// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause /* * Copyright (C) 2017 Intel Deutschland GmbH * Copyright (C) 2019-2023 Intel Corporation */ #include #include #include "iwl-drv.h" #include "iwl-debug.h" #include "acpi.h" #include "fw/runtime.h" const guid_t iwl_guid = GUID_INIT(0xF21202BF, 0x8F78, 0x4DC6, 0xA5, 0xB3, 0x1F, 0x73, 0x8E, 0x28, 0x5A, 0xDE); IWL_EXPORT_SYMBOL(iwl_guid); const guid_t iwl_rfi_guid = GUID_INIT(0x7266172C, 0x220B, 0x4B29, 0x81, 0x4F, 0x75, 0xE4, 0xDD, 0x26, 0xB5, 0xFD); IWL_EXPORT_SYMBOL(iwl_rfi_guid); static const struct dmi_system_id dmi_ppag_approved_list[] = { { .ident = "HP", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), }, }, { .ident = "SAMSUNG", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "SAMSUNG ELECTRONICS CO., LTD"), }, }, { .ident = "MSFT", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Microsoft Corporation"), }, }, { .ident = "ASUS", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), }, }, { .ident = "GOOGLE-HP", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Google"), DMI_MATCH(DMI_BOARD_VENDOR, "HP"), }, }, { .ident = "GOOGLE-ASUS", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Google"), DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek COMPUTER INC."), }, }, { .ident = "GOOGLE-SAMSUNG", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Google"), DMI_MATCH(DMI_BOARD_VENDOR, "SAMSUNG ELECTRONICS CO., LTD"), }, }, { .ident = "DELL", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), }, }, { .ident = "DELL", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Alienware"), }, }, {} }; static int iwl_acpi_get_handle(struct device *dev, acpi_string method, acpi_handle *ret_handle) { acpi_handle root_handle; acpi_status status; root_handle = ACPI_HANDLE(dev); if (!root_handle) { IWL_DEBUG_DEV_RADIO(dev, "ACPI: Could not retrieve root port handle\n"); return -ENOENT; } status = acpi_get_handle(root_handle, method, ret_handle); if (ACPI_FAILURE(status)) { IWL_DEBUG_DEV_RADIO(dev, "ACPI: %s method not found\n", method); return -ENOENT; } return 0; } static void *iwl_acpi_get_object(struct device *dev, acpi_string method) { struct acpi_buffer buf = {ACPI_ALLOCATE_BUFFER, NULL}; acpi_handle handle; acpi_status status; int ret; ret = iwl_acpi_get_handle(dev, method, &handle); if (ret) return ERR_PTR(-ENOENT); /* Call the method with no arguments */ status = acpi_evaluate_object(handle, NULL, NULL, &buf); if (ACPI_FAILURE(status)) { IWL_DEBUG_DEV_RADIO(dev, "ACPI: %s method invocation failed (status: 0x%x)\n", method, status); return ERR_PTR(-ENOENT); } return buf.pointer; } /* * Generic function for evaluating a method defined in the device specific * method (DSM) interface. The returned acpi object must be freed by calling * function. */ static void *iwl_acpi_get_dsm_object(struct device *dev, int rev, int func, union acpi_object *args, const guid_t *guid) { union acpi_object *obj; obj = acpi_evaluate_dsm(ACPI_HANDLE(dev), guid, rev, func, args); if (!obj) { IWL_DEBUG_DEV_RADIO(dev, "ACPI: DSM method invocation failed (rev: %d, func:%d)\n", rev, func); return ERR_PTR(-ENOENT); } return obj; } /* * Generic function to evaluate a DSM with no arguments * and an integer return value, * (as an integer object or inside a buffer object), * verify and assign the value in the "value" parameter. * return 0 in success and the appropriate errno otherwise. */ static int iwl_acpi_get_dsm_integer(struct device *dev, int rev, int func, const guid_t *guid, u64 *value, size_t expected_size) { union acpi_object *obj; int ret = 0; obj = iwl_acpi_get_dsm_object(dev, rev, func, NULL, guid); if (IS_ERR(obj)) { IWL_DEBUG_DEV_RADIO(dev, "Failed to get DSM object. func= %d\n", func); return -ENOENT; } if (obj->type == ACPI_TYPE_INTEGER) { *value = obj->integer.value; } else if (obj->type == ACPI_TYPE_BUFFER) { __le64 le_value = 0; if (WARN_ON_ONCE(expected_size > sizeof(le_value))) return -EINVAL; /* if the buffer size doesn't match the expected size */ if (obj->buffer.length != expected_size) IWL_DEBUG_DEV_RADIO(dev, "ACPI: DSM invalid buffer size, padding or truncating (%d)\n", obj->buffer.length); /* assuming LE from Intel BIOS spec */ memcpy(&le_value, obj->buffer.pointer, min_t(size_t, expected_size, (size_t)obj->buffer.length)); *value = le64_to_cpu(le_value); } else { IWL_DEBUG_DEV_RADIO(dev, "ACPI: DSM method did not return a valid object, type=%d\n", obj->type); ret = -EINVAL; goto out; } IWL_DEBUG_DEV_RADIO(dev, "ACPI: DSM method evaluated: func=%d, ret=%d\n", func, ret); out: ACPI_FREE(obj); return ret; } /* * Evaluate a DSM with no arguments and a u8 return value, */ int iwl_acpi_get_dsm_u8(struct device *dev, int rev, int func, const guid_t *guid, u8 *value) { int ret; u64 val; ret = iwl_acpi_get_dsm_integer(dev, rev, func, guid, &val, sizeof(u8)); if (ret < 0) return ret; /* cast val (u64) to be u8 */ *value = (u8)val; return 0; } IWL_EXPORT_SYMBOL(iwl_acpi_get_dsm_u8); /* * Evaluate a DSM with no arguments and a u32 return value, */ int iwl_acpi_get_dsm_u32(struct device *dev, int rev, int func, const guid_t *guid, u32 *value) { int ret; u64 val; ret = iwl_acpi_get_dsm_integer(dev, rev, func, guid, &val, sizeof(u32)); if (ret < 0) return ret; /* cast val (u64) to be u32 */ *value = (u32)val; return 0; } IWL_EXPORT_SYMBOL(iwl_acpi_get_dsm_u32); static union acpi_object * iwl_acpi_get_wifi_pkg_range(struct device *dev, union acpi_object *data, int min_data_size, int max_data_size, int *tbl_rev) { int i; union acpi_object *wifi_pkg; /* * We need at least one entry in the wifi package that * describes the domain, and one more entry, otherwise there's * no point in reading it. */ if (WARN_ON_ONCE(min_data_size < 2 || min_data_size > max_data_size)) return ERR_PTR(-EINVAL); /* * We need at least two packages, one for the revision and one * for the data itself. Also check that the revision is valid * (i.e. it is an integer (each caller has to check by itself * if the returned revision is supported)). */ if (data->type != ACPI_TYPE_PACKAGE || data->package.count < 2 || data->package.elements[0].type != ACPI_TYPE_INTEGER) { IWL_DEBUG_DEV_RADIO(dev, "Invalid packages structure\n"); return ERR_PTR(-EINVAL); } *tbl_rev = data->package.elements[0].integer.value; /* loop through all the packages to find the one for WiFi */ for (i = 1; i < data->package.count; i++) { union acpi_object *domain; wifi_pkg = &data->package.elements[i]; /* skip entries that are not a package with the right size */ if (wifi_pkg->type != ACPI_TYPE_PACKAGE || wifi_pkg->package.count < min_data_size || wifi_pkg->package.count > max_data_size) continue; domain = &wifi_pkg->package.elements[0]; if (domain->type == ACPI_TYPE_INTEGER && domain->integer.value == ACPI_WIFI_DOMAIN) goto found; } return ERR_PTR(-ENOENT); found: return wifi_pkg; } static union acpi_object * iwl_acpi_get_wifi_pkg(struct device *dev, union acpi_object *data, int data_size, int *tbl_rev) { return iwl_acpi_get_wifi_pkg_range(dev, data, data_size, data_size, tbl_rev); } int iwl_acpi_get_tas(struct iwl_fw_runtime *fwrt, union iwl_tas_config_cmd *cmd, int fw_ver) { union acpi_object *wifi_pkg, *data; int ret, tbl_rev, i, block_list_size, enabled; data = iwl_acpi_get_object(fwrt->dev, ACPI_WTAS_METHOD); if (IS_ERR(data)) return PTR_ERR(data); /* try to read wtas table revision 1 or revision 0*/ wifi_pkg = iwl_acpi_get_wifi_pkg(fwrt->dev, data, ACPI_WTAS_WIFI_DATA_SIZE, &tbl_rev); if (IS_ERR(wifi_pkg)) { ret = PTR_ERR(wifi_pkg); goto out_free; } if (tbl_rev == 1 && wifi_pkg->package.elements[1].type == ACPI_TYPE_INTEGER) { u32 tas_selection = (u32)wifi_pkg->package.elements[1].integer.value; u16 override_iec = (tas_selection & ACPI_WTAS_OVERRIDE_IEC_MSK) >> ACPI_WTAS_OVERRIDE_IEC_POS; u16 enabled_iec = (tas_selection & ACPI_WTAS_ENABLE_IEC_MSK) >> ACPI_WTAS_ENABLE_IEC_POS; u8 usa_tas_uhb = (tas_selection & ACPI_WTAS_USA_UHB_MSK) >> ACPI_WTAS_USA_UHB_POS; enabled = tas_selection & ACPI_WTAS_ENABLED_MSK; if (fw_ver <= 3) { cmd->v3.override_tas_iec = cpu_to_le16(override_iec); cmd->v3.enable_tas_iec = cpu_to_le16(enabled_iec); } else { cmd->v4.usa_tas_uhb_allowed = usa_tas_uhb; cmd->v4.override_tas_iec = (u8)override_iec; cmd->v4.enable_tas_iec = (u8)enabled_iec; } } else if (tbl_rev == 0 && wifi_pkg->package.elements[1].type == ACPI_TYPE_INTEGER) { enabled = !!wifi_pkg->package.elements[1].integer.value; } else { ret = -EINVAL; goto out_free; } if (!enabled) { IWL_DEBUG_RADIO(fwrt, "TAS not enabled\n"); ret = 0; goto out_free; } IWL_DEBUG_RADIO(fwrt, "Reading TAS table revision %d\n", tbl_rev); if (wifi_pkg->package.elements[2].type != ACPI_TYPE_INTEGER || wifi_pkg->package.elements[2].integer.value > APCI_WTAS_BLACK_LIST_MAX) { IWL_DEBUG_RADIO(fwrt, "TAS invalid array size %llu\n", wifi_pkg->package.elements[2].integer.value); ret = -EINVAL; goto out_free; } block_list_size = wifi_pkg->package.elements[2].integer.value; cmd->v4.block_list_size = cpu_to_le32(block_list_size); IWL_DEBUG_RADIO(fwrt, "TAS array size %u\n", block_list_size); if (block_list_size > APCI_WTAS_BLACK_LIST_MAX) { IWL_DEBUG_RADIO(fwrt, "TAS invalid array size value %u\n", block_list_size); ret = -EINVAL; goto out_free; } for (i = 0; i < block_list_size; i++) { u32 country; if (wifi_pkg->package.elements[3 + i].type != ACPI_TYPE_INTEGER) { IWL_DEBUG_RADIO(fwrt, "TAS invalid array elem %d\n", 3 + i); ret = -EINVAL; goto out_free; } country = wifi_pkg->package.elements[3 + i].integer.value; cmd->v4.block_list_array[i] = cpu_to_le32(country); IWL_DEBUG_RADIO(fwrt, "TAS block list country %d\n", country); } ret = 1; out_free: kfree(data); return ret; } IWL_EXPORT_SYMBOL(iwl_acpi_get_tas); int iwl_acpi_get_mcc(struct device *dev, char *mcc) { union acpi_object *wifi_pkg, *data; u32 mcc_val; int ret, tbl_rev; data = iwl_acpi_get_object(dev, ACPI_WRDD_METHOD); if (IS_ERR(data)) return PTR_ERR(data); wifi_pkg = iwl_acpi_get_wifi_pkg(dev, data, ACPI_WRDD_WIFI_DATA_SIZE, &tbl_rev); if (IS_ERR(wifi_pkg)) { ret = PTR_ERR(wifi_pkg); goto out_free; } if (wifi_pkg->package.elements[1].type != ACPI_TYPE_INTEGER || tbl_rev != 0) { ret = -EINVAL; goto out_free; } mcc_val = wifi_pkg->package.elements[1].integer.value; mcc[0] = (mcc_val >> 8) & 0xff; mcc[1] = mcc_val & 0xff; mcc[2] = '\0'; ret = 0; out_free: kfree(data); return ret; } IWL_EXPORT_SYMBOL(iwl_acpi_get_mcc); u64 iwl_acpi_get_pwr_limit(struct device *dev) { union acpi_object *data, *wifi_pkg; u64 dflt_pwr_limit; int tbl_rev; data = iwl_acpi_get_object(dev, ACPI_SPLC_METHOD); if (IS_ERR(data)) { dflt_pwr_limit = 0; goto out; } wifi_pkg = iwl_acpi_get_wifi_pkg(dev, data, ACPI_SPLC_WIFI_DATA_SIZE, &tbl_rev); if (IS_ERR(wifi_pkg) || tbl_rev != 0 || wifi_pkg->package.elements[1].integer.value != ACPI_TYPE_INTEGER) { dflt_pwr_limit = 0; goto out_free; } dflt_pwr_limit = wifi_pkg->package.elements[1].integer.value; out_free: kfree(data); out: return dflt_pwr_limit; } IWL_EXPORT_SYMBOL(iwl_acpi_get_pwr_limit); int iwl_acpi_get_eckv(struct device *dev, u32 *extl_clk) { union acpi_object *wifi_pkg, *data; int ret, tbl_rev; data = iwl_acpi_get_object(dev, ACPI_ECKV_METHOD); if (IS_ERR(data)) return PTR_ERR(data); wifi_pkg = iwl_acpi_get_wifi_pkg(dev, data, ACPI_ECKV_WIFI_DATA_SIZE, &tbl_rev); if (IS_ERR(wifi_pkg)) { ret = PTR_ERR(wifi_pkg); goto out_free; } if (wifi_pkg->package.elements[1].type != ACPI_TYPE_INTEGER || tbl_rev != 0) { ret = -EINVAL; goto out_free; } *extl_clk = wifi_pkg->package.elements[1].integer.value; ret = 0; out_free: kfree(data); return ret; } IWL_EXPORT_SYMBOL(iwl_acpi_get_eckv); static int iwl_sar_set_profile(union acpi_object *table, struct iwl_sar_profile *profile, bool enabled, u8 num_chains, u8 num_sub_bands) { int i, j, idx = 0; /* * The table from ACPI is flat, but we store it in a * structured array. */ for (i = 0; i < ACPI_SAR_NUM_CHAINS_REV2; i++) { for (j = 0; j < ACPI_SAR_NUM_SUB_BANDS_REV2; j++) { /* if we don't have the values, use the default */ if (i >= num_chains || j >= num_sub_bands) { profile->chains[i].subbands[j] = 0; } else { if (table[idx].type != ACPI_TYPE_INTEGER || table[idx].integer.value > U8_MAX) return -EINVAL; profile->chains[i].subbands[j] = table[idx].integer.value; idx++; } } } /* Only if all values were valid can the profile be enabled */ profile->enabled = enabled; return 0; } static int iwl_sar_fill_table(struct iwl_fw_runtime *fwrt, __le16 *per_chain, u32 n_subbands, int prof_a, int prof_b) { int profs[ACPI_SAR_NUM_CHAINS_REV0] = { prof_a, prof_b }; int i, j; for (i = 0; i < ACPI_SAR_NUM_CHAINS_REV0; i++) { struct iwl_sar_profile *prof; /* don't allow SAR to be disabled (profile 0 means disable) */ if (profs[i] == 0) return -EPERM; /* we are off by one, so allow up to ACPI_SAR_PROFILE_NUM */ if (profs[i] > ACPI_SAR_PROFILE_NUM) return -EINVAL; /* profiles go from 1 to 4, so decrement to access the array */ prof = &fwrt->sar_profiles[profs[i] - 1]; /* if the profile is disabled, do nothing */ if (!prof->enabled) { IWL_DEBUG_RADIO(fwrt, "SAR profile %d is disabled.\n", profs[i]); /* * if one of the profiles is disabled, we * ignore all of them and return 1 to * differentiate disabled from other failures. */ return 1; } IWL_DEBUG_INFO(fwrt, "SAR EWRD: chain %d profile index %d\n", i, profs[i]); IWL_DEBUG_RADIO(fwrt, " Chain[%d]:\n", i); for (j = 0; j < n_subbands; j++) { per_chain[i * n_subbands + j] = cpu_to_le16(prof->chains[i].subbands[j]); IWL_DEBUG_RADIO(fwrt, " Band[%d] = %d * .125dBm\n", j, prof->chains[i].subbands[j]); } } return 0; } int iwl_sar_select_profile(struct iwl_fw_runtime *fwrt, __le16 *per_chain, u32 n_tables, u32 n_subbands, int prof_a, int prof_b) { int i, ret = 0; for (i = 0; i < n_tables; i++) { ret = iwl_sar_fill_table(fwrt, &per_chain[i * n_subbands * ACPI_SAR_NUM_CHAINS_REV0], n_subbands, prof_a, prof_b); if (ret) break; } return ret; } IWL_EXPORT_SYMBOL(iwl_sar_select_profile); int iwl_sar_get_wrds_table(struct iwl_fw_runtime *fwrt) { union acpi_object *wifi_pkg, *table, *data; int ret, tbl_rev; u32 flags; u8 num_chains, num_sub_bands; data = iwl_acpi_get_object(fwrt->dev, ACPI_WRDS_METHOD); if (IS_ERR(data)) return PTR_ERR(data); /* start by trying to read revision 2 */ wifi_pkg = iwl_acpi_get_wifi_pkg(fwrt->dev, data, ACPI_WRDS_WIFI_DATA_SIZE_REV2, &tbl_rev); if (!IS_ERR(wifi_pkg)) { if (tbl_rev != 2) { ret = PTR_ERR(wifi_pkg); goto out_free; } num_chains = ACPI_SAR_NUM_CHAINS_REV2; num_sub_bands = ACPI_SAR_NUM_SUB_BANDS_REV2; goto read_table; } /* then try revision 1 */ wifi_pkg = iwl_acpi_get_wifi_pkg(fwrt->dev, data, ACPI_WRDS_WIFI_DATA_SIZE_REV1, &tbl_rev); if (!IS_ERR(wifi_pkg)) { if (tbl_rev != 1) { ret = PTR_ERR(wifi_pkg); goto out_free; } num_chains = ACPI_SAR_NUM_CHAINS_REV1; num_sub_bands = ACPI_SAR_NUM_SUB_BANDS_REV1; goto read_table; } /* then finally revision 0 */ wifi_pkg = iwl_acpi_get_wifi_pkg(fwrt->dev, data, ACPI_WRDS_WIFI_DATA_SIZE_REV0, &tbl_rev); if (!IS_ERR(wifi_pkg)) { if (tbl_rev != 0) { ret = PTR_ERR(wifi_pkg); goto out_free; } num_chains = ACPI_SAR_NUM_CHAINS_REV0; num_sub_bands = ACPI_SAR_NUM_SUB_BANDS_REV0; goto read_table; } ret = PTR_ERR(wifi_pkg); goto out_free; read_table: if (wifi_pkg->package.elements[1].type != ACPI_TYPE_INTEGER) { ret = -EINVAL; goto out_free; } IWL_DEBUG_RADIO(fwrt, "Reading WRDS tbl_rev=%d\n", tbl_rev); flags = wifi_pkg->package.elements[1].integer.value; fwrt->reduced_power_flags = flags >> IWL_REDUCE_POWER_FLAGS_POS; /* position of the actual table */ table = &wifi_pkg->package.elements[2]; /* The profile from WRDS is officially profile 1, but goes * into sar_profiles[0] (because we don't have a profile 0). */ ret = iwl_sar_set_profile(table, &fwrt->sar_profiles[0], flags & IWL_SAR_ENABLE_MSK, num_chains, num_sub_bands); out_free: kfree(data); return ret; } IWL_EXPORT_SYMBOL(iwl_sar_get_wrds_table); int iwl_sar_get_ewrd_table(struct iwl_fw_runtime *fwrt) { union acpi_object *wifi_pkg, *data; bool enabled; int i, n_profiles, tbl_rev, pos; int ret = 0; u8 num_chains, num_sub_bands; data = iwl_acpi_get_object(fwrt->dev, ACPI_EWRD_METHOD); if (IS_ERR(data)) return PTR_ERR(data); /* start by trying to read revision 2 */ wifi_pkg = iwl_acpi_get_wifi_pkg(fwrt->dev, data, ACPI_EWRD_WIFI_DATA_SIZE_REV2, &tbl_rev); if (!IS_ERR(wifi_pkg)) { if (tbl_rev != 2) { ret = PTR_ERR(wifi_pkg); goto out_free; } num_chains = ACPI_SAR_NUM_CHAINS_REV2; num_sub_bands = ACPI_SAR_NUM_SUB_BANDS_REV2; goto read_table; } /* then try revision 1 */ wifi_pkg = iwl_acpi_get_wifi_pkg(fwrt->dev, data, ACPI_EWRD_WIFI_DATA_SIZE_REV1, &tbl_rev); if (!IS_ERR(wifi_pkg)) { if (tbl_rev != 1) { ret = PTR_ERR(wifi_pkg); goto out_free; } num_chains = ACPI_SAR_NUM_CHAINS_REV1; num_sub_bands = ACPI_SAR_NUM_SUB_BANDS_REV1; goto read_table; } /* then finally revision 0 */ wifi_pkg = iwl_acpi_get_wifi_pkg(fwrt->dev, data, ACPI_EWRD_WIFI_DATA_SIZE_REV0, &tbl_rev); if (!IS_ERR(wifi_pkg)) { if (tbl_rev != 0) { ret = PTR_ERR(wifi_pkg); goto out_free; } num_chains = ACPI_SAR_NUM_CHAINS_REV0; num_sub_bands = ACPI_SAR_NUM_SUB_BANDS_REV0; goto read_table; } ret = PTR_ERR(wifi_pkg); goto out_free; read_table: if (wifi_pkg->package.elements[1].type != ACPI_TYPE_INTEGER || wifi_pkg->package.elements[2].type != ACPI_TYPE_INTEGER) { ret = -EINVAL; goto out_free; } enabled = !!(wifi_pkg->package.elements[1].integer.value); n_profiles = wifi_pkg->package.elements[2].integer.value; /* * Check the validity of n_profiles. The EWRD profiles start * from index 1, so the maximum value allowed here is * ACPI_SAR_PROFILES_NUM - 1. */ if (n_profiles <= 0 || n_profiles >= ACPI_SAR_PROFILE_NUM) { ret = -EINVAL; goto out_free; } /* the tables start at element 3 */ pos = 3; for (i = 0; i < n_profiles; i++) { /* The EWRD profiles officially go from 2 to 4, but we * save them in sar_profiles[1-3] (because we don't * have profile 0). So in the array we start from 1. */ ret = iwl_sar_set_profile(&wifi_pkg->package.elements[pos], &fwrt->sar_profiles[i + 1], enabled, num_chains, num_sub_bands); if (ret < 0) break; /* go to the next table */ pos += num_chains * num_sub_bands; } out_free: kfree(data); return ret; } IWL_EXPORT_SYMBOL(iwl_sar_get_ewrd_table); int iwl_sar_get_wgds_table(struct iwl_fw_runtime *fwrt) { union acpi_object *wifi_pkg, *data; int i, j, k, ret, tbl_rev; u8 num_bands, num_profiles; static const struct { u8 revisions; u8 bands; u8 profiles; u8 min_profiles; } rev_data[] = { { .revisions = BIT(3), .bands = ACPI_GEO_NUM_BANDS_REV2, .profiles = ACPI_NUM_GEO_PROFILES_REV3, .min_profiles = 3, }, { .revisions = BIT(2), .bands = ACPI_GEO_NUM_BANDS_REV2, .profiles = ACPI_NUM_GEO_PROFILES, }, { .revisions = BIT(0) | BIT(1), .bands = ACPI_GEO_NUM_BANDS_REV0, .profiles = ACPI_NUM_GEO_PROFILES, }, }; int idx; /* start from one to skip the domain */ int entry_idx = 1; BUILD_BUG_ON(ACPI_NUM_GEO_PROFILES_REV3 != IWL_NUM_GEO_PROFILES_V3); BUILD_BUG_ON(ACPI_NUM_GEO_PROFILES != IWL_NUM_GEO_PROFILES); data = iwl_acpi_get_object(fwrt->dev, ACPI_WGDS_METHOD); if (IS_ERR(data)) return PTR_ERR(data); /* read the highest revision we understand first */ for (idx = 0; idx < ARRAY_SIZE(rev_data); idx++) { /* min_profiles != 0 requires num_profiles header */ u32 hdr_size = 1 + !!rev_data[idx].min_profiles; u32 profile_size = ACPI_GEO_PER_CHAIN_SIZE * rev_data[idx].bands; u32 max_size = hdr_size + profile_size * rev_data[idx].profiles; u32 min_size; if (!rev_data[idx].min_profiles) min_size = max_size; else min_size = hdr_size + profile_size * rev_data[idx].min_profiles; wifi_pkg = iwl_acpi_get_wifi_pkg_range(fwrt->dev, data, min_size, max_size, &tbl_rev); if (!IS_ERR(wifi_pkg)) { if (!(BIT(tbl_rev) & rev_data[idx].revisions)) continue; num_bands = rev_data[idx].bands; num_profiles = rev_data[idx].profiles; if (rev_data[idx].min_profiles) { /* read header that says # of profiles */ union acpi_object *entry; entry = &wifi_pkg->package.elements[entry_idx]; entry_idx++; if (entry->type != ACPI_TYPE_INTEGER || entry->integer.value > num_profiles) { ret = -EINVAL; goto out_free; } num_profiles = entry->integer.value; /* * this also validates >= min_profiles since we * otherwise wouldn't have gotten the data when * looking up in ACPI */ if (wifi_pkg->package.count != hdr_size + profile_size * num_profiles) { ret = -EINVAL; goto out_free; } } goto read_table; } } if (idx < ARRAY_SIZE(rev_data)) ret = PTR_ERR(wifi_pkg); else ret = -ENOENT; goto out_free; read_table: fwrt->geo_rev = tbl_rev; for (i = 0; i < num_profiles; i++) { for (j = 0; j < ACPI_GEO_NUM_BANDS_REV2; j++) { union acpi_object *entry; /* * num_bands is either 2 or 3, if it's only 2 then * fill the third band (6 GHz) with the values from * 5 GHz (second band) */ if (j >= num_bands) { fwrt->geo_profiles[i].bands[j].max = fwrt->geo_profiles[i].bands[1].max; } else { entry = &wifi_pkg->package.elements[entry_idx]; entry_idx++; if (entry->type != ACPI_TYPE_INTEGER || entry->integer.value > U8_MAX) { ret = -EINVAL; goto out_free; } fwrt->geo_profiles[i].bands[j].max = entry->integer.value; } for (k = 0; k < ACPI_GEO_NUM_CHAINS; k++) { /* same here as above */ if (j >= num_bands) { fwrt->geo_profiles[i].bands[j].chains[k] = fwrt->geo_profiles[i].bands[1].chains[k]; } else { entry = &wifi_pkg->package.elements[entry_idx]; entry_idx++; if (entry->type != ACPI_TYPE_INTEGER || entry->integer.value > U8_MAX) { ret = -EINVAL; goto out_free; } fwrt->geo_profiles[i].bands[j].chains[k] = entry->integer.value; } } } } fwrt->geo_num_profiles = num_profiles; fwrt->geo_enabled = true; ret = 0; out_free: kfree(data); return ret; } IWL_EXPORT_SYMBOL(iwl_sar_get_wgds_table); bool iwl_sar_geo_support(struct iwl_fw_runtime *fwrt) { /* * The PER_CHAIN_LIMIT_OFFSET_CMD command is not supported on * earlier firmware versions. Unfortunately, we don't have a * TLV API flag to rely on, so rely on the major version which * is in the first byte of ucode_ver. This was implemented * initially on version 38 and then backported to 17. It was * also backported to 29, but only for 7265D devices. The * intention was to have it in 36 as well, but not all 8000 * family got this feature enabled. The 8000 family is the * only one using version 36, so skip this version entirely. */ return IWL_UCODE_SERIAL(fwrt->fw->ucode_ver) >= 38 || (IWL_UCODE_SERIAL(fwrt->fw->ucode_ver) == 17 && fwrt->trans->hw_rev != CSR_HW_REV_TYPE_3160) || (IWL_UCODE_SERIAL(fwrt->fw->ucode_ver) == 29 && ((fwrt->trans->hw_rev & CSR_HW_REV_TYPE_MSK) == CSR_HW_REV_TYPE_7265D)); } IWL_EXPORT_SYMBOL(iwl_sar_geo_support); int iwl_sar_geo_init(struct iwl_fw_runtime *fwrt, struct iwl_per_chain_offset *table, u32 n_bands, u32 n_profiles) { int i, j; if (!fwrt->geo_enabled) return -ENODATA; if (!iwl_sar_geo_support(fwrt)) return -EOPNOTSUPP; for (i = 0; i < n_profiles; i++) { for (j = 0; j < n_bands; j++) { struct iwl_per_chain_offset *chain = &table[i * n_bands + j]; chain->max_tx_power = cpu_to_le16(fwrt->geo_profiles[i].bands[j].max); chain->chain_a = fwrt->geo_profiles[i].bands[j].chains[0]; chain->chain_b = fwrt->geo_profiles[i].bands[j].chains[1]; IWL_DEBUG_RADIO(fwrt, "SAR geographic profile[%d] Band[%d]: chain A = %d chain B = %d max_tx_power = %d\n", i, j, fwrt->geo_profiles[i].bands[j].chains[0], fwrt->geo_profiles[i].bands[j].chains[1], fwrt->geo_profiles[i].bands[j].max); } } return 0; } IWL_EXPORT_SYMBOL(iwl_sar_geo_init); __le32 iwl_acpi_get_lari_config_bitmap(struct iwl_fw_runtime *fwrt) { int ret; u8 value; __le32 config_bitmap = 0; /* ** Evaluate func 'DSM_FUNC_ENABLE_INDONESIA_5G2' */ ret = iwl_acpi_get_dsm_u8(fwrt->dev, 0, DSM_FUNC_ENABLE_INDONESIA_5G2, &iwl_guid, &value); if (!ret && value == DSM_VALUE_INDONESIA_ENABLE) config_bitmap |= cpu_to_le32(LARI_CONFIG_ENABLE_5G2_IN_INDONESIA_MSK); /* ** Evaluate func 'DSM_FUNC_DISABLE_SRD' */ ret = iwl_acpi_get_dsm_u8(fwrt->dev, 0, DSM_FUNC_DISABLE_SRD, &iwl_guid, &value); if (!ret) { if (value == DSM_VALUE_SRD_PASSIVE) config_bitmap |= cpu_to_le32(LARI_CONFIG_CHANGE_ETSI_TO_PASSIVE_MSK); else if (value == DSM_VALUE_SRD_DISABLE) config_bitmap |= cpu_to_le32(LARI_CONFIG_CHANGE_ETSI_TO_DISABLED_MSK); } return config_bitmap; } IWL_EXPORT_SYMBOL(iwl_acpi_get_lari_config_bitmap); int iwl_acpi_get_ppag_table(struct iwl_fw_runtime *fwrt) { union acpi_object *wifi_pkg, *data, *flags; int i, j, ret, tbl_rev, num_sub_bands = 0; int idx = 2; u8 cmd_ver; fwrt->ppag_flags = 0; fwrt->ppag_table_valid = false; data = iwl_acpi_get_object(fwrt->dev, ACPI_PPAG_METHOD); if (IS_ERR(data)) return PTR_ERR(data); /* try to read ppag table rev 2 or 1 (both have the same data size) */ wifi_pkg = iwl_acpi_get_wifi_pkg(fwrt->dev, data, ACPI_PPAG_WIFI_DATA_SIZE_V2, &tbl_rev); if (!IS_ERR(wifi_pkg)) { if (tbl_rev == 1 || tbl_rev == 2) { num_sub_bands = IWL_NUM_SUB_BANDS_V2; IWL_DEBUG_RADIO(fwrt, "Reading PPAG table v2 (tbl_rev=%d)\n", tbl_rev); goto read_table; } else { ret = -EINVAL; goto out_free; } } /* try to read ppag table revision 0 */ wifi_pkg = iwl_acpi_get_wifi_pkg(fwrt->dev, data, ACPI_PPAG_WIFI_DATA_SIZE_V1, &tbl_rev); if (!IS_ERR(wifi_pkg)) { if (tbl_rev != 0) { ret = -EINVAL; goto out_free; } num_sub_bands = IWL_NUM_SUB_BANDS_V1; IWL_DEBUG_RADIO(fwrt, "Reading PPAG table v1 (tbl_rev=0)\n"); goto read_table; } read_table: fwrt->ppag_ver = tbl_rev; flags = &wifi_pkg->package.elements[1]; if (flags->type != ACPI_TYPE_INTEGER) { ret = -EINVAL; goto out_free; } fwrt->ppag_flags = flags->integer.value & ACPI_PPAG_MASK; cmd_ver = iwl_fw_lookup_cmd_ver(fwrt->fw, WIDE_ID(PHY_OPS_GROUP, PER_PLATFORM_ANT_GAIN_CMD), IWL_FW_CMD_VER_UNKNOWN); if (cmd_ver == IWL_FW_CMD_VER_UNKNOWN) { ret = -EINVAL; goto out_free; } if (!fwrt->ppag_flags && cmd_ver <= 3) { ret = 0; goto out_free; } /* * read, verify gain values and save them into the PPAG table. * first sub-band (j=0) corresponds to Low-Band (2.4GHz), and the * following sub-bands to High-Band (5GHz). */ for (i = 0; i < IWL_NUM_CHAIN_LIMITS; i++) { for (j = 0; j < num_sub_bands; j++) { union acpi_object *ent; ent = &wifi_pkg->package.elements[idx++]; if (ent->type != ACPI_TYPE_INTEGER) { ret = -EINVAL; goto out_free; } fwrt->ppag_chains[i].subbands[j] = ent->integer.value; /* from ver 4 the fw deals with out of range values */ if (cmd_ver >= 4) continue; if ((j == 0 && (fwrt->ppag_chains[i].subbands[j] > ACPI_PPAG_MAX_LB || fwrt->ppag_chains[i].subbands[j] < ACPI_PPAG_MIN_LB)) || (j != 0 && (fwrt->ppag_chains[i].subbands[j] > ACPI_PPAG_MAX_HB || fwrt->ppag_chains[i].subbands[j] < ACPI_PPAG_MIN_HB))) { ret = -EINVAL; goto out_free; } } } fwrt->ppag_table_valid = true; ret = 0; out_free: kfree(data); return ret; } IWL_EXPORT_SYMBOL(iwl_acpi_get_ppag_table); int iwl_read_ppag_table(struct iwl_fw_runtime *fwrt, union iwl_ppag_table_cmd *cmd, int *cmd_size) { u8 cmd_ver; int i, j, num_sub_bands; s8 *gain; /* many firmware images for JF lie about this */ if (CSR_HW_RFID_TYPE(fwrt->trans->hw_rf_id) == CSR_HW_RFID_TYPE(CSR_HW_RF_ID_TYPE_JF)) return -EOPNOTSUPP; if (!fw_has_capa(&fwrt->fw->ucode_capa, IWL_UCODE_TLV_CAPA_SET_PPAG)) { IWL_DEBUG_RADIO(fwrt, "PPAG capability not supported by FW, command not sent.\n"); return -EINVAL; } cmd_ver = iwl_fw_lookup_cmd_ver(fwrt->fw, WIDE_ID(PHY_OPS_GROUP, PER_PLATFORM_ANT_GAIN_CMD), IWL_FW_CMD_VER_UNKNOWN); if (!fwrt->ppag_table_valid || (cmd_ver <= 3 && !fwrt->ppag_flags)) { IWL_DEBUG_RADIO(fwrt, "PPAG not enabled, command not sent.\n"); return -EINVAL; } /* The 'flags' field is the same in v1 and in v2 so we can just * use v1 to access it. */ cmd->v1.flags = cpu_to_le32(fwrt->ppag_flags); IWL_DEBUG_RADIO(fwrt, "PPAG cmd ver is %d\n", cmd_ver); if (cmd_ver == 1) { num_sub_bands = IWL_NUM_SUB_BANDS_V1; gain = cmd->v1.gain[0]; *cmd_size = sizeof(cmd->v1); if (fwrt->ppag_ver == 1 || fwrt->ppag_ver == 2) { /* in this case FW supports revision 0 */ IWL_DEBUG_RADIO(fwrt, "PPAG table rev is %d, send truncated table\n", fwrt->ppag_ver); } } else if (cmd_ver >= 2 && cmd_ver <= 4) { num_sub_bands = IWL_NUM_SUB_BANDS_V2; gain = cmd->v2.gain[0]; *cmd_size = sizeof(cmd->v2); if (fwrt->ppag_ver == 0) { /* in this case FW supports revisions 1 or 2 */ IWL_DEBUG_RADIO(fwrt, "PPAG table rev is 0, send padded table\n"); } } else { IWL_DEBUG_RADIO(fwrt, "Unsupported PPAG command version\n"); return -EINVAL; } /* ppag mode */ IWL_DEBUG_RADIO(fwrt, "PPAG MODE bits were read from bios: %d\n", cmd->v1.flags & cpu_to_le32(ACPI_PPAG_MASK)); if ((cmd_ver == 1 && !fw_has_capa(&fwrt->fw->ucode_capa, IWL_UCODE_TLV_CAPA_PPAG_CHINA_BIOS_SUPPORT)) || (cmd_ver == 2 && fwrt->ppag_ver == 2)) { cmd->v1.flags &= cpu_to_le32(IWL_PPAG_ETSI_MASK); IWL_DEBUG_RADIO(fwrt, "masking ppag China bit\n"); } else { IWL_DEBUG_RADIO(fwrt, "isn't masking ppag China bit\n"); } IWL_DEBUG_RADIO(fwrt, "PPAG MODE bits going to be sent: %d\n", cmd->v1.flags & cpu_to_le32(ACPI_PPAG_MASK)); for (i = 0; i < IWL_NUM_CHAIN_LIMITS; i++) { for (j = 0; j < num_sub_bands; j++) { gain[i * num_sub_bands + j] = fwrt->ppag_chains[i].subbands[j]; IWL_DEBUG_RADIO(fwrt, "PPAG table: chain[%d] band[%d]: gain = %d\n", i, j, gain[i * num_sub_bands + j]); } } return 0; } IWL_EXPORT_SYMBOL(iwl_read_ppag_table); bool iwl_acpi_is_ppag_approved(struct iwl_fw_runtime *fwrt) { if (!dmi_check_system(dmi_ppag_approved_list)) { IWL_DEBUG_RADIO(fwrt, "System vendor '%s' is not in the approved list, disabling PPAG.\n", dmi_get_system_info(DMI_SYS_VENDOR)); fwrt->ppag_flags = 0; return false; } return true; } IWL_EXPORT_SYMBOL(iwl_acpi_is_ppag_approved); void iwl_acpi_get_phy_filters(struct iwl_fw_runtime *fwrt, struct iwl_phy_specific_cfg *filters) { struct iwl_phy_specific_cfg tmp = {}; union acpi_object *wifi_pkg, *data; int tbl_rev, i; data = iwl_acpi_get_object(fwrt->dev, ACPI_WPFC_METHOD); if (IS_ERR(data)) return; /* try to read wtas table revision 1 or revision 0*/ wifi_pkg = iwl_acpi_get_wifi_pkg(fwrt->dev, data, ACPI_WPFC_WIFI_DATA_SIZE, &tbl_rev); if (IS_ERR(wifi_pkg)) goto out_free; if (tbl_rev != 0) goto out_free; BUILD_BUG_ON(ARRAY_SIZE(filters->filter_cfg_chains) != ACPI_WPFC_WIFI_DATA_SIZE); for (i = 0; i < ARRAY_SIZE(filters->filter_cfg_chains); i++) { if (wifi_pkg->package.elements[i].type != ACPI_TYPE_INTEGER) return; tmp.filter_cfg_chains[i] = cpu_to_le32(wifi_pkg->package.elements[i].integer.value); } IWL_DEBUG_RADIO(fwrt, "Loaded WPFC filter config from ACPI\n"); *filters = tmp; out_free: kfree(data); } IWL_EXPORT_SYMBOL(iwl_acpi_get_phy_filters);