpl_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_FILS_DISCOVERY_TMPL_CMD, sizeof(*cmd)); cmd->vdev_id = cpu_to_le32(vdev_id); cmd->buf_len = cpu_to_le32(tmpl->len); ptr = skb->data + sizeof(*cmd); tlv = ptr; tlv->header = ath12k_wmi_tlv_hdr(WMI_TAG_ARRAY_BYTE, aligned_len); memcpy(tlv->value, tmpl->data, tmpl->len); ret = ath12k_wmi_cmd_send(ar->wmi, skb, WMI_FILS_DISCOVERY_TMPL_CMDID); if (ret) { ath12k_warn(ar->ab, "WMI vdev %i failed to send FILS discovery template command\n", vdev_id); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_probe_resp_tmpl(struct ath12k *ar, u32 vdev_id, struct sk_buff *tmpl) { struct wmi_probe_tmpl_cmd *cmd; struct ath12k_wmi_bcn_prb_info_params *probe_info; struct wmi_tlv *tlv; struct sk_buff *skb; void *ptr; int ret, len; size_t aligned_len = roundup(tmpl->len, 4); ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "WMI vdev %i set probe response template\n", vdev_id); len = sizeof(*cmd) + sizeof(*probe_info) + TLV_HDR_SIZE + aligned_len; skb = ath12k_wmi_alloc_skb(ar->wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_probe_tmpl_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_PRB_TMPL_CMD, sizeof(*cmd)); cmd->vdev_id = cpu_to_le32(vdev_id); cmd->buf_len = cpu_to_le32(tmpl->len); ptr = skb->data + sizeof(*cmd); probe_info = ptr; len = sizeof(*probe_info); probe_info->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_BCN_PRB_INFO, len); probe_info->caps = 0; probe_info->erp = 0; ptr += sizeof(*probe_info); tlv = ptr; tlv->header = ath12k_wmi_tlv_hdr(WMI_TAG_ARRAY_BYTE, aligned_len); memcpy(tlv->value, tmpl->data, tmpl->len); ret = ath12k_wmi_cmd_send(ar->wmi, skb, WMI_PRB_TMPL_CMDID); if (ret) { ath12k_warn(ar->ab, "WMI vdev %i failed to send probe response template command\n", vdev_id); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_fils_discovery(struct ath12k *ar, u32 vdev_id, u32 interval, bool unsol_bcast_probe_resp_enabled) { struct sk_buff *skb; int ret, len; struct wmi_fils_discovery_cmd *cmd; ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "WMI vdev %i set %s interval to %u TU\n", vdev_id, unsol_bcast_probe_resp_enabled ? "unsolicited broadcast probe response" : "FILS discovery", interval); len = sizeof(*cmd); skb = ath12k_wmi_alloc_skb(ar->wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_fils_discovery_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_ENABLE_FILS_CMD, len); cmd->vdev_id = cpu_to_le32(vdev_id); cmd->interval = cpu_to_le32(interval); cmd->config = cpu_to_le32(unsol_bcast_probe_resp_enabled); ret = ath12k_wmi_cmd_send(ar->wmi, skb, WMI_ENABLE_FILS_CMDID); if (ret) { ath12k_warn(ar->ab, "WMI vdev %i failed to send FILS discovery enable/disable command\n", vdev_id); dev_kfree_skb(skb); } return ret; } static void ath12k_fill_band_to_mac_param(struct ath12k_base *soc, struct ath12k_wmi_pdev_band_arg *arg) { u8 i; struct ath12k_wmi_hal_reg_capabilities_ext_arg *hal_reg_cap; struct ath12k_pdev *pdev; for (i = 0; i < soc->num_radios; i++) { pdev = &soc->pdevs[i]; hal_reg_cap = &soc->hal_reg_cap[i]; arg[i].pdev_id = pdev->pdev_id; switch (pdev->cap.supported_bands) { case WMI_HOST_WLAN_2G_5G_CAP: arg[i].start_freq = hal_reg_cap->low_2ghz_chan; arg[i].end_freq = hal_reg_cap->high_5ghz_chan; break; case WMI_HOST_WLAN_2G_CAP: arg[i].start_freq = hal_reg_cap->low_2ghz_chan; arg[i].end_freq = hal_reg_cap->high_2ghz_chan; break; case WMI_HOST_WLAN_5G_CAP: arg[i].start_freq = hal_reg_cap->low_5ghz_chan; arg[i].end_freq = hal_reg_cap->high_5ghz_chan; break; default: break; } } } static void ath12k_wmi_copy_resource_config(struct ath12k_wmi_resource_config_params *wmi_cfg, struct ath12k_wmi_resource_config_arg *tg_cfg) { wmi_cfg->num_vdevs = cpu_to_le32(tg_cfg->num_vdevs); wmi_cfg->num_peers = cpu_to_le32(tg_cfg->num_peers); wmi_cfg->num_offload_peers = cpu_to_le32(tg_cfg->num_offload_peers); wmi_cfg->num_offload_reorder_buffs = cpu_to_le32(tg_cfg->num_offload_reorder_buffs); wmi_cfg->num_peer_keys = cpu_to_le32(tg_cfg->num_peer_keys); wmi_cfg->num_tids = cpu_to_le32(tg_cfg->num_tids); wmi_cfg->ast_skid_limit = cpu_to_le32(tg_cfg->ast_skid_limit); wmi_cfg->tx_chain_mask = cpu_to_le32(tg_cfg->tx_chain_mask); wmi_cfg->rx_chain_mask = cpu_to_le32(tg_cfg->rx_chain_mask); wmi_cfg->rx_timeout_pri[0] = cpu_to_le32(tg_cfg->rx_timeout_pri[0]); wmi_cfg->rx_timeout_pri[1] = cpu_to_le32(tg_cfg->rx_timeout_pri[1]); wmi_cfg->rx_timeout_pri[2] = cpu_to_le32(tg_cfg->rx_timeout_pri[2]); wmi_cfg->rx_timeout_pri[3] = cpu_to_le32(tg_cfg->rx_timeout_pri[3]); wmi_cfg->rx_decap_mode = cpu_to_le32(tg_cfg->rx_decap_mode); wmi_cfg->scan_max_pending_req = cpu_to_le32(tg_cfg->scan_max_pending_req); wmi_cfg->bmiss_offload_max_vdev = cpu_to_le32(tg_cfg->bmiss_offload_max_vdev); wmi_cfg->roam_offload_max_vdev = cpu_to_le32(tg_cfg->roam_offload_max_vdev); wmi_cfg->roam_offload_max_ap_profiles = cpu_to_le32(tg_cfg->roam_offload_max_ap_profiles); wmi_cfg->num_mcast_groups = cpu_to_le32(tg_cfg->num_mcast_groups); wmi_cfg->num_mcast_table_elems = cpu_to_le32(tg_cfg->num_mcast_table_elems); wmi_cfg->mcast2ucast_mode = cpu_to_le32(tg_cfg->mcast2ucast_mode); wmi_cfg->tx_dbg_log_size = cpu_to_le32(tg_cfg->tx_dbg_log_size); wmi_cfg->num_wds_entries = cpu_to_le32(tg_cfg->num_wds_entries); wmi_cfg->dma_burst_size = cpu_to_le32(tg_cfg->dma_burst_size); wmi_cfg->mac_aggr_delim = cpu_to_le32(tg_cfg->mac_aggr_delim); wmi_cfg->rx_skip_defrag_timeout_dup_detection_check = cpu_to_le32(tg_cfg->rx_skip_defrag_timeout_dup_detection_check); wmi_cfg->vow_config = cpu_to_le32(tg_cfg->vow_config); wmi_cfg->gtk_offload_max_vdev = cpu_to_le32(tg_cfg->gtk_offload_max_vdev); wmi_cfg->num_msdu_desc = cpu_to_le32(tg_cfg->num_msdu_desc); wmi_cfg->max_frag_entries = cpu_to_le32(tg_cfg->max_frag_entries); wmi_cfg->num_tdls_vdevs = cpu_to_le32(tg_cfg->num_tdls_vdevs); wmi_cfg->num_tdls_conn_table_entries = cpu_to_le32(tg_cfg->num_tdls_conn_table_entries); wmi_cfg->beacon_tx_offload_max_vdev = cpu_to_le32(tg_cfg->beacon_tx_offload_max_vdev); wmi_cfg->num_multicast_filter_entries = cpu_to_le32(tg_cfg->num_multicast_filter_entries); wmi_cfg->num_wow_filters = cpu_to_le32(tg_cfg->num_wow_filters); wmi_cfg->num_keep_alive_pattern = cpu_to_le32(tg_cfg->num_keep_alive_pattern); wmi_cfg->keep_alive_pattern_size = cpu_to_le32(tg_cfg->keep_alive_pattern_size); wmi_cfg->max_tdls_concurrent_sleep_sta = cpu_to_le32(tg_cfg->max_tdls_concurrent_sleep_sta); wmi_cfg->max_tdls_concurrent_buffer_sta = cpu_to_le32(tg_cfg->max_tdls_concurrent_buffer_sta); wmi_cfg->wmi_send_separate = cpu_to_le32(tg_cfg->wmi_send_separate); wmi_cfg->num_ocb_vdevs = cpu_to_le32(tg_cfg->num_ocb_vdevs); wmi_cfg->num_ocb_channels = cpu_to_le32(tg_cfg->num_ocb_channels); wmi_cfg->num_ocb_schedules = cpu_to_le32(tg_cfg->num_ocb_schedules); wmi_cfg->bpf_instruction_size = cpu_to_le32(tg_cfg->bpf_instruction_size); wmi_cfg->max_bssid_rx_filters = cpu_to_le32(tg_cfg->max_bssid_rx_filters); wmi_cfg->use_pdev_id = cpu_to_le32(tg_cfg->use_pdev_id); wmi_cfg->flag1 = cpu_to_le32(tg_cfg->atf_config); wmi_cfg->peer_map_unmap_version = cpu_to_le32(tg_cfg->peer_map_unmap_version); wmi_cfg->sched_params = cpu_to_le32(tg_cfg->sched_params); wmi_cfg->twt_ap_pdev_count = cpu_to_le32(tg_cfg->twt_ap_pdev_count); wmi_cfg->twt_ap_sta_count = cpu_to_le32(tg_cfg->twt_ap_sta_count); wmi_cfg->host_service_flags = cpu_to_le32(tg_cfg->is_reg_cc_ext_event_supported << WMI_RSRC_CFG_HOST_SVC_FLAG_REG_CC_EXT_SUPPORT_BIT); } static int ath12k_init_cmd_send(struct ath12k_wmi_pdev *wmi, struct ath12k_wmi_init_cmd_arg *arg) { struct ath12k_base *ab = wmi->wmi_ab->ab; struct sk_buff *skb; struct wmi_init_cmd *cmd; struct ath12k_wmi_resource_config_params *cfg; struct ath12k_wmi_pdev_set_hw_mode_cmd *hw_mode; struct ath12k_wmi_pdev_band_to_mac_params *band_to_mac; struct ath12k_wmi_host_mem_chunk_params *host_mem_chunks; struct wmi_tlv *tlv; size_t ret, len; void *ptr; u32 hw_mode_len = 0; u16 idx; if (arg->hw_mode_id != WMI_HOST_HW_MODE_MAX) hw_mode_len = sizeof(*hw_mode) + TLV_HDR_SIZE + (arg->num_band_to_mac * sizeof(*band_to_mac)); len = sizeof(*cmd) + TLV_HDR_SIZE + sizeof(*cfg) + hw_mode_len + (arg->num_mem_chunks ? (sizeof(*host_mem_chunks) * WMI_MAX_MEM_REQS) : 0); skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct wmi_init_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_INIT_CMD, sizeof(*cmd)); ptr = skb->data + sizeof(*cmd); cfg = ptr; ath12k_wmi_copy_resource_config(cfg, &arg->res_cfg); cfg->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_RESOURCE_CONFIG, sizeof(*cfg)); ptr += sizeof(*cfg); host_mem_chunks = ptr + TLV_HDR_SIZE; len = sizeof(struct ath12k_wmi_host_mem_chunk_params); for (idx = 0; idx < arg->num_mem_chunks; ++idx) { host_mem_chunks[idx].tlv_header = ath12k_wmi_tlv_hdr(WMI_TAG_WLAN_HOST_MEMORY_CHUNK, len); host_mem_chunks[idx].ptr = cpu_to_le32(arg->mem_chunks[idx].paddr); host_mem_chunks[idx].size = cpu_to_le32(arg->mem_chunks[idx].len); host_mem_chunks[idx].req_id = cpu_to_le32(arg->mem_chunks[idx].req_id); ath12k_dbg(ab, ATH12K_DBG_WMI, "WMI host mem chunk req_id %d paddr 0x%llx len %d\n", arg->mem_chunks[idx].req_id, (u64)arg->mem_chunks[idx].paddr, arg->mem_chunks[idx].len); } cmd->num_host_mem_chunks = cpu_to_le32(arg->num_mem_chunks); len = sizeof(struct ath12k_wmi_host_mem_chunk_params) * arg->num_mem_chunks; /* num_mem_chunks is zero */ tlv = ptr; tlv->header = ath12k_wmi_tlv_hdr(WMI_TAG_ARRAY_STRUCT, len); ptr += TLV_HDR_SIZE + len; if (arg->hw_mode_id != WMI_HOST_HW_MODE_MAX) { hw_mode = (struct ath12k_wmi_pdev_set_hw_mode_cmd *)ptr; hw_mode->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_PDEV_SET_HW_MODE_CMD, sizeof(*hw_mode)); hw_mode->hw_mode_index = cpu_to_le32(arg->hw_mode_id); hw_mode->num_band_to_mac = cpu_to_le32(arg->num_band_to_mac); ptr += sizeof(*hw_mode); len = arg->num_band_to_mac * sizeof(*band_to_mac); tlv = ptr; tlv->header = ath12k_wmi_tlv_hdr(WMI_TAG_ARRAY_STRUCT, len); ptr += TLV_HDR_SIZE; len = sizeof(*band_to_mac); for (idx = 0; idx < arg->num_band_to_mac; idx++) { band_to_mac = (void *)ptr; band_to_mac->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_PDEV_BAND_TO_MAC, len); band_to_mac->pdev_id = cpu_to_le32(arg->band_to_mac[idx].pdev_id); band_to_mac->start_freq = cpu_to_le32(arg->band_to_mac[idx].start_freq); band_to_mac->end_freq = cpu_to_le32(arg->band_to_mac[idx].end_freq); ptr += sizeof(*band_to_mac); } } ret = ath12k_wmi_cmd_send(wmi, skb, WMI_INIT_CMDID); if (ret) { ath12k_warn(ab, "failed to send WMI_INIT_CMDID\n"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_pdev_lro_cfg(struct ath12k *ar, int pdev_id) { struct ath12k_wmi_pdev_lro_config_cmd *cmd; struct sk_buff *skb; int ret; skb = ath12k_wmi_alloc_skb(ar->wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct ath12k_wmi_pdev_lro_config_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_LRO_INFO_CMD, sizeof(*cmd)); get_random_bytes(cmd->th_4, sizeof(cmd->th_4)); get_random_bytes(cmd->th_6, sizeof(cmd->th_6)); cmd->pdev_id = cpu_to_le32(pdev_id); ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "WMI lro cfg cmd pdev_id 0x%x\n", pdev_id); ret = ath12k_wmi_cmd_send(ar->wmi, skb, WMI_LRO_CONFIG_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to send lro cfg req wmi cmd\n"); goto err; } return 0; err: dev_kfree_skb(skb); return ret; } int ath12k_wmi_wait_for_service_ready(struct ath12k_base *ab) { unsigned long time_left; time_left = wait_for_completion_timeout(&ab->wmi_ab.service_ready, WMI_SERVICE_READY_TIMEOUT_HZ); if (!time_left) return -ETIMEDOUT; return 0; } int ath12k_wmi_wait_for_unified_ready(struct ath12k_base *ab) { unsigned long time_left; time_left = wait_for_completion_timeout(&ab->wmi_ab.unified_ready, WMI_SERVICE_READY_TIMEOUT_HZ); if (!time_left) return -ETIMEDOUT; return 0; } int ath12k_wmi_set_hw_mode(struct ath12k_base *ab, enum wmi_host_hw_mode_config_type mode) { struct ath12k_wmi_pdev_set_hw_mode_cmd *cmd; struct sk_buff *skb; struct ath12k_wmi_base *wmi_ab = &ab->wmi_ab; int len; int ret; len = sizeof(*cmd); skb = ath12k_wmi_alloc_skb(wmi_ab, len); if (!skb) return -ENOMEM; cmd = (struct ath12k_wmi_pdev_set_hw_mode_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_PDEV_SET_HW_MODE_CMD, sizeof(*cmd)); cmd->pdev_id = WMI_PDEV_ID_SOC; cmd->hw_mode_index = cpu_to_le32(mode); ret = ath12k_wmi_cmd_send(&wmi_ab->wmi[0], skb, WMI_PDEV_SET_HW_MODE_CMDID); if (ret) { ath12k_warn(ab, "failed to send WMI_PDEV_SET_HW_MODE_CMDID\n"); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_cmd_init(struct ath12k_base *ab) { struct ath12k_wmi_base *wmi_sc = &ab->wmi_ab; struct ath12k_wmi_init_cmd_arg arg = {}; if (test_bit(WMI_TLV_SERVICE_REG_CC_EXT_EVENT_SUPPORT, ab->wmi_ab.svc_map)) arg.res_cfg.is_reg_cc_ext_event_supported = true; ab->hw_params->wmi_init(ab, &arg.res_cfg); arg.num_mem_chunks = wmi_sc->num_mem_chunks; arg.hw_mode_id = wmi_sc->preferred_hw_mode; arg.mem_chunks = wmi_sc->mem_chunks; if (ab->hw_params->single_pdev_only) arg.hw_mode_id = WMI_HOST_HW_MODE_MAX; arg.num_band_to_mac = ab->num_radios; ath12k_fill_band_to_mac_param(ab, arg.band_to_mac); return ath12k_init_cmd_send(&wmi_sc->wmi[0], &arg); } int ath12k_wmi_vdev_spectral_conf(struct ath12k *ar, struct ath12k_wmi_vdev_spectral_conf_arg *arg) { struct ath12k_wmi_vdev_spectral_conf_cmd *cmd; struct sk_buff *skb; int ret; skb = ath12k_wmi_alloc_skb(ar->wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct ath12k_wmi_vdev_spectral_conf_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_VDEV_SPECTRAL_CONFIGURE_CMD, sizeof(*cmd)); cmd->vdev_id = cpu_to_le32(arg->vdev_id); cmd->scan_count = cpu_to_le32(arg->scan_count); cmd->scan_period = cpu_to_le32(arg->scan_period); cmd->scan_priority = cpu_to_le32(arg->scan_priority); cmd->scan_fft_size = cpu_to_le32(arg->scan_fft_size); cmd->scan_gc_ena = cpu_to_le32(arg->scan_gc_ena); cmd->scan_restart_ena = cpu_to_le32(arg->scan_restart_ena); cmd->scan_noise_floor_ref = cpu_to_le32(arg->scan_noise_floor_ref); cmd->scan_init_delay = cpu_to_le32(arg->scan_init_delay); cmd->scan_nb_tone_thr = cpu_to_le32(arg->scan_nb_tone_thr); cmd->scan_str_bin_thr = cpu_to_le32(arg->scan_str_bin_thr); cmd->scan_wb_rpt_mode = cpu_to_le32(arg->scan_wb_rpt_mode); cmd->scan_rssi_rpt_mode = cpu_to_le32(arg->scan_rssi_rpt_mode); cmd->scan_rssi_thr = cpu_to_le32(arg->scan_rssi_thr); cmd->scan_pwr_format = cpu_to_le32(arg->scan_pwr_format); cmd->scan_rpt_mode = cpu_to_le32(arg->scan_rpt_mode); cmd->scan_bin_scale = cpu_to_le32(arg->scan_bin_scale); cmd->scan_dbm_adj = cpu_to_le32(arg->scan_dbm_adj); cmd->scan_chn_mask = cpu_to_le32(arg->scan_chn_mask); ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "WMI spectral scan config cmd vdev_id 0x%x\n", arg->vdev_id); ret = ath12k_wmi_cmd_send(ar->wmi, skb, WMI_VDEV_SPECTRAL_SCAN_CONFIGURE_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to send spectral scan config wmi cmd\n"); goto err; } return 0; err: dev_kfree_skb(skb); return ret; } int ath12k_wmi_vdev_spectral_enable(struct ath12k *ar, u32 vdev_id, u32 trigger, u32 enable) { struct ath12k_wmi_vdev_spectral_enable_cmd *cmd; struct sk_buff *skb; int ret; skb = ath12k_wmi_alloc_skb(ar->wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct ath12k_wmi_vdev_spectral_enable_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_VDEV_SPECTRAL_ENABLE_CMD, sizeof(*cmd)); cmd->vdev_id = cpu_to_le32(vdev_id); cmd->trigger_cmd = cpu_to_le32(trigger); cmd->enable_cmd = cpu_to_le32(enable); ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "WMI spectral enable cmd vdev id 0x%x\n", vdev_id); ret = ath12k_wmi_cmd_send(ar->wmi, skb, WMI_VDEV_SPECTRAL_SCAN_ENABLE_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to send spectral enable wmi cmd\n"); goto err; } return 0; err: dev_kfree_skb(skb); return ret; } int ath12k_wmi_pdev_dma_ring_cfg(struct ath12k *ar, struct ath12k_wmi_pdev_dma_ring_cfg_arg *arg) { struct ath12k_wmi_pdev_dma_ring_cfg_req_cmd *cmd; struct sk_buff *skb; int ret; skb = ath12k_wmi_alloc_skb(ar->wmi->wmi_ab, sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct ath12k_wmi_pdev_dma_ring_cfg_req_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_DMA_RING_CFG_REQ, sizeof(*cmd)); cmd->pdev_id = cpu_to_le32(DP_SW2HW_MACID(arg->pdev_id)); cmd->module_id = cpu_to_le32(arg->module_id); cmd->base_paddr_lo = cpu_to_le32(arg->base_paddr_lo); cmd->base_paddr_hi = cpu_to_le32(arg->base_paddr_hi); cmd->head_idx_paddr_lo = cpu_to_le32(arg->head_idx_paddr_lo); cmd->head_idx_paddr_hi = cpu_to_le32(arg->head_idx_paddr_hi); cmd->tail_idx_paddr_lo = cpu_to_le32(arg->tail_idx_paddr_lo); cmd->tail_idx_paddr_hi = cpu_to_le32(arg->tail_idx_paddr_hi); cmd->num_elems = cpu_to_le32(arg->num_elems); cmd->buf_size = cpu_to_le32(arg->buf_size); cmd->num_resp_per_event = cpu_to_le32(arg->num_resp_per_event); cmd->event_timeout_ms = cpu_to_le32(arg->event_timeout_ms); ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "WMI DMA ring cfg req cmd pdev_id 0x%x\n", arg->pdev_id); ret = ath12k_wmi_cmd_send(ar->wmi, skb, WMI_PDEV_DMA_RING_CFG_REQ_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to send dma ring cfg req wmi cmd\n"); goto err; } return 0; err: dev_kfree_skb(skb); return ret; } static int ath12k_wmi_dma_buf_entry_parse(struct ath12k_base *soc, u16 tag, u16 len, const void *ptr, void *data) { struct ath12k_wmi_dma_buf_release_arg *arg = data; if (tag != WMI_TAG_DMA_BUF_RELEASE_ENTRY) return -EPROTO; if (arg->num_buf_entry >= le32_to_cpu(arg->fixed.num_buf_release_entry)) return -ENOBUFS; arg->num_buf_entry++; return 0; } static int ath12k_wmi_dma_buf_meta_parse(struct ath12k_base *soc, u16 tag, u16 len, const void *ptr, void *data) { struct ath12k_wmi_dma_buf_release_arg *arg = data; if (tag != WMI_TAG_DMA_BUF_RELEASE_SPECTRAL_META_DATA) return -EPROTO; if (arg->num_meta >= le32_to_cpu(arg->fixed.num_meta_data_entry)) return -ENOBUFS; arg->num_meta++; return 0; } static int ath12k_wmi_dma_buf_parse(struct ath12k_base *ab, u16 tag, u16 len, const void *ptr, void *data) { struct ath12k_wmi_dma_buf_release_arg *arg = data; const struct ath12k_wmi_dma_buf_release_fixed_params *fixed; u32 pdev_id; int ret; switch (tag) { case WMI_TAG_DMA_BUF_RELEASE: fixed = ptr; arg->fixed = *fixed; pdev_id = DP_HW2SW_MACID(le32_to_cpu(fixed->pdev_id)); arg->fixed.pdev_id = cpu_to_le32(pdev_id); break; case WMI_TAG_ARRAY_STRUCT: if (!arg->buf_entry_done) { arg->num_buf_entry = 0; arg->buf_entry = ptr; ret = ath12k_wmi_tlv_iter(ab, ptr, len, ath12k_wmi_dma_buf_entry_parse, arg); if (ret) { ath12k_warn(ab, "failed to parse dma buf entry tlv %d\n", ret); return ret; } arg->buf_entry_done = true; } else if (!arg->meta_data_done) { arg->num_meta = 0; arg->meta_data = ptr; ret = ath12k_wmi_tlv_iter(ab, ptr, len, ath12k_wmi_dma_buf_meta_parse, arg); if (ret) { ath12k_warn(ab, "failed to parse dma buf meta tlv %d\n", ret); return ret; } arg->meta_data_done = true; } break; default: break; } return 0; } static void ath12k_wmi_pdev_dma_ring_buf_release_event(struct ath12k_base *ab, struct sk_buff *skb) { struct ath12k_wmi_dma_buf_release_arg arg = {}; struct ath12k_dbring_buf_release_event param; int ret; ret = ath12k_wmi_tlv_iter(ab, skb->data, skb->len, ath12k_wmi_dma_buf_parse, &arg); if (ret) { ath12k_warn(ab, "failed to parse dma buf release tlv %d\n", ret); return; } param.fixed = arg.fixed; param.buf_entry = arg.buf_entry; param.num_buf_entry = arg.num_buf_entry; param.meta_data = arg.meta_data; param.num_meta = arg.num_meta; ret = ath12k_dbring_buffer_release_event(ab, ¶m); if (ret) { ath12k_warn(ab, "failed to handle dma buf release event %d\n", ret); return; } } static int ath12k_wmi_hw_mode_caps_parse(struct ath12k_base *soc, u16 tag, u16 len, const void *ptr, void *data) { struct ath12k_wmi_svc_rdy_ext_parse *svc_rdy_ext = data; struct ath12k_wmi_hw_mode_cap_params *hw_mode_cap; u32 phy_map = 0; if (tag != WMI_TAG_HW_MODE_CAPABILITIES) return -EPROTO; if (svc_rdy_ext->n_hw_mode_caps >= svc_rdy_ext->arg.num_hw_modes) return -ENOBUFS; hw_mode_cap = container_of(ptr, struct ath12k_wmi_hw_mode_cap_params, hw_mode_id); svc_rdy_ext->n_hw_mode_caps++; phy_map = le32_to_cpu(hw_mode_cap->phy_id_map); svc_rdy_ext->tot_phy_id += fls(phy_map); return 0; } static int ath12k_wmi_hw_mode_caps(struct ath12k_base *soc, u16 len, const void *ptr, void *data) { struct ath12k_wmi_svc_rdy_ext_parse *svc_rdy_ext = data; const struct ath12k_wmi_hw_mode_cap_params *hw_mode_caps; enum wmi_host_hw_mode_config_type mode, pref; u32 i; int ret; svc_rdy_ext->n_hw_mode_caps = 0; svc_rdy_ext->hw_mode_caps = ptr; ret = ath12k_wmi_tlv_iter(soc, ptr, len, ath12k_wmi_hw_mode_caps_parse, svc_rdy_ext); if (ret) { ath12k_warn(soc, "failed to parse tlv %d\n", ret); return ret; } for (i = 0 ; i < svc_rdy_ext->n_hw_mode_caps; i++) { hw_mode_caps = &svc_rdy_ext->hw_mode_caps[i]; mode = le32_to_cpu(hw_mode_caps->hw_mode_id); if (mode >= WMI_HOST_HW_MODE_MAX) continue; pref = soc->wmi_ab.preferred_hw_mode; if (ath12k_hw_mode_pri_map[mode] < ath12k_hw_mode_pri_map[pref]) { svc_rdy_ext->pref_hw_mode_caps = *hw_mode_caps; soc->wmi_ab.preferred_hw_mode = mode; } } ath12k_dbg(soc, ATH12K_DBG_WMI, "preferred_hw_mode:%d\n", soc->wmi_ab.preferred_hw_mode); if (soc->wmi_ab.preferred_hw_mode == WMI_HOST_HW_MODE_MAX) return -EINVAL; return 0; } static int ath12k_wmi_mac_phy_caps_parse(struct ath12k_base *soc, u16 tag, u16 len, const void *ptr, void *data) { struct ath12k_wmi_svc_rdy_ext_parse *svc_rdy_ext = data; if (tag != WMI_TAG_MAC_PHY_CAPABILITIES) return -EPROTO; if (svc_rdy_ext->n_mac_phy_caps >= svc_rdy_ext->tot_phy_id) return -ENOBUFS; len = min_t(u16, len, sizeof(struct ath12k_wmi_mac_phy_caps_params)); if (!svc_rdy_ext->n_mac_phy_caps) { svc_rdy_ext->mac_phy_caps = kzalloc((svc_rdy_ext->tot_phy_id) * len, GFP_ATOMIC); if (!svc_rdy_ext->mac_phy_caps) return -ENOMEM; } memcpy(svc_rdy_ext->mac_phy_caps + svc_rdy_ext->n_mac_phy_caps, ptr, len); svc_rdy_ext->n_mac_phy_caps++; return 0; } static int ath12k_wmi_ext_hal_reg_caps_parse(struct ath12k_base *soc, u16 tag, u16 len, const void *ptr, void *data) { struct ath12k_wmi_svc_rdy_ext_parse *svc_rdy_ext = data; if (tag != WMI_TAG_HAL_REG_CAPABILITIES_EXT) return -EPROTO; if (svc_rdy_ext->n_ext_hal_reg_caps >= svc_rdy_ext->arg.num_phy) return -ENOBUFS; svc_rdy_ext->n_ext_hal_reg_caps++; return 0; } static int ath12k_wmi_ext_hal_reg_caps(struct ath12k_base *soc, u16 len, const void *ptr, void *data) { struct ath12k_wmi_pdev *wmi_handle = &soc->wmi_ab.wmi[0]; struct ath12k_wmi_svc_rdy_ext_parse *svc_rdy_ext = data; struct ath12k_wmi_hal_reg_capabilities_ext_arg reg_cap; int ret; u32 i; svc_rdy_ext->n_ext_hal_reg_caps = 0; svc_rdy_ext->ext_hal_reg_caps = ptr; ret = ath12k_wmi_tlv_iter(soc, ptr, len, ath12k_wmi_ext_hal_reg_caps_parse, svc_rdy_ext); if (ret) { ath12k_warn(soc, "failed to parse tlv %d\n", ret); return ret; } for (i = 0; i < svc_rdy_ext->arg.num_phy; i++) { ret = ath12k_pull_reg_cap_svc_rdy_ext(wmi_handle, svc_rdy_ext->soc_hal_reg_caps, svc_rdy_ext->ext_hal_reg_caps, i, ®_cap); if (ret) { ath12k_warn(soc, "failed to extract reg cap %d\n", i); return ret; } soc->hal_reg_cap[reg_cap.phy_id] = reg_cap; } return 0; } static int ath12k_wmi_ext_soc_hal_reg_caps_parse(struct ath12k_base *soc, u16 len, const void *ptr, void *data) { struct ath12k_wmi_pdev *wmi_handle = &soc->wmi_ab.wmi[0]; struct ath12k_wmi_svc_rdy_ext_parse *svc_rdy_ext = data; u8 hw_mode_id = le32_to_cpu(svc_rdy_ext->pref_hw_mode_caps.hw_mode_id); u32 phy_id_map; int pdev_index = 0; int ret; svc_rdy_ext->soc_hal_reg_caps = ptr; svc_rdy_ext->arg.num_phy = le32_to_cpu(svc_rdy_ext->soc_hal_reg_caps->num_phy); soc->num_radios = 0; phy_id_map = le32_to_cpu(svc_rdy_ext->pref_hw_mode_caps.phy_id_map); while (phy_id_map && soc->num_radios < MAX_RADIOS) { ret = ath12k_pull_mac_phy_cap_svc_ready_ext(wmi_handle, svc_rdy_ext, hw_mode_id, soc->num_radios, &soc->pdevs[pdev_index]); if (ret) { ath12k_warn(soc, "failed to extract mac caps, idx :%d\n", soc->num_radios); return ret; } soc->num_radios++; /* For single_pdev_only targets, * save mac_phy capability in the same pdev */ if (soc->hw_params->single_pdev_only) pdev_index = 0; else pdev_index = soc->num_radios; /* TODO: mac_phy_cap prints */ phy_id_map >>= 1; } if (soc->hw_params->single_pdev_only) { soc->num_radios = 1; soc->pdevs[0].pdev_id = 0; } return 0; } static int ath12k_wmi_dma_ring_caps_parse(struct ath12k_base *soc, u16 tag, u16 len, const void *ptr, void *data) { struct ath12k_wmi_dma_ring_caps_parse *parse = data; if (tag != WMI_TAG_DMA_RING_CAPABILITIES) return -EPROTO; parse->n_dma_ring_caps++; return 0; } static int ath12k_wmi_alloc_dbring_caps(struct ath12k_base *ab, u32 num_cap) { size_t sz; void *ptr; sz = num_cap * sizeof(struct ath12k_dbring_cap); ptr = kzalloc(sz, GFP_ATOMIC); if (!ptr) return -ENOMEM; ab->db_caps = ptr; ab->num_db_cap = num_cap; return 0; } static void ath12k_wmi_free_dbring_caps(struct ath12k_base *ab) { kfree(ab->db_caps); ab->db_caps = NULL; } static int ath12k_wmi_dma_ring_caps(struct ath12k_base *ab, u16 len, const void *ptr, void *data) { struct ath12k_wmi_dma_ring_caps_parse *dma_caps_parse = data; struct ath12k_wmi_dma_ring_caps_params *dma_caps; struct ath12k_dbring_cap *dir_buff_caps; int ret; u32 i; dma_caps_parse->n_dma_ring_caps = 0; dma_caps = (struct ath12k_wmi_dma_ring_caps_params *)ptr; ret = ath12k_wmi_tlv_iter(ab, ptr, len, ath12k_wmi_dma_ring_caps_parse, dma_caps_parse); if (ret) { ath12k_warn(ab, "failed to parse dma ring caps tlv %d\n", ret); return ret; } if (!dma_caps_parse->n_dma_ring_caps) return 0; if (ab->num_db_cap) { ath12k_warn(ab, "Already processed, so ignoring dma ring caps\n"); return 0; } ret = ath12k_wmi_alloc_dbring_caps(ab, dma_caps_parse->n_dma_ring_caps); if (ret) return ret; dir_buff_caps = ab->db_caps; for (i = 0; i < dma_caps_parse->n_dma_ring_caps; i++) { if (le32_to_cpu(dma_caps[i].module_id) >= WMI_DIRECT_BUF_MAX) { ath12k_warn(ab, "Invalid module id %d\n", le32_to_cpu(dma_caps[i].module_id)); ret = -EINVAL; goto free_dir_buff; } dir_buff_caps[i].id = le32_to_cpu(dma_caps[i].module_id); dir_buff_caps[i].pdev_id = DP_HW2SW_MACID(le32_to_cpu(dma_caps[i].pdev_id)); dir_buff_caps[i].min_elem = le32_to_cpu(dma_caps[i].min_elem); dir_buff_caps[i].min_buf_sz = le32_to_cpu(dma_caps[i].min_buf_sz); dir_buff_caps[i].min_buf_align = le32_to_cpu(dma_caps[i].min_buf_align); } return 0; free_dir_buff: ath12k_wmi_free_dbring_caps(ab); return ret; } static int ath12k_wmi_svc_rdy_ext_parse(struct ath12k_base *ab, u16 tag, u16 len, const void *ptr, void *data) { struct ath12k_wmi_pdev *wmi_handle = &ab->wmi_ab.wmi[0]; struct ath12k_wmi_svc_rdy_ext_parse *svc_rdy_ext = data; int ret; switch (tag) { case WMI_TAG_SERVICE_READY_EXT_EVENT: ret = ath12k_pull_svc_ready_ext(wmi_handle, ptr, &svc_rdy_ext->arg); if (ret) { ath12k_warn(ab, "unable to extract ext params\n"); return ret; } break; case WMI_TAG_SOC_MAC_PHY_HW_MODE_CAPS: svc_rdy_ext->hw_caps = ptr; svc_rdy_ext->arg.num_hw_modes = le32_to_cpu(svc_rdy_ext->hw_caps->num_hw_modes); break; case WMI_TAG_SOC_HAL_REG_CAPABILITIES: ret = ath12k_wmi_ext_soc_hal_reg_caps_parse(ab, len, ptr, svc_rdy_ext); if (ret) return ret; break; case WMI_TAG_ARRAY_STRUCT: if (!svc_rdy_ext->hw_mode_done) { ret = ath12k_wmi_hw_mode_caps(ab, len, ptr, svc_rdy_ext); if (ret) return ret; svc_rdy_ext->hw_mode_done = true; } else if (!svc_rdy_ext->mac_phy_done) { svc_rdy_ext->n_mac_phy_caps = 0; ret = ath12k_wmi_tlv_iter(ab, ptr, len, ath12k_wmi_mac_phy_caps_parse, svc_rdy_ext); if (ret) { ath12k_warn(ab, "failed to parse tlv %d\n", ret); return ret; } svc_rdy_ext->mac_phy_done = true; } else if (!svc_rdy_ext->ext_hal_reg_done) { ret = ath12k_wmi_ext_hal_reg_caps(ab, len, ptr, svc_rdy_ext); if (ret) return ret; svc_rdy_ext->ext_hal_reg_done = true; } else if (!svc_rdy_ext->mac_phy_chainmask_combo_done) { svc_rdy_ext->mac_phy_chainmask_combo_done = true; } else if (!svc_rdy_ext->mac_phy_chainmask_cap_done) { svc_rdy_ext->mac_phy_chainmask_cap_done = true; } else if (!svc_rdy_ext->oem_dma_ring_cap_done) { svc_rdy_ext->oem_dma_ring_cap_done = true; } else if (!svc_rdy_ext->dma_ring_cap_done) { ret = ath12k_wmi_dma_ring_caps(ab, len, ptr, &svc_rdy_ext->dma_caps_parse); if (ret) return ret; svc_rdy_ext->dma_ring_cap_done = true; } break; default: break; } return 0; } static int ath12k_service_ready_ext_event(struct ath12k_base *ab, struct sk_buff *skb) { struct ath12k_wmi_svc_rdy_ext_parse svc_rdy_ext = { }; int ret; ret = ath12k_wmi_tlv_iter(ab, skb->data, skb->len, ath12k_wmi_svc_rdy_ext_parse, &svc_rdy_ext); if (ret) { ath12k_warn(ab, "failed to parse tlv %d\n", ret); goto err; } if (!test_bit(WMI_TLV_SERVICE_EXT2_MSG, ab->wmi_ab.svc_map)) complete(&ab->wmi_ab.service_ready); kfree(svc_rdy_ext.mac_phy_caps); return 0; err: ath12k_wmi_free_dbring_caps(ab); return ret; } static int ath12k_wmi_svc_rdy_ext2_parse(struct ath12k_base *ab, u16 tag, u16 len, const void *ptr, void *data) { struct ath12k_wmi_svc_rdy_ext2_parse *parse = data; int ret; switch (tag) { case WMI_TAG_ARRAY_STRUCT: if (!parse->dma_ring_cap_done) { ret = ath12k_wmi_dma_ring_caps(ab, len, ptr, &parse->dma_caps_parse); if (ret) return ret; parse->dma_ring_cap_done = true; } break; default: break; } return 0; } static int ath12k_service_ready_ext2_event(struct ath12k_base *ab, struct sk_buff *skb) { struct ath12k_wmi_svc_rdy_ext2_parse svc_rdy_ext2 = { }; int ret; ret = ath12k_wmi_tlv_iter(ab, skb->data, skb->len, ath12k_wmi_svc_rdy_ext2_parse, &svc_rdy_ext2); if (ret) { ath12k_warn(ab, "failed to parse ext2 event tlv %d\n", ret); goto err; } complete(&ab->wmi_ab.service_ready); return 0; err: ath12k_wmi_free_dbring_caps(ab); return ret; } static int ath12k_pull_vdev_start_resp_tlv(struct ath12k_base *ab, struct sk_buff *skb, struct wmi_vdev_start_resp_event *vdev_rsp) { const void **tb; const struct wmi_vdev_start_resp_event *ev; int ret; tb = ath12k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath12k_warn(ab, "failed to parse tlv: %d\n", ret); return ret; } ev = tb[WMI_TAG_VDEV_START_RESPONSE_EVENT]; if (!ev) { ath12k_warn(ab, "failed to fetch vdev start resp ev"); kfree(tb); return -EPROTO; } *vdev_rsp = *ev; kfree(tb); return 0; } static struct ath12k_reg_rule *create_ext_reg_rules_from_wmi(u32 num_reg_rules, struct ath12k_wmi_reg_rule_ext_params *wmi_reg_rule) { struct ath12k_reg_rule *reg_rule_ptr; u32 count; reg_rule_ptr = kzalloc((num_reg_rules * sizeof(*reg_rule_ptr)), GFP_ATOMIC); if (!reg_rule_ptr) return NULL; for (count = 0; count < num_reg_rules; count++) { reg_rule_ptr[count].start_freq = le32_get_bits(wmi_reg_rule[count].freq_info, REG_RULE_START_FREQ); reg_rule_ptr[count].end_freq = le32_get_bits(wmi_reg_rule[count].freq_info, REG_RULE_END_FREQ); reg_rule_ptr[count].max_bw = le32_get_bits(wmi_reg_rule[count].bw_pwr_info, REG_RULE_MAX_BW); reg_rule_ptr[count].reg_power = le32_get_bits(wmi_reg_rule[count].bw_pwr_info, REG_RULE_REG_PWR); reg_rule_ptr[count].ant_gain = le32_get_bits(wmi_reg_rule[count].bw_pwr_info, REG_RULE_ANT_GAIN); reg_rule_ptr[count].flags = le32_get_bits(wmi_reg_rule[count].flag_info, REG_RULE_FLAGS); reg_rule_ptr[count].psd_flag = le32_get_bits(wmi_reg_rule[count].psd_power_info, REG_RULE_PSD_INFO); reg_rule_ptr[count].psd_eirp = le32_get_bits(wmi_reg_rule[count].psd_power_info, REG_RULE_PSD_EIRP); } return reg_rule_ptr; } static int ath12k_pull_reg_chan_list_ext_update_ev(struct ath12k_base *ab, struct sk_buff *skb, struct ath12k_reg_info *reg_info) { const void **tb; const struct wmi_reg_chan_list_cc_ext_event *ev; struct ath12k_wmi_reg_rule_ext_params *ext_wmi_reg_rule; u32 num_2g_reg_rules, num_5g_reg_rules; u32 num_6g_reg_rules_ap[WMI_REG_CURRENT_MAX_AP_TYPE]; u32 num_6g_reg_rules_cl[WMI_REG_CURRENT_MAX_AP_TYPE][WMI_REG_MAX_CLIENT_TYPE]; u32 total_reg_rules = 0; int ret, i, j; ath12k_dbg(ab, ATH12K_DBG_WMI, "processing regulatory ext channel list\n"); tb = ath12k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath12k_warn(ab, "failed to parse tlv: %d\n", ret); return ret; } ev = tb[WMI_TAG_REG_CHAN_LIST_CC_EXT_EVENT]; if (!ev) { ath12k_warn(ab, "failed to fetch reg chan list ext update ev\n"); kfree(tb); return -EPROTO; } reg_info->num_2g_reg_rules = le32_to_cpu(ev->num_2g_reg_rules); reg_info->num_5g_reg_rules = le32_to_cpu(ev->num_5g_reg_rules); reg_info->num_6g_reg_rules_ap[WMI_REG_INDOOR_AP] = le32_to_cpu(ev->num_6g_reg_rules_ap_lpi); reg_info->num_6g_reg_rules_ap[WMI_REG_STD_POWER_AP] = le32_to_cpu(ev->num_6g_reg_rules_ap_sp); reg_info->num_6g_reg_rules_ap[WMI_REG_VLP_AP] = le32_to_cpu(ev->num_6g_reg_rules_ap_vlp); for (i = 0; i < WMI_REG_MAX_CLIENT_TYPE; i++) { reg_info->num_6g_reg_rules_cl[WMI_REG_INDOOR_AP][i] = le32_to_cpu(ev->num_6g_reg_rules_cl_lpi[i]); reg_info->num_6g_reg_rules_cl[WMI_REG_STD_POWER_AP][i] = le32_to_cpu(ev->num_6g_reg_rules_cl_sp[i]); reg_info->num_6g_reg_rules_cl[WMI_REG_VLP_AP][i] = le32_to_cpu(ev->num_6g_reg_rules_cl_vlp[i]); } num_2g_reg_rules = reg_info->num_2g_reg_rules; total_reg_rules += num_2g_reg_rules; num_5g_reg_rules = reg_info->num_5g_reg_rules; total_reg_rules += num_5g_reg_rules; if (num_2g_reg_rules > MAX_REG_RULES || num_5g_reg_rules > MAX_REG_RULES) { ath12k_warn(ab, "Num reg rules for 2G/5G exceeds max limit (num_2g_reg_rules: %d num_5g_reg_rules: %d max_rules: %d)\n", num_2g_reg_rules, num_5g_reg_rules, MAX_REG_RULES); kfree(tb); return -EINVAL; } for (i = 0; i < WMI_REG_CURRENT_MAX_AP_TYPE; i++) { num_6g_reg_rules_ap[i] = reg_info->num_6g_reg_rules_ap[i]; if (num_6g_reg_rules_ap[i] > MAX_6G_REG_RULES) { ath12k_warn(ab, "Num 6G reg rules for AP mode(%d) exceeds max limit (num_6g_reg_rules_ap: %d, max_rules: %d)\n", i, num_6g_reg_rules_ap[i], MAX_6G_REG_RULES); kfree(tb); return -EINVAL; } total_reg_rules += num_6g_reg_rules_ap[i]; } for (i = 0; i < WMI_REG_MAX_CLIENT_TYPE; i++) { num_6g_reg_rules_cl[WMI_REG_INDOOR_AP][i] = reg_info->num_6g_reg_rules_cl[WMI_REG_INDOOR_AP][i]; total_reg_rules += num_6g_reg_rules_cl[WMI_REG_INDOOR_AP][i]; num_6g_reg_rules_cl[WMI_REG_STD_POWER_AP][i] = reg_info->num_6g_reg_rules_cl[WMI_REG_STD_POWER_AP][i]; total_reg_rules += num_6g_reg_rules_cl[WMI_REG_STD_POWER_AP][i]; num_6g_reg_rules_cl[WMI_REG_VLP_AP][i] = reg_info->num_6g_reg_rules_cl[WMI_REG_VLP_AP][i]; total_reg_rules += num_6g_reg_rules_cl[WMI_REG_VLP_AP][i]; if (num_6g_reg_rules_cl[WMI_REG_INDOOR_AP][i] > MAX_6G_REG_RULES || num_6g_reg_rules_cl[WMI_REG_STD_POWER_AP][i] > MAX_6G_REG_RULES || num_6g_reg_rules_cl[WMI_REG_VLP_AP][i] > MAX_6G_REG_RULES) { ath12k_warn(ab, "Num 6g client reg rules exceeds max limit, for client(type: %d)\n", i); kfree(tb); return -EINVAL; } } if (!total_reg_rules) { ath12k_warn(ab, "No reg rules available\n"); kfree(tb); return -EINVAL; } memcpy(reg_info->alpha2, &ev->alpha2, REG_ALPHA2_LEN); /* FIXME: Currently FW includes 6G reg rule also in 5G rule * list for country US. * Having same 6G reg rule in 5G and 6G rules list causes * intersect check to be true, and same rules will be shown * multiple times in iw cmd. So added hack below to avoid * parsing 6G rule from 5G reg rule list, and this can be * removed later, after FW updates to remove 6G reg rule * from 5G rules list. */ if (memcmp(reg_info->alpha2, "US", 2) == 0) { reg_info->num_5g_reg_rules = REG_US_5G_NUM_REG_RULES; num_5g_reg_rules = reg_info->num_5g_reg_rules; } reg_info->dfs_region = le32_to_cpu(ev->dfs_region); reg_info->phybitmap = le32_to_cpu(ev->phybitmap); reg_info->num_phy = le32_to_cpu(ev->num_phy); reg_info->phy_id = le32_to_cpu(ev->phy_id); reg_info->ctry_code = le32_to_cpu(ev->country_id); reg_info->reg_dmn_pair = le32_to_cpu(ev->domain_code); switch (le32_to_cpu(ev->status_code)) { case WMI_REG_SET_CC_STATUS_PASS: reg_info->status_code = REG_SET_CC_STATUS_PASS; break; case WMI_REG_CURRENT_ALPHA2_NOT_FOUND: reg_info->status_code = REG_CURRENT_ALPHA2_NOT_FOUND; break; case WMI_REG_INIT_ALPHA2_NOT_FOUND: reg_info->status_code = REG_INIT_ALPHA2_NOT_FOUND; break; case WMI_REG_SET_CC_CHANGE_NOT_ALLOWED: reg_info->status_code = REG_SET_CC_CHANGE_NOT_ALLOWED; break; case WMI_REG_SET_CC_STATUS_NO_MEMORY: reg_info->status_code = REG_SET_CC_STATUS_NO_MEMORY; break; case WMI_REG_SET_CC_STATUS_FAIL: reg_info->status_code = REG_SET_CC_STATUS_FAIL; break; } reg_info->is_ext_reg_event = true; reg_info->min_bw_2g = le32_to_cpu(ev->min_bw_2g); reg_info->max_bw_2g = le32_to_cpu(ev->max_bw_2g); reg_info->min_bw_5g = le32_to_cpu(ev->min_bw_5g); reg_info->max_bw_5g = le32_to_cpu(ev->max_bw_5g); reg_info->min_bw_6g_ap[WMI_REG_INDOOR_AP] = le32_to_cpu(ev->min_bw_6g_ap_lpi); reg_info->max_bw_6g_ap[WMI_REG_INDOOR_AP] = le32_to_cpu(ev->max_bw_6g_ap_lpi); reg_info->min_bw_6g_ap[WMI_REG_STD_POWER_AP] = le32_to_cpu(ev->min_bw_6g_ap_sp); reg_info->max_bw_6g_ap[WMI_REG_STD_POWER_AP] = le32_to_cpu(ev->max_bw_6g_ap_sp); reg_info->min_bw_6g_ap[WMI_REG_VLP_AP] = le32_to_cpu(ev->min_bw_6g_ap_vlp); reg_info->max_bw_6g_ap[WMI_REG_VLP_AP] = le32_to_cpu(ev->max_bw_6g_ap_vlp); for (i = 0; i < WMI_REG_MAX_CLIENT_TYPE; i++) { reg_info->min_bw_6g_client[WMI_REG_INDOOR_AP][i] = le32_to_cpu(ev->min_bw_6g_client_lpi[i]); reg_info->max_bw_6g_client[WMI_REG_INDOOR_AP][i] = le32_to_cpu(ev->max_bw_6g_client_lpi[i]); reg_info->min_bw_6g_client[WMI_REG_STD_POWER_AP][i] = le32_to_cpu(ev->min_bw_6g_client_sp[i]); reg_info->max_bw_6g_client[WMI_REG_STD_POWER_AP][i] = le32_to_cpu(ev->max_bw_6g_client_sp[i]); reg_info->min_bw_6g_client[WMI_REG_VLP_AP][i] = le32_to_cpu(ev->min_bw_6g_client_vlp[i]); reg_info->max_bw_6g_client[WMI_REG_VLP_AP][i] = le32_to_cpu(ev->max_bw_6g_client_vlp[i]); } ath12k_dbg(ab, ATH12K_DBG_WMI, "%s:cc_ext %s dsf %d BW: min_2g %d max_2g %d min_5g %d max_5g %d", __func__, reg_info->alpha2, reg_info->dfs_region, reg_info->min_bw_2g, reg_info->max_bw_2g, reg_info->min_bw_5g, reg_info->max_bw_5g); ath12k_dbg(ab, ATH12K_DBG_WMI, "num_2g_reg_rules %d num_5g_reg_rules %d", num_2g_reg_rules, num_5g_reg_rules); ath12k_dbg(ab, ATH12K_DBG_WMI, "num_6g_reg_rules_ap_lpi: %d num_6g_reg_rules_ap_sp: %d num_6g_reg_rules_ap_vlp: %d", num_6g_reg_rules_ap[WMI_REG_INDOOR_AP], num_6g_reg_rules_ap[WMI_REG_STD_POWER_AP], num_6g_reg_rules_ap[WMI_REG_VLP_AP]); ath12k_dbg(ab, ATH12K_DBG_WMI, "6g Regular client: num_6g_reg_rules_lpi: %d num_6g_reg_rules_sp: %d num_6g_reg_rules_vlp: %d", num_6g_reg_rules_cl[WMI_REG_INDOOR_AP][WMI_REG_DEFAULT_CLIENT], num_6g_reg_rules_cl[WMI_REG_STD_POWER_AP][WMI_REG_DEFAULT_CLIENT], num_6g_reg_rules_cl[WMI_REG_VLP_AP][WMI_REG_DEFAULT_CLIENT]); ath12k_dbg(ab, ATH12K_DBG_WMI, "6g Subordinate client: num_6g_reg_rules_lpi: %d num_6g_reg_rules_sp: %d num_6g_reg_rules_vlp: %d", num_6g_reg_rules_cl[WMI_REG_INDOOR_AP][WMI_REG_SUBORDINATE_CLIENT], num_6g_reg_rules_cl[WMI_REG_STD_POWER_AP][WMI_REG_SUBORDINATE_CLIENT], num_6g_reg_rules_cl[WMI_REG_VLP_AP][WMI_REG_SUBORDINATE_CLIENT]); ext_wmi_reg_rule = (struct ath12k_wmi_reg_rule_ext_params *)((u8 *)ev + sizeof(*ev) + sizeof(struct wmi_tlv)); if (num_2g_reg_rules) { reg_info->reg_rules_2g_ptr = create_ext_reg_rules_from_wmi(num_2g_reg_rules, ext_wmi_reg_rule); if (!reg_info->reg_rules_2g_ptr) { kfree(tb); ath12k_warn(ab, "Unable to Allocate memory for 2g rules\n"); return -ENOMEM; } } if (num_5g_reg_rules) { ext_wmi_reg_rule += num_2g_reg_rules; reg_info->reg_rules_5g_ptr = create_ext_reg_rules_from_wmi(num_5g_reg_rules, ext_wmi_reg_rule); if (!reg_info->reg_rules_5g_ptr) { kfree(tb); ath12k_warn(ab, "Unable to Allocate memory for 5g rules\n"); return -ENOMEM; } } ext_wmi_reg_rule += num_5g_reg_rules; for (i = 0; i < WMI_REG_CURRENT_MAX_AP_TYPE; i++) { reg_info->reg_rules_6g_ap_ptr[i] = create_ext_reg_rules_from_wmi(num_6g_reg_rules_ap[i], ext_wmi_reg_rule); if (!reg_info->reg_rules_6g_ap_ptr[i]) { kfree(tb); ath12k_warn(ab, "Unable to Allocate memory for 6g ap rules\n"); return -ENOMEM; } ext_wmi_reg_rule += num_6g_reg_rules_ap[i]; } for (j = 0; j < WMI_REG_CURRENT_MAX_AP_TYPE; j++) { for (i = 0; i < WMI_REG_MAX_CLIENT_TYPE; i++) { reg_info->reg_rules_6g_client_ptr[j][i] = create_ext_reg_rules_from_wmi(num_6g_reg_rules_cl[j][i], ext_wmi_reg_rule); if (!reg_info->reg_rules_6g_client_ptr[j][i]) { kfree(tb); ath12k_warn(ab, "Unable to Allocate memory for 6g client rules\n"); return -ENOMEM; } ext_wmi_reg_rule += num_6g_reg_rules_cl[j][i]; } } reg_info->client_type = le32_to_cpu(ev->client_type); reg_info->rnr_tpe_usable = ev->rnr_tpe_usable; reg_info->unspecified_ap_usable = ev->unspecified_ap_usable; reg_info->domain_code_6g_ap[WMI_REG_INDOOR_AP] = le32_to_cpu(ev->domain_code_6g_ap_lpi); reg_info->domain_code_6g_ap[WMI_REG_STD_POWER_AP] = le32_to_cpu(ev->domain_code_6g_ap_sp); reg_info->domain_code_6g_ap[WMI_REG_VLP_AP] = le32_to_cpu(ev->domain_code_6g_ap_vlp); for (i = 0; i < WMI_REG_MAX_CLIENT_TYPE; i++) { reg_info->domain_code_6g_client[WMI_REG_INDOOR_AP][i] = le32_to_cpu(ev->domain_code_6g_client_lpi[i]); reg_info->domain_code_6g_client[WMI_REG_STD_POWER_AP][i] = le32_to_cpu(ev->domain_code_6g_client_sp[i]); reg_info->domain_code_6g_client[WMI_REG_VLP_AP][i] = le32_to_cpu(ev->domain_code_6g_client_vlp[i]); } reg_info->domain_code_6g_super_id = le32_to_cpu(ev->domain_code_6g_super_id); ath12k_dbg(ab, ATH12K_DBG_WMI, "6g client_type: %d domain_code_6g_super_id: %d", reg_info->client_type, reg_info->domain_code_6g_super_id); ath12k_dbg(ab, ATH12K_DBG_WMI, "processed regulatory ext channel list\n"); kfree(tb); return 0; } static int ath12k_pull_peer_del_resp_ev(struct ath12k_base *ab, struct sk_buff *skb, struct wmi_peer_delete_resp_event *peer_del_resp) { const void **tb; const struct wmi_peer_delete_resp_event *ev; int ret; tb = ath12k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath12k_warn(ab, "failed to parse tlv: %d\n", ret); return ret; } ev = tb[WMI_TAG_PEER_DELETE_RESP_EVENT]; if (!ev) { ath12k_warn(ab, "failed to fetch peer delete resp ev"); kfree(tb); return -EPROTO; } memset(peer_del_resp, 0, sizeof(*peer_del_resp)); peer_del_resp->vdev_id = ev->vdev_id; ether_addr_copy(peer_del_resp->peer_macaddr.addr, ev->peer_macaddr.addr); kfree(tb); return 0; } static int ath12k_pull_vdev_del_resp_ev(struct ath12k_base *ab, struct sk_buff *skb, u32 *vdev_id) { const void **tb; const struct wmi_vdev_delete_resp_event *ev; int ret; tb = ath12k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath12k_warn(ab, "failed to parse tlv: %d\n", ret); return ret; } ev = tb[WMI_TAG_VDEV_DELETE_RESP_EVENT]; if (!ev) { ath12k_warn(ab, "failed to fetch vdev delete resp ev"); kfree(tb); return -EPROTO; } *vdev_id = le32_to_cpu(ev->vdev_id); kfree(tb); return 0; } static int ath12k_pull_bcn_tx_status_ev(struct ath12k_base *ab, void *evt_buf, u32 len, u32 *vdev_id, u32 *tx_status) { const void **tb; const struct wmi_bcn_tx_status_event *ev; int ret; tb = ath12k_wmi_tlv_parse_alloc(ab, evt_buf, len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath12k_warn(ab, "failed to parse tlv: %d\n", ret); return ret; } ev = tb[WMI_TAG_OFFLOAD_BCN_TX_STATUS_EVENT]; if (!ev) { ath12k_warn(ab, "failed to fetch bcn tx status ev"); kfree(tb); return -EPROTO; } *vdev_id = le32_to_cpu(ev->vdev_id); *tx_status = le32_to_cpu(ev->tx_status); kfree(tb); return 0; } static int ath12k_pull_vdev_stopped_param_tlv(struct ath12k_base *ab, struct sk_buff *skb, u32 *vdev_id) { const void **tb; const struct wmi_vdev_stopped_event *ev; int ret; tb = ath12k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath12k_warn(ab, "failed to parse tlv: %d\n", ret); return ret; } ev = tb[WMI_TAG_VDEV_STOPPED_EVENT]; if (!ev) { ath12k_warn(ab, "failed to fetch vdev stop ev"); kfree(tb); return -EPROTO; } *vdev_id = le32_to_cpu(ev->vdev_id); kfree(tb); return 0; } static int ath12k_wmi_tlv_mgmt_rx_parse(struct ath12k_base *ab, u16 tag, u16 len, const void *ptr, void *data) { struct wmi_tlv_mgmt_rx_parse *parse = data; switch (tag) { case WMI_TAG_MGMT_RX_HDR: parse->fixed = ptr; break; case WMI_TAG_ARRAY_BYTE: if (!parse->frame_buf_done) { parse->frame_buf = ptr; parse->frame_buf_done = true; } break; } return 0; } static int ath12k_pull_mgmt_rx_params_tlv(struct ath12k_base *ab, struct sk_buff *skb, struct ath12k_wmi_mgmt_rx_arg *hdr) { struct wmi_tlv_mgmt_rx_parse parse = { }; const struct ath12k_wmi_mgmt_rx_params *ev; const u8 *frame; int i, ret; ret = ath12k_wmi_tlv_iter(ab, skb->data, skb->len, ath12k_wmi_tlv_mgmt_rx_parse, &parse); if (ret) { ath12k_warn(ab, "failed to parse mgmt rx tlv %d\n", ret); return ret; } ev = parse.fixed; frame = parse.frame_buf; if (!ev || !frame) { ath12k_warn(ab, "failed to fetch mgmt rx hdr"); return -EPROTO; } hdr->pdev_id = le32_to_cpu(ev->pdev_id); hdr->chan_freq = le32_to_cpu(ev->chan_freq); hdr->channel = le32_to_cpu(ev->channel); hdr->snr = le32_to_cpu(ev->snr); hdr->rate = le32_to_cpu(ev->rate); hdr->phy_mode = le32_to_cpu(ev->phy_mode); hdr->buf_len = le32_to_cpu(ev->buf_len); hdr->status = le32_to_cpu(ev->status); hdr->flags = le32_to_cpu(ev->flags); hdr->rssi = a_sle32_to_cpu(ev->rssi); hdr->tsf_delta = le32_to_cpu(ev->tsf_delta); for (i = 0; i < ATH_MAX_ANTENNA; i++) hdr->rssi_ctl[i] = le32_to_cpu(ev->rssi_ctl[i]); if (skb->len < (frame - skb->data) + hdr->buf_len) { ath12k_warn(ab, "invalid length in mgmt rx hdr ev"); return -EPROTO; } /* shift the sk_buff to point to `frame` */ skb_trim(skb, 0); skb_put(skb, frame - skb->data); skb_pull(skb, frame - skb->data); skb_put(skb, hdr->buf_len); return 0; } static int wmi_process_mgmt_tx_comp(struct ath12k *ar, u32 desc_id, u32 status) { struct sk_buff *msdu; struct ieee80211_tx_info *info; struct ath12k_skb_cb *skb_cb; int num_mgmt; spin_lock_bh(&ar->txmgmt_idr_lock); msdu = idr_find(&ar->txmgmt_idr, desc_id); if (!msdu) { ath12k_warn(ar->ab, "received mgmt tx compl for invalid msdu_id: %d\n", desc_id); spin_unlock_bh(&ar->txmgmt_idr_lock); return -ENOENT; } idr_remove(&ar->txmgmt_idr, desc_id); spin_unlock_bh(&ar->txmgmt_idr_lock); skb_cb = ATH12K_SKB_CB(msdu); dma_unmap_single(ar->ab->dev, skb_cb->paddr, msdu->len, DMA_TO_DEVICE); info = IEEE80211_SKB_CB(msdu); if ((!(info->flags & IEEE80211_TX_CTL_NO_ACK)) && !status) info->flags |= IEEE80211_TX_STAT_ACK; ieee80211_tx_status_irqsafe(ar->hw, msdu); num_mgmt = atomic_dec_if_positive(&ar->num_pending_mgmt_tx); /* WARN when we received this event without doing any mgmt tx */ if (num_mgmt < 0) WARN_ON_ONCE(1); if (!num_mgmt) wake_up(&ar->txmgmt_empty_waitq); return 0; } static int ath12k_pull_mgmt_tx_compl_param_tlv(struct ath12k_base *ab, struct sk_buff *skb, struct wmi_mgmt_tx_compl_event *param) { const void **tb; const struct wmi_mgmt_tx_compl_event *ev; int ret; tb = ath12k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath12k_warn(ab, "failed to parse tlv: %d\n", ret); return ret; } ev = tb[WMI_TAG_MGMT_TX_COMPL_EVENT]; if (!ev) { ath12k_warn(ab, "failed to fetch mgmt tx compl ev"); kfree(tb); return -EPROTO; } param->pdev_id = ev->pdev_id; param->desc_id = ev->desc_id; param->status = ev->status; kfree(tb); return 0; } static void ath12k_wmi_event_scan_started(struct ath12k *ar) { lockdep_assert_held(&ar->data_lock); switch (ar->scan.state) { case ATH12K_SCAN_IDLE: case ATH12K_SCAN_RUNNING: case ATH12K_SCAN_ABORTING: ath12k_warn(ar->ab, "received scan started event in an invalid scan state: %s (%d)\n", ath12k_scan_state_str(ar->scan.state), ar->scan.state); break; case ATH12K_SCAN_STARTING: ar->scan.state = ATH12K_SCAN_RUNNING; complete(&ar->scan.started); break; } } static void ath12k_wmi_event_scan_start_failed(struct ath12k *ar) { lockdep_assert_held(&ar->data_lock); switch (ar->scan.state) { case ATH12K_SCAN_IDLE: case ATH12K_SCAN_RUNNING: case ATH12K_SCAN_ABORTING: ath12k_warn(ar->ab, "received scan start failed event in an invalid scan state: %s (%d)\n", ath12k_scan_state_str(ar->scan.state), ar->scan.state); break; case ATH12K_SCAN_STARTING: complete(&ar->scan.started); __ath12k_mac_scan_finish(ar); break; } } static void ath12k_wmi_event_scan_completed(struct ath12k *ar) { lockdep_assert_held(&ar->data_lock); switch (ar->scan.state) { case ATH12K_SCAN_IDLE: case ATH12K_SCAN_STARTING: /* One suspected reason scan can be completed while starting is * if firmware fails to deliver all scan events to the host, * e.g. when transport pipe is full. This has been observed * with spectral scan phyerr events starving wmi transport * pipe. In such case the "scan completed" event should be (and * is) ignored by the host as it may be just firmware's scan * state machine recovering. */ ath12k_warn(ar->ab, "received scan completed event in an invalid scan state: %s (%d)\n", ath12k_scan_state_str(ar->scan.state), ar->scan.state); break; case ATH12K_SCAN_RUNNING: case ATH12K_SCAN_ABORTING: __ath12k_mac_scan_finish(ar); break; } } static void ath12k_wmi_event_scan_bss_chan(struct ath12k *ar) { lockdep_assert_held(&ar->data_lock); switch (ar->scan.state) { case ATH12K_SCAN_IDLE: case ATH12K_SCAN_STARTING: ath12k_warn(ar->ab, "received scan bss chan event in an invalid scan state: %s (%d)\n", ath12k_scan_state_str(ar->scan.state), ar->scan.state); break; case ATH12K_SCAN_RUNNING: case ATH12K_SCAN_ABORTING: ar->scan_channel = NULL; break; } } static void ath12k_wmi_event_scan_foreign_chan(struct ath12k *ar, u32 freq) { lockdep_assert_held(&ar->data_lock); switch (ar->scan.state) { case ATH12K_SCAN_IDLE: case ATH12K_SCAN_STARTING: ath12k_warn(ar->ab, "received scan foreign chan event in an invalid scan state: %s (%d)\n", ath12k_scan_state_str(ar->scan.state), ar->scan.state); break; case ATH12K_SCAN_RUNNING: case ATH12K_SCAN_ABORTING: ar->scan_channel = ieee80211_get_channel(ar->hw->wiphy, freq); break; } } static const char * ath12k_wmi_event_scan_type_str(enum wmi_scan_event_type type, enum wmi_scan_completion_reason reason) { switch (type) { case WMI_SCAN_EVENT_STARTED: return "started"; case WMI_SCAN_EVENT_COMPLETED: switch (reason) { case WMI_SCAN_REASON_COMPLETED: return "completed"; case WMI_SCAN_REASON_CANCELLED: return "completed [cancelled]"; case WMI_SCAN_REASON_PREEMPTED: return "completed [preempted]"; case WMI_SCAN_REASON_TIMEDOUT: return "completed [timedout]"; case WMI_SCAN_REASON_INTERNAL_FAILURE: return "completed [internal err]"; case WMI_SCAN_REASON_MAX: break; } return "completed [unknown]"; case WMI_SCAN_EVENT_BSS_CHANNEL: return "bss channel"; case WMI_SCAN_EVENT_FOREIGN_CHAN: return "foreign channel"; case WMI_SCAN_EVENT_DEQUEUED: return "dequeued"; case WMI_SCAN_EVENT_PREEMPTED: return "preempted"; case WMI_SCAN_EVENT_START_FAILED: return "start failed"; case WMI_SCAN_EVENT_RESTARTED: return "restarted"; case WMI_SCAN_EVENT_FOREIGN_CHAN_EXIT: return "foreign channel exit"; default: return "unknown"; } } static int ath12k_pull_scan_ev(struct ath12k_base *ab, struct sk_buff *skb, struct wmi_scan_event *scan_evt_param) { const void **tb; const struct wmi_scan_event *ev; int ret; tb = ath12k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath12k_warn(ab, "failed to parse tlv: %d\n", ret); return ret; } ev = tb[WMI_TAG_SCAN_EVENT]; if (!ev) { ath12k_warn(ab, "failed to fetch scan ev"); kfree(tb); return -EPROTO; } scan_evt_param->event_type = ev->event_type; scan_evt_param->reason = ev->reason; scan_evt_param->channel_freq = ev->channel_freq; scan_evt_param->scan_req_id = ev->scan_req_id; scan_evt_param->scan_id = ev->scan_id; scan_evt_param->vdev_id = ev->vdev_id; scan_evt_param->tsf_timestamp = ev->tsf_timestamp; kfree(tb); return 0; } static int ath12k_pull_peer_sta_kickout_ev(struct ath12k_base *ab, struct sk_buff *skb, struct wmi_peer_sta_kickout_arg *arg) { const void **tb; const struct wmi_peer_sta_kickout_event *ev; int ret; tb = ath12k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath12k_warn(ab, "failed to parse tlv: %d\n", ret); return ret; } ev = tb[WMI_TAG_PEER_STA_KICKOUT_EVENT]; if (!ev) { ath12k_warn(ab, "failed to fetch peer sta kickout ev"); kfree(tb); return -EPROTO; } arg->mac_addr = ev->peer_macaddr.addr; kfree(tb); return 0; } static int ath12k_pull_roam_ev(struct ath12k_base *ab, struct sk_buff *skb, struct wmi_roam_event *roam_ev) { const void **tb; const struct wmi_roam_event *ev; int ret; tb = ath12k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath12k_warn(ab, "failed to parse tlv: %d\n", ret); return ret; } ev = tb[WMI_TAG_ROAM_EVENT]; if (!ev) { ath12k_warn(ab, "failed to fetch roam ev"); kfree(tb); return -EPROTO; } roam_ev->vdev_id = ev->vdev_id; roam_ev->reason = ev->reason; roam_ev->rssi = ev->rssi; kfree(tb); return 0; } static int freq_to_idx(struct ath12k *ar, int freq) { struct ieee80211_supported_band *sband; int band, ch, idx = 0; for (band = NL80211_BAND_2GHZ; band < NUM_NL80211_BANDS; band++) { if (!ar->mac.sbands[band].channels) continue; sband = ar->hw->wiphy->bands[band]; if (!sband) continue; for (ch = 0; ch < sband->n_channels; ch++, idx++) if (sband->channels[ch].center_freq == freq) goto exit; } exit: return idx; } static int ath12k_pull_chan_info_ev(struct ath12k_base *ab, u8 *evt_buf, u32 len, struct wmi_chan_info_event *ch_info_ev) { const void **tb; const struct wmi_chan_info_event *ev; int ret; tb = ath12k_wmi_tlv_parse_alloc(ab, evt_buf, len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath12k_warn(ab, "failed to parse tlv: %d\n", ret); return ret; } ev = tb[WMI_TAG_CHAN_INFO_EVENT]; if (!ev) { ath12k_warn(ab, "failed to fetch chan info ev"); kfree(tb); return -EPROTO; } ch_info_ev->err_code = ev->err_code; ch_info_ev->freq = ev->freq; ch_info_ev->cmd_flags = ev->cmd_flags; ch_info_ev->noise_floor = ev->noise_floor; ch_info_ev->rx_clear_count = ev->rx_clear_count; ch_info_ev->cycle_count = ev->cycle_count; ch_info_ev->chan_tx_pwr_range = ev->chan_tx_pwr_range; ch_info_ev->chan_tx_pwr_tp = ev->chan_tx_pwr_tp; ch_info_ev->rx_frame_count = ev->rx_frame_count; ch_info_ev->tx_frame_cnt = ev->tx_frame_cnt; ch_info_ev->mac_clk_mhz = ev->mac_clk_mhz; ch_info_ev->vdev_id = ev->vdev_id; kfree(tb); return 0; } static int ath12k_pull_pdev_bss_chan_info_ev(struct ath12k_base *ab, struct sk_buff *skb, struct wmi_pdev_bss_chan_info_event *bss_ch_info_ev) { const void **tb; const struct wmi_pdev_bss_chan_info_event *ev; int ret; tb = ath12k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath12k_warn(ab, "failed to parse tlv: %d\n", ret); return ret; } ev = tb[WMI_TAG_PDEV_BSS_CHAN_INFO_EVENT]; if (!ev) { ath12k_warn(ab, "failed to fetch pdev bss chan info ev"); kfree(tb); return -EPROTO; } bss_ch_info_ev->pdev_id = ev->pdev_id; bss_ch_info_ev->freq = ev->freq; bss_ch_info_ev->noise_floor = ev->noise_floor; bss_ch_info_ev->rx_clear_count_low = ev->rx_clear_count_low; bss_ch_info_ev->rx_clear_count_high = ev->rx_clear_count_high; bss_ch_info_ev->cycle_count_low = ev->cycle_count_low; bss_ch_info_ev->cycle_count_high = ev->cycle_count_high; bss_ch_info_ev->tx_cycle_count_low = ev->tx_cycle_count_low; bss_ch_info_ev->tx_cycle_count_high = ev->tx_cycle_count_high; bss_ch_info_ev->rx_cycle_count_low = ev->rx_cycle_count_low; bss_ch_info_ev->rx_cycle_count_high = ev->rx_cycle_count_high; bss_ch_info_ev->rx_bss_cycle_count_low = ev->rx_bss_cycle_count_low; bss_ch_info_ev->rx_bss_cycle_count_high = ev->rx_bss_cycle_count_high; kfree(tb); return 0; } static int ath12k_pull_vdev_install_key_compl_ev(struct ath12k_base *ab, struct sk_buff *skb, struct wmi_vdev_install_key_complete_arg *arg) { const void **tb; const struct wmi_vdev_install_key_compl_event *ev; int ret; tb = ath12k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath12k_warn(ab, "failed to parse tlv: %d\n", ret); return ret; } ev = tb[WMI_TAG_VDEV_INSTALL_KEY_COMPLETE_EVENT]; if (!ev) { ath12k_warn(ab, "failed to fetch vdev install key compl ev"); kfree(tb); return -EPROTO; } arg->vdev_id = le32_to_cpu(ev->vdev_id); arg->macaddr = ev->peer_macaddr.addr; arg->key_idx = le32_to_cpu(ev->key_idx); arg->key_flags = le32_to_cpu(ev->key_flags); arg->status = le32_to_cpu(ev->status); kfree(tb); return 0; } static int ath12k_pull_peer_assoc_conf_ev(struct ath12k_base *ab, struct sk_buff *skb, struct wmi_peer_assoc_conf_arg *peer_assoc_conf) { const void **tb; const struct wmi_peer_assoc_conf_event *ev; int ret; tb = ath12k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath12k_warn(ab, "failed to parse tlv: %d\n", ret); return ret; } ev = tb[WMI_TAG_PEER_ASSOC_CONF_EVENT]; if (!ev) { ath12k_warn(ab, "failed to fetch peer assoc conf ev"); kfree(tb); return -EPROTO; } peer_assoc_conf->vdev_id = le32_to_cpu(ev->vdev_id); peer_assoc_conf->macaddr = ev->peer_macaddr.addr; kfree(tb); return 0; } static int ath12k_pull_pdev_temp_ev(struct ath12k_base *ab, u8 *evt_buf, u32 len, const struct wmi_pdev_temperature_event *ev) { const void **tb; int ret; tb = ath12k_wmi_tlv_parse_alloc(ab, evt_buf, len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath12k_warn(ab, "failed to parse tlv: %d\n", ret); return ret; } ev = tb[WMI_TAG_PDEV_TEMPERATURE_EVENT]; if (!ev) { ath12k_warn(ab, "failed to fetch pdev temp ev"); kfree(tb); return -EPROTO; } kfree(tb); return 0; } static void ath12k_wmi_op_ep_tx_credits(struct ath12k_base *ab) { /* try to send pending beacons first. they take priority */ wake_up(&ab->wmi_ab.tx_credits_wq); } static void ath12k_wmi_htc_tx_complete(struct ath12k_base *ab, struct sk_buff *skb) { dev_kfree_skb(skb); } static bool ath12k_reg_is_world_alpha(char *alpha) { return alpha[0] == '0' && alpha[1] == '0'; } static int ath12k_reg_chan_list_event(struct ath12k_base *ab, struct sk_buff *skb) { struct ath12k_reg_info *reg_info = NULL; struct ieee80211_regdomain *regd = NULL; bool intersect = false; int ret = 0, pdev_idx, i, j; struct ath12k *ar; reg_info = kzalloc(sizeof(*reg_info), GFP_ATOMIC); if (!reg_info) { ret = -ENOMEM; goto fallback; } ret = ath12k_pull_reg_chan_list_ext_update_ev(ab, skb, reg_info); if (ret) { ath12k_warn(ab, "failed to extract regulatory info from received event\n"); goto fallback; } if (reg_info->status_code != REG_SET_CC_STATUS_PASS) { /* In case of failure to set the requested ctry, * fw retains the current regd. We print a failure info * and return from here. */ ath12k_warn(ab, "Failed to set the requested Country regulatory setting\n"); goto mem_free; } pdev_idx = reg_info->phy_id; if (pdev_idx >= ab->num_radios) { /* Process the event for phy0 only if single_pdev_only * is true. If pdev_idx is valid but not 0, discard the * event. Otherwise, it goes to fallback. */ if (ab->hw_params->single_pdev_only && pdev_idx < ab->hw_params->num_rxmda_per_pdev) goto mem_free; else goto fallback; } /* Avoid multiple overwrites to default regd, during core * stop-start after mac registration. */ if (ab->default_regd[pdev_idx] && !ab->new_regd[pdev_idx] && !memcmp(ab->default_regd[pdev_idx]->alpha2, reg_info->alpha2, 2)) goto mem_free; /* Intersect new rules with default regd if a new country setting was * requested, i.e a default regd was already set during initialization * and the regd coming from this event has a valid country info. */ if (ab->default_regd[pdev_idx] && !ath12k_reg_is_world_alpha((char *) ab->default_regd[pdev_idx]->alpha2) && !ath12k_reg_is_world_alpha((char *)reg_info->alpha2)) intersect = true; regd = ath12k_reg_build_regd(ab, reg_info, intersect); if (!regd) { ath12k_warn(ab, "failed to build regd from reg_info\n"); goto fallback; } spin_lock(&ab->base_lock); if (test_bit(ATH12K_FLAG_REGISTERED, &ab->dev_flags)) { /* Once mac is registered, ar is valid and all CC events from * fw is considered to be received due to user requests * currently. * Free previously built regd before assigning the newly * generated regd to ar. NULL pointer handling will be * taken care by kfree itself. */ ar = ab->pdevs[pdev_idx].ar; kfree(ab->new_regd[pdev_idx]); ab->new_regd[pdev_idx] = regd; ieee80211_queue_work(ar->hw, &ar->regd_update_work); } else { /* Multiple events for the same *ar is not expected. But we * can still clear any previously stored default_regd if we * are receiving this event for the same radio by mistake. * NULL pointer handling will be taken care by kfree itself. */ kfree(ab->default_regd[pdev_idx]); /* This regd would be applied during mac registration */ ab->default_regd[pdev_idx] = regd; } ab->dfs_region = reg_info->dfs_region; spin_unlock(&ab->base_lock); goto mem_free; fallback: /* Fallback to older reg (by sending previous country setting * again if fw has succeeded and we failed to process here. * The Regdomain should be uniform across driver and fw. Since the * FW has processed the command and sent a success status, we expect * this function to succeed as well. If it doesn't, CTRY needs to be * reverted at the fw and the old SCAN_CHAN_LIST cmd needs to be sent. */ /* TODO: This is rare, but still should also be handled */ WARN_ON(1); mem_free: if (reg_info) { kfree(reg_info->reg_rules_2g_ptr); kfree(reg_info->reg_rules_5g_ptr); if (reg_info->is_ext_reg_event) { for (i = 0; i < WMI_REG_CURRENT_MAX_AP_TYPE; i++) kfree(reg_info->reg_rules_6g_ap_ptr[i]); for (j = 0; j < WMI_REG_CURRENT_MAX_AP_TYPE; j++) for (i = 0; i < WMI_REG_MAX_CLIENT_TYPE; i++) kfree(reg_info->reg_rules_6g_client_ptr[j][i]); } kfree(reg_info); } return ret; } static int ath12k_wmi_rdy_parse(struct ath12k_base *ab, u16 tag, u16 len, const void *ptr, void *data) { struct ath12k_wmi_rdy_parse *rdy_parse = data; struct wmi_ready_event fixed_param; struct ath12k_wmi_mac_addr_params *addr_list; struct ath12k_pdev *pdev; u32 num_mac_addr; int i; switch (tag) { case WMI_TAG_READY_EVENT: memset(&fixed_param, 0, sizeof(fixed_param)); memcpy(&fixed_param, (struct wmi_ready_event *)ptr, min_t(u16, sizeof(fixed_param), len)); ab->wlan_init_status = le32_to_cpu(fixed_param.ready_event_min.status); rdy_parse->num_extra_mac_addr = le32_to_cpu(fixed_param.ready_event_min.num_extra_mac_addr); ether_addr_copy(ab->mac_addr, fixed_param.ready_event_min.mac_addr.addr); ab->pktlog_defs_checksum = le32_to_cpu(fixed_param.pktlog_defs_checksum); ab->wmi_ready = true; break; case WMI_TAG_ARRAY_FIXED_STRUCT: addr_list = (struct ath12k_wmi_mac_addr_params *)ptr; num_mac_addr = rdy_parse->num_extra_mac_addr; if (!(ab->num_radios > 1 && num_mac_addr >= ab->num_radios)) break; for (i = 0; i < ab->num_radios; i++) { pdev = &ab->pdevs[i]; ether_addr_copy(pdev->mac_addr, addr_list[i].addr); } ab->pdevs_macaddr_valid = true; break; default: break; } return 0; } static int ath12k_ready_event(struct ath12k_base *ab, struct sk_buff *skb) { struct ath12k_wmi_rdy_parse rdy_parse = { }; int ret; ret = ath12k_wmi_tlv_iter(ab, skb->data, skb->len, ath12k_wmi_rdy_parse, &rdy_parse); if (ret) { ath12k_warn(ab, "failed to parse tlv %d\n", ret); return ret; } complete(&ab->wmi_ab.unified_ready); return 0; } static void ath12k_peer_delete_resp_event(struct ath12k_base *ab, struct sk_buff *skb) { struct wmi_peer_delete_resp_event peer_del_resp; struct ath12k *ar; if (ath12k_pull_peer_del_resp_ev(ab, skb, &peer_del_resp) != 0) { ath12k_warn(ab, "failed to extract peer delete resp"); return; } rcu_read_lock(); ar = ath12k_mac_get_ar_by_vdev_id(ab, le32_to_cpu(peer_del_resp.vdev_id)); if (!ar) { ath12k_warn(ab, "invalid vdev id in peer delete resp ev %d", peer_del_resp.vdev_id); rcu_read_unlock(); return; } complete(&ar->peer_delete_done); rcu_read_unlock(); ath12k_dbg(ab, ATH12K_DBG_WMI, "peer delete resp for vdev id %d addr %pM\n", peer_del_resp.vdev_id, peer_del_resp.peer_macaddr.addr); } static void ath12k_vdev_delete_resp_event(struct ath12k_base *ab, struct sk_buff *skb) { struct ath12k *ar; u32 vdev_id = 0; if (ath12k_pull_vdev_del_resp_ev(ab, skb, &vdev_id) != 0) { ath12k_warn(ab, "failed to extract vdev delete resp"); return; } rcu_read_lock(); ar = ath12k_mac_get_ar_by_vdev_id(ab, vdev_id); if (!ar) { ath12k_warn(ab, "invalid vdev id in vdev delete resp ev %d", vdev_id); rcu_read_unlock(); return; } complete(&ar->vdev_delete_done); rcu_read_unlock(); ath12k_dbg(ab, ATH12K_DBG_WMI, "vdev delete resp for vdev id %d\n", vdev_id); } static const char *ath12k_wmi_vdev_resp_print(u32 vdev_resp_status) { switch (vdev_resp_status) { case WMI_VDEV_START_RESPONSE_INVALID_VDEVID: return "invalid vdev id"; case WMI_VDEV_START_RESPONSE_NOT_SUPPORTED: return "not supported"; case WMI_VDEV_START_RESPONSE_DFS_VIOLATION: return "dfs violation"; case WMI_VDEV_START_RESPONSE_INVALID_REGDOMAIN: return "invalid regdomain"; default: return "unknown"; } } static void ath12k_vdev_start_resp_event(struct ath12k_base *ab, struct sk_buff *skb) { struct wmi_vdev_start_resp_event vdev_start_resp; struct ath12k *ar; u32 status; if (ath12k_pull_vdev_start_resp_tlv(ab, skb, &vdev_start_resp) != 0) { ath12k_warn(ab, "failed to extract vdev start resp"); return; } rcu_read_lock(); ar = ath12k_mac_get_ar_by_vdev_id(ab, le32_to_cpu(vdev_start_resp.vdev_id)); if (!ar) { ath12k_warn(ab, "invalid vdev id in vdev start resp ev %d", vdev_start_resp.vdev_id); rcu_read_unlock(); return; } ar->last_wmi_vdev_start_status = 0; status = le32_to_cpu(vdev_start_resp.status); if (WARN_ON_ONCE(status)) { ath12k_warn(ab, "vdev start resp error status %d (%s)\n", status, ath12k_wmi_vdev_resp_print(status)); ar->last_wmi_vdev_start_status = status; } complete(&ar->vdev_setup_done); rcu_read_unlock(); ath12k_dbg(ab, ATH12K_DBG_WMI, "vdev start resp for vdev id %d", vdev_start_resp.vdev_id); } static void ath12k_bcn_tx_status_event(struct ath12k_base *ab, struct sk_buff *skb) { u32 vdev_id, tx_status; if (ath12k_pull_bcn_tx_status_ev(ab, skb->data, skb->len, &vdev_id, &tx_status) != 0) { ath12k_warn(ab, "failed to extract bcn tx status"); return; } } static void ath12k_vdev_stopped_event(struct ath12k_base *ab, struct sk_buff *skb) { struct ath12k *ar; u32 vdev_id = 0; if (ath12k_pull_vdev_stopped_param_tlv(ab, skb, &vdev_id) != 0) { ath12k_warn(ab, "failed to extract vdev stopped event"); return; } rcu_read_lock(); ar = ath12k_mac_get_ar_by_vdev_id(ab, vdev_id); if (!ar) { ath12k_warn(ab, "invalid vdev id in vdev stopped ev %d", vdev_id); rcu_read_unlock(); return; } complete(&ar->vdev_setup_done); rcu_read_unlock(); ath12k_dbg(ab, ATH12K_DBG_WMI, "vdev stopped for vdev id %d", vdev_id); } static void ath12k_mgmt_rx_event(struct ath12k_base *ab, struct sk_buff *skb) { struct ath12k_wmi_mgmt_rx_arg rx_ev = {0}; struct ath12k *ar; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); struct ieee80211_hdr *hdr; u16 fc; struct ieee80211_supported_band *sband; if (ath12k_pull_mgmt_rx_params_tlv(ab, skb, &rx_ev) != 0) { ath12k_warn(ab, "failed to extract mgmt rx event"); dev_kfree_skb(skb); return; } memset(status, 0, sizeof(*status)); ath12k_dbg(ab, ATH12K_DBG_MGMT, "mgmt rx event status %08x\n", rx_ev.status); rcu_read_lock(); ar = ath12k_mac_get_ar_by_pdev_id(ab, rx_ev.pdev_id); if (!ar) { ath12k_warn(ab, "invalid pdev_id %d in mgmt_rx_event\n", rx_ev.pdev_id); dev_kfree_skb(skb); goto exit; } if ((test_bit(ATH12K_CAC_RUNNING, &ar->dev_flags)) || (rx_ev.status & (WMI_RX_STATUS_ERR_DECRYPT | WMI_RX_STATUS_ERR_KEY_CACHE_MISS | WMI_RX_STATUS_ERR_CRC))) { dev_kfree_skb(skb); goto exit; } if (rx_ev.status & WMI_RX_STATUS_ERR_MIC) status->flag |= RX_FLAG_MMIC_ERROR; if (rx_ev.chan_freq >= ATH12K_MIN_6G_FREQ) { status->band = NL80211_BAND_6GHZ; } else if (rx_ev.channel >= 1 && rx_ev.channel <= 14) { status->band = NL80211_BAND_2GHZ; } else if (rx_ev.channel >= 36 && rx_ev.channel <= ATH12K_MAX_5G_CHAN) { status->band = NL80211_BAND_5GHZ; } else { /* Shouldn't happen unless list of advertised channels to * mac80211 has been changed. */ WARN_ON_ONCE(1); dev_kfree_skb(skb); goto exit; } if (rx_ev.phy_mode == MODE_11B && (status->band == NL80211_BAND_5GHZ || status->band == NL80211_BAND_6GHZ)) ath12k_dbg(ab, ATH12K_DBG_WMI, "wmi mgmt rx 11b (CCK) on 5/6GHz, band = %d\n", status->band); sband = &ar->mac.sbands[status->band]; status->freq = ieee80211_channel_to_frequency(rx_ev.channel, status->band); status->signal = rx_ev.snr + ATH12K_DEFAULT_NOISE_FLOOR; status->rate_idx = ath12k_mac_bitrate_to_idx(sband, rx_ev.rate / 100); hdr = (struct ieee80211_hdr *)skb->data; fc = le16_to_cpu(hdr->frame_control); /* Firmware is guaranteed to report all essential management frames via * WMI while it can deliver some extra via HTT. Since there can be * duplicates split the reporting wrt monitor/sniffing. */ status->flag |= RX_FLAG_SKIP_MONITOR; /* In case of PMF, FW delivers decrypted frames with Protected Bit set * including group privacy action frames. */ if (ieee80211_has_protected(hdr->frame_control)) { status->flag |= RX_FLAG_DECRYPTED; if (!ieee80211_is_robust_mgmt_frame(skb)) { status->flag |= RX_FLAG_IV_STRIPPED | RX_FLAG_MMIC_STRIPPED; hdr->frame_control = __cpu_to_le16(fc & ~IEEE80211_FCTL_PROTECTED); } } /* TODO: Pending handle beacon implementation *if (ieee80211_is_beacon(hdr->frame_control)) * ath12k_mac_handle_beacon(ar, skb); */ ath12k_dbg(ab, ATH12K_DBG_MGMT, "event mgmt rx skb %pK len %d ftype %02x stype %02x\n", skb, skb->len, fc & IEEE80211_FCTL_FTYPE, fc & IEEE80211_FCTL_STYPE); ath12k_dbg(ab, ATH12K_DBG_MGMT, "event mgmt rx freq %d band %d snr %d, rate_idx %d\n", status->freq, status->band, status->signal, status->rate_idx); ieee80211_rx_ni(ar->hw, skb); exit: rcu_read_unlock(); } static void ath12k_mgmt_tx_compl_event(struct ath12k_base *ab, struct sk_buff *skb) { struct wmi_mgmt_tx_compl_event tx_compl_param = {0}; struct ath12k *ar; if (ath12k_pull_mgmt_tx_compl_param_tlv(ab, skb, &tx_compl_param) != 0) { ath12k_warn(ab, "failed to extract mgmt tx compl event"); return; } rcu_read_lock(); ar = ath12k_mac_get_ar_by_pdev_id(ab, le32_to_cpu(tx_compl_param.pdev_id)); if (!ar) { ath12k_warn(ab, "invalid pdev id %d in mgmt_tx_compl_event\n", tx_compl_param.pdev_id); goto exit; } wmi_process_mgmt_tx_comp(ar, le32_to_cpu(tx_compl_param.desc_id), le32_to_cpu(tx_compl_param.status)); ath12k_dbg(ab, ATH12K_DBG_MGMT, "mgmt tx compl ev pdev_id %d, desc_id %d, status %d", tx_compl_param.pdev_id, tx_compl_param.desc_id, tx_compl_param.status); exit: rcu_read_unlock(); } static struct ath12k *ath12k_get_ar_on_scan_abort(struct ath12k_base *ab, u32 vdev_id) { int i; struct ath12k_pdev *pdev; struct ath12k *ar; for (i = 0; i < ab->num_radios; i++) { pdev = rcu_dereference(ab->pdevs_active[i]); if (pdev && pdev->ar) { ar = pdev->ar; spin_lock_bh(&ar->data_lock); if (ar->scan.state == ATH12K_SCAN_ABORTING && ar->scan.vdev_id == vdev_id) { spin_unlock_bh(&ar->data_lock); return ar; } spin_unlock_bh(&ar->data_lock); } } return NULL; } static void ath12k_scan_event(struct ath12k_base *ab, struct sk_buff *skb) { struct ath12k *ar; struct wmi_scan_event scan_ev = {0}; if (ath12k_pull_scan_ev(ab, skb, &scan_ev) != 0) { ath12k_warn(ab, "failed to extract scan event"); return; } rcu_read_lock(); /* In case the scan was cancelled, ex. during interface teardown, * the interface will not be found in active interfaces. * Rather, in such scenarios, iterate over the active pdev's to * search 'ar' if the corresponding 'ar' scan is ABORTING and the * aborting scan's vdev id matches this event info. */ if (le32_to_cpu(scan_ev.event_type) == WMI_SCAN_EVENT_COMPLETED && le32_to_cpu(scan_ev.reason) == WMI_SCAN_REASON_CANCELLED) ar = ath12k_get_ar_on_scan_abort(ab, le32_to_cpu(scan_ev.vdev_id)); else ar = ath12k_mac_get_ar_by_vdev_id(ab, le32_to_cpu(scan_ev.vdev_id)); if (!ar) { ath12k_warn(ab, "Received scan event for unknown vdev"); rcu_read_unlock(); return; } spin_lock_bh(&ar->data_lock); ath12k_dbg(ab, ATH12K_DBG_WMI, "scan event %s type %d reason %d freq %d req_id %d scan_id %d vdev_id %d state %s (%d)\n", ath12k_wmi_event_scan_type_str(le32_to_cpu(scan_ev.event_type), le32_to_cpu(scan_ev.reason)), le32_to_cpu(scan_ev.event_type), le32_to_cpu(scan_ev.reason), le32_to_cpu(scan_ev.channel_freq), le32_to_cpu(scan_ev.scan_req_id), le32_to_cpu(scan_ev.scan_id), le32_to_cpu(scan_ev.vdev_id), ath12k_scan_state_str(ar->scan.state), ar->scan.state); switch (le32_to_cpu(scan_ev.event_type)) { case WMI_SCAN_EVENT_STARTED: ath12k_wmi_event_scan_started(ar); break; case WMI_SCAN_EVENT_COMPLETED: ath12k_wmi_event_scan_completed(ar); break; case WMI_SCAN_EVENT_BSS_CHANNEL: ath12k_wmi_event_scan_bss_chan(ar); break; case WMI_SCAN_EVENT_FOREIGN_CHAN: ath12k_wmi_event_scan_foreign_chan(ar, le32_to_cpu(scan_ev.channel_freq)); break; case WMI_SCAN_EVENT_START_FAILED: ath12k_warn(ab, "received scan start failure event\n"); ath12k_wmi_event_scan_start_failed(ar); break; case WMI_SCAN_EVENT_DEQUEUED: case WMI_SCAN_EVENT_PREEMPTED: case WMI_SCAN_EVENT_RESTARTED: case WMI_SCAN_EVENT_FOREIGN_CHAN_EXIT: default: break; } spin_unlock_bh(&ar->data_lock); rcu_read_unlock(); } static void ath12k_peer_sta_kickout_event(struct ath12k_base *ab, struct sk_buff *skb) { struct wmi_peer_sta_kickout_arg arg = {}; struct ieee80211_sta *sta; struct ath12k_peer *peer; struct ath12k *ar; if (ath12k_pull_peer_sta_kickout_ev(ab, skb, &arg) != 0) { ath12k_warn(ab, "failed to extract peer sta kickout event"); return; } rcu_read_lock(); spin_lock_bh(&ab->base_lock); peer = ath12k_peer_find_by_addr(ab, arg.mac_addr); if (!peer) { ath12k_warn(ab, "peer not found %pM\n", arg.mac_addr); goto exit; } ar = ath12k_mac_get_ar_by_vdev_id(ab, peer->vdev_id); if (!ar) { ath12k_warn(ab, "invalid vdev id in peer sta kickout ev %d", peer->vdev_id); goto exit; } sta = ieee80211_find_sta_by_ifaddr(ar->hw, arg.mac_addr, NULL); if (!sta) { ath12k_warn(ab, "Spurious quick kickout for STA %pM\n", arg.mac_addr); goto exit; } ath12k_dbg(ab, ATH12K_DBG_WMI, "peer sta kickout event %pM", arg.mac_addr); ieee80211_report_low_ack(sta, 10); exit: spin_unlock_bh(&ab->base_lock); rcu_read_unlock(); } static void ath12k_roam_event(struct ath12k_base *ab, struct sk_buff *skb) { struct wmi_roam_event roam_ev = {}; struct ath12k *ar; if (ath12k_pull_roam_ev(ab, skb, &roam_ev) != 0) { ath12k_warn(ab, "failed to extract roam event"); return; } ath12k_dbg(ab, ATH12K_DBG_WMI, "wmi roam event vdev %u reason 0x%08x rssi %d\n", roam_ev.vdev_id, roam_ev.reason, roam_ev.rssi); rcu_read_lock(); ar = ath12k_mac_get_ar_by_vdev_id(ab, le32_to_cpu(roam_ev.vdev_id)); if (!ar) { ath12k_warn(ab, "invalid vdev id in roam ev %d", roam_ev.vdev_id); rcu_read_unlock(); return; } if (le32_to_cpu(roam_ev.reason) >= WMI_ROAM_REASON_MAX) ath12k_warn(ab, "ignoring unknown roam event reason %d on vdev %i\n", roam_ev.reason, roam_ev.vdev_id); switch (le32_to_cpu(roam_ev.reason)) { case WMI_ROAM_REASON_BEACON_MISS: /* TODO: Pending beacon miss and connection_loss_work * implementation * ath12k_mac_handle_beacon_miss(ar, vdev_id); */ break; case WMI_ROAM_REASON_BETTER_AP: case WMI_ROAM_REASON_LOW_RSSI: case WMI_ROAM_REASON_SUITABLE_AP_FOUND: case WMI_ROAM_REASON_HO_FAILED: ath12k_warn(ab, "ignoring not implemented roam event reason %d on vdev %i\n", roam_ev.reason, roam_ev.vdev_id); break; } rcu_read_unlock(); } static void ath12k_chan_info_event(struct ath12k_base *ab, struct sk_buff *skb) { struct wmi_chan_info_event ch_info_ev = {0}; struct ath12k *ar; struct survey_info *survey; int idx; /* HW channel counters frequency value in hertz */ u32 cc_freq_hz = ab->cc_freq_hz; if (ath12k_pull_chan_info_ev(ab, skb->data, skb->len, &ch_info_ev) != 0) { ath12k_warn(ab, "failed to extract chan info event"); return; } ath12k_dbg(ab, ATH12K_DBG_WMI, "chan info vdev_id %d err_code %d freq %d cmd_flags %d noise_floor %d rx_clear_count %d cycle_count %d mac_clk_mhz %d\n", ch_info_ev.vdev_id, ch_info_ev.err_code, ch_info_ev.freq, ch_info_ev.cmd_flags, ch_info_ev.noise_floor, ch_info_ev.rx_clear_count, ch_info_ev.cycle_count, ch_info_ev.mac_clk_mhz); if (le32_to_cpu(ch_info_ev.cmd_flags) == WMI_CHAN_INFO_END_RESP) { ath12k_dbg(ab, ATH12K_DBG_WMI, "chan info report completed\n"); return; } rcu_read_lock(); ar = ath12k_mac_get_ar_by_vdev_id(ab, le32_to_cpu(ch_info_ev.vdev_id)); if (!ar) { ath12k_warn(ab, "invalid vdev id in chan info ev %d", ch_info_ev.vdev_id); rcu_read_unlock(); return; } spin_lock_bh(&ar->data_lock); switch (ar->scan.state) { case ATH12K_SCAN_IDLE: case ATH12K_SCAN_STARTING: ath12k_warn(ab, "received chan info event without a scan request, ignoring\n"); goto exit; case ATH12K_SCAN_RUNNING: case ATH12K_SCAN_ABORTING: break; } idx = freq_to_idx(ar, le32_to_cpu(ch_info_ev.freq)); if (idx >= ARRAY_SIZE(ar->survey)) { ath12k_warn(ab, "chan info: invalid frequency %d (idx %d out of bounds)\n", ch_info_ev.freq, idx); goto exit; } /* If FW provides MAC clock frequency in Mhz, overriding the initialized * HW channel counters frequency value */ if (ch_info_ev.mac_clk_mhz) cc_freq_hz = (le32_to_cpu(ch_info_ev.mac_clk_mhz) * 1000); if (ch_info_ev.cmd_flags == WMI_CHAN_INFO_START_RESP) { survey = &ar->survey[idx]; memset(survey, 0, sizeof(*survey)); survey->noise = le32_to_cpu(ch_info_ev.noise_floor); survey->filled = SURVEY_INFO_NOISE_DBM | SURVEY_INFO_TIME | SURVEY_INFO_TIME_BUSY; survey->time = div_u64(le32_to_cpu(ch_info_ev.cycle_count), cc_freq_hz); survey->time_busy = div_u64(le32_to_cpu(ch_info_ev.rx_clear_count), cc_freq_hz); } exit: spin_unlock_bh(&ar->data_lock); rcu_read_unlock(); } static void ath12k_pdev_bss_chan_info_event(struct ath12k_base *ab, struct sk_buff *skb) { struct wmi_pdev_bss_chan_info_event bss_ch_info_ev = {}; struct survey_info *survey; struct ath12k *ar; u32 cc_freq_hz = ab->cc_freq_hz; u64 busy, total, tx, rx, rx_bss; int idx; if (ath12k_pull_pdev_bss_chan_info_ev(ab, skb, &bss_ch_info_ev) != 0) { ath12k_warn(ab, "failed to extract pdev bss chan info event"); return; } busy = (u64)(le32_to_cpu(bss_ch_info_ev.rx_clear_count_high)) << 32 | le32_to_cpu(bss_ch_info_ev.rx_clear_count_low); total = (u64)(le32_to_cpu(bss_ch_info_ev.cycle_count_high)) << 32 | le32_to_cpu(bss_ch_info_ev.cycle_count_low); tx = (u64)(le32_to_cpu(bss_ch_info_ev.tx_cycle_count_high)) << 32 | le32_to_cpu(bss_ch_info_ev.tx_cycle_count_low); rx = (u64)(le32_to_cpu(bss_ch_info_ev.rx_cycle_count_high)) << 32 | le32_to_cpu(bss_ch_info_ev.rx_cycle_count_low); rx_bss = (u64)(le32_to_cpu(bss_ch_info_ev.rx_bss_cycle_count_high)) << 32 | le32_to_cpu(bss_ch_info_ev.rx_bss_cycle_count_low); ath12k_dbg(ab, ATH12K_DBG_WMI, "pdev bss chan info:\n pdev_id: %d freq: %d noise: %d cycle: busy %llu total %llu tx %llu rx %llu rx_bss %llu\n", bss_ch_info_ev.pdev_id, bss_ch_info_ev.freq, bss_ch_info_ev.noise_floor, busy, total, tx, rx, rx_bss); rcu_read_lock(); ar = ath12k_mac_get_ar_by_pdev_id(ab, le32_to_cpu(bss_ch_info_ev.pdev_id)); if (!ar) { ath12k_warn(ab, "invalid pdev id %d in bss_chan_info event\n", bss_ch_info_ev.pdev_id); rcu_read_unlock(); return; } spin_lock_bh(&ar->data_lock); idx = freq_to_idx(ar, le32_to_cpu(bss_ch_info_ev.freq)); if (idx >= ARRAY_SIZE(ar->survey)) { ath12k_warn(ab, "bss chan info: invalid frequency %d (idx %d out of bounds)\n", bss_ch_info_ev.freq, idx); goto exit; } survey = &ar->survey[idx]; survey->noise = le32_to_cpu(bss_ch_info_ev.noise_floor); survey->time = div_u64(total, cc_freq_hz); survey->time_busy = div_u64(busy, cc_freq_hz); survey->time_rx = div_u64(rx_bss, cc_freq_hz); survey->time_tx = div_u64(tx, cc_freq_hz); survey->filled |= (SURVEY_INFO_NOISE_DBM | SURVEY_INFO_TIME | SURVEY_INFO_TIME_BUSY | SURVEY_INFO_TIME_RX | SURVEY_INFO_TIME_TX); exit: spin_unlock_bh(&ar->data_lock); complete(&ar->bss_survey_done); rcu_read_unlock(); } static void ath12k_vdev_install_key_compl_event(struct ath12k_base *ab, struct sk_buff *skb) { struct wmi_vdev_install_key_complete_arg install_key_compl = {0}; struct ath12k *ar; if (ath12k_pull_vdev_install_key_compl_ev(ab, skb, &install_key_compl) != 0) { ath12k_warn(ab, "failed to extract install key compl event"); return; } ath12k_dbg(ab, ATH12K_DBG_WMI, "vdev install key ev idx %d flags %08x macaddr %pM status %d\n", install_key_compl.key_idx, install_key_compl.key_flags, install_key_compl.macaddr, install_key_compl.status); rcu_read_lock(); ar = ath12k_mac_get_ar_by_vdev_id(ab, install_key_compl.vdev_id); if (!ar) { ath12k_warn(ab, "invalid vdev id in install key compl ev %d", install_key_compl.vdev_id); rcu_read_unlock(); return; } ar->install_key_status = 0; if (install_key_compl.status != WMI_VDEV_INSTALL_KEY_COMPL_STATUS_SUCCESS) { ath12k_warn(ab, "install key failed for %pM status %d\n", install_key_compl.macaddr, install_key_compl.status); ar->install_key_status = install_key_compl.status; } complete(&ar->install_key_done); rcu_read_unlock(); } static int ath12k_wmi_tlv_services_parser(struct ath12k_base *ab, u16 tag, u16 len, const void *ptr, void *data) { const struct wmi_service_available_event *ev; u32 *wmi_ext2_service_bitmap; int i, j; u16 expected_len; expected_len = WMI_SERVICE_SEGMENT_BM_SIZE32 * sizeof(u32); if (len < expected_len) { ath12k_warn(ab, "invalid length %d for the WMI services available tag 0x%x\n", len, tag); return -EINVAL; } switch (tag) { case WMI_TAG_SERVICE_AVAILABLE_EVENT: ev = (struct wmi_service_available_event *)ptr; for (i = 0, j = WMI_MAX_SERVICE; i < WMI_SERVICE_SEGMENT_BM_SIZE32 && j < WMI_MAX_EXT_SERVICE; i++) { do { if (le32_to_cpu(ev->wmi_service_segment_bitmap[i]) & BIT(j % WMI_AVAIL_SERVICE_BITS_IN_SIZE32)) set_bit(j, ab->wmi_ab.svc_map); } while (++j % WMI_AVAIL_SERVICE_BITS_IN_SIZE32); } ath12k_dbg(ab, ATH12K_DBG_WMI, "wmi_ext_service_bitmap 0x%x 0x%x 0x%x 0x%x", ev->wmi_service_segment_bitmap[0], ev->wmi_service_segment_bitmap[1], ev->wmi_service_segment_bitmap[2], ev->wmi_service_segment_bitmap[3]); break; case WMI_TAG_ARRAY_UINT32: wmi_ext2_service_bitmap = (u32 *)ptr; for (i = 0, j = WMI_MAX_EXT_SERVICE; i < WMI_SERVICE_SEGMENT_BM_SIZE32 && j < WMI_MAX_EXT2_SERVICE; i++) { do { if (wmi_ext2_service_bitmap[i] & BIT(j % WMI_AVAIL_SERVICE_BITS_IN_SIZE32)) set_bit(j, ab->wmi_ab.svc_map); } while (++j % WMI_AVAIL_SERVICE_BITS_IN_SIZE32); } ath12k_dbg(ab, ATH12K_DBG_WMI, "wmi_ext2_service_bitmap 0x%04x 0x%04x 0x%04x 0x%04x", wmi_ext2_service_bitmap[0], wmi_ext2_service_bitmap[1], wmi_ext2_service_bitmap[2], wmi_ext2_service_bitmap[3]); break; } return 0; } static int ath12k_service_available_event(struct ath12k_base *ab, struct sk_buff *skb) { int ret; ret = ath12k_wmi_tlv_iter(ab, skb->data, skb->len, ath12k_wmi_tlv_services_parser, NULL); return ret; } static void ath12k_peer_assoc_conf_event(struct ath12k_base *ab, struct sk_buff *skb) { struct wmi_peer_assoc_conf_arg peer_assoc_conf = {0}; struct ath12k *ar; if (ath12k_pull_peer_assoc_conf_ev(ab, skb, &peer_assoc_conf) != 0) { ath12k_warn(ab, "failed to extract peer assoc conf event"); return; } ath12k_dbg(ab, ATH12K_DBG_WMI, "peer assoc conf ev vdev id %d macaddr %pM\n", peer_assoc_conf.vdev_id, peer_assoc_conf.macaddr); rcu_read_lock(); ar = ath12k_mac_get_ar_by_vdev_id(ab, peer_assoc_conf.vdev_id); if (!ar) { ath12k_warn(ab, "invalid vdev id in peer assoc conf ev %d", peer_assoc_conf.vdev_id); rcu_read_unlock(); return; } complete(&ar->peer_assoc_done); rcu_read_unlock(); } static void ath12k_update_stats_event(struct ath12k_base *ab, struct sk_buff *skb) { } /* PDEV_CTL_FAILSAFE_CHECK_EVENT is received from FW when the frequency scanned * is not part of BDF CTL(Conformance test limits) table entries. */ static void ath12k_pdev_ctl_failsafe_check_event(struct ath12k_base *ab, struct sk_buff *skb) { const void **tb; const struct wmi_pdev_ctl_failsafe_chk_event *ev; int ret; tb = ath12k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath12k_warn(ab, "failed to parse tlv: %d\n", ret); return; } ev = tb[WMI_TAG_PDEV_CTL_FAILSAFE_CHECK_EVENT]; if (!ev) { ath12k_warn(ab, "failed to fetch pdev ctl failsafe check ev"); kfree(tb); return; } ath12k_dbg(ab, ATH12K_DBG_WMI, "pdev ctl failsafe check ev status %d\n", ev->ctl_failsafe_status); /* If ctl_failsafe_status is set to 1 FW will max out the Transmit power * to 10 dBm else the CTL power entry in the BDF would be picked up. */ if (ev->ctl_failsafe_status != 0) ath12k_warn(ab, "pdev ctl failsafe failure status %d", ev->ctl_failsafe_status); kfree(tb); } static void ath12k_wmi_process_csa_switch_count_event(struct ath12k_base *ab, const struct ath12k_wmi_pdev_csa_event *ev, const u32 *vdev_ids) { int i; struct ath12k_vif *arvif; /* Finish CSA once the switch count becomes NULL */ if (ev->current_switch_count) return; rcu_read_lock(); for (i = 0; i < le32_to_cpu(ev->num_vdevs); i++) { arvif = ath12k_mac_get_arvif_by_vdev_id(ab, vdev_ids[i]); if (!arvif) { ath12k_warn(ab, "Recvd csa status for unknown vdev %d", vdev_ids[i]); continue; } if (arvif->is_up && arvif->vif->bss_conf.csa_active) ieee80211_csa_finish(arvif->vif); } rcu_read_unlock(); } static void ath12k_wmi_pdev_csa_switch_count_status_event(struct ath12k_base *ab, struct sk_buff *skb) { const void **tb; const struct ath12k_wmi_pdev_csa_event *ev; const u32 *vdev_ids; int ret; tb = ath12k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath12k_warn(ab, "failed to parse tlv: %d\n", ret); return; } ev = tb[WMI_TAG_PDEV_CSA_SWITCH_COUNT_STATUS_EVENT]; vdev_ids = tb[WMI_TAG_ARRAY_UINT32]; if (!ev || !vdev_ids) { ath12k_warn(ab, "failed to fetch pdev csa switch count ev"); kfree(tb); return; } ath12k_dbg(ab, ATH12K_DBG_WMI, "pdev csa switch count %d for pdev %d, num_vdevs %d", ev->current_switch_count, ev->pdev_id, ev->num_vdevs); ath12k_wmi_process_csa_switch_count_event(ab, ev, vdev_ids); kfree(tb); } static void ath12k_wmi_pdev_dfs_radar_detected_event(struct ath12k_base *ab, struct sk_buff *skb) { const void **tb; const struct ath12k_wmi_pdev_radar_event *ev; struct ath12k *ar; int ret; tb = ath12k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath12k_warn(ab, "failed to parse tlv: %d\n", ret); return; } ev = tb[WMI_TAG_PDEV_DFS_RADAR_DETECTION_EVENT]; if (!ev) { ath12k_warn(ab, "failed to fetch pdev dfs radar detected ev"); kfree(tb); return; } ath12k_dbg(ab, ATH12K_DBG_WMI, "pdev dfs radar detected on pdev %d, detection mode %d, chan freq %d, chan_width %d, detector id %d, seg id %d, timestamp %d, chirp %d, freq offset %d, sidx %d", ev->pdev_id, ev->detection_mode, ev->chan_freq, ev->chan_width, ev->detector_id, ev->segment_id, ev->timestamp, ev->is_chirp, ev->freq_offset, ev->sidx); ar = ath12k_mac_get_ar_by_pdev_id(ab, le32_to_cpu(ev->pdev_id)); if (!ar) { ath12k_warn(ab, "radar detected in invalid pdev %d\n", ev->pdev_id); goto exit; } ath12k_dbg(ar->ab, ATH12K_DBG_REG, "DFS Radar Detected in pdev %d\n", ev->pdev_id); if (ar->dfs_block_radar_events) ath12k_info(ab, "DFS Radar detected, but ignored as requested\n"); else ieee80211_radar_detected(ar->hw); exit: kfree(tb); } static void ath12k_wmi_pdev_temperature_event(struct ath12k_base *ab, struct sk_buff *skb) { struct ath12k *ar; struct wmi_pdev_temperature_event ev = {0}; if (ath12k_pull_pdev_temp_ev(ab, skb->data, skb->len, &ev) != 0) { ath12k_warn(ab, "failed to extract pdev temperature event"); return; } ath12k_dbg(ab, ATH12K_DBG_WMI, "pdev temperature ev temp %d pdev_id %d\n", ev.temp, ev.pdev_id); ar = ath12k_mac_get_ar_by_pdev_id(ab, le32_to_cpu(ev.pdev_id)); if (!ar) { ath12k_warn(ab, "invalid pdev id in pdev temperature ev %d", ev.pdev_id); return; } } static void ath12k_fils_discovery_event(struct ath12k_base *ab, struct sk_buff *skb) { const void **tb; const struct wmi_fils_discovery_event *ev; int ret; tb = ath12k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath12k_warn(ab, "failed to parse FILS discovery event tlv %d\n", ret); return; } ev = tb[WMI_TAG_HOST_SWFDA_EVENT]; if (!ev) { ath12k_warn(ab, "failed to fetch FILS discovery event\n"); kfree(tb); return; } ath12k_warn(ab, "FILS discovery frame expected from host for vdev_id: %u, transmission scheduled at %u, next TBTT: %u\n", ev->vdev_id, ev->fils_tt, ev->tbtt); kfree(tb); } static void ath12k_probe_resp_tx_status_event(struct ath12k_base *ab, struct sk_buff *skb) { const void **tb; const struct wmi_probe_resp_tx_status_event *ev; int ret; tb = ath12k_wmi_tlv_parse_alloc(ab, skb->data, skb->len, GFP_ATOMIC); if (IS_ERR(tb)) { ret = PTR_ERR(tb); ath12k_warn(ab, "failed to parse probe response transmission status event tlv: %d\n", ret); return; } ev = tb[WMI_TAG_OFFLOAD_PRB_RSP_TX_STATUS_EVENT]; if (!ev) { ath12k_warn(ab, "failed to fetch probe response transmission status event"); kfree(tb); return; } if (ev->tx_status) ath12k_warn(ab, "Probe response transmission failed for vdev_id %u, status %u\n", ev->vdev_id, ev->tx_status); kfree(tb); } static void ath12k_wmi_op_rx(struct ath12k_base *ab, struct sk_buff *skb) { struct wmi_cmd_hdr *cmd_hdr; enum wmi_tlv_event_id id; cmd_hdr = (struct wmi_cmd_hdr *)skb->data; id = le32_get_bits(cmd_hdr->cmd_id, WMI_CMD_HDR_CMD_ID); if (!skb_pull(skb, sizeof(struct wmi_cmd_hdr))) goto out; switch (id) { /* Process all the WMI events here */ case WMI_SERVICE_READY_EVENTID: ath12k_service_ready_event(ab, skb); break; case WMI_SERVICE_READY_EXT_EVENTID: ath12k_service_ready_ext_event(ab, skb); break; case WMI_SERVICE_READY_EXT2_EVENTID: ath12k_service_ready_ext2_event(ab, skb); break; case WMI_REG_CHAN_LIST_CC_EXT_EVENTID: ath12k_reg_chan_list_event(ab, skb); break; case WMI_READY_EVENTID: ath12k_ready_event(ab, skb); break; case WMI_PEER_DELETE_RESP_EVENTID: ath12k_peer_delete_resp_event(ab, skb); break; case WMI_VDEV_START_RESP_EVENTID: ath12k_vdev_start_resp_event(ab, skb); break; case WMI_OFFLOAD_BCN_TX_STATUS_EVENTID: ath12k_bcn_tx_status_event(ab, skb); break; case WMI_VDEV_STOPPED_EVENTID: ath12k_vdev_stopped_event(ab, skb); break; case WMI_MGMT_RX_EVENTID: ath12k_mgmt_rx_event(ab, skb); /* mgmt_rx_event() owns the skb now! */ return; case WMI_MGMT_TX_COMPLETION_EVENTID: ath12k_mgmt_tx_compl_event(ab, skb); break; case WMI_SCAN_EVENTID: ath12k_scan_event(ab, skb); break; case WMI_PEER_STA_KICKOUT_EVENTID: ath12k_peer_sta_kickout_event(ab, skb); break; case WMI_ROAM_EVENTID: ath12k_roam_event(ab, skb); break; case WMI_CHAN_INFO_EVENTID: ath12k_chan_info_event(ab, skb); break; case WMI_PDEV_BSS_CHAN_INFO_EVENTID: ath12k_pdev_bss_chan_info_event(ab, skb); break; case WMI_VDEV_INSTALL_KEY_COMPLETE_EVENTID: ath12k_vdev_install_key_compl_event(ab, skb); break; case WMI_SERVICE_AVAILABLE_EVENTID: ath12k_service_available_event(ab, skb); break; case WMI_PEER_ASSOC_CONF_EVENTID: ath12k_peer_assoc_conf_event(ab, skb); break; case WMI_UPDATE_STATS_EVENTID: ath12k_update_stats_event(ab, skb); break; case WMI_PDEV_CTL_FAILSAFE_CHECK_EVENTID: ath12k_pdev_ctl_failsafe_check_event(ab, skb); break; case WMI_PDEV_CSA_SWITCH_COUNT_STATUS_EVENTID: ath12k_wmi_pdev_csa_switch_count_status_event(ab, skb); break; case WMI_PDEV_TEMPERATURE_EVENTID: ath12k_wmi_pdev_temperature_event(ab, skb); break; case WMI_PDEV_DMA_RING_BUF_RELEASE_EVENTID: ath12k_wmi_pdev_dma_ring_buf_release_event(ab, skb); break; case WMI_HOST_FILS_DISCOVERY_EVENTID: ath12k_fils_discovery_event(ab, skb); break; case WMI_OFFLOAD_PROB_RESP_TX_STATUS_EVENTID: ath12k_probe_resp_tx_status_event(ab, skb); break; /* add Unsupported events here */ case WMI_TBTTOFFSET_EXT_UPDATE_EVENTID: case WMI_PEER_OPER_MODE_CHANGE_EVENTID: case WMI_TWT_ENABLE_EVENTID: case WMI_TWT_DISABLE_EVENTID: case WMI_PDEV_DMA_RING_CFG_RSP_EVENTID: ath12k_dbg(ab, ATH12K_DBG_WMI, "ignoring unsupported event 0x%x\n", id); break; case WMI_PDEV_DFS_RADAR_DETECTION_EVENTID: ath12k_wmi_pdev_dfs_radar_detected_event(ab, skb); break; case WMI_VDEV_DELETE_RESP_EVENTID: ath12k_vdev_delete_resp_event(ab, skb); break; /* TODO: Add remaining events */ default: ath12k_dbg(ab, ATH12K_DBG_WMI, "Unknown eventid: 0x%x\n", id); break; } out: dev_kfree_skb(skb); } static int ath12k_connect_pdev_htc_service(struct ath12k_base *ab, u32 pdev_idx) { int status; u32 svc_id[] = { ATH12K_HTC_SVC_ID_WMI_CONTROL, ATH12K_HTC_SVC_ID_WMI_CONTROL_MAC1, ATH12K_HTC_SVC_ID_WMI_CONTROL_MAC2 }; struct ath12k_htc_svc_conn_req conn_req = {}; struct ath12k_htc_svc_conn_resp conn_resp = {}; /* these fields are the same for all service endpoints */ conn_req.ep_ops.ep_tx_complete = ath12k_wmi_htc_tx_complete; conn_req.ep_ops.ep_rx_complete = ath12k_wmi_op_rx; conn_req.ep_ops.ep_tx_credits = ath12k_wmi_op_ep_tx_credits; /* connect to control service */ conn_req.service_id = svc_id[pdev_idx]; status = ath12k_htc_connect_service(&ab->htc, &conn_req, &conn_resp); if (status) { ath12k_warn(ab, "failed to connect to WMI CONTROL service status: %d\n", status); return status; } ab->wmi_ab.wmi_endpoint_id[pdev_idx] = conn_resp.eid; ab->wmi_ab.wmi[pdev_idx].eid = conn_resp.eid; ab->wmi_ab.max_msg_len[pdev_idx] = conn_resp.max_msg_len; return 0; } static int ath12k_wmi_send_unit_test_cmd(struct ath12k *ar, struct wmi_unit_test_cmd ut_cmd, u32 *test_args) { struct ath12k_wmi_pdev *wmi = ar->wmi; struct wmi_unit_test_cmd *cmd; struct sk_buff *skb; struct wmi_tlv *tlv; void *ptr; u32 *ut_cmd_args; int buf_len, arg_len; int ret; int i; arg_len = sizeof(u32) * le32_to_cpu(ut_cmd.num_args); buf_len = sizeof(ut_cmd) + arg_len + TLV_HDR_SIZE; skb = ath12k_wmi_alloc_skb(wmi->wmi_ab, buf_len); if (!skb) return -ENOMEM; cmd = (struct wmi_unit_test_cmd *)skb->data; cmd->tlv_header = ath12k_wmi_tlv_cmd_hdr(WMI_TAG_UNIT_TEST_CMD, sizeof(ut_cmd)); cmd->vdev_id = ut_cmd.vdev_id; cmd->module_id = ut_cmd.module_id; cmd->num_args = ut_cmd.num_args; cmd->diag_token = ut_cmd.diag_token; ptr = skb->data + sizeof(ut_cmd); tlv = ptr; tlv->header = ath12k_wmi_tlv_hdr(WMI_TAG_ARRAY_UINT32, arg_len); ptr += TLV_HDR_SIZE; ut_cmd_args = ptr; for (i = 0; i < le32_to_cpu(ut_cmd.num_args); i++) ut_cmd_args[i] = test_args[i]; ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "WMI unit test : module %d vdev %d n_args %d token %d\n", cmd->module_id, cmd->vdev_id, cmd->num_args, cmd->diag_token); ret = ath12k_wmi_cmd_send(wmi, skb, WMI_UNIT_TEST_CMDID); if (ret) { ath12k_warn(ar->ab, "failed to send WMI_UNIT_TEST CMD :%d\n", ret); dev_kfree_skb(skb); } return ret; } int ath12k_wmi_simulate_radar(struct ath12k *ar) { struct ath12k_vif *arvif; u32 dfs_args[DFS_MAX_TEST_ARGS]; struct wmi_unit_test_cmd wmi_ut; bool arvif_found = false; list_for_each_entry(arvif, &ar->arvifs, list) { if (arvif->is_started && arvif->vdev_type == WMI_VDEV_TYPE_AP) { arvif_found = true; break; } } if (!arvif_found) return -EINVAL; dfs_args[DFS_TEST_CMDID] = 0; dfs_args[DFS_TEST_PDEV_ID] = ar->pdev->pdev_id; /* Currently we could pass segment_id(b0 - b1), chirp(b2) * freq offset (b3 - b10) to unit test. For simulation * purpose this can be set to 0 which is valid. */ dfs_args[DFS_TEST_RADAR_PARAM] = 0; wmi_ut.vdev_id = cpu_to_le32(arvif->vdev_id); wmi_ut.module_id = cpu_to_le32(DFS_UNIT_TEST_MODULE); wmi_ut.num_args = cpu_to_le32(DFS_MAX_TEST_ARGS); wmi_ut.diag_token = cpu_to_le32(DFS_UNIT_TEST_TOKEN); ath12k_dbg(ar->ab, ATH12K_DBG_REG, "Triggering Radar Simulation\n"); return ath12k_wmi_send_unit_test_cmd(ar, wmi_ut, dfs_args); } int ath12k_wmi_connect(struct ath12k_base *ab) { u32 i; u8 wmi_ep_count; wmi_ep_count = ab->htc.wmi_ep_count; if (wmi_ep_count > ab->hw_params->max_radios) return -1; for (i = 0; i < wmi_ep_count; i++) ath12k_connect_pdev_htc_service(ab, i); return 0; } static void ath12k_wmi_pdev_detach(struct ath12k_base *ab, u8 pdev_id) { if (WARN_ON(pdev_id >= MAX_RADIOS)) return; /* TODO: Deinit any pdev specific wmi resource */ } int ath12k_wmi_pdev_attach(struct ath12k_base *ab, u8 pdev_id) { struct ath12k_wmi_pdev *wmi_handle; if (pdev_id >= ab->hw_params->max_radios) return -EINVAL; wmi_handle = &ab->wmi_ab.wmi[pdev_id]; wmi_handle->wmi_ab = &ab->wmi_ab; ab->wmi_ab.ab = ab; /* TODO: Init remaining resource specific to pdev */ return 0; } int ath12k_wmi_attach(struct ath12k_base *ab) { int ret; ret = ath12k_wmi_pdev_attach(ab, 0); if (ret) return ret; ab->wmi_ab.ab = ab; ab->wmi_ab.preferred_hw_mode = WMI_HOST_HW_MODE_MAX; /* It's overwritten when service_ext_ready is handled */ if (ab->hw_params->single_pdev_only) ab->wmi_ab.preferred_hw_mode = WMI_HOST_HW_MODE_SINGLE; /* TODO: Init remaining wmi soc resources required */ init_completion(&ab->wmi_ab.service_ready); init_completion(&ab->wmi_ab.unified_ready); return 0; } void ath12k_wmi_detach(struct ath12k_base *ab) { int i; /* TODO: Deinit wmi resource specific to SOC as required */ for (i = 0; i < ab->htc.wmi_ep_count; i++) ath12k_wmi_pdev_detach(ab, i); ath12k_wmi_free_dbring_caps(ab); }