// SPDX-License-Identifier: MIT /* * Copyright © 2019 Intel Corporation */ #include #include #include "i915_drv.h" #include "i915_reg.h" #include "intel_gt.h" #include "intel_gt_clock_utils.h" #include "intel_gt_debugfs.h" #include "intel_gt_pm.h" #include "intel_gt_pm_debugfs.h" #include "intel_gt_regs.h" #include "intel_llc.h" #include "intel_mchbar_regs.h" #include "intel_pcode.h" #include "intel_rc6.h" #include "intel_rps.h" #include "intel_runtime_pm.h" #include "intel_uncore.h" #include "vlv_sideband.h" void intel_gt_pm_debugfs_forcewake_user_open(struct intel_gt *gt) { atomic_inc(>->user_wakeref); intel_gt_pm_get(gt); if (GRAPHICS_VER(gt->i915) >= 6) intel_uncore_forcewake_user_get(gt->uncore); } void intel_gt_pm_debugfs_forcewake_user_release(struct intel_gt *gt) { if (GRAPHICS_VER(gt->i915) >= 6) intel_uncore_forcewake_user_put(gt->uncore); intel_gt_pm_put(gt); atomic_dec(>->user_wakeref); } static int forcewake_user_open(struct inode *inode, struct file *file) { struct intel_gt *gt = inode->i_private; intel_gt_pm_debugfs_forcewake_user_open(gt); return 0; } static int forcewake_user_release(struct inode *inode, struct file *file) { struct intel_gt *gt = inode->i_private; intel_gt_pm_debugfs_forcewake_user_release(gt); return 0; } static const struct file_operations forcewake_user_fops = { .owner = THIS_MODULE, .open = forcewake_user_open, .release = forcewake_user_release, }; static int fw_domains_show(struct seq_file *m, void *data) { struct intel_gt *gt = m->private; struct intel_uncore *uncore = gt->uncore; struct intel_uncore_forcewake_domain *fw_domain; unsigned int tmp; seq_printf(m, "user.bypass_count = %u\n", uncore->user_forcewake_count); for_each_fw_domain(fw_domain, uncore, tmp) seq_printf(m, "%s.wake_count = %u\n", intel_uncore_forcewake_domain_to_str(fw_domain->id), READ_ONCE(fw_domain->wake_count)); return 0; } DEFINE_INTEL_GT_DEBUGFS_ATTRIBUTE(fw_domains); static int vlv_drpc(struct seq_file *m) { struct intel_gt *gt = m->private; struct intel_uncore *uncore = gt->uncore; u32 rcctl1, pw_status, mt_fwake_req; mt_fwake_req = intel_uncore_read_fw(uncore, FORCEWAKE_MT); pw_status = intel_uncore_read(uncore, VLV_GTLC_PW_STATUS); rcctl1 = intel_uncore_read(uncore, GEN6_RC_CONTROL); seq_printf(m, "RC6 Enabled: %s\n", str_yes_no(rcctl1 & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))); seq_printf(m, "Multi-threaded Forcewake Request: 0x%x\n", mt_fwake_req); seq_printf(m, "Render Power Well: %s\n", (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down"); seq_printf(m, "Media Power Well: %s\n", (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down"); intel_rc6_print_residency(m, "Render RC6 residency since boot:", INTEL_RC6_RES_RC6); intel_rc6_print_residency(m, "Media RC6 residency since boot:", INTEL_RC6_RES_VLV_MEDIA); return fw_domains_show(m, NULL); } static int gen6_drpc(struct seq_file *m) { struct intel_gt *gt = m->private; struct drm_i915_private *i915 = gt->i915; struct intel_uncore *uncore = gt->uncore; u32 gt_core_status, mt_fwake_req, rcctl1, rc6vids = 0; u32 gen9_powergate_enable = 0, gen9_powergate_status = 0; mt_fwake_req = intel_uncore_read_fw(uncore, FORCEWAKE_MT); gt_core_status = intel_uncore_read_fw(uncore, GEN6_GT_CORE_STATUS); rcctl1 = intel_uncore_read(uncore, GEN6_RC_CONTROL); if (GRAPHICS_VER(i915) >= 9) { gen9_powergate_enable = intel_uncore_read(uncore, GEN9_PG_ENABLE); gen9_powergate_status = intel_uncore_read(uncore, GEN9_PWRGT_DOMAIN_STATUS); } if (GRAPHICS_VER(i915) <= 7) snb_pcode_read(gt->uncore, GEN6_PCODE_READ_RC6VIDS, &rc6vids, NULL); seq_printf(m, "RC1e Enabled: %s\n", str_yes_no(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE)); seq_printf(m, "RC6 Enabled: %s\n", str_yes_no(rcctl1 & GEN6_RC_CTL_RC6_ENABLE)); if (GRAPHICS_VER(i915) >= 9) { seq_printf(m, "Render Well Gating Enabled: %s\n", str_yes_no(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE)); seq_printf(m, "Media Well Gating Enabled: %s\n", str_yes_no(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE)); } seq_printf(m, "Deep RC6 Enabled: %s\n", str_yes_no(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE)); seq_printf(m, "Deepest RC6 Enabled: %s\n", str_yes_no(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE)); seq_puts(m, "Current RC state: "); switch (gt_core_status & GEN6_RCn_MASK) { case GEN6_RC0: if (gt_core_status & GEN6_CORE_CPD_STATE_MASK) seq_puts(m, "Core Power Down\n"); else seq_puts(m, "on\n"); break; case GEN6_RC3: seq_puts(m, "RC3\n"); break; case GEN6_RC6: seq_puts(m, "RC6\n"); break; case GEN6_RC7: seq_puts(m, "RC7\n"); break; default: seq_puts(m, "Unknown\n"); break; } seq_printf(m, "Core Power Down: %s\n", str_yes_no(gt_core_status & GEN6_CORE_CPD_STATE_MASK)); seq_printf(m, "Multi-threaded Forcewake Request: 0x%x\n", mt_fwake_req); if (GRAPHICS_VER(i915) >= 9) { seq_printf(m, "Render Power Well: %s\n", (gen9_powergate_status & GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down"); seq_printf(m, "Media Power Well: %s\n", (gen9_powergate_status & GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down"); } /* Not exactly sure what this is */ intel_rc6_print_residency(m, "RC6 \"Locked to RPn\" residency since boot:", INTEL_RC6_RES_RC6_LOCKED); intel_rc6_print_residency(m, "RC6 residency since boot:", INTEL_RC6_RES_RC6); intel_rc6_print_residency(m, "RC6+ residency since boot:", INTEL_RC6_RES_RC6p); intel_rc6_print_residency(m, "RC6++ residency since boot:", INTEL_RC6_RES_RC6pp); if (GRAPHICS_VER(i915) <= 7) { seq_printf(m, "RC6 voltage: %dmV\n", GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff))); seq_printf(m, "RC6+ voltage: %dmV\n", GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff))); seq_printf(m, "RC6++ voltage: %dmV\n", GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff))); } return fw_domains_show(m, NULL); } static int ilk_drpc(struct seq_file *m) { struct intel_gt *gt = m->private; struct intel_uncore *uncore = gt->uncore; u32 rgvmodectl, rstdbyctl; u16 crstandvid; rgvmodectl = intel_uncore_read(uncore, MEMMODECTL); rstdbyctl = intel_uncore_read(uncore, RSTDBYCTL); crstandvid = intel_uncore_read16(uncore, CRSTANDVID); seq_printf(m, "HD boost: %s\n", str_yes_no(rgvmodectl & MEMMODE_BOOST_EN)); seq_printf(m, "Boost freq: %d\n", (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >> MEMMODE_BOOST_FREQ_SHIFT); seq_printf(m, "HW control enabled: %s\n", str_yes_no(rgvmodectl & MEMMODE_HWIDLE_EN)); seq_printf(m, "SW control enabled: %s\n", str_yes_no(rgvmodectl & MEMMODE_SWMODE_EN)); seq_printf(m, "Gated voltage change: %s\n", str_yes_no(rgvmodectl & MEMMODE_RCLK_GATE)); seq_printf(m, "Starting frequency: P%d\n", (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT); seq_printf(m, "Max P-state: P%d\n", (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT); seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK)); seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f)); seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f)); seq_printf(m, "Render standby enabled: %s\n", str_yes_no(!(rstdbyctl & RCX_SW_EXIT))); seq_puts(m, "Current RS state: "); switch (rstdbyctl & RSX_STATUS_MASK) { case RSX_STATUS_ON: seq_puts(m, "on\n"); break; case RSX_STATUS_RC1: seq_puts(m, "RC1\n"); break; case RSX_STATUS_RC1E: seq_puts(m, "RC1E\n"); break; case RSX_STATUS_RS1: seq_puts(m, "RS1\n"); break; case RSX_STATUS_RS2: seq_puts(m, "RS2 (RC6)\n"); break; case RSX_STATUS_RS3: seq_puts(m, "RC3 (RC6+)\n"); break; default: seq_puts(m, "unknown\n"); break; } return 0; } static int mtl_drpc(struct seq_file *m) { struct intel_gt *gt = m->private; struct intel_uncore *uncore = gt->uncore; u32 gt_core_status, rcctl1, mt_fwake_req; u32 mtl_powergate_enable = 0, mtl_powergate_status = 0; mt_fwake_req = intel_uncore_read_fw(uncore, FORCEWAKE_MT); gt_core_status = intel_uncore_read(uncore, MTL_MIRROR_TARGET_WP1); rcctl1 = intel_uncore_read(uncore, GEN6_RC_CONTROL); mtl_powergate_enable = intel_uncore_read(uncore, GEN9_PG_ENABLE); mtl_powergate_status = intel_uncore_read(uncore, GEN9_PWRGT_DOMAIN_STATUS); seq_printf(m, "RC6 Enabled: %s\n", str_yes_no(rcctl1 & GEN6_RC_CTL_RC6_ENABLE)); if (gt->type == GT_MEDIA) { seq_printf(m, "Media Well Gating Enabled: %s\n", str_yes_no(mtl_powergate_enable & GEN9_MEDIA_PG_ENABLE)); } else { seq_printf(m, "Render Well Gating Enabled: %s\n", str_yes_no(mtl_powergate_enable & GEN9_RENDER_PG_ENABLE)); } seq_puts(m, "Current RC state: "); switch (REG_FIELD_GET(MTL_CC_MASK, gt_core_status)) { case MTL_CC0: seq_puts(m, "RC0\n"); break; case MTL_CC6: seq_puts(m, "RC6\n"); break; default: MISSING_CASE(REG_FIELD_GET(MTL_CC_MASK, gt_core_status)); seq_puts(m, "Unknown\n"); break; } seq_printf(m, "Multi-threaded Forcewake Request: 0x%x\n", mt_fwake_req); if (gt->type == GT_MEDIA) seq_printf(m, "Media Power Well: %s\n", (mtl_powergate_status & GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down"); else seq_printf(m, "Render Power Well: %s\n", (mtl_powergate_status & GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down"); /* Works for both render and media gt's */ intel_rc6_print_residency(m, "RC6 residency since boot:", INTEL_RC6_RES_RC6); return fw_domains_show(m, NULL); } static int drpc_show(struct seq_file *m, void *unused) { struct intel_gt *gt = m->private; struct drm_i915_private *i915 = gt->i915; intel_wakeref_t wakeref; int err = -ENODEV; with_intel_runtime_pm(gt->uncore->rpm, wakeref) { if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) err = mtl_drpc(m); else if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) err = vlv_drpc(m); else if (GRAPHICS_VER(i915) >= 6) err = gen6_drpc(m); else err = ilk_drpc(m); } return err; } DEFINE_INTEL_GT_DEBUGFS_ATTRIBUTE(drpc); void intel_gt_pm_frequency_dump(struct intel_gt *gt, struct drm_printer *p) { struct drm_i915_private *i915 = gt->i915; struct intel_uncore *uncore = gt->uncore; struct intel_rps *rps = >->rps; intel_wakeref_t wakeref; wakeref = intel_runtime_pm_get(uncore->rpm); if (GRAPHICS_VER(i915) == 5) { u16 rgvswctl = intel_uncore_read16(uncore, MEMSWCTL); u16 rgvstat = intel_uncore_read16(uncore, MEMSTAT_ILK); drm_printf(p, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf); drm_printf(p, "Requested VID: %d\n", rgvswctl & 0x3f); drm_printf(p, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >> MEMSTAT_VID_SHIFT); drm_printf(p, "Current P-state: %d\n", REG_FIELD_GET(MEMSTAT_PSTATE_MASK, rgvstat)); } else if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) { u32 rpmodectl, freq_sts; rpmodectl = intel_uncore_read(uncore, GEN6_RP_CONTROL); drm_printf(p, "Video Turbo Mode: %s\n", str_yes_no(rpmodectl & GEN6_RP_MEDIA_TURBO)); drm_printf(p, "HW control enabled: %s\n", str_yes_no(rpmodectl & GEN6_RP_ENABLE)); drm_printf(p, "SW control enabled: %s\n", str_yes_no((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) == GEN6_RP_MEDIA_SW_MODE)); vlv_punit_get(i915); freq_sts = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS); vlv_punit_put(i915); drm_printf(p, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts); drm_printf(p, "DDR freq: %d MHz\n", i915->mem_freq); drm_printf(p, "actual GPU freq: %d MHz\n", intel_gpu_freq(rps, (freq_sts >> 8) & 0xff)); drm_printf(p, "current GPU freq: %d MHz\n", intel_gpu_freq(rps, rps->cur_freq)); drm_printf(p, "max GPU freq: %d MHz\n", intel_gpu_freq(rps, rps->max_freq)); drm_printf(p, "min GPU freq: %d MHz\n", intel_gpu_freq(rps, rps->min_freq)); drm_printf(p, "idle GPU freq: %d MHz\n", intel_gpu_freq(rps, rps->idle_freq)); drm_printf(p, "efficient (RPe) frequency: %d MHz\n", intel_gpu_freq(rps, rps->efficient_freq)); } else if (GRAPHICS_VER(i915) >= 6) { gen6_rps_frequency_dump(rps, p); } else { drm_puts(p, "no P-state info available\n"); } drm_printf(p, "Current CD clock frequency: %d kHz\n", i915->display.cdclk.hw.cdclk); drm_printf(p, "Max CD clock frequency: %d kHz\n", i915->display.cdclk.max_cdclk_freq); drm_printf(p, "Max pixel clock frequency: %d kHz\n", i915->max_dotclk_freq); intel_runtime_pm_put(uncore->rpm, wakeref); } static int frequency_show(struct seq_file *m, void *unused) { struct intel_gt *gt = m->private; struct drm_printer p = drm_seq_file_printer(m); intel_gt_pm_frequency_dump(gt, &p); return 0; } DEFINE_INTEL_GT_DEBUGFS_ATTRIBUTE(frequency); static int llc_show(struct seq_file *m, void *data) { struct intel_gt *gt = m->private; struct drm_i915_private *i915 = gt->i915; const bool edram = GRAPHICS_VER(i915) > 8; struct intel_rps *rps = >->rps; unsigned int max_gpu_freq, min_gpu_freq; intel_wakeref_t wakeref; int gpu_freq, ia_freq; seq_printf(m, "LLC: %s\n", str_yes_no(HAS_LLC(i915))); seq_printf(m, "%s: %uMB\n", edram ? "eDRAM" : "eLLC", i915->edram_size_mb); min_gpu_freq = rps->min_freq; max_gpu_freq = rps->max_freq; if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) { /* Convert GT frequency to 50 HZ units */ min_gpu_freq /= GEN9_FREQ_SCALER; max_gpu_freq /= GEN9_FREQ_SCALER; } seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n"); wakeref = intel_runtime_pm_get(gt->uncore->rpm); for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) { ia_freq = gpu_freq; snb_pcode_read(gt->uncore, GEN6_PCODE_READ_MIN_FREQ_TABLE, &ia_freq, NULL); seq_printf(m, "%d\t\t%d\t\t\t\t%d\n", intel_gpu_freq(rps, (gpu_freq * (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11 ? GEN9_FREQ_SCALER : 1))), ((ia_freq >> 0) & 0xff) * 100, ((ia_freq >> 8) & 0xff) * 100); } intel_runtime_pm_put(gt->uncore->rpm, wakeref); return 0; } static bool llc_eval(void *data) { struct intel_gt *gt = data; return HAS_LLC(gt->i915); } DEFINE_INTEL_GT_DEBUGFS_ATTRIBUTE(llc); static const char *rps_power_to_str(unsigned int power) { static const char * const strings[] = { [LOW_POWER] = "low power", [BETWEEN] = "mixed", [HIGH_POWER] = "high power", }; if (power >= ARRAY_SIZE(strings) || !strings[power]) return "unknown"; return strings[power]; } static int rps_boost_show(struct seq_file *m, void *data) { struct intel_gt *gt = m->private; struct drm_i915_private *i915 = gt->i915; struct intel_rps *rps = >->rps; seq_printf(m, "RPS enabled? %s\n", str_yes_no(intel_rps_is_enabled(rps))); seq_printf(m, "RPS active? %s\n", str_yes_no(intel_rps_is_active(rps))); seq_printf(m, "GPU busy? %s, %llums\n", str_yes_no(gt->awake), ktime_to_ms(intel_gt_get_awake_time(gt))); seq_printf(m, "Boosts outstanding? %d\n", atomic_read(&rps->num_waiters)); seq_printf(m, "Interactive? %d\n", READ_ONCE(rps->power.interactive)); seq_printf(m, "Frequency requested %d, actual %d\n", intel_gpu_freq(rps, rps->cur_freq), intel_rps_read_actual_frequency(rps)); seq_printf(m, " min hard:%d, soft:%d; max soft:%d, hard:%d\n", intel_gpu_freq(rps, rps->min_freq), intel_gpu_freq(rps, rps->min_freq_softlimit), intel_gpu_freq(rps, rps->max_freq_softlimit), intel_gpu_freq(rps, rps->max_freq)); seq_printf(m, " idle:%d, efficient:%d, boost:%d\n", intel_gpu_freq(rps, rps->idle_freq), intel_gpu_freq(rps, rps->efficient_freq), intel_gpu_freq(rps, rps->boost_freq)); seq_printf(m, "Wait boosts: %d\n", READ_ONCE(rps->boosts)); if (GRAPHICS_VER(i915) >= 6 && intel_rps_is_active(rps)) { struct intel_uncore *uncore = gt->uncore; u32 rpup, rpupei; u32 rpdown, rpdownei; intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); rpup = intel_uncore_read_fw(uncore, GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK; rpupei = intel_uncore_read_fw(uncore, GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK; rpdown = intel_uncore_read_fw(uncore, GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK; rpdownei = intel_uncore_read_fw(uncore, GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK; intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n", rps_power_to_str(rps->power.mode)); seq_printf(m, " Avg. up: %d%% [above threshold? %d%%]\n", rpup && rpupei ? 100 * rpup / rpupei : 0, rps->power.up_threshold); seq_printf(m, " Avg. down: %d%% [below threshold? %d%%]\n", rpdown && rpdownei ? 100 * rpdown / rpdownei : 0, rps->power.down_threshold); } else { seq_puts(m, "\nRPS Autotuning inactive\n"); } return 0; } static bool rps_eval(void *data) { struct intel_gt *gt = data; return HAS_RPS(gt->i915); } DEFINE_INTEL_GT_DEBUGFS_ATTRIBUTE(rps_boost); static int perf_limit_reasons_get(void *data, u64 *val) { struct intel_gt *gt = data; intel_wakeref_t wakeref; with_intel_runtime_pm(gt->uncore->rpm, wakeref) *val = intel_uncore_read(gt->uncore, intel_gt_perf_limit_reasons_reg(gt)); return 0; } static int perf_limit_reasons_clear(void *data, u64 val) { struct intel_gt *gt = data; intel_wakeref_t wakeref; /* * Clear the upper 16 "log" bits, the lower 16 "status" bits are * read-only. The upper 16 "log" bits are identical to the lower 16 * "status" bits except that the "log" bits remain set until cleared. */ with_intel_runtime_pm(gt->uncore->rpm, wakeref) intel_uncore_rmw(gt->uncore, intel_gt_perf_limit_reasons_reg(gt), GT0_PERF_LIMIT_REASONS_LOG_MASK, 0); return 0; } static bool perf_limit_reasons_eval(void *data) { struct intel_gt *gt = data; return i915_mmio_reg_valid(intel_gt_perf_limit_reasons_reg(gt)); } DEFINE_SIMPLE_ATTRIBUTE(perf_limit_reasons_fops, perf_limit_reasons_get, perf_limit_reasons_clear, "0x%llx\n"); void intel_gt_pm_debugfs_register(struct intel_gt *gt, struct dentry *root) { static const struct intel_gt_debugfs_file files[] = { { "drpc", &drpc_fops, NULL }, { "frequency", &frequency_fops, NULL }, { "forcewake", &fw_domains_fops, NULL }, { "forcewake_user", &forcewake_user_fops, NULL}, { "llc", &llc_fops, llc_eval }, { "rps_boost", &rps_boost_fops, rps_eval }, { "perf_limit_reasons", &perf_limit_reasons_fops, perf_limit_reasons_eval }, }; intel_gt_debugfs_register_files(root, files, ARRAY_SIZE(files), gt); }