// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2011 Paul Mackerras, IBM Corp. * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. * * Authors: * Paul Mackerras * Alexander Graf * Kevin Wolf * * Description: KVM functions specific to running on Book 3S * processors in hypervisor mode (specifically POWER7 and later). * * This file is derived from arch/powerpc/kvm/book3s.c, * by Alexander Graf . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "book3s.h" #include "book3s_hv.h" #define CREATE_TRACE_POINTS #include "trace_hv.h" /* #define EXIT_DEBUG */ /* #define EXIT_DEBUG_SIMPLE */ /* #define EXIT_DEBUG_INT */ /* Used to indicate that a guest page fault needs to be handled */ #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) /* Used to indicate that a guest passthrough interrupt needs to be handled */ #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2) /* Used as a "null" value for timebase values */ #define TB_NIL (~(u64)0) static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); static int dynamic_mt_modes = 6; module_param(dynamic_mt_modes, int, 0644); MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)"); static int target_smt_mode; module_param(target_smt_mode, int, 0644); MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)"); static bool one_vm_per_core; module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)"); #ifdef CONFIG_KVM_XICS static const struct kernel_param_ops module_param_ops = { .set = param_set_int, .get = param_get_int, }; module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644); MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization"); module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644); MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core"); #endif /* If set, guests are allowed to create and control nested guests */ static bool nested = true; module_param(nested, bool, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)"); static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); /* * RWMR values for POWER8. These control the rate at which PURR * and SPURR count and should be set according to the number of * online threads in the vcore being run. */ #define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL #define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL #define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL #define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL #define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL #define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL #define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL #define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = { RWMR_RPA_P8_1THREAD, RWMR_RPA_P8_1THREAD, RWMR_RPA_P8_2THREAD, RWMR_RPA_P8_3THREAD, RWMR_RPA_P8_4THREAD, RWMR_RPA_P8_5THREAD, RWMR_RPA_P8_6THREAD, RWMR_RPA_P8_7THREAD, RWMR_RPA_P8_8THREAD, }; static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc, int *ip) { int i = *ip; struct kvm_vcpu *vcpu; while (++i < MAX_SMT_THREADS) { vcpu = READ_ONCE(vc->runnable_threads[i]); if (vcpu) { *ip = i; return vcpu; } } return NULL; } /* Used to traverse the list of runnable threads for a given vcore */ #define for_each_runnable_thread(i, vcpu, vc) \ for (i = -1; (vcpu = next_runnable_thread(vc, &i)); ) static bool kvmppc_ipi_thread(int cpu) { unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); /* If we're a nested hypervisor, fall back to ordinary IPIs for now */ if (kvmhv_on_pseries()) return false; /* On POWER9 we can use msgsnd to IPI any cpu */ if (cpu_has_feature(CPU_FTR_ARCH_300)) { msg |= get_hard_smp_processor_id(cpu); smp_mb(); __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); return true; } /* On POWER8 for IPIs to threads in the same core, use msgsnd */ if (cpu_has_feature(CPU_FTR_ARCH_207S)) { preempt_disable(); if (cpu_first_thread_sibling(cpu) == cpu_first_thread_sibling(smp_processor_id())) { msg |= cpu_thread_in_core(cpu); smp_mb(); __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); preempt_enable(); return true; } preempt_enable(); } #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) if (cpu >= 0 && cpu < nr_cpu_ids) { if (paca_ptrs[cpu]->kvm_hstate.xics_phys) { xics_wake_cpu(cpu); return true; } opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); return true; } #endif return false; } static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) { int cpu; struct rcuwait *waitp; /* * rcuwait_wake_up contains smp_mb() which orders prior stores that * create pending work vs below loads of cpu fields. The other side * is the barrier in vcpu run that orders setting the cpu fields vs * testing for pending work. */ waitp = kvm_arch_vcpu_get_wait(vcpu); if (rcuwait_wake_up(waitp)) ++vcpu->stat.generic.halt_wakeup; cpu = READ_ONCE(vcpu->arch.thread_cpu); if (cpu >= 0 && kvmppc_ipi_thread(cpu)) return; /* CPU points to the first thread of the core */ cpu = vcpu->cpu; if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) smp_send_reschedule(cpu); } /* * We use the vcpu_load/put functions to measure stolen time. * * Stolen time is counted as time when either the vcpu is able to * run as part of a virtual core, but the task running the vcore * is preempted or sleeping, or when the vcpu needs something done * in the kernel by the task running the vcpu, but that task is * preempted or sleeping. Those two things have to be counted * separately, since one of the vcpu tasks will take on the job * of running the core, and the other vcpu tasks in the vcore will * sleep waiting for it to do that, but that sleep shouldn't count * as stolen time. * * Hence we accumulate stolen time when the vcpu can run as part of * a vcore using vc->stolen_tb, and the stolen time when the vcpu * needs its task to do other things in the kernel (for example, * service a page fault) in busy_stolen. We don't accumulate * stolen time for a vcore when it is inactive, or for a vcpu * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of * a misnomer; it means that the vcpu task is not executing in * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in * the kernel. We don't have any way of dividing up that time * between time that the vcpu is genuinely stopped, time that * the task is actively working on behalf of the vcpu, and time * that the task is preempted, so we don't count any of it as * stolen. * * Updates to busy_stolen are protected by arch.tbacct_lock; * updates to vc->stolen_tb are protected by the vcore->stoltb_lock * lock. The stolen times are measured in units of timebase ticks. * (Note that the != TB_NIL checks below are purely defensive; * they should never fail.) * * The POWER9 path is simpler, one vcpu per virtual core so the * former case does not exist. If a vcpu is preempted when it is * BUSY_IN_HOST and not ceded or otherwise blocked, then accumulate * the stolen cycles in busy_stolen. RUNNING is not a preemptible * state in the P9 path. */ static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc, u64 tb) { unsigned long flags; WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); spin_lock_irqsave(&vc->stoltb_lock, flags); vc->preempt_tb = tb; spin_unlock_irqrestore(&vc->stoltb_lock, flags); } static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc, u64 tb) { unsigned long flags; WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); spin_lock_irqsave(&vc->stoltb_lock, flags); if (vc->preempt_tb != TB_NIL) { vc->stolen_tb += tb - vc->preempt_tb; vc->preempt_tb = TB_NIL; } spin_unlock_irqrestore(&vc->stoltb_lock, flags); } static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) { struct kvmppc_vcore *vc = vcpu->arch.vcore; unsigned long flags; u64 now; if (cpu_has_feature(CPU_FTR_ARCH_300)) { if (vcpu->arch.busy_preempt != TB_NIL) { WARN_ON_ONCE(vcpu->arch.state != KVMPPC_VCPU_BUSY_IN_HOST); vc->stolen_tb += mftb() - vcpu->arch.busy_preempt; vcpu->arch.busy_preempt = TB_NIL; } return; } now = mftb(); /* * We can test vc->runner without taking the vcore lock, * because only this task ever sets vc->runner to this * vcpu, and once it is set to this vcpu, only this task * ever sets it to NULL. */ if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) kvmppc_core_end_stolen(vc, now); spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && vcpu->arch.busy_preempt != TB_NIL) { vcpu->arch.busy_stolen += now - vcpu->arch.busy_preempt; vcpu->arch.busy_preempt = TB_NIL; } spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); } static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) { struct kvmppc_vcore *vc = vcpu->arch.vcore; unsigned long flags; u64 now; if (cpu_has_feature(CPU_FTR_ARCH_300)) { /* * In the P9 path, RUNNABLE is not preemptible * (nor takes host interrupts) */ WARN_ON_ONCE(vcpu->arch.state == KVMPPC_VCPU_RUNNABLE); /* * Account stolen time when preempted while the vcpu task is * running in the kernel (but not in qemu, which is INACTIVE). */ if (task_is_running(current) && vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) vcpu->arch.busy_preempt = mftb(); return; } now = mftb(); if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) kvmppc_core_start_stolen(vc, now); spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) vcpu->arch.busy_preempt = now; spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); } static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) { vcpu->arch.pvr = pvr; } /* Dummy value used in computing PCR value below */ #define PCR_ARCH_31 (PCR_ARCH_300 << 1) static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) { unsigned long host_pcr_bit = 0, guest_pcr_bit = 0; struct kvmppc_vcore *vc = vcpu->arch.vcore; /* We can (emulate) our own architecture version and anything older */ if (cpu_has_feature(CPU_FTR_ARCH_31)) host_pcr_bit = PCR_ARCH_31; else if (cpu_has_feature(CPU_FTR_ARCH_300)) host_pcr_bit = PCR_ARCH_300; else if (cpu_has_feature(CPU_FTR_ARCH_207S)) host_pcr_bit = PCR_ARCH_207; else if (cpu_has_feature(CPU_FTR_ARCH_206)) host_pcr_bit = PCR_ARCH_206; else host_pcr_bit = PCR_ARCH_205; /* Determine lowest PCR bit needed to run guest in given PVR level */ guest_pcr_bit = host_pcr_bit; if (arch_compat) { switch (arch_compat) { case PVR_ARCH_205: guest_pcr_bit = PCR_ARCH_205; break; case PVR_ARCH_206: case PVR_ARCH_206p: guest_pcr_bit = PCR_ARCH_206; break; case PVR_ARCH_207: guest_pcr_bit = PCR_ARCH_207; break; case PVR_ARCH_300: guest_pcr_bit = PCR_ARCH_300; break; case PVR_ARCH_31: guest_pcr_bit = PCR_ARCH_31; break; default: return -EINVAL; } } /* Check requested PCR bits don't exceed our capabilities */ if (guest_pcr_bit > host_pcr_bit) return -EINVAL; spin_lock(&vc->lock); vc->arch_compat = arch_compat; /* * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit * Also set all reserved PCR bits */ vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK; spin_unlock(&vc->lock); return 0; } static void kvmppc_dump_regs(struct kvm_vcpu *vcpu) { int r; pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); pr_err("pc = %.16lx msr = %.16llx trap = %x\n", vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap); for (r = 0; r < 16; ++r) pr_err("r%2d = %.16lx r%d = %.16lx\n", r, kvmppc_get_gpr(vcpu, r), r+16, kvmppc_get_gpr(vcpu, r+16)); pr_err("ctr = %.16lx lr = %.16lx\n", vcpu->arch.regs.ctr, vcpu->arch.regs.link); pr_err("srr0 = %.16llx srr1 = %.16llx\n", vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n", vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr); pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); pr_err("fault dar = %.16lx dsisr = %.8x\n", vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); for (r = 0; r < vcpu->arch.slb_max; ++r) pr_err(" ESID = %.16llx VSID = %.16llx\n", vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, vcpu->arch.last_inst); } static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) { return kvm_get_vcpu_by_id(kvm, id); } static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) { vpa->__old_status |= LPPACA_OLD_SHARED_PROC; vpa->yield_count = cpu_to_be32(1); } static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, unsigned long addr, unsigned long len) { /* check address is cacheline aligned */ if (addr & (L1_CACHE_BYTES - 1)) return -EINVAL; spin_lock(&vcpu->arch.vpa_update_lock); if (v->next_gpa != addr || v->len != len) { v->next_gpa = addr; v->len = addr ? len : 0; v->update_pending = 1; } spin_unlock(&vcpu->arch.vpa_update_lock); return 0; } /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ struct reg_vpa { u32 dummy; union { __be16 hword; __be32 word; } length; }; static int vpa_is_registered(struct kvmppc_vpa *vpap) { if (vpap->update_pending) return vpap->next_gpa != 0; return vpap->pinned_addr != NULL; } static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, unsigned long flags, unsigned long vcpuid, unsigned long vpa) { struct kvm *kvm = vcpu->kvm; unsigned long len, nb; void *va; struct kvm_vcpu *tvcpu; int err; int subfunc; struct kvmppc_vpa *vpap; tvcpu = kvmppc_find_vcpu(kvm, vcpuid); if (!tvcpu) return H_PARAMETER; subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || subfunc == H_VPA_REG_SLB) { /* Registering new area - address must be cache-line aligned */ if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) return H_PARAMETER; /* convert logical addr to kernel addr and read length */ va = kvmppc_pin_guest_page(kvm, vpa, &nb); if (va == NULL) return H_PARAMETER; if (subfunc == H_VPA_REG_VPA) len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); else len = be32_to_cpu(((struct reg_vpa *)va)->length.word); kvmppc_unpin_guest_page(kvm, va, vpa, false); /* Check length */ if (len > nb || len < sizeof(struct reg_vpa)) return H_PARAMETER; } else { vpa = 0; len = 0; } err = H_PARAMETER; vpap = NULL; spin_lock(&tvcpu->arch.vpa_update_lock); switch (subfunc) { case H_VPA_REG_VPA: /* register VPA */ /* * The size of our lppaca is 1kB because of the way we align * it for the guest to avoid crossing a 4kB boundary. We only * use 640 bytes of the structure though, so we should accept * clients that set a size of 640. */ BUILD_BUG_ON(sizeof(struct lppaca) != 640); if (len < sizeof(struct lppaca)) break; vpap = &tvcpu->arch.vpa; err = 0; break; case H_VPA_REG_DTL: /* register DTL */ if (len < sizeof(struct dtl_entry)) break; len -= len % sizeof(struct dtl_entry); /* Check that they have previously registered a VPA */ err = H_RESOURCE; if (!vpa_is_registered(&tvcpu->arch.vpa)) break; vpap = &tvcpu->arch.dtl; err = 0; break; case H_VPA_REG_SLB: /* register SLB shadow buffer */ /* Check that they have previously registered a VPA */ err = H_RESOURCE; if (!vpa_is_registered(&tvcpu->arch.vpa)) break; vpap = &tvcpu->arch.slb_shadow; err = 0; break; case H_VPA_DEREG_VPA: /* deregister VPA */ /* Check they don't still have a DTL or SLB buf registered */ err = H_RESOURCE; if (vpa_is_registered(&tvcpu->arch.dtl) || vpa_is_registered(&tvcpu->arch.slb_shadow)) break; vpap = &tvcpu->arch.vpa; err = 0; break; case H_VPA_DEREG_DTL: /* deregister DTL */ vpap = &tvcpu->arch.dtl; err = 0; break; case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ vpap = &tvcpu->arch.slb_shadow; err = 0; break; } if (vpap) { vpap->next_gpa = vpa; vpap->len = len; vpap->update_pending = 1; } spin_unlock(&tvcpu->arch.vpa_update_lock); return err; } static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) { struct kvm *kvm = vcpu->kvm; void *va; unsigned long nb; unsigned long gpa; /* * We need to pin the page pointed to by vpap->next_gpa, * but we can't call kvmppc_pin_guest_page under the lock * as it does get_user_pages() and down_read(). So we * have to drop the lock, pin the page, then get the lock * again and check that a new area didn't get registered * in the meantime. */ for (;;) { gpa = vpap->next_gpa; spin_unlock(&vcpu->arch.vpa_update_lock); va = NULL; nb = 0; if (gpa) va = kvmppc_pin_guest_page(kvm, gpa, &nb); spin_lock(&vcpu->arch.vpa_update_lock); if (gpa == vpap->next_gpa) break; /* sigh... unpin that one and try again */ if (va) kvmppc_unpin_guest_page(kvm, va, gpa, false); } vpap->update_pending = 0; if (va && nb < vpap->len) { /* * If it's now too short, it must be that userspace * has changed the mappings underlying guest memory, * so unregister the region. */ kvmppc_unpin_guest_page(kvm, va, gpa, false); va = NULL; } if (vpap->pinned_addr) kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, vpap->dirty); vpap->gpa = gpa; vpap->pinned_addr = va; vpap->dirty = false; if (va) vpap->pinned_end = va + vpap->len; } static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) { if (!(vcpu->arch.vpa.update_pending || vcpu->arch.slb_shadow.update_pending || vcpu->arch.dtl.update_pending)) return; spin_lock(&vcpu->arch.vpa_update_lock); if (vcpu->arch.vpa.update_pending) { kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); if (vcpu->arch.vpa.pinned_addr) init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); } if (vcpu->arch.dtl.update_pending) { kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; vcpu->arch.dtl_index = 0; } if (vcpu->arch.slb_shadow.update_pending) kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); spin_unlock(&vcpu->arch.vpa_update_lock); } /* * Return the accumulated stolen time for the vcore up until `now'. * The caller should hold the vcore lock. */ static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) { u64 p; unsigned long flags; WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); spin_lock_irqsave(&vc->stoltb_lock, flags); p = vc->stolen_tb; if (vc->vcore_state != VCORE_INACTIVE && vc->preempt_tb != TB_NIL) p += now - vc->preempt_tb; spin_unlock_irqrestore(&vc->stoltb_lock, flags); return p; } static void __kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, struct lppaca *vpa, unsigned int pcpu, u64 now, unsigned long stolen) { struct dtl_entry *dt; dt = vcpu->arch.dtl_ptr; if (!dt) return; dt->dispatch_reason = 7; dt->preempt_reason = 0; dt->processor_id = cpu_to_be16(pcpu + vcpu->arch.ptid); dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); dt->ready_to_enqueue_time = 0; dt->waiting_to_ready_time = 0; dt->timebase = cpu_to_be64(now); dt->fault_addr = 0; dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); ++dt; if (dt == vcpu->arch.dtl.pinned_end) dt = vcpu->arch.dtl.pinned_addr; vcpu->arch.dtl_ptr = dt; /* order writing *dt vs. writing vpa->dtl_idx */ smp_wmb(); vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); /* vcpu->arch.dtl.dirty is set by the caller */ } static void kvmppc_update_vpa_dispatch(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) { struct lppaca *vpa; unsigned long stolen; unsigned long core_stolen; u64 now; unsigned long flags; vpa = vcpu->arch.vpa.pinned_addr; if (!vpa) return; now = mftb(); core_stolen = vcore_stolen_time(vc, now); stolen = core_stolen - vcpu->arch.stolen_logged; vcpu->arch.stolen_logged = core_stolen; spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); stolen += vcpu->arch.busy_stolen; vcpu->arch.busy_stolen = 0; spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); vpa->enqueue_dispatch_tb = cpu_to_be64(be64_to_cpu(vpa->enqueue_dispatch_tb) + stolen); __kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now + vc->tb_offset, stolen); vcpu->arch.vpa.dirty = true; } static void kvmppc_update_vpa_dispatch_p9(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc, u64 now) { struct lppaca *vpa; unsigned long stolen; unsigned long stolen_delta; vpa = vcpu->arch.vpa.pinned_addr; if (!vpa) return; stolen = vc->stolen_tb; stolen_delta = stolen - vcpu->arch.stolen_logged; vcpu->arch.stolen_logged = stolen; vpa->enqueue_dispatch_tb = cpu_to_be64(stolen); __kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now, stolen_delta); vcpu->arch.vpa.dirty = true; } /* See if there is a doorbell interrupt pending for a vcpu */ static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu) { int thr; struct kvmppc_vcore *vc; if (vcpu->arch.doorbell_request) return true; if (cpu_has_feature(CPU_FTR_ARCH_300)) return false; /* * Ensure that the read of vcore->dpdes comes after the read * of vcpu->doorbell_request. This barrier matches the * smp_wmb() in kvmppc_guest_entry_inject(). */ smp_rmb(); vc = vcpu->arch.vcore; thr = vcpu->vcpu_id - vc->first_vcpuid; return !!(vc->dpdes & (1 << thr)); } static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) { if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207) return true; if ((!vcpu->arch.vcore->arch_compat) && cpu_has_feature(CPU_FTR_ARCH_207S)) return true; return false; } static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, unsigned long resource, unsigned long value1, unsigned long value2) { switch (resource) { case H_SET_MODE_RESOURCE_SET_CIABR: if (!kvmppc_power8_compatible(vcpu)) return H_P2; if (value2) return H_P4; if (mflags) return H_UNSUPPORTED_FLAG_START; /* Guests can't breakpoint the hypervisor */ if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) return H_P3; vcpu->arch.ciabr = value1; return H_SUCCESS; case H_SET_MODE_RESOURCE_SET_DAWR0: if (!kvmppc_power8_compatible(vcpu)) return H_P2; if (!ppc_breakpoint_available()) return H_P2; if (mflags) return H_UNSUPPORTED_FLAG_START; if (value2 & DABRX_HYP) return H_P4; vcpu->arch.dawr0 = value1; vcpu->arch.dawrx0 = value2; return H_SUCCESS; case H_SET_MODE_RESOURCE_SET_DAWR1: if (!kvmppc_power8_compatible(vcpu)) return H_P2; if (!ppc_breakpoint_available()) return H_P2; if (!cpu_has_feature(CPU_FTR_DAWR1)) return H_P2; if (!vcpu->kvm->arch.dawr1_enabled) return H_FUNCTION; if (mflags) return H_UNSUPPORTED_FLAG_START; if (value2 & DABRX_HYP) return H_P4; vcpu->arch.dawr1 = value1; vcpu->arch.dawrx1 = value2; return H_SUCCESS; case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE: /* * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved. * Keep this in synch with kvmppc_filter_guest_lpcr_hv. */ if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) && kvmhv_vcpu_is_radix(vcpu) && mflags == 3) return H_UNSUPPORTED_FLAG_START; return H_TOO_HARD; default: return H_TOO_HARD; } } /* Copy guest memory in place - must reside within a single memslot */ static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from, unsigned long len) { struct kvm_memory_slot *to_memslot = NULL; struct kvm_memory_slot *from_memslot = NULL; unsigned long to_addr, from_addr; int r; /* Get HPA for from address */ from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT); if (!from_memslot) return -EFAULT; if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages) << PAGE_SHIFT)) return -EINVAL; from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT); if (kvm_is_error_hva(from_addr)) return -EFAULT; from_addr |= (from & (PAGE_SIZE - 1)); /* Get HPA for to address */ to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT); if (!to_memslot) return -EFAULT; if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages) << PAGE_SHIFT)) return -EINVAL; to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT); if (kvm_is_error_hva(to_addr)) return -EFAULT; to_addr |= (to & (PAGE_SIZE - 1)); /* Perform copy */ r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr, len); if (r) return -EFAULT; mark_page_dirty(kvm, to >> PAGE_SHIFT); return 0; } static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags, unsigned long dest, unsigned long src) { u64 pg_sz = SZ_4K; /* 4K page size */ u64 pg_mask = SZ_4K - 1; int ret; /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */ if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE | H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED)) return H_PARAMETER; /* dest (and src if copy_page flag set) must be page aligned */ if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask))) return H_PARAMETER; /* zero and/or copy the page as determined by the flags */ if (flags & H_COPY_PAGE) { ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz); if (ret < 0) return H_PARAMETER; } else if (flags & H_ZERO_PAGE) { ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz); if (ret < 0) return H_PARAMETER; } /* We can ignore the remaining flags */ return H_SUCCESS; } static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) { struct kvmppc_vcore *vcore = target->arch.vcore; /* * We expect to have been called by the real mode handler * (kvmppc_rm_h_confer()) which would have directly returned * H_SUCCESS if the source vcore wasn't idle (e.g. if it may * have useful work to do and should not confer) so we don't * recheck that here. * * In the case of the P9 single vcpu per vcore case, the real * mode handler is not called but no other threads are in the * source vcore. */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) { spin_lock(&vcore->lock); if (target->arch.state == KVMPPC_VCPU_RUNNABLE && vcore->vcore_state != VCORE_INACTIVE && vcore->runner) target = vcore->runner; spin_unlock(&vcore->lock); } return kvm_vcpu_yield_to(target); } static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) { int yield_count = 0; struct lppaca *lppaca; spin_lock(&vcpu->arch.vpa_update_lock); lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; if (lppaca) yield_count = be32_to_cpu(lppaca->yield_count); spin_unlock(&vcpu->arch.vpa_update_lock); return yield_count; } /* * H_RPT_INVALIDATE hcall handler for nested guests. * * Handles only nested process-scoped invalidation requests in L0. */ static int kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu *vcpu) { unsigned long type = kvmppc_get_gpr(vcpu, 6); unsigned long pid, pg_sizes, start, end; /* * The partition-scoped invalidations aren't handled here in L0. */ if (type & H_RPTI_TYPE_NESTED) return RESUME_HOST; pid = kvmppc_get_gpr(vcpu, 4); pg_sizes = kvmppc_get_gpr(vcpu, 7); start = kvmppc_get_gpr(vcpu, 8); end = kvmppc_get_gpr(vcpu, 9); do_h_rpt_invalidate_prt(pid, vcpu->arch.nested->shadow_lpid, type, pg_sizes, start, end); kvmppc_set_gpr(vcpu, 3, H_SUCCESS); return RESUME_GUEST; } static long kvmppc_h_rpt_invalidate(struct kvm_vcpu *vcpu, unsigned long id, unsigned long target, unsigned long type, unsigned long pg_sizes, unsigned long start, unsigned long end) { if (!kvm_is_radix(vcpu->kvm)) return H_UNSUPPORTED; if (end < start) return H_P5; /* * Partition-scoped invalidation for nested guests. */ if (type & H_RPTI_TYPE_NESTED) { if (!nesting_enabled(vcpu->kvm)) return H_FUNCTION; /* Support only cores as target */ if (target != H_RPTI_TARGET_CMMU) return H_P2; return do_h_rpt_invalidate_pat(vcpu, id, type, pg_sizes, start, end); } /* * Process-scoped invalidation for L1 guests. */ do_h_rpt_invalidate_prt(id, vcpu->kvm->arch.lpid, type, pg_sizes, start, end); return H_SUCCESS; } int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) { struct kvm *kvm = vcpu->kvm; unsigned long req = kvmppc_get_gpr(vcpu, 3); unsigned long target, ret = H_SUCCESS; int yield_count; struct kvm_vcpu *tvcpu; int idx, rc; if (req <= MAX_HCALL_OPCODE && !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) return RESUME_HOST; switch (req) { case H_REMOVE: ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4), kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6)); if (ret == H_TOO_HARD) return RESUME_HOST; break; case H_ENTER: ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4), kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6), kvmppc_get_gpr(vcpu, 7)); if (ret == H_TOO_HARD) return RESUME_HOST; break; case H_READ: ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4), kvmppc_get_gpr(vcpu, 5)); if (ret == H_TOO_HARD) return RESUME_HOST; break; case H_CLEAR_MOD: ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4), kvmppc_get_gpr(vcpu, 5)); if (ret == H_TOO_HARD) return RESUME_HOST; break; case H_CLEAR_REF: ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4), kvmppc_get_gpr(vcpu, 5)); if (ret == H_TOO_HARD) return RESUME_HOST; break; case H_PROTECT: ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4), kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6)); if (ret == H_TOO_HARD) return RESUME_HOST; break; case H_BULK_REMOVE: ret = kvmppc_h_bulk_remove(vcpu); if (ret == H_TOO_HARD) return RESUME_HOST; break; case H_CEDE: break; case H_PROD: target = kvmppc_get_gpr(vcpu, 4); tvcpu = kvmppc_find_vcpu(kvm, target); if (!tvcpu) { ret = H_PARAMETER; break; } tvcpu->arch.prodded = 1; smp_mb(); /* This orders prodded store vs ceded load */ if (tvcpu->arch.ceded) kvmppc_fast_vcpu_kick_hv(tvcpu); break; case H_CONFER: target = kvmppc_get_gpr(vcpu, 4); if (target == -1) break; tvcpu = kvmppc_find_vcpu(kvm, target); if (!tvcpu) { ret = H_PARAMETER; break; } yield_count = kvmppc_get_gpr(vcpu, 5); if (kvmppc_get_yield_count(tvcpu) != yield_count) break; kvm_arch_vcpu_yield_to(tvcpu); break; case H_REGISTER_VPA: ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6)); break; case H_RTAS: if (list_empty(&kvm->arch.rtas_tokens)) return RESUME_HOST; idx = srcu_read_lock(&kvm->srcu); rc = kvmppc_rtas_hcall(vcpu); srcu_read_unlock(&kvm->srcu, idx); if (rc == -ENOENT) return RESUME_HOST; else if (rc == 0) break; /* Send the error out to userspace via KVM_RUN */ return rc; case H_LOGICAL_CI_LOAD: ret = kvmppc_h_logical_ci_load(vcpu); if (ret == H_TOO_HARD) return RESUME_HOST; break; case H_LOGICAL_CI_STORE: ret = kvmppc_h_logical_ci_store(vcpu); if (ret == H_TOO_HARD) return RESUME_HOST; break; case H_SET_MODE: ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6), kvmppc_get_gpr(vcpu, 7)); if (ret == H_TOO_HARD) return RESUME_HOST; break; case H_XIRR: case H_CPPR: case H_EOI: case H_IPI: case H_IPOLL: case H_XIRR_X: if (kvmppc_xics_enabled(vcpu)) { if (xics_on_xive()) { ret = H_NOT_AVAILABLE; return RESUME_GUEST; } ret = kvmppc_xics_hcall(vcpu, req); break; } return RESUME_HOST; case H_SET_DABR: ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4)); break; case H_SET_XDABR: ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4), kvmppc_get_gpr(vcpu, 5)); break; #ifdef CONFIG_SPAPR_TCE_IOMMU case H_GET_TCE: ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4), kvmppc_get_gpr(vcpu, 5)); if (ret == H_TOO_HARD) return RESUME_HOST; break; case H_PUT_TCE: ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4), kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6)); if (ret == H_TOO_HARD) return RESUME_HOST; break; case H_PUT_TCE_INDIRECT: ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4), kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6), kvmppc_get_gpr(vcpu, 7)); if (ret == H_TOO_HARD) return RESUME_HOST; break; case H_STUFF_TCE: ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4), kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6), kvmppc_get_gpr(vcpu, 7)); if (ret == H_TOO_HARD) return RESUME_HOST; break; #endif case H_RANDOM: if (!arch_get_random_seed_longs(&vcpu->arch.regs.gpr[4], 1)) ret = H_HARDWARE; break; case H_RPT_INVALIDATE: ret = kvmppc_h_rpt_invalidate(vcpu, kvmppc_get_gpr(vcpu, 4), kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6), kvmppc_get_gpr(vcpu, 7), kvmppc_get_gpr(vcpu, 8), kvmppc_get_gpr(vcpu, 9)); break; case H_SET_PARTITION_TABLE: ret = H_FUNCTION; if (nesting_enabled(kvm)) ret = kvmhv_set_partition_table(vcpu); break; case H_ENTER_NESTED: ret = H_FUNCTION; if (!nesting_enabled(kvm)) break; ret = kvmhv_enter_nested_guest(vcpu); if (ret == H_INTERRUPT) { kvmppc_set_gpr(vcpu, 3, 0); vcpu->arch.hcall_needed = 0; return -EINTR; } else if (ret == H_TOO_HARD) { kvmppc_set_gpr(vcpu, 3, 0); vcpu->arch.hcall_needed = 0; return RESUME_HOST; } break; case H_TLB_INVALIDATE: ret = H_FUNCTION; if (nesting_enabled(kvm)) ret = kvmhv_do_nested_tlbie(vcpu); break; case H_COPY_TOFROM_GUEST: ret = H_FUNCTION; if (nesting_enabled(kvm)) ret = kvmhv_copy_tofrom_guest_nested(vcpu); break; case H_PAGE_INIT: ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4), kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6)); break; case H_SVM_PAGE_IN: ret = H_UNSUPPORTED; if (kvmppc_get_srr1(vcpu) & MSR_S) ret = kvmppc_h_svm_page_in(kvm, kvmppc_get_gpr(vcpu, 4), kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6)); break; case H_SVM_PAGE_OUT: ret = H_UNSUPPORTED; if (kvmppc_get_srr1(vcpu) & MSR_S) ret = kvmppc_h_svm_page_out(kvm, kvmppc_get_gpr(vcpu, 4), kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6)); break; case H_SVM_INIT_START: ret = H_UNSUPPORTED; if (kvmppc_get_srr1(vcpu) & MSR_S) ret = kvmppc_h_svm_init_start(kvm); break; case H_SVM_INIT_DONE: ret = H_UNSUPPORTED; if (kvmppc_get_srr1(vcpu) & MSR_S) ret = kvmppc_h_svm_init_done(kvm); break; case H_SVM_INIT_ABORT: /* * Even if that call is made by the Ultravisor, the SSR1 value * is the guest context one, with the secure bit clear as it has * not yet been secured. So we can't check it here. * Instead the kvm->arch.secure_guest flag is checked inside * kvmppc_h_svm_init_abort(). */ ret = kvmppc_h_svm_init_abort(kvm); break; default: return RESUME_HOST; } WARN_ON_ONCE(ret == H_TOO_HARD); kvmppc_set_gpr(vcpu, 3, ret); vcpu->arch.hcall_needed = 0; return RESUME_GUEST; } /* * Handle H_CEDE in the P9 path where we don't call the real-mode hcall * handlers in book3s_hv_rmhandlers.S. * * This has to be done early, not in kvmppc_pseries_do_hcall(), so * that the cede logic in kvmppc_run_single_vcpu() works properly. */ static void kvmppc_cede(struct kvm_vcpu *vcpu) { vcpu->arch.shregs.msr |= MSR_EE; vcpu->arch.ceded = 1; smp_mb(); if (vcpu->arch.prodded) { vcpu->arch.prodded = 0; smp_mb(); vcpu->arch.ceded = 0; } } static int kvmppc_hcall_impl_hv(unsigned long cmd) { switch (cmd) { case H_CEDE: case H_PROD: case H_CONFER: case H_REGISTER_VPA: case H_SET_MODE: #ifdef CONFIG_SPAPR_TCE_IOMMU case H_GET_TCE: case H_PUT_TCE: case H_PUT_TCE_INDIRECT: case H_STUFF_TCE: #endif case H_LOGICAL_CI_LOAD: case H_LOGICAL_CI_STORE: #ifdef CONFIG_KVM_XICS case H_XIRR: case H_CPPR: case H_EOI: case H_IPI: case H_IPOLL: case H_XIRR_X: #endif case H_PAGE_INIT: case H_RPT_INVALIDATE: return 1; } /* See if it's in the real-mode table */ return kvmppc_hcall_impl_hv_realmode(cmd); } static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu) { u32 last_inst; if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != EMULATE_DONE) { /* * Fetch failed, so return to guest and * try executing it again. */ return RESUME_GUEST; } if (last_inst == KVMPPC_INST_SW_BREAKPOINT) { vcpu->run->exit_reason = KVM_EXIT_DEBUG; vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu); return RESUME_HOST; } else { kvmppc_core_queue_program(vcpu, SRR1_PROGILL); return RESUME_GUEST; } } static void do_nothing(void *x) { } static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu) { int thr, cpu, pcpu, nthreads; struct kvm_vcpu *v; unsigned long dpdes; nthreads = vcpu->kvm->arch.emul_smt_mode; dpdes = 0; cpu = vcpu->vcpu_id & ~(nthreads - 1); for (thr = 0; thr < nthreads; ++thr, ++cpu) { v = kvmppc_find_vcpu(vcpu->kvm, cpu); if (!v) continue; /* * If the vcpu is currently running on a physical cpu thread, * interrupt it in order to pull it out of the guest briefly, * which will update its vcore->dpdes value. */ pcpu = READ_ONCE(v->cpu); if (pcpu >= 0) smp_call_function_single(pcpu, do_nothing, NULL, 1); if (kvmppc_doorbell_pending(v)) dpdes |= 1 << thr; } return dpdes; } /* * On POWER9, emulate doorbell-related instructions in order to * give the guest the illusion of running on a multi-threaded core. * The instructions emulated are msgsndp, msgclrp, mfspr TIR, * and mfspr DPDES. */ static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu) { u32 inst, rb, thr; unsigned long arg; struct kvm *kvm = vcpu->kvm; struct kvm_vcpu *tvcpu; if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE) return RESUME_GUEST; if (get_op(inst) != 31) return EMULATE_FAIL; rb = get_rb(inst); thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1); switch (get_xop(inst)) { case OP_31_XOP_MSGSNDP: arg = kvmppc_get_gpr(vcpu, rb); if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER) break; arg &= 0x7f; if (arg >= kvm->arch.emul_smt_mode) break; tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg); if (!tvcpu) break; if (!tvcpu->arch.doorbell_request) { tvcpu->arch.doorbell_request = 1; kvmppc_fast_vcpu_kick_hv(tvcpu); } break; case OP_31_XOP_MSGCLRP: arg = kvmppc_get_gpr(vcpu, rb); if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER) break; vcpu->arch.vcore->dpdes = 0; vcpu->arch.doorbell_request = 0; break; case OP_31_XOP_MFSPR: switch (get_sprn(inst)) { case SPRN_TIR: arg = thr; break; case SPRN_DPDES: arg = kvmppc_read_dpdes(vcpu); break; default: return EMULATE_FAIL; } kvmppc_set_gpr(vcpu, get_rt(inst), arg); break; default: return EMULATE_FAIL; } kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); return RESUME_GUEST; } /* * If the lppaca had pmcregs_in_use clear when we exited the guest, then * HFSCR_PM is cleared for next entry. If the guest then tries to access * the PMU SPRs, we get this facility unavailable interrupt. Putting HFSCR_PM * back in the guest HFSCR will cause the next entry to load the PMU SPRs and * allow the guest access to continue. */ static int kvmppc_pmu_unavailable(struct kvm_vcpu *vcpu) { if (!(vcpu->arch.hfscr_permitted & HFSCR_PM)) return EMULATE_FAIL; vcpu->arch.hfscr |= HFSCR_PM; return RESUME_GUEST; } static int kvmppc_ebb_unavailable(struct kvm_vcpu *vcpu) { if (!(vcpu->arch.hfscr_permitted & HFSCR_EBB)) return EMULATE_FAIL; vcpu->arch.hfscr |= HFSCR_EBB; return RESUME_GUEST; } static int kvmppc_tm_unavailable(struct kvm_vcpu *vcpu) { if (!(vcpu->arch.hfscr_permitted & HFSCR_TM)) return EMULATE_FAIL; vcpu->arch.hfscr |= HFSCR_TM; return RESUME_GUEST; } static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu, struct task_struct *tsk) { struct kvm_run *run = vcpu->run; int r = RESUME_HOST; vcpu->stat.sum_exits++; /* * This can happen if an interrupt occurs in the last stages * of guest entry or the first stages of guest exit (i.e. after * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV * and before setting it to KVM_GUEST_MODE_HOST_HV). * That can happen due to a bug, or due to a machine check * occurring at just the wrong time. */ if (vcpu->arch.shregs.msr & MSR_HV) { printk(KERN_EMERG "KVM trap in HV mode!\n"); printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", vcpu->arch.trap, kvmppc_get_pc(vcpu), vcpu->arch.shregs.msr); kvmppc_dump_regs(vcpu); run->exit_reason = KVM_EXIT_INTERNAL_ERROR; run->hw.hardware_exit_reason = vcpu->arch.trap; return RESUME_HOST; } run->exit_reason = KVM_EXIT_UNKNOWN; run->ready_for_interrupt_injection = 1; switch (vcpu->arch.trap) { /* We're good on these - the host merely wanted to get our attention */ case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER: WARN_ON_ONCE(1); /* Should never happen */ vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER; fallthrough; case BOOK3S_INTERRUPT_HV_DECREMENTER: vcpu->stat.dec_exits++; r = RESUME_GUEST; break; case BOOK3S_INTERRUPT_EXTERNAL: case BOOK3S_INTERRUPT_H_DOORBELL: case BOOK3S_INTERRUPT_H_VIRT: vcpu->stat.ext_intr_exits++; r = RESUME_GUEST; break; /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ case BOOK3S_INTERRUPT_HMI: case BOOK3S_INTERRUPT_PERFMON: case BOOK3S_INTERRUPT_SYSTEM_RESET: r = RESUME_GUEST; break; case BOOK3S_INTERRUPT_MACHINE_CHECK: { static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST); /* * Print the MCE event to host console. Ratelimit so the guest * can't flood the host log. */ if (__ratelimit(&rs)) machine_check_print_event_info(&vcpu->arch.mce_evt,false, true); /* * If the guest can do FWNMI, exit to userspace so it can * deliver a FWNMI to the guest. * Otherwise we synthesize a machine check for the guest * so that it knows that the machine check occurred. */ if (!vcpu->kvm->arch.fwnmi_enabled) { ulong flags = vcpu->arch.shregs.msr & 0x083c0000; kvmppc_core_queue_machine_check(vcpu, flags); r = RESUME_GUEST; break; } /* Exit to guest with KVM_EXIT_NMI as exit reason */ run->exit_reason = KVM_EXIT_NMI; run->hw.hardware_exit_reason = vcpu->arch.trap; /* Clear out the old NMI status from run->flags */ run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK; /* Now set the NMI status */ if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED) run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV; else run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV; r = RESUME_HOST; break; } case BOOK3S_INTERRUPT_PROGRAM: { ulong flags; /* * Normally program interrupts are delivered directly * to the guest by the hardware, but we can get here * as a result of a hypervisor emulation interrupt * (e40) getting turned into a 700 by BML RTAS. */ flags = vcpu->arch.shregs.msr & 0x1f0000ull; kvmppc_core_queue_program(vcpu, flags); r = RESUME_GUEST; break; } case BOOK3S_INTERRUPT_SYSCALL: { int i; if (unlikely(vcpu->arch.shregs.msr & MSR_PR)) { /* * Guest userspace executed sc 1. This can only be * reached by the P9 path because the old path * handles this case in realmode hcall handlers. */ if (!kvmhv_vcpu_is_radix(vcpu)) { /* * A guest could be running PR KVM, so this * may be a PR KVM hcall. It must be reflected * to the guest kernel as a sc interrupt. */ kvmppc_core_queue_syscall(vcpu); } else { /* * Radix guests can not run PR KVM or nested HV * hash guests which might run PR KVM, so this * is always a privilege fault. Send a program * check to guest kernel. */ kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV); } r = RESUME_GUEST; break; } /* * hcall - gather args and set exit_reason. This will next be * handled by kvmppc_pseries_do_hcall which may be able to deal * with it and resume guest, or may punt to userspace. */ run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); for (i = 0; i < 9; ++i) run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); run->exit_reason = KVM_EXIT_PAPR_HCALL; vcpu->arch.hcall_needed = 1; r = RESUME_HOST; break; } /* * We get these next two if the guest accesses a page which it thinks * it has mapped but which is not actually present, either because * it is for an emulated I/O device or because the corresonding * host page has been paged out. * * Any other HDSI/HISI interrupts have been handled already for P7/8 * guests. For POWER9 hash guests not using rmhandlers, basic hash * fault handling is done here. */ case BOOK3S_INTERRUPT_H_DATA_STORAGE: { unsigned long vsid; long err; if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) && unlikely(vcpu->arch.fault_dsisr == HDSISR_CANARY)) { r = RESUME_GUEST; /* Just retry if it's the canary */ break; } if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) { /* * Radix doesn't require anything, and pre-ISAv3.0 hash * already attempted to handle this in rmhandlers. The * hash fault handling below is v3 only (it uses ASDR * via fault_gpa). */ r = RESUME_PAGE_FAULT; break; } if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) { kvmppc_core_queue_data_storage(vcpu, vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); r = RESUME_GUEST; break; } if (!(vcpu->arch.shregs.msr & MSR_DR)) vsid = vcpu->kvm->arch.vrma_slb_v; else vsid = vcpu->arch.fault_gpa; err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar, vsid, vcpu->arch.fault_dsisr, true); if (err == 0) { r = RESUME_GUEST; } else if (err == -1 || err == -2) { r = RESUME_PAGE_FAULT; } else { kvmppc_core_queue_data_storage(vcpu, vcpu->arch.fault_dar, err); r = RESUME_GUEST; } break; } case BOOK3S_INTERRUPT_H_INST_STORAGE: { unsigned long vsid; long err; vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr & DSISR_SRR1_MATCH_64S; if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) { /* * Radix doesn't require anything, and pre-ISAv3.0 hash * already attempted to handle this in rmhandlers. The * hash fault handling below is v3 only (it uses ASDR * via fault_gpa). */ if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) vcpu->arch.fault_dsisr |= DSISR_ISSTORE; r = RESUME_PAGE_FAULT; break; } if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) { kvmppc_core_queue_inst_storage(vcpu, vcpu->arch.fault_dsisr); r = RESUME_GUEST; break; } if (!(vcpu->arch.shregs.msr & MSR_IR)) vsid = vcpu->kvm->arch.vrma_slb_v; else vsid = vcpu->arch.fault_gpa; err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar, vsid, vcpu->arch.fault_dsisr, false); if (err == 0) { r = RESUME_GUEST; } else if (err == -1) { r = RESUME_PAGE_FAULT; } else { kvmppc_core_queue_inst_storage(vcpu, err); r = RESUME_GUEST; } break; } /* * This occurs if the guest executes an illegal instruction. * If the guest debug is disabled, generate a program interrupt * to the guest. If guest debug is enabled, we need to check * whether the instruction is a software breakpoint instruction. * Accordingly return to Guest or Host. */ case BOOK3S_INTERRUPT_H_EMUL_ASSIST: if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? swab32(vcpu->arch.emul_inst) : vcpu->arch.emul_inst; if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { r = kvmppc_emulate_debug_inst(vcpu); } else { kvmppc_core_queue_program(vcpu, SRR1_PROGILL); r = RESUME_GUEST; } break; #ifdef CONFIG_PPC_TRANSACTIONAL_MEM case BOOK3S_INTERRUPT_HV_SOFTPATCH: /* * This occurs for various TM-related instructions that * we need to emulate on POWER9 DD2.2. We have already * handled the cases where the guest was in real-suspend * mode and was transitioning to transactional state. */ r = kvmhv_p9_tm_emulation(vcpu); if (r != -1) break; fallthrough; /* go to facility unavailable handler */ #endif /* * This occurs if the guest (kernel or userspace), does something that * is prohibited by HFSCR. * On POWER9, this could be a doorbell instruction that we need * to emulate. * Otherwise, we just generate a program interrupt to the guest. */ case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: { u64 cause = vcpu->arch.hfscr >> 56; r = EMULATE_FAIL; if (cpu_has_feature(CPU_FTR_ARCH_300)) { if (cause == FSCR_MSGP_LG) r = kvmppc_emulate_doorbell_instr(vcpu); if (cause == FSCR_PM_LG) r = kvmppc_pmu_unavailable(vcpu); if (cause == FSCR_EBB_LG) r = kvmppc_ebb_unavailable(vcpu); if (cause == FSCR_TM_LG) r = kvmppc_tm_unavailable(vcpu); } if (r == EMULATE_FAIL) { kvmppc_core_queue_program(vcpu, SRR1_PROGILL); r = RESUME_GUEST; } break; } case BOOK3S_INTERRUPT_HV_RM_HARD: r = RESUME_PASSTHROUGH; break; default: kvmppc_dump_regs(vcpu); printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", vcpu->arch.trap, kvmppc_get_pc(vcpu), vcpu->arch.shregs.msr); run->hw.hardware_exit_reason = vcpu->arch.trap; r = RESUME_HOST; break; } return r; } static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu) { int r; int srcu_idx; vcpu->stat.sum_exits++; /* * This can happen if an interrupt occurs in the last stages * of guest entry or the first stages of guest exit (i.e. after * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV * and before setting it to KVM_GUEST_MODE_HOST_HV). * That can happen due to a bug, or due to a machine check * occurring at just the wrong time. */ if (vcpu->arch.shregs.msr & MSR_HV) { pr_emerg("KVM trap in HV mode while nested!\n"); pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n", vcpu->arch.trap, kvmppc_get_pc(vcpu), vcpu->arch.shregs.msr); kvmppc_dump_regs(vcpu); return RESUME_HOST; } switch (vcpu->arch.trap) { /* We're good on these - the host merely wanted to get our attention */ case BOOK3S_INTERRUPT_HV_DECREMENTER: vcpu->stat.dec_exits++; r = RESUME_GUEST; break; case BOOK3S_INTERRUPT_EXTERNAL: vcpu->stat.ext_intr_exits++; r = RESUME_HOST; break; case BOOK3S_INTERRUPT_H_DOORBELL: case BOOK3S_INTERRUPT_H_VIRT: vcpu->stat.ext_intr_exits++; r = RESUME_GUEST; break; /* These need to go to the nested HV */ case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER: vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER; vcpu->stat.dec_exits++; r = RESUME_HOST; break; /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ case BOOK3S_INTERRUPT_HMI: case BOOK3S_INTERRUPT_PERFMON: case BOOK3S_INTERRUPT_SYSTEM_RESET: r = RESUME_GUEST; break; case BOOK3S_INTERRUPT_MACHINE_CHECK: { static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST); /* Pass the machine check to the L1 guest */ r = RESUME_HOST; /* Print the MCE event to host console. */ if (__ratelimit(&rs)) machine_check_print_event_info(&vcpu->arch.mce_evt, false, true); break; } /* * We get these next two if the guest accesses a page which it thinks * it has mapped but which is not actually present, either because * it is for an emulated I/O device or because the corresonding * host page has been paged out. */ case BOOK3S_INTERRUPT_H_DATA_STORAGE: srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); r = kvmhv_nested_page_fault(vcpu); srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); break; case BOOK3S_INTERRUPT_H_INST_STORAGE: vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) & DSISR_SRR1_MATCH_64S; if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) vcpu->arch.fault_dsisr |= DSISR_ISSTORE; srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); r = kvmhv_nested_page_fault(vcpu); srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); break; #ifdef CONFIG_PPC_TRANSACTIONAL_MEM case BOOK3S_INTERRUPT_HV_SOFTPATCH: /* * This occurs for various TM-related instructions that * we need to emulate on POWER9 DD2.2. We have already * handled the cases where the guest was in real-suspend * mode and was transitioning to transactional state. */ r = kvmhv_p9_tm_emulation(vcpu); if (r != -1) break; fallthrough; /* go to facility unavailable handler */ #endif case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: { u64 cause = vcpu->arch.hfscr >> 56; /* * Only pass HFU interrupts to the L1 if the facility is * permitted but disabled by the L1's HFSCR, otherwise * the interrupt does not make sense to the L1 so turn * it into a HEAI. */ if (!(vcpu->arch.hfscr_permitted & (1UL << cause)) || (vcpu->arch.nested_hfscr & (1UL << cause))) { vcpu->arch.trap = BOOK3S_INTERRUPT_H_EMUL_ASSIST; /* * If the fetch failed, return to guest and * try executing it again. */ r = kvmppc_get_last_inst(vcpu, INST_GENERIC, &vcpu->arch.emul_inst); if (r != EMULATE_DONE) r = RESUME_GUEST; else r = RESUME_HOST; } else { r = RESUME_HOST; } break; } case BOOK3S_INTERRUPT_HV_RM_HARD: vcpu->arch.trap = 0; r = RESUME_GUEST; if (!xics_on_xive()) kvmppc_xics_rm_complete(vcpu, 0); break; case BOOK3S_INTERRUPT_SYSCALL: { unsigned long req = kvmppc_get_gpr(vcpu, 3); /* * The H_RPT_INVALIDATE hcalls issued by nested * guests for process-scoped invalidations when * GTSE=0, are handled here in L0. */ if (req == H_RPT_INVALIDATE) { r = kvmppc_nested_h_rpt_invalidate(vcpu); break; } r = RESUME_HOST; break; } default: r = RESUME_HOST; break; } return r; } static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { int i; memset(sregs, 0, sizeof(struct kvm_sregs)); sregs->pvr = vcpu->arch.pvr; for (i = 0; i < vcpu->arch.slb_max; i++) { sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; } return 0; } static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { int i, j; /* Only accept the same PVR as the host's, since we can't spoof it */ if (sregs->pvr != vcpu->arch.pvr) return -EINVAL; j = 0; for (i = 0; i < vcpu->arch.slb_nr; i++) { if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; ++j; } } vcpu->arch.slb_max = j; return 0; } /* * Enforce limits on guest LPCR values based on hardware availability, * guest configuration, and possibly hypervisor support and security * concerns. */ unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr) { /* LPCR_TC only applies to HPT guests */ if (kvm_is_radix(kvm)) lpcr &= ~LPCR_TC; /* On POWER8 and above, userspace can modify AIL */ if (!cpu_has_feature(CPU_FTR_ARCH_207S)) lpcr &= ~LPCR_AIL; if ((lpcr & LPCR_AIL) != LPCR_AIL_3) lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */ /* * On some POWER9s we force AIL off for radix guests to prevent * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to * guest, which can result in Q0 translations with LPID=0 PID=PIDR to * be cached, which the host TLB management does not expect. */ if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) lpcr &= ~LPCR_AIL; /* * On POWER9, allow userspace to enable large decrementer for the * guest, whether or not the host has it enabled. */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) lpcr &= ~LPCR_LD; return lpcr; } static void verify_lpcr(struct kvm *kvm, unsigned long lpcr) { if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) { WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n", lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr)); } } static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, bool preserve_top32) { struct kvm *kvm = vcpu->kvm; struct kvmppc_vcore *vc = vcpu->arch.vcore; u64 mask; spin_lock(&vc->lock); /* * Userspace can only modify * DPFD (default prefetch depth), ILE (interrupt little-endian), * TC (translation control), AIL (alternate interrupt location), * LD (large decrementer). * These are subject to restrictions from kvmppc_filter_lcpr_hv(). */ mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD; /* Broken 32-bit version of LPCR must not clear top bits */ if (preserve_top32) mask &= 0xFFFFFFFF; new_lpcr = kvmppc_filter_lpcr_hv(kvm, (vc->lpcr & ~mask) | (new_lpcr & mask)); /* * If ILE (interrupt little-endian) has changed, update the * MSR_LE bit in the intr_msr for each vcpu in this vcore. */ if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { struct kvm_vcpu *vcpu; unsigned long i; kvm_for_each_vcpu(i, vcpu, kvm) { if (vcpu->arch.vcore != vc) continue; if (new_lpcr & LPCR_ILE) vcpu->arch.intr_msr |= MSR_LE; else vcpu->arch.intr_msr &= ~MSR_LE; } } vc->lpcr = new_lpcr; spin_unlock(&vc->lock); } static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val) { int r = 0; long int i; switch (id) { case KVM_REG_PPC_DEBUG_INST: *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); break; case KVM_REG_PPC_HIOR: *val = get_reg_val(id, 0); break; case KVM_REG_PPC_DABR: *val = get_reg_val(id, vcpu->arch.dabr); break; case KVM_REG_PPC_DABRX: *val = get_reg_val(id, vcpu->arch.dabrx); break; case KVM_REG_PPC_DSCR: *val = get_reg_val(id, vcpu->arch.dscr); break; case KVM_REG_PPC_PURR: *val = get_reg_val(id, vcpu->arch.purr); break; case KVM_REG_PPC_SPURR: *val = get_reg_val(id, vcpu->arch.spurr); break; case KVM_REG_PPC_AMR: *val = get_reg_val(id, vcpu->arch.amr); break; case KVM_REG_PPC_UAMOR: *val = get_reg_val(id, vcpu->arch.uamor); break; case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1: i = id - KVM_REG_PPC_MMCR0; *val = get_reg_val(id, vcpu->arch.mmcr[i]); break; case KVM_REG_PPC_MMCR2: *val = get_reg_val(id, vcpu->arch.mmcr[2]); break; case KVM_REG_PPC_MMCRA: *val = get_reg_val(id, vcpu->arch.mmcra); break; case KVM_REG_PPC_MMCRS: *val = get_reg_val(id, vcpu->arch.mmcrs); break; case KVM_REG_PPC_MMCR3: *val = get_reg_val(id, vcpu->arch.mmcr[3]); break; case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: i = id - KVM_REG_PPC_PMC1; *val = get_reg_val(id, vcpu->arch.pmc[i]); break; case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: i = id - KVM_REG_PPC_SPMC1; *val = get_reg_val(id, vcpu->arch.spmc[i]); break; case KVM_REG_PPC_SIAR: *val = get_reg_val(id, vcpu->arch.siar); break; case KVM_REG_PPC_SDAR: *val = get_reg_val(id, vcpu->arch.sdar); break; case KVM_REG_PPC_SIER: *val = get_reg_val(id, vcpu->arch.sier[0]); break; case KVM_REG_PPC_SIER2: *val = get_reg_val(id, vcpu->arch.sier[1]); break; case KVM_REG_PPC_SIER3: *val = get_reg_val(id, vcpu->arch.sier[2]); break; case KVM_REG_PPC_IAMR: *val = get_reg_val(id, vcpu->arch.iamr); break; case KVM_REG_PPC_PSPB: *val = get_reg_val(id, vcpu->arch.pspb); break; case KVM_REG_PPC_DPDES: /* * On POWER9, where we are emulating msgsndp etc., * we return 1 bit for each vcpu, which can come from * either vcore->dpdes or doorbell_request. * On POWER8, doorbell_request is 0. */ if (cpu_has_feature(CPU_FTR_ARCH_300)) *val = get_reg_val(id, vcpu->arch.doorbell_request); else *val = get_reg_val(id, vcpu->arch.vcore->dpdes); break; case KVM_REG_PPC_VTB: *val = get_reg_val(id, vcpu->arch.vcore->vtb); break; case KVM_REG_PPC_DAWR: *val = get_reg_val(id, vcpu->arch.dawr0); break; case KVM_REG_PPC_DAWRX: *val = get_reg_val(id, vcpu->arch.dawrx0); break; case KVM_REG_PPC_DAWR1: *val = get_reg_val(id, vcpu->arch.dawr1); break; case KVM_REG_PPC_DAWRX1: *val = get_reg_val(id, vcpu->arch.dawrx1); break; case KVM_REG_PPC_CIABR: *val = get_reg_val(id, vcpu->arch.ciabr); break; case KVM_REG_PPC_CSIGR: *val = get_reg_val(id, vcpu->arch.csigr); break; case KVM_REG_PPC_TACR: *val = get_reg_val(id, vcpu->arch.tacr); break; case KVM_REG_PPC_TCSCR: *val = get_reg_val(id, vcpu->arch.tcscr); break; case KVM_REG_PPC_PID: *val = get_reg_val(id, vcpu->arch.pid); break; case KVM_REG_PPC_ACOP: *val = get_reg_val(id, vcpu->arch.acop); break; case KVM_REG_PPC_WORT: *val = get_reg_val(id, vcpu->arch.wort); break; case KVM_REG_PPC_TIDR: *val = get_reg_val(id, vcpu->arch.tid); break; case KVM_REG_PPC_PSSCR: *val = get_reg_val(id, vcpu->arch.psscr); break; case KVM_REG_PPC_VPA_ADDR: spin_lock(&vcpu->arch.vpa_update_lock); *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); spin_unlock(&vcpu->arch.vpa_update_lock); break; case KVM_REG_PPC_VPA_SLB: spin_lock(&vcpu->arch.vpa_update_lock); val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; val->vpaval.length = vcpu->arch.slb_shadow.len; spin_unlock(&vcpu->arch.vpa_update_lock); break; case KVM_REG_PPC_VPA_DTL: spin_lock(&vcpu->arch.vpa_update_lock); val->vpaval.addr = vcpu->arch.dtl.next_gpa; val->vpaval.length = vcpu->arch.dtl.len; spin_unlock(&vcpu->arch.vpa_update_lock); break; case KVM_REG_PPC_TB_OFFSET: *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); break; case KVM_REG_PPC_LPCR: case KVM_REG_PPC_LPCR_64: *val = get_reg_val(id, vcpu->arch.vcore->lpcr); break; case KVM_REG_PPC_PPR: *val = get_reg_val(id, vcpu->arch.ppr); break; #ifdef CONFIG_PPC_TRANSACTIONAL_MEM case KVM_REG_PPC_TFHAR: *val = get_reg_val(id, vcpu->arch.tfhar); break; case KVM_REG_PPC_TFIAR: *val = get_reg_val(id, vcpu->arch.tfiar); break; case KVM_REG_PPC_TEXASR: *val = get_reg_val(id, vcpu->arch.texasr); break; case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: i = id - KVM_REG_PPC_TM_GPR0; *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); break; case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: { int j; i = id - KVM_REG_PPC_TM_VSR0; if (i < 32) for (j = 0; j < TS_FPRWIDTH; j++) val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; else { if (cpu_has_feature(CPU_FTR_ALTIVEC)) val->vval = vcpu->arch.vr_tm.vr[i-32]; else r = -ENXIO; } break; } case KVM_REG_PPC_TM_CR: *val = get_reg_val(id, vcpu->arch.cr_tm); break; case KVM_REG_PPC_TM_XER: *val = get_reg_val(id, vcpu->arch.xer_tm); break; case KVM_REG_PPC_TM_LR: *val = get_reg_val(id, vcpu->arch.lr_tm); break; case KVM_REG_PPC_TM_CTR: *val = get_reg_val(id, vcpu->arch.ctr_tm); break; case KVM_REG_PPC_TM_FPSCR: *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); break; case KVM_REG_PPC_TM_AMR: *val = get_reg_val(id, vcpu->arch.amr_tm); break; case KVM_REG_PPC_TM_PPR: *val = get_reg_val(id, vcpu->arch.ppr_tm); break; case KVM_REG_PPC_TM_VRSAVE: *val = get_reg_val(id, vcpu->arch.vrsave_tm); break; case KVM_REG_PPC_TM_VSCR: if (cpu_has_feature(CPU_FTR_ALTIVEC)) *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); else r = -ENXIO; break; case KVM_REG_PPC_TM_DSCR: *val = get_reg_val(id, vcpu->arch.dscr_tm); break; case KVM_REG_PPC_TM_TAR: *val = get_reg_val(id, vcpu->arch.tar_tm); break; #endif case KVM_REG_PPC_ARCH_COMPAT: *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); break; case KVM_REG_PPC_DEC_EXPIRY: *val = get_reg_val(id, vcpu->arch.dec_expires); break; case KVM_REG_PPC_ONLINE: *val = get_reg_val(id, vcpu->arch.online); break; case KVM_REG_PPC_PTCR: *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr); break; default: r = -EINVAL; break; } return r; } static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val) { int r = 0; long int i; unsigned long addr, len; switch (id) { case KVM_REG_PPC_HIOR: /* Only allow this to be set to zero */ if (set_reg_val(id, *val)) r = -EINVAL; break; case KVM_REG_PPC_DABR: vcpu->arch.dabr = set_reg_val(id, *val); break; case KVM_REG_PPC_DABRX: vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; break; case KVM_REG_PPC_DSCR: vcpu->arch.dscr = set_reg_val(id, *val); break; case KVM_REG_PPC_PURR: vcpu->arch.purr = set_reg_val(id, *val); break; case KVM_REG_PPC_SPURR: vcpu->arch.spurr = set_reg_val(id, *val); break; case KVM_REG_PPC_AMR: vcpu->arch.amr = set_reg_val(id, *val); break; case KVM_REG_PPC_UAMOR: vcpu->arch.uamor = set_reg_val(id, *val); break; case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1: i = id - KVM_REG_PPC_MMCR0; vcpu->arch.mmcr[i] = set_reg_val(id, *val); break; case KVM_REG_PPC_MMCR2: vcpu->arch.mmcr[2] = set_reg_val(id, *val); break; case KVM_REG_PPC_MMCRA: vcpu->arch.mmcra = set_reg_val(id, *val); break; case KVM_REG_PPC_MMCRS: vcpu->arch.mmcrs = set_reg_val(id, *val); break; case KVM_REG_PPC_MMCR3: *val = get_reg_val(id, vcpu->arch.mmcr[3]); break; case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: i = id - KVM_REG_PPC_PMC1; vcpu->arch.pmc[i] = set_reg_val(id, *val); break; case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: i = id - KVM_REG_PPC_SPMC1; vcpu->arch.spmc[i] = set_reg_val(id, *val); break; case KVM_REG_PPC_SIAR: vcpu->arch.siar = set_reg_val(id, *val); break; case KVM_REG_PPC_SDAR: vcpu->arch.sdar = set_reg_val(id, *val); break; case KVM_REG_PPC_SIER: vcpu->arch.sier[0] = set_reg_val(id, *val); break; case KVM_REG_PPC_SIER2: vcpu->arch.sier[1] = set_reg_val(id, *val); break; case KVM_REG_PPC_SIER3: vcpu->arch.sier[2] = set_reg_val(id, *val); break; case KVM_REG_PPC_IAMR: vcpu->arch.iamr = set_reg_val(id, *val); break; case KVM_REG_PPC_PSPB: vcpu->arch.pspb = set_reg_val(id, *val); break; case KVM_REG_PPC_DPDES: if (cpu_has_feature(CPU_FTR_ARCH_300)) vcpu->arch.doorbell_request = set_reg_val(id, *val) & 1; else vcpu->arch.vcore->dpdes = set_reg_val(id, *val); break; case KVM_REG_PPC_VTB: vcpu->arch.vcore->vtb = set_reg_val(id, *val); break; case KVM_REG_PPC_DAWR: vcpu->arch.dawr0 = set_reg_val(id, *val); break; case KVM_REG_PPC_DAWRX: vcpu->arch.dawrx0 = set_reg_val(id, *val) & ~DAWRX_HYP; break; case KVM_REG_PPC_DAWR1: vcpu->arch.dawr1 = set_reg_val(id, *val); break; case KVM_REG_PPC_DAWRX1: vcpu->arch.dawrx1 = set_reg_val(id, *val) & ~DAWRX_HYP; break; case KVM_REG_PPC_CIABR: vcpu->arch.ciabr = set_reg_val(id, *val); /* Don't allow setting breakpoints in hypervisor code */ if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ break; case KVM_REG_PPC_CSIGR: vcpu->arch.csigr = set_reg_val(id, *val); break; case KVM_REG_PPC_TACR: vcpu->arch.tacr = set_reg_val(id, *val); break; case KVM_REG_PPC_TCSCR: vcpu->arch.tcscr = set_reg_val(id, *val); break; case KVM_REG_PPC_PID: vcpu->arch.pid = set_reg_val(id, *val); break; case KVM_REG_PPC_ACOP: vcpu->arch.acop = set_reg_val(id, *val); break; case KVM_REG_PPC_WORT: vcpu->arch.wort = set_reg_val(id, *val); break; case KVM_REG_PPC_TIDR: vcpu->arch.tid = set_reg_val(id, *val); break; case KVM_REG_PPC_PSSCR: vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS; break; case KVM_REG_PPC_VPA_ADDR: addr = set_reg_val(id, *val); r = -EINVAL; if (!addr && (vcpu->arch.slb_shadow.next_gpa || vcpu->arch.dtl.next_gpa)) break; r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); break; case KVM_REG_PPC_VPA_SLB: addr = val->vpaval.addr; len = val->vpaval.length; r = -EINVAL; if (addr && !vcpu->arch.vpa.next_gpa) break; r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); break; case KVM_REG_PPC_VPA_DTL: addr = val->vpaval.addr; len = val->vpaval.length; r = -EINVAL; if (addr && (len < sizeof(struct dtl_entry) || !vcpu->arch.vpa.next_gpa)) break; len -= len % sizeof(struct dtl_entry); r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); break; case KVM_REG_PPC_TB_OFFSET: { /* round up to multiple of 2^24 */ u64 tb_offset = ALIGN(set_reg_val(id, *val), 1UL << 24); /* * Now that we know the timebase offset, update the * decrementer expiry with a guest timebase value. If * the userspace does not set DEC_EXPIRY, this ensures * a migrated vcpu at least starts with an expired * decrementer, which is better than a large one that * causes a hang. */ if (!vcpu->arch.dec_expires && tb_offset) vcpu->arch.dec_expires = get_tb() + tb_offset; vcpu->arch.vcore->tb_offset = tb_offset; break; } case KVM_REG_PPC_LPCR: kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); break; case KVM_REG_PPC_LPCR_64: kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); break; case KVM_REG_PPC_PPR: vcpu->arch.ppr = set_reg_val(id, *val); break; #ifdef CONFIG_PPC_TRANSACTIONAL_MEM case KVM_REG_PPC_TFHAR: vcpu->arch.tfhar = set_reg_val(id, *val); break; case KVM_REG_PPC_TFIAR: vcpu->arch.tfiar = set_reg_val(id, *val); break; case KVM_REG_PPC_TEXASR: vcpu->arch.texasr = set_reg_val(id, *val); break; case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: i = id - KVM_REG_PPC_TM_GPR0; vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); break; case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: { int j; i = id - KVM_REG_PPC_TM_VSR0; if (i < 32) for (j = 0; j < TS_FPRWIDTH; j++) vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; else if (cpu_has_feature(CPU_FTR_ALTIVEC)) vcpu->arch.vr_tm.vr[i-32] = val->vval; else r = -ENXIO; break; } case KVM_REG_PPC_TM_CR: vcpu->arch.cr_tm = set_reg_val(id, *val); break; case KVM_REG_PPC_TM_XER: vcpu->arch.xer_tm = set_reg_val(id, *val); break; case KVM_REG_PPC_TM_LR: vcpu->arch.lr_tm = set_reg_val(id, *val); break; case KVM_REG_PPC_TM_CTR: vcpu->arch.ctr_tm = set_reg_val(id, *val); break; case KVM_REG_PPC_TM_FPSCR: vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); break; case KVM_REG_PPC_TM_AMR: vcpu->arch.amr_tm = set_reg_val(id, *val); break; case KVM_REG_PPC_TM_PPR: vcpu->arch.ppr_tm = set_reg_val(id, *val); break; case KVM_REG_PPC_TM_VRSAVE: vcpu->arch.vrsave_tm = set_reg_val(id, *val); break; case KVM_REG_PPC_TM_VSCR: if (cpu_has_feature(CPU_FTR_ALTIVEC)) vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); else r = - ENXIO; break; case KVM_REG_PPC_TM_DSCR: vcpu->arch.dscr_tm = set_reg_val(id, *val); break; case KVM_REG_PPC_TM_TAR: vcpu->arch.tar_tm = set_reg_val(id, *val); break; #endif case KVM_REG_PPC_ARCH_COMPAT: r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); break; case KVM_REG_PPC_DEC_EXPIRY: vcpu->arch.dec_expires = set_reg_val(id, *val); break; case KVM_REG_PPC_ONLINE: i = set_reg_val(id, *val); if (i && !vcpu->arch.online) atomic_inc(&vcpu->arch.vcore->online_count); else if (!i && vcpu->arch.online) atomic_dec(&vcpu->arch.vcore->online_count); vcpu->arch.online = i; break; case KVM_REG_PPC_PTCR: vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val); break; default: r = -EINVAL; break; } return r; } /* * On POWER9, threads are independent and can be in different partitions. * Therefore we consider each thread to be a subcore. * There is a restriction that all threads have to be in the same * MMU mode (radix or HPT), unfortunately, but since we only support * HPT guests on a HPT host so far, that isn't an impediment yet. */ static int threads_per_vcore(struct kvm *kvm) { if (cpu_has_feature(CPU_FTR_ARCH_300)) return 1; return threads_per_subcore; } static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id) { struct kvmppc_vcore *vcore; vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); if (vcore == NULL) return NULL; spin_lock_init(&vcore->lock); spin_lock_init(&vcore->stoltb_lock); rcuwait_init(&vcore->wait); vcore->preempt_tb = TB_NIL; vcore->lpcr = kvm->arch.lpcr; vcore->first_vcpuid = id; vcore->kvm = kvm; INIT_LIST_HEAD(&vcore->preempt_list); return vcore; } #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING static struct debugfs_timings_element { const char *name; size_t offset; } timings[] = { #ifdef CONFIG_KVM_BOOK3S_HV_P9_TIMING {"vcpu_entry", offsetof(struct kvm_vcpu, arch.vcpu_entry)}, {"guest_entry", offsetof(struct kvm_vcpu, arch.guest_entry)}, {"in_guest", offsetof(struct kvm_vcpu, arch.in_guest)}, {"guest_exit", offsetof(struct kvm_vcpu, arch.guest_exit)}, {"vcpu_exit", offsetof(struct kvm_vcpu, arch.vcpu_exit)}, {"hypercall", offsetof(struct kvm_vcpu, arch.hcall)}, {"page_fault", offsetof(struct kvm_vcpu, arch.pg_fault)}, #else {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, #endif }; #define N_TIMINGS (ARRAY_SIZE(timings)) struct debugfs_timings_state { struct kvm_vcpu *vcpu; unsigned int buflen; char buf[N_TIMINGS * 100]; }; static int debugfs_timings_open(struct inode *inode, struct file *file) { struct kvm_vcpu *vcpu = inode->i_private; struct debugfs_timings_state *p; p = kzalloc(sizeof(*p), GFP_KERNEL); if (!p) return -ENOMEM; kvm_get_kvm(vcpu->kvm); p->vcpu = vcpu; file->private_data = p; return nonseekable_open(inode, file); } static int debugfs_timings_release(struct inode *inode, struct file *file) { struct debugfs_timings_state *p = file->private_data; kvm_put_kvm(p->vcpu->kvm); kfree(p); return 0; } static ssize_t debugfs_timings_read(struct file *file, char __user *buf, size_t len, loff_t *ppos) { struct debugfs_timings_state *p = file->private_data; struct kvm_vcpu *vcpu = p->vcpu; char *s, *buf_end; struct kvmhv_tb_accumulator tb; u64 count; loff_t pos; ssize_t n; int i, loops; bool ok; if (!p->buflen) { s = p->buf; buf_end = s + sizeof(p->buf); for (i = 0; i < N_TIMINGS; ++i) { struct kvmhv_tb_accumulator *acc; acc = (struct kvmhv_tb_accumulator *) ((unsigned long)vcpu + timings[i].offset); ok = false; for (loops = 0; loops < 1000; ++loops) { count = acc->seqcount; if (!(count & 1)) { smp_rmb(); tb = *acc; smp_rmb(); if (count == acc->seqcount) { ok = true; break; } } udelay(1); } if (!ok) snprintf(s, buf_end - s, "%s: stuck\n", timings[i].name); else snprintf(s, buf_end - s, "%s: %llu %llu %llu %llu\n", timings[i].name, count / 2, tb_to_ns(tb.tb_total), tb_to_ns(tb.tb_min), tb_to_ns(tb.tb_max)); s += strlen(s); } p->buflen = s - p->buf; } pos = *ppos; if (pos >= p->buflen) return 0; if (len > p->buflen - pos) len = p->buflen - pos; n = copy_to_user(buf, p->buf + pos, len); if (n) { if (n == len) return -EFAULT; len -= n; } *ppos = pos + len; return len; } static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, size_t len, loff_t *ppos) { return -EACCES; } static const struct file_operations debugfs_timings_ops = { .owner = THIS_MODULE, .open = debugfs_timings_open, .release = debugfs_timings_release, .read = debugfs_timings_read, .write = debugfs_timings_write, .llseek = generic_file_llseek, }; /* Create a debugfs directory for the vcpu */ static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry) { if (cpu_has_feature(CPU_FTR_ARCH_300) == IS_ENABLED(CONFIG_KVM_BOOK3S_HV_P9_TIMING)) debugfs_create_file("timings", 0444, debugfs_dentry, vcpu, &debugfs_timings_ops); return 0; } #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry) { return 0; } #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu) { int err; int core; struct kvmppc_vcore *vcore; struct kvm *kvm; unsigned int id; kvm = vcpu->kvm; id = vcpu->vcpu_id; vcpu->arch.shared = &vcpu->arch.shregs; #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE /* * The shared struct is never shared on HV, * so we can always use host endianness */ #ifdef __BIG_ENDIAN__ vcpu->arch.shared_big_endian = true; #else vcpu->arch.shared_big_endian = false; #endif #endif vcpu->arch.mmcr[0] = MMCR0_FC; if (cpu_has_feature(CPU_FTR_ARCH_31)) { vcpu->arch.mmcr[0] |= MMCR0_PMCCEXT; vcpu->arch.mmcra = MMCRA_BHRB_DISABLE; } vcpu->arch.ctrl = CTRL_RUNLATCH; /* default to host PVR, since we can't spoof it */ kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); spin_lock_init(&vcpu->arch.vpa_update_lock); spin_lock_init(&vcpu->arch.tbacct_lock); vcpu->arch.busy_preempt = TB_NIL; vcpu->arch.shregs.msr = MSR_ME; vcpu->arch.intr_msr = MSR_SF | MSR_ME; /* * Set the default HFSCR for the guest from the host value. * This value is only used on POWER9. * On POWER9, we want to virtualize the doorbell facility, so we * don't set the HFSCR_MSGP bit, and that causes those instructions * to trap and then we emulate them. */ vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB | HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP; if (cpu_has_feature(CPU_FTR_HVMODE)) { vcpu->arch.hfscr &= mfspr(SPRN_HFSCR); #ifdef CONFIG_PPC_TRANSACTIONAL_MEM if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) vcpu->arch.hfscr |= HFSCR_TM; #endif } if (cpu_has_feature(CPU_FTR_TM_COMP)) vcpu->arch.hfscr |= HFSCR_TM; vcpu->arch.hfscr_permitted = vcpu->arch.hfscr; /* * PM, EBB, TM are demand-faulted so start with it clear. */ vcpu->arch.hfscr &= ~(HFSCR_PM | HFSCR_EBB | HFSCR_TM); kvmppc_mmu_book3s_hv_init(vcpu); vcpu->arch.state = KVMPPC_VCPU_NOTREADY; init_waitqueue_head(&vcpu->arch.cpu_run); mutex_lock(&kvm->lock); vcore = NULL; err = -EINVAL; if (cpu_has_feature(CPU_FTR_ARCH_300)) { if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) { pr_devel("KVM: VCPU ID too high\n"); core = KVM_MAX_VCORES; } else { BUG_ON(kvm->arch.smt_mode != 1); core = kvmppc_pack_vcpu_id(kvm, id); } } else { core = id / kvm->arch.smt_mode; } if (core < KVM_MAX_VCORES) { vcore = kvm->arch.vcores[core]; if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) { pr_devel("KVM: collision on id %u", id); vcore = NULL; } else if (!vcore) { /* * Take mmu_setup_lock for mutual exclusion * with kvmppc_update_lpcr(). */ err = -ENOMEM; vcore = kvmppc_vcore_create(kvm, id & ~(kvm->arch.smt_mode - 1)); mutex_lock(&kvm->arch.mmu_setup_lock); kvm->arch.vcores[core] = vcore; kvm->arch.online_vcores++; mutex_unlock(&kvm->arch.mmu_setup_lock); } } mutex_unlock(&kvm->lock); if (!vcore) return err; spin_lock(&vcore->lock); ++vcore->num_threads; spin_unlock(&vcore->lock); vcpu->arch.vcore = vcore; vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; vcpu->arch.thread_cpu = -1; vcpu->arch.prev_cpu = -1; vcpu->arch.cpu_type = KVM_CPU_3S_64; kvmppc_sanity_check(vcpu); return 0; } static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode, unsigned long flags) { int err; int esmt = 0; if (flags) return -EINVAL; if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode)) return -EINVAL; if (!cpu_has_feature(CPU_FTR_ARCH_300)) { /* * On POWER8 (or POWER7), the threading mode is "strict", * so we pack smt_mode vcpus per vcore. */ if (smt_mode > threads_per_subcore) return -EINVAL; } else { /* * On POWER9, the threading mode is "loose", * so each vcpu gets its own vcore. */ esmt = smt_mode; smt_mode = 1; } mutex_lock(&kvm->lock); err = -EBUSY; if (!kvm->arch.online_vcores) { kvm->arch.smt_mode = smt_mode; kvm->arch.emul_smt_mode = esmt; err = 0; } mutex_unlock(&kvm->lock); return err; } static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) { if (vpa->pinned_addr) kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, vpa->dirty); } static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) { spin_lock(&vcpu->arch.vpa_update_lock); unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); spin_unlock(&vcpu->arch.vpa_update_lock); } static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) { /* Indicate we want to get back into the guest */ return 1; } static void kvmppc_set_timer(struct kvm_vcpu *vcpu) { unsigned long dec_nsec, now; now = get_tb(); if (now > kvmppc_dec_expires_host_tb(vcpu)) { /* decrementer has already gone negative */ kvmppc_core_queue_dec(vcpu); kvmppc_core_prepare_to_enter(vcpu); return; } dec_nsec = tb_to_ns(kvmppc_dec_expires_host_tb(vcpu) - now); hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL); vcpu->arch.timer_running = 1; } extern int __kvmppc_vcore_entry(void); static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, struct kvm_vcpu *vcpu, u64 tb) { u64 now; if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) return; spin_lock_irq(&vcpu->arch.tbacct_lock); now = tb; vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - vcpu->arch.stolen_logged; vcpu->arch.busy_preempt = now; vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; spin_unlock_irq(&vcpu->arch.tbacct_lock); --vc->n_runnable; WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL); } static int kvmppc_grab_hwthread(int cpu) { struct paca_struct *tpaca; long timeout = 10000; tpaca = paca_ptrs[cpu]; /* Ensure the thread won't go into the kernel if it wakes */ tpaca->kvm_hstate.kvm_vcpu = NULL; tpaca->kvm_hstate.kvm_vcore = NULL; tpaca->kvm_hstate.napping = 0; smp_wmb(); tpaca->kvm_hstate.hwthread_req = 1; /* * If the thread is already executing in the kernel (e.g. handling * a stray interrupt), wait for it to get back to nap mode. * The smp_mb() is to ensure that our setting of hwthread_req * is visible before we look at hwthread_state, so if this * races with the code at system_reset_pSeries and the thread * misses our setting of hwthread_req, we are sure to see its * setting of hwthread_state, and vice versa. */ smp_mb(); while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { if (--timeout <= 0) { pr_err("KVM: couldn't grab cpu %d\n", cpu); return -EBUSY; } udelay(1); } return 0; } static void kvmppc_release_hwthread(int cpu) { struct paca_struct *tpaca; tpaca = paca_ptrs[cpu]; tpaca->kvm_hstate.hwthread_req = 0; tpaca->kvm_hstate.kvm_vcpu = NULL; tpaca->kvm_hstate.kvm_vcore = NULL; tpaca->kvm_hstate.kvm_split_mode = NULL; } static DEFINE_PER_CPU(struct kvm *, cpu_in_guest); static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu) { struct kvm_nested_guest *nested = vcpu->arch.nested; cpumask_t *need_tlb_flush; int i; if (nested) need_tlb_flush = &nested->need_tlb_flush; else need_tlb_flush = &kvm->arch.need_tlb_flush; cpu = cpu_first_tlb_thread_sibling(cpu); for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu); i += cpu_tlb_thread_sibling_step()) cpumask_set_cpu(i, need_tlb_flush); /* * Make sure setting of bit in need_tlb_flush precedes testing of * cpu_in_guest. The matching barrier on the other side is hwsync * when switching to guest MMU mode, which happens between * cpu_in_guest being set to the guest kvm, and need_tlb_flush bit * being tested. */ smp_mb(); for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu); i += cpu_tlb_thread_sibling_step()) { struct kvm *running = *per_cpu_ptr(&cpu_in_guest, i); if (running == kvm) smp_call_function_single(i, do_nothing, NULL, 1); } } static void do_migrate_away_vcpu(void *arg) { struct kvm_vcpu *vcpu = arg; struct kvm *kvm = vcpu->kvm; /* * If the guest has GTSE, it may execute tlbie, so do a eieio; tlbsync; * ptesync sequence on the old CPU before migrating to a new one, in * case we interrupted the guest between a tlbie ; eieio ; * tlbsync; ptesync sequence. * * Otherwise, ptesync is sufficient for ordering tlbiel sequences. */ if (kvm->arch.lpcr & LPCR_GTSE) asm volatile("eieio; tlbsync; ptesync"); else asm volatile("ptesync"); } static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu) { struct kvm_nested_guest *nested = vcpu->arch.nested; struct kvm *kvm = vcpu->kvm; int prev_cpu; if (!cpu_has_feature(CPU_FTR_HVMODE)) return; if (nested) prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id]; else prev_cpu = vcpu->arch.prev_cpu; /* * With radix, the guest can do TLB invalidations itself, * and it could choose to use the local form (tlbiel) if * it is invalidating a translation that has only ever been * used on one vcpu. However, that doesn't mean it has * only ever been used on one physical cpu, since vcpus * can move around between pcpus. To cope with this, when * a vcpu moves from one pcpu to another, we need to tell * any vcpus running on the same core as this vcpu previously * ran to flush the TLB. */ if (prev_cpu != pcpu) { if (prev_cpu >= 0) { if (cpu_first_tlb_thread_sibling(prev_cpu) != cpu_first_tlb_thread_sibling(pcpu)) radix_flush_cpu(kvm, prev_cpu, vcpu); smp_call_function_single(prev_cpu, do_migrate_away_vcpu, vcpu, 1); } if (nested) nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu; else vcpu->arch.prev_cpu = pcpu; } } static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) { int cpu; struct paca_struct *tpaca; cpu = vc->pcpu; if (vcpu) { if (vcpu->arch.timer_running) { hrtimer_try_to_cancel(&vcpu->arch.dec_timer); vcpu->arch.timer_running = 0; } cpu += vcpu->arch.ptid; vcpu->cpu = vc->pcpu; vcpu->arch.thread_cpu = cpu; } tpaca = paca_ptrs[cpu]; tpaca->kvm_hstate.kvm_vcpu = vcpu; tpaca->kvm_hstate.ptid = cpu - vc->pcpu; tpaca->kvm_hstate.fake_suspend = 0; /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */ smp_wmb(); tpaca->kvm_hstate.kvm_vcore = vc; if (cpu != smp_processor_id()) kvmppc_ipi_thread(cpu); } static void kvmppc_wait_for_nap(int n_threads) { int cpu = smp_processor_id(); int i, loops; if (n_threads <= 1) return; for (loops = 0; loops < 1000000; ++loops) { /* * Check if all threads are finished. * We set the vcore pointer when starting a thread * and the thread clears it when finished, so we look * for any threads that still have a non-NULL vcore ptr. */ for (i = 1; i < n_threads; ++i) if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) break; if (i == n_threads) { HMT_medium(); return; } HMT_low(); } HMT_medium(); for (i = 1; i < n_threads; ++i) if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); } /* * Check that we are on thread 0 and that any other threads in * this core are off-line. Then grab the threads so they can't * enter the kernel. */ static int on_primary_thread(void) { int cpu = smp_processor_id(); int thr; /* Are we on a primary subcore? */ if (cpu_thread_in_subcore(cpu)) return 0; thr = 0; while (++thr < threads_per_subcore) if (cpu_online(cpu + thr)) return 0; /* Grab all hw threads so they can't go into the kernel */ for (thr = 1; thr < threads_per_subcore; ++thr) { if (kvmppc_grab_hwthread(cpu + thr)) { /* Couldn't grab one; let the others go */ do { kvmppc_release_hwthread(cpu + thr); } while (--thr > 0); return 0; } } return 1; } /* * A list of virtual cores for each physical CPU. * These are vcores that could run but their runner VCPU tasks are * (or may be) preempted. */ struct preempted_vcore_list { struct list_head list; spinlock_t lock; }; static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores); static void init_vcore_lists(void) { int cpu; for_each_possible_cpu(cpu) { struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu); spin_lock_init(&lp->lock); INIT_LIST_HEAD(&lp->list); } } static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc) { struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); vc->vcore_state = VCORE_PREEMPT; vc->pcpu = smp_processor_id(); if (vc->num_threads < threads_per_vcore(vc->kvm)) { spin_lock(&lp->lock); list_add_tail(&vc->preempt_list, &lp->list); spin_unlock(&lp->lock); } /* Start accumulating stolen time */ kvmppc_core_start_stolen(vc, mftb()); } static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc) { struct preempted_vcore_list *lp; WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); kvmppc_core_end_stolen(vc, mftb()); if (!list_empty(&vc->preempt_list)) { lp = &per_cpu(preempted_vcores, vc->pcpu); spin_lock(&lp->lock); list_del_init(&vc->preempt_list); spin_unlock(&lp->lock); } vc->vcore_state = VCORE_INACTIVE; } /* * This stores information about the virtual cores currently * assigned to a physical core. */ struct core_info { int n_subcores; int max_subcore_threads; int total_threads; int subcore_threads[MAX_SUBCORES]; struct kvmppc_vcore *vc[MAX_SUBCORES]; }; /* * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7 * respectively in 2-way micro-threading (split-core) mode on POWER8. */ static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 }; static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc) { memset(cip, 0, sizeof(*cip)); cip->n_subcores = 1; cip->max_subcore_threads = vc->num_threads; cip->total_threads = vc->num_threads; cip->subcore_threads[0] = vc->num_threads; cip->vc[0] = vc; } static bool subcore_config_ok(int n_subcores, int n_threads) { /* * POWER9 "SMT4" cores are permanently in what is effectively a 4-way * split-core mode, with one thread per subcore. */ if (cpu_has_feature(CPU_FTR_ARCH_300)) return n_subcores <= 4 && n_threads == 1; /* On POWER8, can only dynamically split if unsplit to begin with */ if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS) return false; if (n_subcores > MAX_SUBCORES) return false; if (n_subcores > 1) { if (!(dynamic_mt_modes & 2)) n_subcores = 4; if (n_subcores > 2 && !(dynamic_mt_modes & 4)) return false; } return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS; } static void init_vcore_to_run(struct kvmppc_vcore *vc) { vc->entry_exit_map = 0; vc->in_guest = 0; vc->napping_threads = 0; vc->conferring_threads = 0; vc->tb_offset_applied = 0; } static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip) { int n_threads = vc->num_threads; int sub; if (!cpu_has_feature(CPU_FTR_ARCH_207S)) return false; /* In one_vm_per_core mode, require all vcores to be from the same vm */ if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm) return false; if (n_threads < cip->max_subcore_threads) n_threads = cip->max_subcore_threads; if (!subcore_config_ok(cip->n_subcores + 1, n_threads)) return false; cip->max_subcore_threads = n_threads; sub = cip->n_subcores; ++cip->n_subcores; cip->total_threads += vc->num_threads; cip->subcore_threads[sub] = vc->num_threads; cip->vc[sub] = vc; init_vcore_to_run(vc); list_del_init(&vc->preempt_list); return true; } /* * Work out whether it is possible to piggyback the execution of * vcore *pvc onto the execution of the other vcores described in *cip. */ static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip, int target_threads) { if (cip->total_threads + pvc->num_threads > target_threads) return false; return can_dynamic_split(pvc, cip); } static void prepare_threads(struct kvmppc_vcore *vc) { int i; struct kvm_vcpu *vcpu; for_each_runnable_thread(i, vcpu, vc) { if (signal_pending(vcpu->arch.run_task)) vcpu->arch.ret = -EINTR; else if (vcpu->arch.vpa.update_pending || vcpu->arch.slb_shadow.update_pending || vcpu->arch.dtl.update_pending) vcpu->arch.ret = RESUME_GUEST; else continue; kvmppc_remove_runnable(vc, vcpu, mftb()); wake_up(&vcpu->arch.cpu_run); } } static void collect_piggybacks(struct core_info *cip, int target_threads) { struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); struct kvmppc_vcore *pvc, *vcnext; spin_lock(&lp->lock); list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) { if (!spin_trylock(&pvc->lock)) continue; prepare_threads(pvc); if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) { list_del_init(&pvc->preempt_list); if (pvc->runner == NULL) { pvc->vcore_state = VCORE_INACTIVE; kvmppc_core_end_stolen(pvc, mftb()); } spin_unlock(&pvc->lock); continue; } if (!can_piggyback(pvc, cip, target_threads)) { spin_unlock(&pvc->lock); continue; } kvmppc_core_end_stolen(pvc, mftb()); pvc->vcore_state = VCORE_PIGGYBACK; if (cip->total_threads >= target_threads) break; } spin_unlock(&lp->lock); } static bool recheck_signals_and_mmu(struct core_info *cip) { int sub, i; struct kvm_vcpu *vcpu; struct kvmppc_vcore *vc; for (sub = 0; sub < cip->n_subcores; ++sub) { vc = cip->vc[sub]; if (!vc->kvm->arch.mmu_ready) return true; for_each_runnable_thread(i, vcpu, vc) if (signal_pending(vcpu->arch.run_task)) return true; } return false; } static void post_guest_process(struct kvmppc_vcore *vc, bool is_master) { int still_running = 0, i; u64 now; long ret; struct kvm_vcpu *vcpu; spin_lock(&vc->lock); now = get_tb(); for_each_runnable_thread(i, vcpu, vc) { /* * It's safe to unlock the vcore in the loop here, because * for_each_runnable_thread() is safe against removal of * the vcpu, and the vcore state is VCORE_EXITING here, * so any vcpus becoming runnable will have their arch.trap * set to zero and can't actually run in the guest. */ spin_unlock(&vc->lock); /* cancel pending dec exception if dec is positive */ if (now < kvmppc_dec_expires_host_tb(vcpu) && kvmppc_core_pending_dec(vcpu)) kvmppc_core_dequeue_dec(vcpu); trace_kvm_guest_exit(vcpu); ret = RESUME_GUEST; if (vcpu->arch.trap) ret = kvmppc_handle_exit_hv(vcpu, vcpu->arch.run_task); vcpu->arch.ret = ret; vcpu->arch.trap = 0; spin_lock(&vc->lock); if (is_kvmppc_resume_guest(vcpu->arch.ret)) { if (vcpu->arch.pending_exceptions) kvmppc_core_prepare_to_enter(vcpu); if (vcpu->arch.ceded) kvmppc_set_timer(vcpu); else ++still_running; } else { kvmppc_remove_runnable(vc, vcpu, mftb()); wake_up(&vcpu->arch.cpu_run); } } if (!is_master) { if (still_running > 0) { kvmppc_vcore_preempt(vc); } else if (vc->runner) { vc->vcore_state = VCORE_PREEMPT; kvmppc_core_start_stolen(vc, mftb()); } else { vc->vcore_state = VCORE_INACTIVE; } if (vc->n_runnable > 0 && vc->runner == NULL) { /* make sure there's a candidate runner awake */ i = -1; vcpu = next_runnable_thread(vc, &i); wake_up(&vcpu->arch.cpu_run); } } spin_unlock(&vc->lock); } /* * Clear core from the list of active host cores as we are about to * enter the guest. Only do this if it is the primary thread of the * core (not if a subcore) that is entering the guest. */ static inline int kvmppc_clear_host_core(unsigned int cpu) { int core; if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) return 0; /* * Memory barrier can be omitted here as we will do a smp_wmb() * later in kvmppc_start_thread and we need ensure that state is * visible to other CPUs only after we enter guest. */ core = cpu >> threads_shift; kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0; return 0; } /* * Advertise this core as an active host core since we exited the guest * Only need to do this if it is the primary thread of the core that is * exiting. */ static inline int kvmppc_set_host_core(unsigned int cpu) { int core; if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) return 0; /* * Memory barrier can be omitted here because we do a spin_unlock * immediately after this which provides the memory barrier. */ core = cpu >> threads_shift; kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1; return 0; } static void set_irq_happened(int trap) { switch (trap) { case BOOK3S_INTERRUPT_EXTERNAL: local_paca->irq_happened |= PACA_IRQ_EE; break; case BOOK3S_INTERRUPT_H_DOORBELL: local_paca->irq_happened |= PACA_IRQ_DBELL; break; case BOOK3S_INTERRUPT_HMI: local_paca->irq_happened |= PACA_IRQ_HMI; break; case BOOK3S_INTERRUPT_SYSTEM_RESET: replay_system_reset(); break; } } /* * Run a set of guest threads on a physical core. * Called with vc->lock held. */ static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) { struct kvm_vcpu *vcpu; int i; int srcu_idx; struct core_info core_info; struct kvmppc_vcore *pvc; struct kvm_split_mode split_info, *sip; int split, subcore_size, active; int sub; bool thr0_done; unsigned long cmd_bit, stat_bit; int pcpu, thr; int target_threads; int controlled_threads; int trap; bool is_power8; if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300))) return; /* * Remove from the list any threads that have a signal pending * or need a VPA update done */ prepare_threads(vc); /* if the runner is no longer runnable, let the caller pick a new one */ if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) return; /* * Initialize *vc. */ init_vcore_to_run(vc); vc->preempt_tb = TB_NIL; /* * Number of threads that we will be controlling: the same as * the number of threads per subcore, except on POWER9, * where it's 1 because the threads are (mostly) independent. */ controlled_threads = threads_per_vcore(vc->kvm); /* * Make sure we are running on primary threads, and that secondary * threads are offline. Also check if the number of threads in this * guest are greater than the current system threads per guest. */ if ((controlled_threads > 1) && ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) { for_each_runnable_thread(i, vcpu, vc) { vcpu->arch.ret = -EBUSY; kvmppc_remove_runnable(vc, vcpu, mftb()); wake_up(&vcpu->arch.cpu_run); } goto out; } /* * See if we could run any other vcores on the physical core * along with this one. */ init_core_info(&core_info, vc); pcpu = smp_processor_id(); target_threads = controlled_threads; if (target_smt_mode && target_smt_mode < target_threads) target_threads = target_smt_mode; if (vc->num_threads < target_threads) collect_piggybacks(&core_info, target_threads); /* * Hard-disable interrupts, and check resched flag and signals. * If we need to reschedule or deliver a signal, clean up * and return without going into the guest(s). * If the mmu_ready flag has been cleared, don't go into the * guest because that means a HPT resize operation is in progress. */ local_irq_disable(); hard_irq_disable(); if (lazy_irq_pending() || need_resched() || recheck_signals_and_mmu(&core_info)) { local_irq_enable(); vc->vcore_state = VCORE_INACTIVE; /* Unlock all except the primary vcore */ for (sub = 1; sub < core_info.n_subcores; ++sub) { pvc = core_info.vc[sub]; /* Put back on to the preempted vcores list */ kvmppc_vcore_preempt(pvc); spin_unlock(&pvc->lock); } for (i = 0; i < controlled_threads; ++i) kvmppc_release_hwthread(pcpu + i); return; } kvmppc_clear_host_core(pcpu); /* Decide on micro-threading (split-core) mode */ subcore_size = threads_per_subcore; cmd_bit = stat_bit = 0; split = core_info.n_subcores; sip = NULL; is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S); if (split > 1) { sip = &split_info; memset(&split_info, 0, sizeof(split_info)); for (sub = 0; sub < core_info.n_subcores; ++sub) split_info.vc[sub] = core_info.vc[sub]; if (is_power8) { if (split == 2 && (dynamic_mt_modes & 2)) { cmd_bit = HID0_POWER8_1TO2LPAR; stat_bit = HID0_POWER8_2LPARMODE; } else { split = 4; cmd_bit = HID0_POWER8_1TO4LPAR; stat_bit = HID0_POWER8_4LPARMODE; } subcore_size = MAX_SMT_THREADS / split; split_info.rpr = mfspr(SPRN_RPR); split_info.pmmar = mfspr(SPRN_PMMAR); split_info.ldbar = mfspr(SPRN_LDBAR); split_info.subcore_size = subcore_size; } else { split_info.subcore_size = 1; } /* order writes to split_info before kvm_split_mode pointer */ smp_wmb(); } for (thr = 0; thr < controlled_threads; ++thr) { struct paca_struct *paca = paca_ptrs[pcpu + thr]; paca->kvm_hstate.napping = 0; paca->kvm_hstate.kvm_split_mode = sip; } /* Initiate micro-threading (split-core) on POWER8 if required */ if (cmd_bit) { unsigned long hid0 = mfspr(SPRN_HID0); hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS; mb(); mtspr(SPRN_HID0, hid0); isync(); for (;;) { hid0 = mfspr(SPRN_HID0); if (hid0 & stat_bit) break; cpu_relax(); } } /* * On POWER8, set RWMR register. * Since it only affects PURR and SPURR, it doesn't affect * the host, so we don't save/restore the host value. */ if (is_power8) { unsigned long rwmr_val = RWMR_RPA_P8_8THREAD; int n_online = atomic_read(&vc->online_count); /* * Use the 8-thread value if we're doing split-core * or if the vcore's online count looks bogus. */ if (split == 1 && threads_per_subcore == MAX_SMT_THREADS && n_online >= 1 && n_online <= MAX_SMT_THREADS) rwmr_val = p8_rwmr_values[n_online]; mtspr(SPRN_RWMR, rwmr_val); } /* Start all the threads */ active = 0; for (sub = 0; sub < core_info.n_subcores; ++sub) { thr = is_power8 ? subcore_thread_map[sub] : sub; thr0_done = false; active |= 1 << thr; pvc = core_info.vc[sub]; pvc->pcpu = pcpu + thr; for_each_runnable_thread(i, vcpu, pvc) { /* * XXX: is kvmppc_start_thread called too late here? * It updates vcpu->cpu and vcpu->arch.thread_cpu * which are used by kvmppc_fast_vcpu_kick_hv(), but * kick is called after new exceptions become available * and exceptions are checked earlier than here, by * kvmppc_core_prepare_to_enter. */ kvmppc_start_thread(vcpu, pvc); kvmppc_update_vpa_dispatch(vcpu, pvc); trace_kvm_guest_enter(vcpu); if (!vcpu->arch.ptid) thr0_done = true; active |= 1 << (thr + vcpu->arch.ptid); } /* * We need to start the first thread of each subcore * even if it doesn't have a vcpu. */ if (!thr0_done) kvmppc_start_thread(NULL, pvc); } /* * Ensure that split_info.do_nap is set after setting * the vcore pointer in the PACA of the secondaries. */ smp_mb(); /* * When doing micro-threading, poke the inactive threads as well. * This gets them to the nap instruction after kvm_do_nap, * which reduces the time taken to unsplit later. */ if (cmd_bit) { split_info.do_nap = 1; /* ask secondaries to nap when done */ for (thr = 1; thr < threads_per_subcore; ++thr) if (!(active & (1 << thr))) kvmppc_ipi_thread(pcpu + thr); } vc->vcore_state = VCORE_RUNNING; preempt_disable(); trace_kvmppc_run_core(vc, 0); for (sub = 0; sub < core_info.n_subcores; ++sub) spin_unlock(&core_info.vc[sub]->lock); guest_timing_enter_irqoff(); srcu_idx = srcu_read_lock(&vc->kvm->srcu); guest_state_enter_irqoff(); this_cpu_disable_ftrace(); trap = __kvmppc_vcore_entry(); this_cpu_enable_ftrace(); guest_state_exit_irqoff(); srcu_read_unlock(&vc->kvm->srcu, srcu_idx); set_irq_happened(trap); spin_lock(&vc->lock); /* prevent other vcpu threads from doing kvmppc_start_thread() now */ vc->vcore_state = VCORE_EXITING; /* wait for secondary threads to finish writing their state to memory */ kvmppc_wait_for_nap(controlled_threads); /* Return to whole-core mode if we split the core earlier */ if (cmd_bit) { unsigned long hid0 = mfspr(SPRN_HID0); unsigned long loops = 0; hid0 &= ~HID0_POWER8_DYNLPARDIS; stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; mb(); mtspr(SPRN_HID0, hid0); isync(); for (;;) { hid0 = mfspr(SPRN_HID0); if (!(hid0 & stat_bit)) break; cpu_relax(); ++loops; } split_info.do_nap = 0; } kvmppc_set_host_core(pcpu); if (!vtime_accounting_enabled_this_cpu()) { local_irq_enable(); /* * Service IRQs here before guest_timing_exit_irqoff() so any * ticks that occurred while running the guest are accounted to * the guest. If vtime accounting is enabled, accounting uses * TB rather than ticks, so it can be done without enabling * interrupts here, which has the problem that it accounts * interrupt processing overhead to the host. */ local_irq_disable(); } guest_timing_exit_irqoff(); local_irq_enable(); /* Let secondaries go back to the offline loop */ for (i = 0; i < controlled_threads; ++i) { kvmppc_release_hwthread(pcpu + i); if (sip && sip->napped[i]) kvmppc_ipi_thread(pcpu + i); } spin_unlock(&vc->lock); /* make sure updates to secondary vcpu structs are visible now */ smp_mb(); preempt_enable(); for (sub = 0; sub < core_info.n_subcores; ++sub) { pvc = core_info.vc[sub]; post_guest_process(pvc, pvc == vc); } spin_lock(&vc->lock); out: vc->vcore_state = VCORE_INACTIVE; trace_kvmppc_run_core(vc, 1); } static inline bool hcall_is_xics(unsigned long req) { return req == H_EOI || req == H_CPPR || req == H_IPI || req == H_IPOLL || req == H_XIRR || req == H_XIRR_X; } static void vcpu_vpa_increment_dispatch(struct kvm_vcpu *vcpu) { struct lppaca *lp = vcpu->arch.vpa.pinned_addr; if (lp) { u32 yield_count = be32_to_cpu(lp->yield_count) + 1; lp->yield_count = cpu_to_be32(yield_count); vcpu->arch.vpa.dirty = 1; } } /* call our hypervisor to load up HV regs and go */ static int kvmhv_vcpu_entry_p9_nested(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb) { struct kvmppc_vcore *vc = vcpu->arch.vcore; unsigned long host_psscr; unsigned long msr; struct hv_guest_state hvregs; struct p9_host_os_sprs host_os_sprs; s64 dec; int trap; msr = mfmsr(); save_p9_host_os_sprs(&host_os_sprs); /* * We need to save and restore the guest visible part of the * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor * doesn't do this for us. Note only required if pseries since * this is done in kvmhv_vcpu_entry_p9() below otherwise. */ host_psscr = mfspr(SPRN_PSSCR_PR); kvmppc_msr_hard_disable_set_facilities(vcpu, msr); if (lazy_irq_pending()) return 0; if (unlikely(load_vcpu_state(vcpu, &host_os_sprs))) msr = mfmsr(); /* TM restore can update msr */ if (vcpu->arch.psscr != host_psscr) mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr); kvmhv_save_hv_regs(vcpu, &hvregs); hvregs.lpcr = lpcr; hvregs.amor = ~0; vcpu->arch.regs.msr = vcpu->arch.shregs.msr; hvregs.version = HV_GUEST_STATE_VERSION; if (vcpu->arch.nested) { hvregs.lpid = vcpu->arch.nested->shadow_lpid; hvregs.vcpu_token = vcpu->arch.nested_vcpu_id; } else { hvregs.lpid = vcpu->kvm->arch.lpid; hvregs.vcpu_token = vcpu->vcpu_id; } hvregs.hdec_expiry = time_limit; /* * When setting DEC, we must always deal with irq_work_raise * via NMI vs setting DEC. The problem occurs right as we * switch into guest mode if a NMI hits and sets pending work * and sets DEC, then that will apply to the guest and not * bring us back to the host. * * irq_work_raise could check a flag (or possibly LPCR[HDICE] * for example) and set HDEC to 1? That wouldn't solve the * nested hv case which needs to abort the hcall or zero the * time limit. * * XXX: Another day's problem. */ mtspr(SPRN_DEC, kvmppc_dec_expires_host_tb(vcpu) - *tb); mtspr(SPRN_DAR, vcpu->arch.shregs.dar); mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr); switch_pmu_to_guest(vcpu, &host_os_sprs); accumulate_time(vcpu, &vcpu->arch.in_guest); trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs), __pa(&vcpu->arch.regs)); accumulate_time(vcpu, &vcpu->arch.guest_exit); kvmhv_restore_hv_return_state(vcpu, &hvregs); switch_pmu_to_host(vcpu, &host_os_sprs); vcpu->arch.shregs.msr = vcpu->arch.regs.msr; vcpu->arch.shregs.dar = mfspr(SPRN_DAR); vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR); vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR); store_vcpu_state(vcpu); dec = mfspr(SPRN_DEC); if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */ dec = (s32) dec; *tb = mftb(); vcpu->arch.dec_expires = dec + (*tb + vc->tb_offset); timer_rearm_host_dec(*tb); restore_p9_host_os_sprs(vcpu, &host_os_sprs); if (vcpu->arch.psscr != host_psscr) mtspr(SPRN_PSSCR_PR, host_psscr); return trap; } /* * Guest entry for POWER9 and later CPUs. */ static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb) { struct kvm *kvm = vcpu->kvm; struct kvm_nested_guest *nested = vcpu->arch.nested; u64 next_timer; int trap; next_timer = timer_get_next_tb(); if (*tb >= next_timer) return BOOK3S_INTERRUPT_HV_DECREMENTER; if (next_timer < time_limit) time_limit = next_timer; else if (*tb >= time_limit) /* nested time limit */ return BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER; vcpu->arch.ceded = 0; vcpu_vpa_increment_dispatch(vcpu); if (kvmhv_on_pseries()) { trap = kvmhv_vcpu_entry_p9_nested(vcpu, time_limit, lpcr, tb); /* H_CEDE has to be handled now, not later */ if (trap == BOOK3S_INTERRUPT_SYSCALL && !nested && kvmppc_get_gpr(vcpu, 3) == H_CEDE) { kvmppc_cede(vcpu); kvmppc_set_gpr(vcpu, 3, 0); trap = 0; } } else if (nested) { __this_cpu_write(cpu_in_guest, kvm); trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb); __this_cpu_write(cpu_in_guest, NULL); } else { kvmppc_xive_push_vcpu(vcpu); __this_cpu_write(cpu_in_guest, kvm); trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb); __this_cpu_write(cpu_in_guest, NULL); if (trap == BOOK3S_INTERRUPT_SYSCALL && !(vcpu->arch.shregs.msr & MSR_PR)) { unsigned long req = kvmppc_get_gpr(vcpu, 3); /* * XIVE rearm and XICS hcalls must be handled * before xive context is pulled (is this * true?) */ if (req == H_CEDE) { /* H_CEDE has to be handled now */ kvmppc_cede(vcpu); if (!kvmppc_xive_rearm_escalation(vcpu)) { /* * Pending escalation so abort * the cede. */ vcpu->arch.ceded = 0; } kvmppc_set_gpr(vcpu, 3, 0); trap = 0; } else if (req == H_ENTER_NESTED) { /* * L2 should not run with the L1 * context so rearm and pull it. */ if (!kvmppc_xive_rearm_escalation(vcpu)) { /* * Pending escalation so abort * H_ENTER_NESTED. */ kvmppc_set_gpr(vcpu, 3, 0); trap = 0; } } else if (hcall_is_xics(req)) { int ret; ret = kvmppc_xive_xics_hcall(vcpu, req); if (ret != H_TOO_HARD) { kvmppc_set_gpr(vcpu, 3, ret); trap = 0; } } } kvmppc_xive_pull_vcpu(vcpu); if (kvm_is_radix(kvm)) vcpu->arch.slb_max = 0; } vcpu_vpa_increment_dispatch(vcpu); return trap; } /* * Wait for some other vcpu thread to execute us, and * wake us up when we need to handle something in the host. */ static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc, struct kvm_vcpu *vcpu, int wait_state) { DEFINE_WAIT(wait); prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { spin_unlock(&vc->lock); schedule(); spin_lock(&vc->lock); } finish_wait(&vcpu->arch.cpu_run, &wait); } static void grow_halt_poll_ns(struct kvmppc_vcore *vc) { if (!halt_poll_ns_grow) return; vc->halt_poll_ns *= halt_poll_ns_grow; if (vc->halt_poll_ns < halt_poll_ns_grow_start) vc->halt_poll_ns = halt_poll_ns_grow_start; } static void shrink_halt_poll_ns(struct kvmppc_vcore *vc) { if (halt_poll_ns_shrink == 0) vc->halt_poll_ns = 0; else vc->halt_poll_ns /= halt_poll_ns_shrink; } #ifdef CONFIG_KVM_XICS static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) { if (!xics_on_xive()) return false; return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr < vcpu->arch.xive_saved_state.cppr; } #else static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) { return false; } #endif /* CONFIG_KVM_XICS */ static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu) { if (vcpu->arch.pending_exceptions || vcpu->arch.prodded || kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu)) return true; return false; } static bool kvmppc_vcpu_check_block(struct kvm_vcpu *vcpu) { if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu)) return true; return false; } /* * Check to see if any of the runnable vcpus on the vcore have pending * exceptions or are no longer ceded */ static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc) { struct kvm_vcpu *vcpu; int i; for_each_runnable_thread(i, vcpu, vc) { if (kvmppc_vcpu_check_block(vcpu)) return 1; } return 0; } /* * All the vcpus in this vcore are idle, so wait for a decrementer * or external interrupt to one of the vcpus. vc->lock is held. */ static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) { ktime_t cur, start_poll, start_wait; int do_sleep = 1; u64 block_ns; WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); /* Poll for pending exceptions and ceded state */ cur = start_poll = ktime_get(); if (vc->halt_poll_ns) { ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns); ++vc->runner->stat.generic.halt_attempted_poll; vc->vcore_state = VCORE_POLLING; spin_unlock(&vc->lock); do { if (kvmppc_vcore_check_block(vc)) { do_sleep = 0; break; } cur = ktime_get(); } while (kvm_vcpu_can_poll(cur, stop)); spin_lock(&vc->lock); vc->vcore_state = VCORE_INACTIVE; if (!do_sleep) { ++vc->runner->stat.generic.halt_successful_poll; goto out; } } prepare_to_rcuwait(&vc->wait); set_current_state(TASK_INTERRUPTIBLE); if (kvmppc_vcore_check_block(vc)) { finish_rcuwait(&vc->wait); do_sleep = 0; /* If we polled, count this as a successful poll */ if (vc->halt_poll_ns) ++vc->runner->stat.generic.halt_successful_poll; goto out; } start_wait = ktime_get(); vc->vcore_state = VCORE_SLEEPING; trace_kvmppc_vcore_blocked(vc->runner, 0); spin_unlock(&vc->lock); schedule(); finish_rcuwait(&vc->wait); spin_lock(&vc->lock); vc->vcore_state = VCORE_INACTIVE; trace_kvmppc_vcore_blocked(vc->runner, 1); ++vc->runner->stat.halt_successful_wait; cur = ktime_get(); out: block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll); /* Attribute wait time */ if (do_sleep) { vc->runner->stat.generic.halt_wait_ns += ktime_to_ns(cur) - ktime_to_ns(start_wait); KVM_STATS_LOG_HIST_UPDATE( vc->runner->stat.generic.halt_wait_hist, ktime_to_ns(cur) - ktime_to_ns(start_wait)); /* Attribute failed poll time */ if (vc->halt_poll_ns) { vc->runner->stat.generic.halt_poll_fail_ns += ktime_to_ns(start_wait) - ktime_to_ns(start_poll); KVM_STATS_LOG_HIST_UPDATE( vc->runner->stat.generic.halt_poll_fail_hist, ktime_to_ns(start_wait) - ktime_to_ns(start_poll)); } } else { /* Attribute successful poll time */ if (vc->halt_poll_ns) { vc->runner->stat.generic.halt_poll_success_ns += ktime_to_ns(cur) - ktime_to_ns(start_poll); KVM_STATS_LOG_HIST_UPDATE( vc->runner->stat.generic.halt_poll_success_hist, ktime_to_ns(cur) - ktime_to_ns(start_poll)); } } /* Adjust poll time */ if (halt_poll_ns) { if (block_ns <= vc->halt_poll_ns) ; /* We slept and blocked for longer than the max halt time */ else if (vc->halt_poll_ns && block_ns > halt_poll_ns) shrink_halt_poll_ns(vc); /* We slept and our poll time is too small */ else if (vc->halt_poll_ns < halt_poll_ns && block_ns < halt_poll_ns) grow_halt_poll_ns(vc); if (vc->halt_poll_ns > halt_poll_ns) vc->halt_poll_ns = halt_poll_ns; } else vc->halt_poll_ns = 0; trace_kvmppc_vcore_wakeup(do_sleep, block_ns); } /* * This never fails for a radix guest, as none of the operations it does * for a radix guest can fail or have a way to report failure. */ static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu) { int r = 0; struct kvm *kvm = vcpu->kvm; mutex_lock(&kvm->arch.mmu_setup_lock); if (!kvm->arch.mmu_ready) { if (!kvm_is_radix(kvm)) r = kvmppc_hv_setup_htab_rma(vcpu); if (!r) { if (cpu_has_feature(CPU_FTR_ARCH_300)) kvmppc_setup_partition_table(kvm); kvm->arch.mmu_ready = 1; } } mutex_unlock(&kvm->arch.mmu_setup_lock); return r; } static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu) { struct kvm_run *run = vcpu->run; int n_ceded, i, r; struct kvmppc_vcore *vc; struct kvm_vcpu *v; trace_kvmppc_run_vcpu_enter(vcpu); run->exit_reason = 0; vcpu->arch.ret = RESUME_GUEST; vcpu->arch.trap = 0; kvmppc_update_vpas(vcpu); /* * Synchronize with other threads in this virtual core */ vc = vcpu->arch.vcore; spin_lock(&vc->lock); vcpu->arch.ceded = 0; vcpu->arch.run_task = current; vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; vcpu->arch.busy_preempt = TB_NIL; WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu); ++vc->n_runnable; /* * This happens the first time this is called for a vcpu. * If the vcore is already running, we may be able to start * this thread straight away and have it join in. */ if (!signal_pending(current)) { if ((vc->vcore_state == VCORE_PIGGYBACK || vc->vcore_state == VCORE_RUNNING) && !VCORE_IS_EXITING(vc)) { kvmppc_update_vpa_dispatch(vcpu, vc); kvmppc_start_thread(vcpu, vc); trace_kvm_guest_enter(vcpu); } else if (vc->vcore_state == VCORE_SLEEPING) { rcuwait_wake_up(&vc->wait); } } while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && !signal_pending(current)) { /* See if the MMU is ready to go */ if (!vcpu->kvm->arch.mmu_ready) { spin_unlock(&vc->lock); r = kvmhv_setup_mmu(vcpu); spin_lock(&vc->lock); if (r) { run->exit_reason = KVM_EXIT_FAIL_ENTRY; run->fail_entry. hardware_entry_failure_reason = 0; vcpu->arch.ret = r; break; } } if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) kvmppc_vcore_end_preempt(vc); if (vc->vcore_state != VCORE_INACTIVE) { kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE); continue; } for_each_runnable_thread(i, v, vc) { kvmppc_core_prepare_to_enter(v); if (signal_pending(v->arch.run_task)) { kvmppc_remove_runnable(vc, v, mftb()); v->stat.signal_exits++; v->run->exit_reason = KVM_EXIT_INTR; v->arch.ret = -EINTR; wake_up(&v->arch.cpu_run); } } if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) break; n_ceded = 0; for_each_runnable_thread(i, v, vc) { if (!kvmppc_vcpu_woken(v)) n_ceded += v->arch.ceded; else v->arch.ceded = 0; } vc->runner = vcpu; if (n_ceded == vc->n_runnable) { kvmppc_vcore_blocked(vc); } else if (need_resched()) { kvmppc_vcore_preempt(vc); /* Let something else run */ cond_resched_lock(&vc->lock); if (vc->vcore_state == VCORE_PREEMPT) kvmppc_vcore_end_preempt(vc); } else { kvmppc_run_core(vc); } vc->runner = NULL; } while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && (vc->vcore_state == VCORE_RUNNING || vc->vcore_state == VCORE_EXITING || vc->vcore_state == VCORE_PIGGYBACK)) kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE); if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) kvmppc_vcore_end_preempt(vc); if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { kvmppc_remove_runnable(vc, vcpu, mftb()); vcpu->stat.signal_exits++; run->exit_reason = KVM_EXIT_INTR; vcpu->arch.ret = -EINTR; } if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { /* Wake up some vcpu to run the core */ i = -1; v = next_runnable_thread(vc, &i); wake_up(&v->arch.cpu_run); } trace_kvmppc_run_vcpu_exit(vcpu); spin_unlock(&vc->lock); return vcpu->arch.ret; } int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr) { struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); struct kvm_run *run = vcpu->run; int trap, r, pcpu; int srcu_idx; struct kvmppc_vcore *vc; struct kvm *kvm = vcpu->kvm; struct kvm_nested_guest *nested = vcpu->arch.nested; unsigned long flags; u64 tb; trace_kvmppc_run_vcpu_enter(vcpu); run->exit_reason = 0; vcpu->arch.ret = RESUME_GUEST; vcpu->arch.trap = 0; vc = vcpu->arch.vcore; vcpu->arch.ceded = 0; vcpu->arch.run_task = current; vcpu->arch.last_inst = KVM_INST_FETCH_FAILED; /* See if the MMU is ready to go */ if (unlikely(!kvm->arch.mmu_ready)) { r = kvmhv_setup_mmu(vcpu); if (r) { run->exit_reason = KVM_EXIT_FAIL_ENTRY; run->fail_entry.hardware_entry_failure_reason = 0; vcpu->arch.ret = r; return r; } } if (need_resched()) cond_resched(); kvmppc_update_vpas(vcpu); preempt_disable(); pcpu = smp_processor_id(); if (kvm_is_radix(kvm)) kvmppc_prepare_radix_vcpu(vcpu, pcpu); /* flags save not required, but irq_pmu has no disable/enable API */ powerpc_local_irq_pmu_save(flags); vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; if (signal_pending(current)) goto sigpend; if (need_resched() || !kvm->arch.mmu_ready) goto out; vcpu->cpu = pcpu; vcpu->arch.thread_cpu = pcpu; vc->pcpu = pcpu; local_paca->kvm_hstate.kvm_vcpu = vcpu; local_paca->kvm_hstate.ptid = 0; local_paca->kvm_hstate.fake_suspend = 0; /* * Orders set cpu/thread_cpu vs testing for pending interrupts and * doorbells below. The other side is when these fields are set vs * kvmppc_fast_vcpu_kick_hv reading the cpu/thread_cpu fields to * kick a vCPU to notice the pending interrupt. */ smp_mb(); if (!nested) { kvmppc_core_prepare_to_enter(vcpu); if (vcpu->arch.shregs.msr & MSR_EE) { if (xive_interrupt_pending(vcpu)) kvmppc_inject_interrupt_hv(vcpu, BOOK3S_INTERRUPT_EXTERNAL, 0); } else if (test_bit(BOOK3S_IRQPRIO_EXTERNAL, &vcpu->arch.pending_exceptions)) { lpcr |= LPCR_MER; } } else if (vcpu->arch.pending_exceptions || vcpu->arch.doorbell_request || xive_interrupt_pending(vcpu)) { vcpu->arch.ret = RESUME_HOST; goto out; } if (vcpu->arch.timer_running) { hrtimer_try_to_cancel(&vcpu->arch.dec_timer); vcpu->arch.timer_running = 0; } tb = mftb(); kvmppc_update_vpa_dispatch_p9(vcpu, vc, tb + vc->tb_offset); trace_kvm_guest_enter(vcpu); guest_timing_enter_irqoff(); srcu_idx = srcu_read_lock(&kvm->srcu); guest_state_enter_irqoff(); this_cpu_disable_ftrace(); trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr, &tb); vcpu->arch.trap = trap; this_cpu_enable_ftrace(); guest_state_exit_irqoff(); srcu_read_unlock(&kvm->srcu, srcu_idx); set_irq_happened(trap); vcpu->cpu = -1; vcpu->arch.thread_cpu = -1; vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; if (!vtime_accounting_enabled_this_cpu()) { powerpc_local_irq_pmu_restore(flags); /* * Service IRQs here before guest_timing_exit_irqoff() so any * ticks that occurred while running the guest are accounted to * the guest. If vtime accounting is enabled, accounting uses * TB rather than ticks, so it can be done without enabling * interrupts here, which has the problem that it accounts * interrupt processing overhead to the host. */ powerpc_local_irq_pmu_save(flags); } guest_timing_exit_irqoff(); powerpc_local_irq_pmu_restore(flags); preempt_enable(); /* * cancel pending decrementer exception if DEC is now positive, or if * entering a nested guest in which case the decrementer is now owned * by L2 and the L1 decrementer is provided in hdec_expires */ if (kvmppc_core_pending_dec(vcpu) && ((tb < kvmppc_dec_expires_host_tb(vcpu)) || (trap == BOOK3S_INTERRUPT_SYSCALL && kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED))) kvmppc_core_dequeue_dec(vcpu); trace_kvm_guest_exit(vcpu); r = RESUME_GUEST; if (trap) { if (!nested) r = kvmppc_handle_exit_hv(vcpu, current); else r = kvmppc_handle_nested_exit(vcpu); } vcpu->arch.ret = r; if (is_kvmppc_resume_guest(r) && !kvmppc_vcpu_check_block(vcpu)) { kvmppc_set_timer(vcpu); prepare_to_rcuwait(wait); for (;;) { set_current_state(TASK_INTERRUPTIBLE); if (signal_pending(current)) { vcpu->stat.signal_exits++; run->exit_reason = KVM_EXIT_INTR; vcpu->arch.ret = -EINTR; break; } if (kvmppc_vcpu_check_block(vcpu)) break; trace_kvmppc_vcore_blocked(vcpu, 0); schedule(); trace_kvmppc_vcore_blocked(vcpu, 1); } finish_rcuwait(wait); } vcpu->arch.ceded = 0; done: trace_kvmppc_run_vcpu_exit(vcpu); return vcpu->arch.ret; sigpend: vcpu->stat.signal_exits++; run->exit_reason = KVM_EXIT_INTR; vcpu->arch.ret = -EINTR; out: vcpu->cpu = -1; vcpu->arch.thread_cpu = -1; vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; powerpc_local_irq_pmu_restore(flags); preempt_enable(); goto done; } static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu) { struct kvm_run *run = vcpu->run; int r; int srcu_idx; struct kvm *kvm; unsigned long msr; start_timing(vcpu, &vcpu->arch.vcpu_entry); if (!vcpu->arch.sane) { run->exit_reason = KVM_EXIT_INTERNAL_ERROR; return -EINVAL; } /* No need to go into the guest when all we'll do is come back out */ if (signal_pending(current)) { run->exit_reason = KVM_EXIT_INTR; return -EINTR; } #ifdef CONFIG_PPC_TRANSACTIONAL_MEM /* * Don't allow entry with a suspended transaction, because * the guest entry/exit code will lose it. */ if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs && (current->thread.regs->msr & MSR_TM)) { if (MSR_TM_ACTIVE(current->thread.regs->msr)) { run->exit_reason = KVM_EXIT_FAIL_ENTRY; run->fail_entry.hardware_entry_failure_reason = 0; return -EINVAL; } } #endif /* * Force online to 1 for the sake of old userspace which doesn't * set it. */ if (!vcpu->arch.online) { atomic_inc(&vcpu->arch.vcore->online_count); vcpu->arch.online = 1; } kvmppc_core_prepare_to_enter(vcpu); kvm = vcpu->kvm; atomic_inc(&kvm->arch.vcpus_running); /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */ smp_mb(); msr = 0; if (IS_ENABLED(CONFIG_PPC_FPU)) msr |= MSR_FP; if (cpu_has_feature(CPU_FTR_ALTIVEC)) msr |= MSR_VEC; if (cpu_has_feature(CPU_FTR_VSX)) msr |= MSR_VSX; if ((cpu_has_feature(CPU_FTR_TM) || cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) && (vcpu->arch.hfscr & HFSCR_TM)) msr |= MSR_TM; msr = msr_check_and_set(msr); kvmppc_save_user_regs(); kvmppc_save_current_sprs(); if (!cpu_has_feature(CPU_FTR_ARCH_300)) vcpu->arch.waitp = &vcpu->arch.vcore->wait; vcpu->arch.pgdir = kvm->mm->pgd; vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; do { accumulate_time(vcpu, &vcpu->arch.guest_entry); if (cpu_has_feature(CPU_FTR_ARCH_300)) r = kvmhv_run_single_vcpu(vcpu, ~(u64)0, vcpu->arch.vcore->lpcr); else r = kvmppc_run_vcpu(vcpu); if (run->exit_reason == KVM_EXIT_PAPR_HCALL) { accumulate_time(vcpu, &vcpu->arch.hcall); if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_PR)) { /* * These should have been caught reflected * into the guest by now. Final sanity check: * don't allow userspace to execute hcalls in * the hypervisor. */ r = RESUME_GUEST; continue; } trace_kvm_hcall_enter(vcpu); r = kvmppc_pseries_do_hcall(vcpu); trace_kvm_hcall_exit(vcpu, r); kvmppc_core_prepare_to_enter(vcpu); } else if (r == RESUME_PAGE_FAULT) { accumulate_time(vcpu, &vcpu->arch.pg_fault); srcu_idx = srcu_read_lock(&kvm->srcu); r = kvmppc_book3s_hv_page_fault(vcpu, vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); srcu_read_unlock(&kvm->srcu, srcu_idx); } else if (r == RESUME_PASSTHROUGH) { if (WARN_ON(xics_on_xive())) r = H_SUCCESS; else r = kvmppc_xics_rm_complete(vcpu, 0); } } while (is_kvmppc_resume_guest(r)); accumulate_time(vcpu, &vcpu->arch.vcpu_exit); vcpu->arch.state = KVMPPC_VCPU_NOTREADY; atomic_dec(&kvm->arch.vcpus_running); srr_regs_clobbered(); end_timing(vcpu); return r; } static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, int shift, int sllp) { (*sps)->page_shift = shift; (*sps)->slb_enc = sllp; (*sps)->enc[0].page_shift = shift; (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift); /* * Add 16MB MPSS support (may get filtered out by userspace) */ if (shift != 24) { int penc = kvmppc_pgsize_lp_encoding(shift, 24); if (penc != -1) { (*sps)->enc[1].page_shift = 24; (*sps)->enc[1].pte_enc = penc; } } (*sps)++; } static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, struct kvm_ppc_smmu_info *info) { struct kvm_ppc_one_seg_page_size *sps; /* * POWER7, POWER8 and POWER9 all support 32 storage keys for data. * POWER7 doesn't support keys for instruction accesses, * POWER8 and POWER9 do. */ info->data_keys = 32; info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0; /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */ info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS; info->slb_size = 32; /* We only support these sizes for now, and no muti-size segments */ sps = &info->sps[0]; kvmppc_add_seg_page_size(&sps, 12, 0); kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01); kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L); /* If running as a nested hypervisor, we don't support HPT guests */ if (kvmhv_on_pseries()) info->flags |= KVM_PPC_NO_HASH; return 0; } /* * Get (and clear) the dirty memory log for a memory slot. */ static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, struct kvm_dirty_log *log) { struct kvm_memslots *slots; struct kvm_memory_slot *memslot; int r; unsigned long n, i; unsigned long *buf, *p; struct kvm_vcpu *vcpu; mutex_lock(&kvm->slots_lock); r = -EINVAL; if (log->slot >= KVM_USER_MEM_SLOTS) goto out; slots = kvm_memslots(kvm); memslot = id_to_memslot(slots, log->slot); r = -ENOENT; if (!memslot || !memslot->dirty_bitmap) goto out; /* * Use second half of bitmap area because both HPT and radix * accumulate bits in the first half. */ n = kvm_dirty_bitmap_bytes(memslot); buf = memslot->dirty_bitmap + n / sizeof(long); memset(buf, 0, n); if (kvm_is_radix(kvm)) r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf); else r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf); if (r) goto out; /* * We accumulate dirty bits in the first half of the * memslot's dirty_bitmap area, for when pages are paged * out or modified by the host directly. Pick up these * bits and add them to the map. */ p = memslot->dirty_bitmap; for (i = 0; i < n / sizeof(long); ++i) buf[i] |= xchg(&p[i], 0); /* Harvest dirty bits from VPA and DTL updates */ /* Note: we never modify the SLB shadow buffer areas */ kvm_for_each_vcpu(i, vcpu, kvm) { spin_lock(&vcpu->arch.vpa_update_lock); kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf); kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf); spin_unlock(&vcpu->arch.vpa_update_lock); } r = -EFAULT; if (copy_to_user(log->dirty_bitmap, buf, n)) goto out; r = 0; out: mutex_unlock(&kvm->slots_lock); return r; } static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot) { vfree(slot->arch.rmap); slot->arch.rmap = NULL; } static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, const struct kvm_memory_slot *old, struct kvm_memory_slot *new, enum kvm_mr_change change) { if (change == KVM_MR_CREATE) { unsigned long size = array_size(new->npages, sizeof(*new->arch.rmap)); if ((size >> PAGE_SHIFT) > totalram_pages()) return -ENOMEM; new->arch.rmap = vzalloc(size); if (!new->arch.rmap) return -ENOMEM; } else if (change != KVM_MR_DELETE) { new->arch.rmap = old->arch.rmap; } return 0; } static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, struct kvm_memory_slot *old, const struct kvm_memory_slot *new, enum kvm_mr_change change) { /* * If we are creating or modifying a memslot, it might make * some address that was previously cached as emulated * MMIO be no longer emulated MMIO, so invalidate * all the caches of emulated MMIO translations. */ if (change != KVM_MR_DELETE) atomic64_inc(&kvm->arch.mmio_update); /* * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels * have already called kvm_arch_flush_shadow_memslot() to * flush shadow mappings. For KVM_MR_CREATE we have no * previous mappings. So the only case to handle is * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit * has been changed. * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES * to get rid of any THP PTEs in the partition-scoped page tables * so we can track dirtiness at the page level; we flush when * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to * using THP PTEs. */ if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) && ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES)) kvmppc_radix_flush_memslot(kvm, old); /* * If UV hasn't yet called H_SVM_INIT_START, don't register memslots. */ if (!kvm->arch.secure_guest) return; switch (change) { case KVM_MR_CREATE: /* * @TODO kvmppc_uvmem_memslot_create() can fail and * return error. Fix this. */ kvmppc_uvmem_memslot_create(kvm, new); break; case KVM_MR_DELETE: kvmppc_uvmem_memslot_delete(kvm, old); break; default: /* TODO: Handle KVM_MR_MOVE */ break; } } /* * Update LPCR values in kvm->arch and in vcores. * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion * of kvm->arch.lpcr update). */ void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) { long int i; u32 cores_done = 0; if ((kvm->arch.lpcr & mask) == lpcr) return; kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; for (i = 0; i < KVM_MAX_VCORES; ++i) { struct kvmppc_vcore *vc = kvm->arch.vcores[i]; if (!vc) continue; spin_lock(&vc->lock); vc->lpcr = (vc->lpcr & ~mask) | lpcr; verify_lpcr(kvm, vc->lpcr); spin_unlock(&vc->lock); if (++cores_done >= kvm->arch.online_vcores) break; } } void kvmppc_setup_partition_table(struct kvm *kvm) { unsigned long dw0, dw1; if (!kvm_is_radix(kvm)) { /* PS field - page size for VRMA */ dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) | ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1); /* HTABSIZE and HTABORG fields */ dw0 |= kvm->arch.sdr1; /* Second dword as set by userspace */ dw1 = kvm->arch.process_table; } else { dw0 = PATB_HR | radix__get_tree_size() | __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE; dw1 = PATB_GR | kvm->arch.process_table; } kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1); } /* * Set up HPT (hashed page table) and RMA (real-mode area). * Must be called with kvm->arch.mmu_setup_lock held. */ static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) { int err = 0; struct kvm *kvm = vcpu->kvm; unsigned long hva; struct kvm_memory_slot *memslot; struct vm_area_struct *vma; unsigned long lpcr = 0, senc; unsigned long psize, porder; int srcu_idx; /* Allocate hashed page table (if not done already) and reset it */ if (!kvm->arch.hpt.virt) { int order = KVM_DEFAULT_HPT_ORDER; struct kvm_hpt_info info; err = kvmppc_allocate_hpt(&info, order); /* If we get here, it means userspace didn't specify a * size explicitly. So, try successively smaller * sizes if the default failed. */ while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER) err = kvmppc_allocate_hpt(&info, order); if (err < 0) { pr_err("KVM: Couldn't alloc HPT\n"); goto out; } kvmppc_set_hpt(kvm, &info); } /* Look up the memslot for guest physical address 0 */ srcu_idx = srcu_read_lock(&kvm->srcu); memslot = gfn_to_memslot(kvm, 0); /* We must have some memory at 0 by now */ err = -EINVAL; if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) goto out_srcu; /* Look up the VMA for the start of this memory slot */ hva = memslot->userspace_addr; mmap_read_lock(kvm->mm); vma = vma_lookup(kvm->mm, hva); if (!vma || (vma->vm_flags & VM_IO)) goto up_out; psize = vma_kernel_pagesize(vma); mmap_read_unlock(kvm->mm); /* We can handle 4k, 64k or 16M pages in the VRMA */ if (psize >= 0x1000000) psize = 0x1000000; else if (psize >= 0x10000) psize = 0x10000; else psize = 0x1000; porder = __ilog2(psize); senc = slb_pgsize_encoding(psize); kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | (VRMA_VSID << SLB_VSID_SHIFT_1T); /* Create HPTEs in the hash page table for the VRMA */ kvmppc_map_vrma(vcpu, memslot, porder); /* Update VRMASD field in the LPCR */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) { /* the -4 is to account for senc values starting at 0x10 */ lpcr = senc << (LPCR_VRMASD_SH - 4); kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); } /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */ smp_wmb(); err = 0; out_srcu: srcu_read_unlock(&kvm->srcu, srcu_idx); out: return err; up_out: mmap_read_unlock(kvm->mm); goto out_srcu; } /* * Must be called with kvm->arch.mmu_setup_lock held and * mmu_ready = 0 and no vcpus running. */ int kvmppc_switch_mmu_to_hpt(struct kvm *kvm) { unsigned long lpcr, lpcr_mask; if (nesting_enabled(kvm)) kvmhv_release_all_nested(kvm); kvmppc_rmap_reset(kvm); kvm->arch.process_table = 0; /* Mutual exclusion with kvm_unmap_gfn_range etc. */ spin_lock(&kvm->mmu_lock); kvm->arch.radix = 0; spin_unlock(&kvm->mmu_lock); /* see the comments in kvm_test_clear_young_hv() */ synchronize_rcu(); kvmppc_free_radix(kvm); lpcr = LPCR_VPM1; lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR; if (cpu_has_feature(CPU_FTR_ARCH_31)) lpcr_mask |= LPCR_HAIL; kvmppc_update_lpcr(kvm, lpcr, lpcr_mask); return 0; } /* * Must be called with kvm->arch.mmu_setup_lock held and * mmu_ready = 0 and no vcpus running. */ int kvmppc_switch_mmu_to_radix(struct kvm *kvm) { unsigned long lpcr, lpcr_mask; int err; err = kvmppc_init_vm_radix(kvm); if (err) return err; kvmppc_rmap_reset(kvm); /* see the comments in kvm_test_clear_young_hv() */ smp_wmb(); /* Mutual exclusion with kvm_unmap_gfn_range etc. */ spin_lock(&kvm->mmu_lock); kvm->arch.radix = 1; spin_unlock(&kvm->mmu_lock); kvmppc_free_hpt(&kvm->arch.hpt); lpcr = LPCR_UPRT | LPCR_GTSE | LPCR_HR; lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR; if (cpu_has_feature(CPU_FTR_ARCH_31)) { lpcr_mask |= LPCR_HAIL; if (cpu_has_feature(CPU_FTR_HVMODE) && (kvm->arch.host_lpcr & LPCR_HAIL)) lpcr |= LPCR_HAIL; } kvmppc_update_lpcr(kvm, lpcr, lpcr_mask); return 0; } #ifdef CONFIG_KVM_XICS /* * Allocate a per-core structure for managing state about which cores are * running in the host versus the guest and for exchanging data between * real mode KVM and CPU running in the host. * This is only done for the first VM. * The allocated structure stays even if all VMs have stopped. * It is only freed when the kvm-hv module is unloaded. * It's OK for this routine to fail, we just don't support host * core operations like redirecting H_IPI wakeups. */ void kvmppc_alloc_host_rm_ops(void) { struct kvmppc_host_rm_ops *ops; unsigned long l_ops; int cpu, core; int size; if (cpu_has_feature(CPU_FTR_ARCH_300)) return; /* Not the first time here ? */ if (kvmppc_host_rm_ops_hv != NULL) return; ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL); if (!ops) return; size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core); ops->rm_core = kzalloc(size, GFP_KERNEL); if (!ops->rm_core) { kfree(ops); return; } cpus_read_lock(); for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) { if (!cpu_online(cpu)) continue; core = cpu >> threads_shift; ops->rm_core[core].rm_state.in_host = 1; } ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv; /* * Make the contents of the kvmppc_host_rm_ops structure visible * to other CPUs before we assign it to the global variable. * Do an atomic assignment (no locks used here), but if someone * beats us to it, just free our copy and return. */ smp_wmb(); l_ops = (unsigned long) ops; if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) { cpus_read_unlock(); kfree(ops->rm_core); kfree(ops); return; } cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE, "ppc/kvm_book3s:prepare", kvmppc_set_host_core, kvmppc_clear_host_core); cpus_read_unlock(); } void kvmppc_free_host_rm_ops(void) { if (kvmppc_host_rm_ops_hv) { cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE); kfree(kvmppc_host_rm_ops_hv->rm_core); kfree(kvmppc_host_rm_ops_hv); kvmppc_host_rm_ops_hv = NULL; } } #endif static int kvmppc_core_init_vm_hv(struct kvm *kvm) { unsigned long lpcr, lpid; int ret; mutex_init(&kvm->arch.uvmem_lock); INIT_LIST_HEAD(&kvm->arch.uvmem_pfns); mutex_init(&kvm->arch.mmu_setup_lock); /* Allocate the guest's logical partition ID */ lpid = kvmppc_alloc_lpid(); if ((long)lpid < 0) return -ENOMEM; kvm->arch.lpid = lpid; kvmppc_alloc_host_rm_ops(); kvmhv_vm_nested_init(kvm); /* * Since we don't flush the TLB when tearing down a VM, * and this lpid might have previously been used, * make sure we flush on each core before running the new VM. * On POWER9, the tlbie in mmu_partition_table_set_entry() * does this flush for us. */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) cpumask_setall(&kvm->arch.need_tlb_flush); /* Start out with the default set of hcalls enabled */ memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, sizeof(kvm->arch.enabled_hcalls)); if (!cpu_has_feature(CPU_FTR_ARCH_300)) kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); /* Init LPCR for virtual RMA mode */ if (cpu_has_feature(CPU_FTR_HVMODE)) { kvm->arch.host_lpid = mfspr(SPRN_LPID); kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); lpcr &= LPCR_PECE | LPCR_LPES; } else { /* * The L2 LPES mode will be set by the L0 according to whether * or not it needs to take external interrupts in HV mode. */ lpcr = 0; } lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | LPCR_VPM0 | LPCR_VPM1; kvm->arch.vrma_slb_v = SLB_VSID_B_1T | (VRMA_VSID << SLB_VSID_SHIFT_1T); /* On POWER8 turn on online bit to enable PURR/SPURR */ if (cpu_has_feature(CPU_FTR_ARCH_207S)) lpcr |= LPCR_ONL; /* * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed) * Set HVICE bit to enable hypervisor virtualization interrupts. * Set HEIC to prevent OS interrupts to go to hypervisor (should * be unnecessary but better safe than sorry in case we re-enable * EE in HV mode with this LPCR still set) */ if (cpu_has_feature(CPU_FTR_ARCH_300)) { lpcr &= ~LPCR_VPM0; lpcr |= LPCR_HVICE | LPCR_HEIC; /* * If xive is enabled, we route 0x500 interrupts directly * to the guest. */ if (xics_on_xive()) lpcr |= LPCR_LPES; } /* * If the host uses radix, the guest starts out as radix. */ if (radix_enabled()) { kvm->arch.radix = 1; kvm->arch.mmu_ready = 1; lpcr &= ~LPCR_VPM1; lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR; if (cpu_has_feature(CPU_FTR_HVMODE) && cpu_has_feature(CPU_FTR_ARCH_31) && (kvm->arch.host_lpcr & LPCR_HAIL)) lpcr |= LPCR_HAIL; ret = kvmppc_init_vm_radix(kvm); if (ret) { kvmppc_free_lpid(kvm->arch.lpid); return ret; } kvmppc_setup_partition_table(kvm); } verify_lpcr(kvm, lpcr); kvm->arch.lpcr = lpcr; /* Initialization for future HPT resizes */ kvm->arch.resize_hpt = NULL; /* * Work out how many sets the TLB has, for the use of * the TLB invalidation loop in book3s_hv_rmhandlers.S. */ if (cpu_has_feature(CPU_FTR_ARCH_31)) { /* * P10 will flush all the congruence class with a single tlbiel */ kvm->arch.tlb_sets = 1; } else if (radix_enabled()) kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */ else if (cpu_has_feature(CPU_FTR_ARCH_300)) kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */ else if (cpu_has_feature(CPU_FTR_ARCH_207S)) kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */ else kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */ /* * Track that we now have a HV mode VM active. This blocks secondary * CPU threads from coming online. */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) kvm_hv_vm_activated(); /* * Initialize smt_mode depending on processor. * POWER8 and earlier have to use "strict" threading, where * all vCPUs in a vcore have to run on the same (sub)core, * whereas on POWER9 the threads can each run a different * guest. */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) kvm->arch.smt_mode = threads_per_subcore; else kvm->arch.smt_mode = 1; kvm->arch.emul_smt_mode = 1; return 0; } static int kvmppc_arch_create_vm_debugfs_hv(struct kvm *kvm) { kvmppc_mmu_debugfs_init(kvm); if (radix_enabled()) kvmhv_radix_debugfs_init(kvm); return 0; } static void kvmppc_free_vcores(struct kvm *kvm) { long int i; for (i = 0; i < KVM_MAX_VCORES; ++i) kfree(kvm->arch.vcores[i]); kvm->arch.online_vcores = 0; } static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) { if (!cpu_has_feature(CPU_FTR_ARCH_300)) kvm_hv_vm_deactivated(); kvmppc_free_vcores(kvm); if (kvm_is_radix(kvm)) kvmppc_free_radix(kvm); else kvmppc_free_hpt(&kvm->arch.hpt); /* Perform global invalidation and return lpid to the pool */ if (cpu_has_feature(CPU_FTR_ARCH_300)) { if (nesting_enabled(kvm)) kvmhv_release_all_nested(kvm); kvm->arch.process_table = 0; if (kvm->arch.secure_guest) uv_svm_terminate(kvm->arch.lpid); kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0); } kvmppc_free_lpid(kvm->arch.lpid); kvmppc_free_pimap(kvm); } /* We don't need to emulate any privileged instructions or dcbz */ static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu, unsigned int inst, int *advance) { return EMULATE_FAIL; } static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, ulong spr_val) { return EMULATE_FAIL; } static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val) { return EMULATE_FAIL; } static int kvmppc_core_check_processor_compat_hv(void) { if (cpu_has_feature(CPU_FTR_HVMODE) && cpu_has_feature(CPU_FTR_ARCH_206)) return 0; /* POWER9 in radix mode is capable of being a nested hypervisor. */ if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled()) return 0; return -EIO; } #ifdef CONFIG_KVM_XICS void kvmppc_free_pimap(struct kvm *kvm) { kfree(kvm->arch.pimap); } static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void) { return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL); } static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) { struct irq_desc *desc; struct kvmppc_irq_map *irq_map; struct kvmppc_passthru_irqmap *pimap; struct irq_chip *chip; int i, rc = 0; struct irq_data *host_data; if (!kvm_irq_bypass) return 1; desc = irq_to_desc(host_irq); if (!desc) return -EIO; mutex_lock(&kvm->lock); pimap = kvm->arch.pimap; if (pimap == NULL) { /* First call, allocate structure to hold IRQ map */ pimap = kvmppc_alloc_pimap(); if (pimap == NULL) { mutex_unlock(&kvm->lock); return -ENOMEM; } kvm->arch.pimap = pimap; } /* * For now, we only support interrupts for which the EOI operation * is an OPAL call followed by a write to XIRR, since that's * what our real-mode EOI code does, or a XIVE interrupt */ chip = irq_data_get_irq_chip(&desc->irq_data); if (!chip || !is_pnv_opal_msi(chip)) { pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n", host_irq, guest_gsi); mutex_unlock(&kvm->lock); return -ENOENT; } /* * See if we already have an entry for this guest IRQ number. * If it's mapped to a hardware IRQ number, that's an error, * otherwise re-use this entry. */ for (i = 0; i < pimap->n_mapped; i++) { if (guest_gsi == pimap->mapped[i].v_hwirq) { if (pimap->mapped[i].r_hwirq) { mutex_unlock(&kvm->lock); return -EINVAL; } break; } } if (i == KVMPPC_PIRQ_MAPPED) { mutex_unlock(&kvm->lock); return -EAGAIN; /* table is full */ } irq_map = &pimap->mapped[i]; irq_map->v_hwirq = guest_gsi; irq_map->desc = desc; /* * Order the above two stores before the next to serialize with * the KVM real mode handler. */ smp_wmb(); /* * The 'host_irq' number is mapped in the PCI-MSI domain but * the underlying calls, which will EOI the interrupt in real * mode, need an HW IRQ number mapped in the XICS IRQ domain. */ host_data = irq_domain_get_irq_data(irq_get_default_host(), host_irq); irq_map->r_hwirq = (unsigned int)irqd_to_hwirq(host_data); if (i == pimap->n_mapped) pimap->n_mapped++; if (xics_on_xive()) rc = kvmppc_xive_set_mapped(kvm, guest_gsi, host_irq); else kvmppc_xics_set_mapped(kvm, guest_gsi, irq_map->r_hwirq); if (rc) irq_map->r_hwirq = 0; mutex_unlock(&kvm->lock); return 0; } static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) { struct irq_desc *desc; struct kvmppc_passthru_irqmap *pimap; int i, rc = 0; if (!kvm_irq_bypass) return 0; desc = irq_to_desc(host_irq); if (!desc) return -EIO; mutex_lock(&kvm->lock); if (!kvm->arch.pimap) goto unlock; pimap = kvm->arch.pimap; for (i = 0; i < pimap->n_mapped; i++) { if (guest_gsi == pimap->mapped[i].v_hwirq) break; } if (i == pimap->n_mapped) { mutex_unlock(&kvm->lock); return -ENODEV; } if (xics_on_xive()) rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, host_irq); else kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq); /* invalidate the entry (what to do on error from the above ?) */ pimap->mapped[i].r_hwirq = 0; /* * We don't free this structure even when the count goes to * zero. The structure is freed when we destroy the VM. */ unlock: mutex_unlock(&kvm->lock); return rc; } static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons, struct irq_bypass_producer *prod) { int ret = 0; struct kvm_kernel_irqfd *irqfd = container_of(cons, struct kvm_kernel_irqfd, consumer); irqfd->producer = prod; ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); if (ret) pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n", prod->irq, irqfd->gsi, ret); return ret; } static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons, struct irq_bypass_producer *prod) { int ret; struct kvm_kernel_irqfd *irqfd = container_of(cons, struct kvm_kernel_irqfd, consumer); irqfd->producer = NULL; /* * When producer of consumer is unregistered, we change back to * default external interrupt handling mode - KVM real mode * will switch back to host. */ ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); if (ret) pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n", prod->irq, irqfd->gsi, ret); } #endif static long kvm_arch_vm_ioctl_hv(struct file *filp, unsigned int ioctl, unsigned long arg) { struct kvm *kvm __maybe_unused = filp->private_data; void __user *argp = (void __user *)arg; long r; switch (ioctl) { case KVM_PPC_ALLOCATE_HTAB: { u32 htab_order; /* If we're a nested hypervisor, we currently only support radix */ if (kvmhv_on_pseries()) { r = -EOPNOTSUPP; break; } r = -EFAULT; if (get_user(htab_order, (u32 __user *)argp)) break; r = kvmppc_alloc_reset_hpt(kvm, htab_order); if (r) break; r = 0; break; } case KVM_PPC_GET_HTAB_FD: { struct kvm_get_htab_fd ghf; r = -EFAULT; if (copy_from_user(&ghf, argp, sizeof(ghf))) break; r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); break; } case KVM_PPC_RESIZE_HPT_PREPARE: { struct kvm_ppc_resize_hpt rhpt; r = -EFAULT; if (copy_from_user(&rhpt, argp, sizeof(rhpt))) break; r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt); break; } case KVM_PPC_RESIZE_HPT_COMMIT: { struct kvm_ppc_resize_hpt rhpt; r = -EFAULT; if (copy_from_user(&rhpt, argp, sizeof(rhpt))) break; r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt); break; } default: r = -ENOTTY; } return r; } /* * List of hcall numbers to enable by default. * For compatibility with old userspace, we enable by default * all hcalls that were implemented before the hcall-enabling * facility was added. Note this list should not include H_RTAS. */ static unsigned int default_hcall_list[] = { H_REMOVE, H_ENTER, H_READ, H_PROTECT, H_BULK_REMOVE, #ifdef CONFIG_SPAPR_TCE_IOMMU H_GET_TCE, H_PUT_TCE, #endif H_SET_DABR, H_SET_XDABR, H_CEDE, H_PROD, H_CONFER, H_REGISTER_VPA, #ifdef CONFIG_KVM_XICS H_EOI, H_CPPR, H_IPI, H_IPOLL, H_XIRR, H_XIRR_X, #endif 0 }; static void init_default_hcalls(void) { int i; unsigned int hcall; for (i = 0; default_hcall_list[i]; ++i) { hcall = default_hcall_list[i]; WARN_ON(!kvmppc_hcall_impl_hv(hcall)); __set_bit(hcall / 4, default_enabled_hcalls); } } static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) { unsigned long lpcr; int radix; int err; /* If not on a POWER9, reject it */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) return -ENODEV; /* If any unknown flags set, reject it */ if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE)) return -EINVAL; /* GR (guest radix) bit in process_table field must match */ radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX); if (!!(cfg->process_table & PATB_GR) != radix) return -EINVAL; /* Process table size field must be reasonable, i.e. <= 24 */ if ((cfg->process_table & PRTS_MASK) > 24) return -EINVAL; /* We can change a guest to/from radix now, if the host is radix */ if (radix && !radix_enabled()) return -EINVAL; /* If we're a nested hypervisor, we currently only support radix */ if (kvmhv_on_pseries() && !radix) return -EINVAL; mutex_lock(&kvm->arch.mmu_setup_lock); if (radix != kvm_is_radix(kvm)) { if (kvm->arch.mmu_ready) { kvm->arch.mmu_ready = 0; /* order mmu_ready vs. vcpus_running */ smp_mb(); if (atomic_read(&kvm->arch.vcpus_running)) { kvm->arch.mmu_ready = 1; err = -EBUSY; goto out_unlock; } } if (radix) err = kvmppc_switch_mmu_to_radix(kvm); else err = kvmppc_switch_mmu_to_hpt(kvm); if (err) goto out_unlock; } kvm->arch.process_table = cfg->process_table; kvmppc_setup_partition_table(kvm); lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0; kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE); err = 0; out_unlock: mutex_unlock(&kvm->arch.mmu_setup_lock); return err; } static int kvmhv_enable_nested(struct kvm *kvm) { if (!nested) return -EPERM; if (!cpu_has_feature(CPU_FTR_ARCH_300)) return -ENODEV; if (!radix_enabled()) return -ENODEV; /* kvm == NULL means the caller is testing if the capability exists */ if (kvm) kvm->arch.nested_enable = true; return 0; } static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, int size) { int rc = -EINVAL; if (kvmhv_vcpu_is_radix(vcpu)) { rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size); if (rc > 0) rc = -EINVAL; } /* For now quadrants are the only way to access nested guest memory */ if (rc && vcpu->arch.nested) rc = -EAGAIN; return rc; } static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, int size) { int rc = -EINVAL; if (kvmhv_vcpu_is_radix(vcpu)) { rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size); if (rc > 0) rc = -EINVAL; } /* For now quadrants are the only way to access nested guest memory */ if (rc && vcpu->arch.nested) rc = -EAGAIN; return rc; } static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa) { unpin_vpa(kvm, vpa); vpa->gpa = 0; vpa->pinned_addr = NULL; vpa->dirty = false; vpa->update_pending = 0; } /* * Enable a guest to become a secure VM, or test whether * that could be enabled. * Called when the KVM_CAP_PPC_SECURE_GUEST capability is * tested (kvm == NULL) or enabled (kvm != NULL). */ static int kvmhv_enable_svm(struct kvm *kvm) { if (!kvmppc_uvmem_available()) return -EINVAL; if (kvm) kvm->arch.svm_enabled = 1; return 0; } /* * IOCTL handler to turn off secure mode of guest * * - Release all device pages * - Issue ucall to terminate the guest on the UV side * - Unpin the VPA pages. * - Reinit the partition scoped page tables */ static int kvmhv_svm_off(struct kvm *kvm) { struct kvm_vcpu *vcpu; int mmu_was_ready; int srcu_idx; int ret = 0; unsigned long i; if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) return ret; mutex_lock(&kvm->arch.mmu_setup_lock); mmu_was_ready = kvm->arch.mmu_ready; if (kvm->arch.mmu_ready) { kvm->arch.mmu_ready = 0; /* order mmu_ready vs. vcpus_running */ smp_mb(); if (atomic_read(&kvm->arch.vcpus_running)) { kvm->arch.mmu_ready = 1; ret = -EBUSY; goto out; } } srcu_idx = srcu_read_lock(&kvm->srcu); for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { struct kvm_memory_slot *memslot; struct kvm_memslots *slots = __kvm_memslots(kvm, i); int bkt; if (!slots) continue; kvm_for_each_memslot(memslot, bkt, slots) { kvmppc_uvmem_drop_pages(memslot, kvm, true); uv_unregister_mem_slot(kvm->arch.lpid, memslot->id); } } srcu_read_unlock(&kvm->srcu, srcu_idx); ret = uv_svm_terminate(kvm->arch.lpid); if (ret != U_SUCCESS) { ret = -EINVAL; goto out; } /* * When secure guest is reset, all the guest pages are sent * to UV via UV_PAGE_IN before the non-boot vcpus get a * chance to run and unpin their VPA pages. Unpinning of all * VPA pages is done here explicitly so that VPA pages * can be migrated to the secure side. * * This is required to for the secure SMP guest to reboot * correctly. */ kvm_for_each_vcpu(i, vcpu, kvm) { spin_lock(&vcpu->arch.vpa_update_lock); unpin_vpa_reset(kvm, &vcpu->arch.dtl); unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow); unpin_vpa_reset(kvm, &vcpu->arch.vpa); spin_unlock(&vcpu->arch.vpa_update_lock); } kvmppc_setup_partition_table(kvm); kvm->arch.secure_guest = 0; kvm->arch.mmu_ready = mmu_was_ready; out: mutex_unlock(&kvm->arch.mmu_setup_lock); return ret; } static int kvmhv_enable_dawr1(struct kvm *kvm) { if (!cpu_has_feature(CPU_FTR_DAWR1)) return -ENODEV; /* kvm == NULL means the caller is testing if the capability exists */ if (kvm) kvm->arch.dawr1_enabled = true; return 0; } static bool kvmppc_hash_v3_possible(void) { if (!cpu_has_feature(CPU_FTR_ARCH_300)) return false; if (!cpu_has_feature(CPU_FTR_HVMODE)) return false; /* * POWER9 chips before version 2.02 can't have some threads in * HPT mode and some in radix mode on the same core. */ if (radix_enabled()) { unsigned int pvr = mfspr(SPRN_PVR); if ((pvr >> 16) == PVR_POWER9 && (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) || ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101))) return false; } return true; } static struct kvmppc_ops kvm_ops_hv = { .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, .get_one_reg = kvmppc_get_one_reg_hv, .set_one_reg = kvmppc_set_one_reg_hv, .vcpu_load = kvmppc_core_vcpu_load_hv, .vcpu_put = kvmppc_core_vcpu_put_hv, .inject_interrupt = kvmppc_inject_interrupt_hv, .set_msr = kvmppc_set_msr_hv, .vcpu_run = kvmppc_vcpu_run_hv, .vcpu_create = kvmppc_core_vcpu_create_hv, .vcpu_free = kvmppc_core_vcpu_free_hv, .check_requests = kvmppc_core_check_requests_hv, .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, .flush_memslot = kvmppc_core_flush_memslot_hv, .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, .commit_memory_region = kvmppc_core_commit_memory_region_hv, .unmap_gfn_range = kvm_unmap_gfn_range_hv, .age_gfn = kvm_age_gfn_hv, .test_age_gfn = kvm_test_age_gfn_hv, .test_clear_young = kvm_test_clear_young_hv, .set_spte_gfn = kvm_set_spte_gfn_hv, .free_memslot = kvmppc_core_free_memslot_hv, .init_vm = kvmppc_core_init_vm_hv, .destroy_vm = kvmppc_core_destroy_vm_hv, .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, .emulate_op = kvmppc_core_emulate_op_hv, .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, .hcall_implemented = kvmppc_hcall_impl_hv, #ifdef CONFIG_KVM_XICS .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv, .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv, #endif .configure_mmu = kvmhv_configure_mmu, .get_rmmu_info = kvmhv_get_rmmu_info, .set_smt_mode = kvmhv_set_smt_mode, .enable_nested = kvmhv_enable_nested, .load_from_eaddr = kvmhv_load_from_eaddr, .store_to_eaddr = kvmhv_store_to_eaddr, .enable_svm = kvmhv_enable_svm, .svm_off = kvmhv_svm_off, .enable_dawr1 = kvmhv_enable_dawr1, .hash_v3_possible = kvmppc_hash_v3_possible, .create_vcpu_debugfs = kvmppc_arch_create_vcpu_debugfs_hv, .create_vm_debugfs = kvmppc_arch_create_vm_debugfs_hv, }; static int kvm_init_subcore_bitmap(void) { int i, j; int nr_cores = cpu_nr_cores(); struct sibling_subcore_state *sibling_subcore_state; for (i = 0; i < nr_cores; i++) { int first_cpu = i * threads_per_core; int node = cpu_to_node(first_cpu); /* Ignore if it is already allocated. */ if (paca_ptrs[first_cpu]->sibling_subcore_state) continue; sibling_subcore_state = kzalloc_node(sizeof(struct sibling_subcore_state), GFP_KERNEL, node); if (!sibling_subcore_state) return -ENOMEM; for (j = 0; j < threads_per_core; j++) { int cpu = first_cpu + j; paca_ptrs[cpu]->sibling_subcore_state = sibling_subcore_state; } } return 0; } static int kvmppc_radix_possible(void) { return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled(); } static int kvmppc_book3s_init_hv(void) { int r; if (!tlbie_capable) { pr_err("KVM-HV: Host does not support TLBIE\n"); return -ENODEV; } /* * FIXME!! Do we need to check on all cpus ? */ r = kvmppc_core_check_processor_compat_hv(); if (r < 0) return -ENODEV; r = kvmhv_nested_init(); if (r) return r; if (!cpu_has_feature(CPU_FTR_ARCH_300)) { r = kvm_init_subcore_bitmap(); if (r) goto err; } /* * We need a way of accessing the XICS interrupt controller, * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or * indirectly, via OPAL. */ #ifdef CONFIG_SMP if (!xics_on_xive() && !kvmhv_on_pseries() && !local_paca->kvm_hstate.xics_phys) { struct device_node *np; np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc"); if (!np) { pr_err("KVM-HV: Cannot determine method for accessing XICS\n"); r = -ENODEV; goto err; } /* presence of intc confirmed - node can be dropped again */ of_node_put(np); } #endif init_default_hcalls(); init_vcore_lists(); r = kvmppc_mmu_hv_init(); if (r) goto err; if (kvmppc_radix_possible()) { r = kvmppc_radix_init(); if (r) goto err; } r = kvmppc_uvmem_init(); if (r < 0) { pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r); return r; } kvm_ops_hv.owner = THIS_MODULE; kvmppc_hv_ops = &kvm_ops_hv; return 0; err: kvmhv_nested_exit(); kvmppc_radix_exit(); return r; } static void kvmppc_book3s_exit_hv(void) { kvmppc_uvmem_free(); kvmppc_free_host_rm_ops(); if (kvmppc_radix_possible()) kvmppc_radix_exit(); kvmppc_hv_ops = NULL; kvmhv_nested_exit(); } module_init(kvmppc_book3s_init_hv); module_exit(kvmppc_book3s_exit_hv); MODULE_LICENSE("GPL"); MODULE_ALIAS_MISCDEV(KVM_MINOR); MODULE_ALIAS("devname:kvm");