// SPDX-License-Identifier: MIT /* * Copyright © 2008-2018 Intel Corporation */ #include #include #include #include "display/intel_display.h" #include "display/intel_overlay.h" #include "gem/i915_gem_context.h" #include "gt/intel_gt_regs.h" #include "i915_drv.h" #include "i915_file_private.h" #include "i915_gpu_error.h" #include "i915_irq.h" #include "intel_breadcrumbs.h" #include "intel_engine_pm.h" #include "intel_engine_regs.h" #include "intel_gt.h" #include "intel_gt_pm.h" #include "intel_gt_requests.h" #include "intel_mchbar_regs.h" #include "intel_pci_config.h" #include "intel_reset.h" #include "uc/intel_guc.h" #define RESET_MAX_RETRIES 3 /* XXX How to handle concurrent GGTT updates using tiling registers? */ #define RESET_UNDER_STOP_MACHINE 0 static void client_mark_guilty(struct i915_gem_context *ctx, bool banned) { struct drm_i915_file_private *file_priv = ctx->file_priv; unsigned long prev_hang; unsigned int score; if (IS_ERR_OR_NULL(file_priv)) return; score = 0; if (banned) score = I915_CLIENT_SCORE_CONTEXT_BAN; prev_hang = xchg(&file_priv->hang_timestamp, jiffies); if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES)) score += I915_CLIENT_SCORE_HANG_FAST; if (score) { atomic_add(score, &file_priv->ban_score); drm_dbg(&ctx->i915->drm, "client %s: gained %u ban score, now %u\n", ctx->name, score, atomic_read(&file_priv->ban_score)); } } static bool mark_guilty(struct i915_request *rq) { struct i915_gem_context *ctx; unsigned long prev_hang; bool banned; int i; if (intel_context_is_closed(rq->context)) return true; rcu_read_lock(); ctx = rcu_dereference(rq->context->gem_context); if (ctx && !kref_get_unless_zero(&ctx->ref)) ctx = NULL; rcu_read_unlock(); if (!ctx) return intel_context_is_banned(rq->context); atomic_inc(&ctx->guilty_count); /* Cool contexts are too cool to be banned! (Used for reset testing.) */ if (!i915_gem_context_is_bannable(ctx)) { banned = false; goto out; } drm_notice(&ctx->i915->drm, "%s context reset due to GPU hang\n", ctx->name); /* Record the timestamp for the last N hangs */ prev_hang = ctx->hang_timestamp[0]; for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp) - 1; i++) ctx->hang_timestamp[i] = ctx->hang_timestamp[i + 1]; ctx->hang_timestamp[i] = jiffies; /* If we have hung N+1 times in rapid succession, we ban the context! */ banned = !i915_gem_context_is_recoverable(ctx); if (time_before(jiffies, prev_hang + CONTEXT_FAST_HANG_JIFFIES)) banned = true; if (banned) drm_dbg(&ctx->i915->drm, "context %s: guilty %d, banned\n", ctx->name, atomic_read(&ctx->guilty_count)); client_mark_guilty(ctx, banned); out: i915_gem_context_put(ctx); return banned; } static void mark_innocent(struct i915_request *rq) { struct i915_gem_context *ctx; rcu_read_lock(); ctx = rcu_dereference(rq->context->gem_context); if (ctx) atomic_inc(&ctx->active_count); rcu_read_unlock(); } void __i915_request_reset(struct i915_request *rq, bool guilty) { bool banned = false; RQ_TRACE(rq, "guilty? %s\n", str_yes_no(guilty)); GEM_BUG_ON(__i915_request_is_complete(rq)); rcu_read_lock(); /* protect the GEM context */ if (guilty) { i915_request_set_error_once(rq, -EIO); __i915_request_skip(rq); banned = mark_guilty(rq); } else { i915_request_set_error_once(rq, -EAGAIN); mark_innocent(rq); } rcu_read_unlock(); if (banned) intel_context_ban(rq->context, rq); } static bool i915_in_reset(struct pci_dev *pdev) { u8 gdrst; pci_read_config_byte(pdev, I915_GDRST, &gdrst); return gdrst & GRDOM_RESET_STATUS; } static int i915_do_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask, unsigned int retry) { struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev); int err; /* Assert reset for at least 20 usec, and wait for acknowledgement. */ pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE); udelay(50); err = wait_for_atomic(i915_in_reset(pdev), 50); /* Clear the reset request. */ pci_write_config_byte(pdev, I915_GDRST, 0); udelay(50); if (!err) err = wait_for_atomic(!i915_in_reset(pdev), 50); return err; } static bool g4x_reset_complete(struct pci_dev *pdev) { u8 gdrst; pci_read_config_byte(pdev, I915_GDRST, &gdrst); return (gdrst & GRDOM_RESET_ENABLE) == 0; } static int g33_do_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask, unsigned int retry) { struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev); pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE); return wait_for_atomic(g4x_reset_complete(pdev), 50); } static int g4x_do_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask, unsigned int retry) { struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev); struct intel_uncore *uncore = gt->uncore; int ret; /* WaVcpClkGateDisableForMediaReset:ctg,elk */ intel_uncore_rmw_fw(uncore, VDECCLK_GATE_D, 0, VCP_UNIT_CLOCK_GATE_DISABLE); intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D); pci_write_config_byte(pdev, I915_GDRST, GRDOM_MEDIA | GRDOM_RESET_ENABLE); ret = wait_for_atomic(g4x_reset_complete(pdev), 50); if (ret) { GT_TRACE(gt, "Wait for media reset failed\n"); goto out; } pci_write_config_byte(pdev, I915_GDRST, GRDOM_RENDER | GRDOM_RESET_ENABLE); ret = wait_for_atomic(g4x_reset_complete(pdev), 50); if (ret) { GT_TRACE(gt, "Wait for render reset failed\n"); goto out; } out: pci_write_config_byte(pdev, I915_GDRST, 0); intel_uncore_rmw_fw(uncore, VDECCLK_GATE_D, VCP_UNIT_CLOCK_GATE_DISABLE, 0); intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D); return ret; } static int ilk_do_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask, unsigned int retry) { struct intel_uncore *uncore = gt->uncore; int ret; intel_uncore_write_fw(uncore, ILK_GDSR, ILK_GRDOM_RENDER | ILK_GRDOM_RESET_ENABLE); ret = __intel_wait_for_register_fw(uncore, ILK_GDSR, ILK_GRDOM_RESET_ENABLE, 0, 5000, 0, NULL); if (ret) { GT_TRACE(gt, "Wait for render reset failed\n"); goto out; } intel_uncore_write_fw(uncore, ILK_GDSR, ILK_GRDOM_MEDIA | ILK_GRDOM_RESET_ENABLE); ret = __intel_wait_for_register_fw(uncore, ILK_GDSR, ILK_GRDOM_RESET_ENABLE, 0, 5000, 0, NULL); if (ret) { GT_TRACE(gt, "Wait for media reset failed\n"); goto out; } out: intel_uncore_write_fw(uncore, ILK_GDSR, 0); intel_uncore_posting_read_fw(uncore, ILK_GDSR); return ret; } /* Reset the hardware domains (GENX_GRDOM_*) specified by mask */ static int gen6_hw_domain_reset(struct intel_gt *gt, u32 hw_domain_mask) { struct intel_uncore *uncore = gt->uncore; int loops = 2; int err; /* * GEN6_GDRST is not in the gt power well, no need to check * for fifo space for the write or forcewake the chip for * the read */ do { intel_uncore_write_fw(uncore, GEN6_GDRST, hw_domain_mask); /* * Wait for the device to ack the reset requests. * * On some platforms, e.g. Jasperlake, we see that the * engine register state is not cleared until shortly after * GDRST reports completion, causing a failure as we try * to immediately resume while the internal state is still * in flux. If we immediately repeat the reset, the second * reset appears to serialise with the first, and since * it is a no-op, the registers should retain their reset * value. However, there is still a concern that upon * leaving the second reset, the internal engine state * is still in flux and not ready for resuming. */ err = __intel_wait_for_register_fw(uncore, GEN6_GDRST, hw_domain_mask, 0, 2000, 0, NULL); } while (err == 0 && --loops); if (err) GT_TRACE(gt, "Wait for 0x%08x engines reset failed\n", hw_domain_mask); /* * As we have observed that the engine state is still volatile * after GDRST is acked, impose a small delay to let everything settle. */ udelay(50); return err; } static int __gen6_reset_engines(struct intel_gt *gt, intel_engine_mask_t engine_mask, unsigned int retry) { struct intel_engine_cs *engine; u32 hw_mask; if (engine_mask == ALL_ENGINES) { hw_mask = GEN6_GRDOM_FULL; } else { intel_engine_mask_t tmp; hw_mask = 0; for_each_engine_masked(engine, gt, engine_mask, tmp) { hw_mask |= engine->reset_domain; } } return gen6_hw_domain_reset(gt, hw_mask); } static int gen6_reset_engines(struct intel_gt *gt, intel_engine_mask_t engine_mask, unsigned int retry) { unsigned long flags; int ret; spin_lock_irqsave(>->uncore->lock, flags); ret = __gen6_reset_engines(gt, engine_mask, retry); spin_unlock_irqrestore(>->uncore->lock, flags); return ret; } static struct intel_engine_cs *find_sfc_paired_vecs_engine(struct intel_engine_cs *engine) { int vecs_id; GEM_BUG_ON(engine->class != VIDEO_DECODE_CLASS); vecs_id = _VECS((engine->instance) / 2); return engine->gt->engine[vecs_id]; } struct sfc_lock_data { i915_reg_t lock_reg; i915_reg_t ack_reg; i915_reg_t usage_reg; u32 lock_bit; u32 ack_bit; u32 usage_bit; u32 reset_bit; }; static void get_sfc_forced_lock_data(struct intel_engine_cs *engine, struct sfc_lock_data *sfc_lock) { switch (engine->class) { default: MISSING_CASE(engine->class); fallthrough; case VIDEO_DECODE_CLASS: sfc_lock->lock_reg = GEN11_VCS_SFC_FORCED_LOCK(engine->mmio_base); sfc_lock->lock_bit = GEN11_VCS_SFC_FORCED_LOCK_BIT; sfc_lock->ack_reg = GEN11_VCS_SFC_LOCK_STATUS(engine->mmio_base); sfc_lock->ack_bit = GEN11_VCS_SFC_LOCK_ACK_BIT; sfc_lock->usage_reg = GEN11_VCS_SFC_LOCK_STATUS(engine->mmio_base); sfc_lock->usage_bit = GEN11_VCS_SFC_USAGE_BIT; sfc_lock->reset_bit = GEN11_VCS_SFC_RESET_BIT(engine->instance); break; case VIDEO_ENHANCEMENT_CLASS: sfc_lock->lock_reg = GEN11_VECS_SFC_FORCED_LOCK(engine->mmio_base); sfc_lock->lock_bit = GEN11_VECS_SFC_FORCED_LOCK_BIT; sfc_lock->ack_reg = GEN11_VECS_SFC_LOCK_ACK(engine->mmio_base); sfc_lock->ack_bit = GEN11_VECS_SFC_LOCK_ACK_BIT; sfc_lock->usage_reg = GEN11_VECS_SFC_USAGE(engine->mmio_base); sfc_lock->usage_bit = GEN11_VECS_SFC_USAGE_BIT; sfc_lock->reset_bit = GEN11_VECS_SFC_RESET_BIT(engine->instance); break; } } static int gen11_lock_sfc(struct intel_engine_cs *engine, u32 *reset_mask, u32 *unlock_mask) { struct intel_uncore *uncore = engine->uncore; u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access; struct sfc_lock_data sfc_lock; bool lock_obtained, lock_to_other = false; int ret; switch (engine->class) { case VIDEO_DECODE_CLASS: if ((BIT(engine->instance) & vdbox_sfc_access) == 0) return 0; fallthrough; case VIDEO_ENHANCEMENT_CLASS: get_sfc_forced_lock_data(engine, &sfc_lock); break; default: return 0; } if (!(intel_uncore_read_fw(uncore, sfc_lock.usage_reg) & sfc_lock.usage_bit)) { struct intel_engine_cs *paired_vecs; if (engine->class != VIDEO_DECODE_CLASS || GRAPHICS_VER(engine->i915) != 12) return 0; /* * Wa_14010733141 * * If the VCS-MFX isn't using the SFC, we also need to check * whether VCS-HCP is using it. If so, we need to issue a *VE* * forced lock on the VE engine that shares the same SFC. */ if (!(intel_uncore_read_fw(uncore, GEN12_HCP_SFC_LOCK_STATUS(engine->mmio_base)) & GEN12_HCP_SFC_USAGE_BIT)) return 0; paired_vecs = find_sfc_paired_vecs_engine(engine); get_sfc_forced_lock_data(paired_vecs, &sfc_lock); lock_to_other = true; *unlock_mask |= paired_vecs->mask; } else { *unlock_mask |= engine->mask; } /* * If the engine is using an SFC, tell the engine that a software reset * is going to happen. The engine will then try to force lock the SFC. * If SFC ends up being locked to the engine we want to reset, we have * to reset it as well (we will unlock it once the reset sequence is * completed). */ intel_uncore_rmw_fw(uncore, sfc_lock.lock_reg, 0, sfc_lock.lock_bit); ret = __intel_wait_for_register_fw(uncore, sfc_lock.ack_reg, sfc_lock.ack_bit, sfc_lock.ack_bit, 1000, 0, NULL); /* * Was the SFC released while we were trying to lock it? * * We should reset both the engine and the SFC if: * - We were locking the SFC to this engine and the lock succeeded * OR * - We were locking the SFC to a different engine (Wa_14010733141) * but the SFC was released before the lock was obtained. * * Otherwise we need only reset the engine by itself and we can * leave the SFC alone. */ lock_obtained = (intel_uncore_read_fw(uncore, sfc_lock.usage_reg) & sfc_lock.usage_bit) != 0; if (lock_obtained == lock_to_other) return 0; if (ret) { ENGINE_TRACE(engine, "Wait for SFC forced lock ack failed\n"); return ret; } *reset_mask |= sfc_lock.reset_bit; return 0; } static void gen11_unlock_sfc(struct intel_engine_cs *engine) { struct intel_uncore *uncore = engine->uncore; u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access; struct sfc_lock_data sfc_lock = {}; if (engine->class != VIDEO_DECODE_CLASS && engine->class != VIDEO_ENHANCEMENT_CLASS) return; if (engine->class == VIDEO_DECODE_CLASS && (BIT(engine->instance) & vdbox_sfc_access) == 0) return; get_sfc_forced_lock_data(engine, &sfc_lock); intel_uncore_rmw_fw(uncore, sfc_lock.lock_reg, sfc_lock.lock_bit, 0); } static int __gen11_reset_engines(struct intel_gt *gt, intel_engine_mask_t engine_mask, unsigned int retry) { struct intel_engine_cs *engine; intel_engine_mask_t tmp; u32 reset_mask, unlock_mask = 0; int ret; if (engine_mask == ALL_ENGINES) { reset_mask = GEN11_GRDOM_FULL; } else { reset_mask = 0; for_each_engine_masked(engine, gt, engine_mask, tmp) { reset_mask |= engine->reset_domain; ret = gen11_lock_sfc(engine, &reset_mask, &unlock_mask); if (ret) goto sfc_unlock; } } ret = gen6_hw_domain_reset(gt, reset_mask); sfc_unlock: /* * We unlock the SFC based on the lock status and not the result of * gen11_lock_sfc to make sure that we clean properly if something * wrong happened during the lock (e.g. lock acquired after timeout * expiration). * * Due to Wa_14010733141, we may have locked an SFC to an engine that * wasn't being reset. So instead of calling gen11_unlock_sfc() * on engine_mask, we instead call it on the mask of engines that our * gen11_lock_sfc() calls told us actually had locks attempted. */ for_each_engine_masked(engine, gt, unlock_mask, tmp) gen11_unlock_sfc(engine); return ret; } static int gen8_engine_reset_prepare(struct intel_engine_cs *engine) { struct intel_uncore *uncore = engine->uncore; const i915_reg_t reg = RING_RESET_CTL(engine->mmio_base); u32 request, mask, ack; int ret; if (I915_SELFTEST_ONLY(should_fail(&engine->reset_timeout, 1))) return -ETIMEDOUT; ack = intel_uncore_read_fw(uncore, reg); if (ack & RESET_CTL_CAT_ERROR) { /* * For catastrophic errors, ready-for-reset sequence * needs to be bypassed: HAS#396813 */ request = RESET_CTL_CAT_ERROR; mask = RESET_CTL_CAT_ERROR; /* Catastrophic errors need to be cleared by HW */ ack = 0; } else if (!(ack & RESET_CTL_READY_TO_RESET)) { request = RESET_CTL_REQUEST_RESET; mask = RESET_CTL_READY_TO_RESET; ack = RESET_CTL_READY_TO_RESET; } else { return 0; } intel_uncore_write_fw(uncore, reg, _MASKED_BIT_ENABLE(request)); ret = __intel_wait_for_register_fw(uncore, reg, mask, ack, 700, 0, NULL); if (ret) drm_err(&engine->i915->drm, "%s reset request timed out: {request: %08x, RESET_CTL: %08x}\n", engine->name, request, intel_uncore_read_fw(uncore, reg)); return ret; } static void gen8_engine_reset_cancel(struct intel_engine_cs *engine) { intel_uncore_write_fw(engine->uncore, RING_RESET_CTL(engine->mmio_base), _MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET)); } static int gen8_reset_engines(struct intel_gt *gt, intel_engine_mask_t engine_mask, unsigned int retry) { struct intel_engine_cs *engine; const bool reset_non_ready = retry >= 1; intel_engine_mask_t tmp; unsigned long flags; int ret; spin_lock_irqsave(>->uncore->lock, flags); for_each_engine_masked(engine, gt, engine_mask, tmp) { ret = gen8_engine_reset_prepare(engine); if (ret && !reset_non_ready) goto skip_reset; /* * If this is not the first failed attempt to prepare, * we decide to proceed anyway. * * By doing so we risk context corruption and with * some gens (kbl), possible system hang if reset * happens during active bb execution. * * We rather take context corruption instead of * failed reset with a wedged driver/gpu. And * active bb execution case should be covered by * stop_engines() we have before the reset. */ } /* * Wa_22011100796:dg2, whenever Full soft reset is required, * reset all individual engines firstly, and then do a full soft reset. * * This is best effort, so ignore any error from the initial reset. */ if (IS_DG2(gt->i915) && engine_mask == ALL_ENGINES) __gen11_reset_engines(gt, gt->info.engine_mask, 0); if (GRAPHICS_VER(gt->i915) >= 11) ret = __gen11_reset_engines(gt, engine_mask, retry); else ret = __gen6_reset_engines(gt, engine_mask, retry); skip_reset: for_each_engine_masked(engine, gt, engine_mask, tmp) gen8_engine_reset_cancel(engine); spin_unlock_irqrestore(>->uncore->lock, flags); return ret; } static int mock_reset(struct intel_gt *gt, intel_engine_mask_t mask, unsigned int retry) { return 0; } typedef int (*reset_func)(struct intel_gt *, intel_engine_mask_t engine_mask, unsigned int retry); static reset_func intel_get_gpu_reset(const struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; if (is_mock_gt(gt)) return mock_reset; else if (GRAPHICS_VER(i915) >= 8) return gen8_reset_engines; else if (GRAPHICS_VER(i915) >= 6) return gen6_reset_engines; else if (GRAPHICS_VER(i915) >= 5) return ilk_do_reset; else if (IS_G4X(i915)) return g4x_do_reset; else if (IS_G33(i915) || IS_PINEVIEW(i915)) return g33_do_reset; else if (GRAPHICS_VER(i915) >= 3) return i915_do_reset; else return NULL; } int __intel_gt_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask) { const int retries = engine_mask == ALL_ENGINES ? RESET_MAX_RETRIES : 1; reset_func reset; int ret = -ETIMEDOUT; int retry; reset = intel_get_gpu_reset(gt); if (!reset) return -ENODEV; /* * If the power well sleeps during the reset, the reset * request may be dropped and never completes (causing -EIO). */ intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); for (retry = 0; ret == -ETIMEDOUT && retry < retries; retry++) { GT_TRACE(gt, "engine_mask=%x\n", engine_mask); preempt_disable(); ret = reset(gt, engine_mask, retry); preempt_enable(); } intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); return ret; } bool intel_has_gpu_reset(const struct intel_gt *gt) { if (!gt->i915->params.reset) return NULL; return intel_get_gpu_reset(gt); } bool intel_has_reset_engine(const struct intel_gt *gt) { if (gt->i915->params.reset < 2) return false; return INTEL_INFO(gt->i915)->has_reset_engine; } int intel_reset_guc(struct intel_gt *gt) { u32 guc_domain = GRAPHICS_VER(gt->i915) >= 11 ? GEN11_GRDOM_GUC : GEN9_GRDOM_GUC; int ret; GEM_BUG_ON(!HAS_GT_UC(gt->i915)); intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); ret = gen6_hw_domain_reset(gt, guc_domain); intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); return ret; } /* * Ensure irq handler finishes, and not run again. * Also return the active request so that we only search for it once. */ static void reset_prepare_engine(struct intel_engine_cs *engine) { /* * During the reset sequence, we must prevent the engine from * entering RC6. As the context state is undefined until we restart * the engine, if it does enter RC6 during the reset, the state * written to the powercontext is undefined and so we may lose * GPU state upon resume, i.e. fail to restart after a reset. */ intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL); if (engine->reset.prepare) engine->reset.prepare(engine); } static void revoke_mmaps(struct intel_gt *gt) { int i; for (i = 0; i < gt->ggtt->num_fences; i++) { struct drm_vma_offset_node *node; struct i915_vma *vma; u64 vma_offset; vma = READ_ONCE(gt->ggtt->fence_regs[i].vma); if (!vma) continue; if (!i915_vma_has_userfault(vma)) continue; GEM_BUG_ON(vma->fence != >->ggtt->fence_regs[i]); if (!vma->mmo) continue; node = &vma->mmo->vma_node; vma_offset = vma->gtt_view.partial.offset << PAGE_SHIFT; unmap_mapping_range(gt->i915->drm.anon_inode->i_mapping, drm_vma_node_offset_addr(node) + vma_offset, vma->size, 1); } } static intel_engine_mask_t reset_prepare(struct intel_gt *gt) { struct intel_engine_cs *engine; intel_engine_mask_t awake = 0; enum intel_engine_id id; /* For GuC mode, ensure submission is disabled before stopping ring */ intel_uc_reset_prepare(>->uc); for_each_engine(engine, gt, id) { if (intel_engine_pm_get_if_awake(engine)) awake |= engine->mask; reset_prepare_engine(engine); } return awake; } static void gt_revoke(struct intel_gt *gt) { revoke_mmaps(gt); } static int gt_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask) { struct intel_engine_cs *engine; enum intel_engine_id id; int err; /* * Everything depends on having the GTT running, so we need to start * there. */ err = i915_ggtt_enable_hw(gt->i915); if (err) return err; local_bh_disable(); for_each_engine(engine, gt, id) __intel_engine_reset(engine, stalled_mask & engine->mask); local_bh_enable(); intel_uc_reset(>->uc, ALL_ENGINES); intel_ggtt_restore_fences(gt->ggtt); return err; } static void reset_finish_engine(struct intel_engine_cs *engine) { if (engine->reset.finish) engine->reset.finish(engine); intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL); intel_engine_signal_breadcrumbs(engine); } static void reset_finish(struct intel_gt *gt, intel_engine_mask_t awake) { struct intel_engine_cs *engine; enum intel_engine_id id; for_each_engine(engine, gt, id) { reset_finish_engine(engine); if (awake & engine->mask) intel_engine_pm_put(engine); } intel_uc_reset_finish(>->uc); } static void nop_submit_request(struct i915_request *request) { RQ_TRACE(request, "-EIO\n"); request = i915_request_mark_eio(request); if (request) { i915_request_submit(request); intel_engine_signal_breadcrumbs(request->engine); i915_request_put(request); } } static void __intel_gt_set_wedged(struct intel_gt *gt) { struct intel_engine_cs *engine; intel_engine_mask_t awake; enum intel_engine_id id; if (test_bit(I915_WEDGED, >->reset.flags)) return; GT_TRACE(gt, "start\n"); /* * First, stop submission to hw, but do not yet complete requests by * rolling the global seqno forward (since this would complete requests * for which we haven't set the fence error to EIO yet). */ awake = reset_prepare(gt); /* Even if the GPU reset fails, it should still stop the engines */ if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) __intel_gt_reset(gt, ALL_ENGINES); for_each_engine(engine, gt, id) engine->submit_request = nop_submit_request; /* * Make sure no request can slip through without getting completed by * either this call here to intel_engine_write_global_seqno, or the one * in nop_submit_request. */ synchronize_rcu_expedited(); set_bit(I915_WEDGED, >->reset.flags); /* Mark all executing requests as skipped */ local_bh_disable(); for_each_engine(engine, gt, id) if (engine->reset.cancel) engine->reset.cancel(engine); intel_uc_cancel_requests(>->uc); local_bh_enable(); reset_finish(gt, awake); GT_TRACE(gt, "end\n"); } void intel_gt_set_wedged(struct intel_gt *gt) { intel_wakeref_t wakeref; if (test_bit(I915_WEDGED, >->reset.flags)) return; wakeref = intel_runtime_pm_get(gt->uncore->rpm); mutex_lock(>->reset.mutex); if (GEM_SHOW_DEBUG()) { struct drm_printer p = drm_debug_printer(__func__); struct intel_engine_cs *engine; enum intel_engine_id id; drm_printf(&p, "called from %pS\n", (void *)_RET_IP_); for_each_engine(engine, gt, id) { if (intel_engine_is_idle(engine)) continue; intel_engine_dump(engine, &p, "%s\n", engine->name); } } __intel_gt_set_wedged(gt); mutex_unlock(>->reset.mutex); intel_runtime_pm_put(gt->uncore->rpm, wakeref); } static bool __intel_gt_unset_wedged(struct intel_gt *gt) { struct intel_gt_timelines *timelines = >->timelines; struct intel_timeline *tl; bool ok; if (!test_bit(I915_WEDGED, >->reset.flags)) return true; /* Never fully initialised, recovery impossible */ if (intel_gt_has_unrecoverable_error(gt)) return false; GT_TRACE(gt, "start\n"); /* * Before unwedging, make sure that all pending operations * are flushed and errored out - we may have requests waiting upon * third party fences. We marked all inflight requests as EIO, and * every execbuf since returned EIO, for consistency we want all * the currently pending requests to also be marked as EIO, which * is done inside our nop_submit_request - and so we must wait. * * No more can be submitted until we reset the wedged bit. */ spin_lock(&timelines->lock); list_for_each_entry(tl, &timelines->active_list, link) { struct dma_fence *fence; fence = i915_active_fence_get(&tl->last_request); if (!fence) continue; spin_unlock(&timelines->lock); /* * All internal dependencies (i915_requests) will have * been flushed by the set-wedge, but we may be stuck waiting * for external fences. These should all be capped to 10s * (I915_FENCE_TIMEOUT) so this wait should not be unbounded * in the worst case. */ dma_fence_default_wait(fence, false, MAX_SCHEDULE_TIMEOUT); dma_fence_put(fence); /* Restart iteration after droping lock */ spin_lock(&timelines->lock); tl = list_entry(&timelines->active_list, typeof(*tl), link); } spin_unlock(&timelines->lock); /* We must reset pending GPU events before restoring our submission */ ok = !HAS_EXECLISTS(gt->i915); /* XXX better agnosticism desired */ if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) ok = __intel_gt_reset(gt, ALL_ENGINES) == 0; if (!ok) { /* * Warn CI about the unrecoverable wedged condition. * Time for a reboot. */ add_taint_for_CI(gt->i915, TAINT_WARN); return false; } /* * Undo nop_submit_request. We prevent all new i915 requests from * being queued (by disallowing execbuf whilst wedged) so having * waited for all active requests above, we know the system is idle * and do not have to worry about a thread being inside * engine->submit_request() as we swap over. So unlike installing * the nop_submit_request on reset, we can do this from normal * context and do not require stop_machine(). */ intel_engines_reset_default_submission(gt); GT_TRACE(gt, "end\n"); smp_mb__before_atomic(); /* complete takeover before enabling execbuf */ clear_bit(I915_WEDGED, >->reset.flags); return true; } bool intel_gt_unset_wedged(struct intel_gt *gt) { bool result; mutex_lock(>->reset.mutex); result = __intel_gt_unset_wedged(gt); mutex_unlock(>->reset.mutex); return result; } static int do_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask) { int err, i; err = __intel_gt_reset(gt, ALL_ENGINES); for (i = 0; err && i < RESET_MAX_RETRIES; i++) { msleep(10 * (i + 1)); err = __intel_gt_reset(gt, ALL_ENGINES); } if (err) return err; return gt_reset(gt, stalled_mask); } static int resume(struct intel_gt *gt) { struct intel_engine_cs *engine; enum intel_engine_id id; int ret; for_each_engine(engine, gt, id) { ret = intel_engine_resume(engine); if (ret) return ret; } return 0; } /** * intel_gt_reset - reset chip after a hang * @gt: #intel_gt to reset * @stalled_mask: mask of the stalled engines with the guilty requests * @reason: user error message for why we are resetting * * Reset the chip. Useful if a hang is detected. Marks the device as wedged * on failure. * * Procedure is fairly simple: * - reset the chip using the reset reg * - re-init context state * - re-init hardware status page * - re-init ring buffer * - re-init interrupt state * - re-init display */ void intel_gt_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask, const char *reason) { intel_engine_mask_t awake; int ret; GT_TRACE(gt, "flags=%lx\n", gt->reset.flags); might_sleep(); GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, >->reset.flags)); /* * FIXME: Revoking cpu mmap ptes cannot be done from a dma_fence * critical section like gpu reset. */ gt_revoke(gt); mutex_lock(>->reset.mutex); /* Clear any previous failed attempts at recovery. Time to try again. */ if (!__intel_gt_unset_wedged(gt)) goto unlock; if (reason) drm_notice(>->i915->drm, "Resetting chip for %s\n", reason); atomic_inc(>->i915->gpu_error.reset_count); awake = reset_prepare(gt); if (!intel_has_gpu_reset(gt)) { if (gt->i915->params.reset) drm_err(>->i915->drm, "GPU reset not supported\n"); else drm_dbg(>->i915->drm, "GPU reset disabled\n"); goto error; } if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) intel_runtime_pm_disable_interrupts(gt->i915); if (do_reset(gt, stalled_mask)) { drm_err(>->i915->drm, "Failed to reset chip\n"); goto taint; } if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) intel_runtime_pm_enable_interrupts(gt->i915); intel_overlay_reset(gt->i915); /* * Next we need to restore the context, but we don't use those * yet either... * * Ring buffer needs to be re-initialized in the KMS case, or if X * was running at the time of the reset (i.e. we weren't VT * switched away). */ ret = intel_gt_init_hw(gt); if (ret) { drm_err(>->i915->drm, "Failed to initialise HW following reset (%d)\n", ret); goto taint; } ret = resume(gt); if (ret) goto taint; finish: reset_finish(gt, awake); unlock: mutex_unlock(>->reset.mutex); return; taint: /* * History tells us that if we cannot reset the GPU now, we * never will. This then impacts everything that is run * subsequently. On failing the reset, we mark the driver * as wedged, preventing further execution on the GPU. * We also want to go one step further and add a taint to the * kernel so that any subsequent faults can be traced back to * this failure. This is important for CI, where if the * GPU/driver fails we would like to reboot and restart testing * rather than continue on into oblivion. For everyone else, * the system should still plod along, but they have been warned! */ add_taint_for_CI(gt->i915, TAINT_WARN); error: __intel_gt_set_wedged(gt); goto finish; } static int intel_gt_reset_engine(struct intel_engine_cs *engine) { return __intel_gt_reset(engine->gt, engine->mask); } int __intel_engine_reset_bh(struct intel_engine_cs *engine, const char *msg) { struct intel_gt *gt = engine->gt; int ret; ENGINE_TRACE(engine, "flags=%lx\n", gt->reset.flags); GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, >->reset.flags)); if (intel_engine_uses_guc(engine)) return -ENODEV; if (!intel_engine_pm_get_if_awake(engine)) return 0; reset_prepare_engine(engine); if (msg) drm_notice(&engine->i915->drm, "Resetting %s for %s\n", engine->name, msg); atomic_inc(&engine->i915->gpu_error.reset_engine_count[engine->uabi_class]); ret = intel_gt_reset_engine(engine); if (ret) { /* If we fail here, we expect to fallback to a global reset */ ENGINE_TRACE(engine, "Failed to reset %s, err: %d\n", engine->name, ret); goto out; } /* * The request that caused the hang is stuck on elsp, we know the * active request and can drop it, adjust head to skip the offending * request to resume executing remaining requests in the queue. */ __intel_engine_reset(engine, true); /* * The engine and its registers (and workarounds in case of render) * have been reset to their default values. Follow the init_ring * process to program RING_MODE, HWSP and re-enable submission. */ ret = intel_engine_resume(engine); out: intel_engine_cancel_stop_cs(engine); reset_finish_engine(engine); intel_engine_pm_put_async(engine); return ret; } /** * intel_engine_reset - reset GPU engine to recover from a hang * @engine: engine to reset * @msg: reason for GPU reset; or NULL for no drm_notice() * * Reset a specific GPU engine. Useful if a hang is detected. * Returns zero on successful reset or otherwise an error code. * * Procedure is: * - identifies the request that caused the hang and it is dropped * - reset engine (which will force the engine to idle) * - re-init/configure engine */ int intel_engine_reset(struct intel_engine_cs *engine, const char *msg) { int err; local_bh_disable(); err = __intel_engine_reset_bh(engine, msg); local_bh_enable(); return err; } static void intel_gt_reset_global(struct intel_gt *gt, u32 engine_mask, const char *reason) { struct kobject *kobj = >->i915->drm.primary->kdev->kobj; char *error_event[] = { I915_ERROR_UEVENT "=1", NULL }; char *reset_event[] = { I915_RESET_UEVENT "=1", NULL }; char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL }; struct intel_wedge_me w; kobject_uevent_env(kobj, KOBJ_CHANGE, error_event); GT_TRACE(gt, "resetting chip, engines=%x\n", engine_mask); kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event); /* Use a watchdog to ensure that our reset completes */ intel_wedge_on_timeout(&w, gt, 60 * HZ) { intel_display_prepare_reset(gt->i915); intel_gt_reset(gt, engine_mask, reason); intel_display_finish_reset(gt->i915); } if (!test_bit(I915_WEDGED, >->reset.flags)) kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event); } /** * intel_gt_handle_error - handle a gpu error * @gt: the intel_gt * @engine_mask: mask representing engines that are hung * @flags: control flags * @fmt: Error message format string * * Do some basic checking of register state at error time and * dump it to the syslog. Also call i915_capture_error_state() to make * sure we get a record and make it available in debugfs. Fire a uevent * so userspace knows something bad happened (should trigger collection * of a ring dump etc.). */ void intel_gt_handle_error(struct intel_gt *gt, intel_engine_mask_t engine_mask, unsigned long flags, const char *fmt, ...) { struct intel_engine_cs *engine; intel_wakeref_t wakeref; intel_engine_mask_t tmp; char error_msg[80]; char *msg = NULL; if (fmt) { va_list args; va_start(args, fmt); vscnprintf(error_msg, sizeof(error_msg), fmt, args); va_end(args); msg = error_msg; } /* * In most cases it's guaranteed that we get here with an RPM * reference held, for example because there is a pending GPU * request that won't finish until the reset is done. This * isn't the case at least when we get here by doing a * simulated reset via debugfs, so get an RPM reference. */ wakeref = intel_runtime_pm_get(gt->uncore->rpm); engine_mask &= gt->info.engine_mask; if (flags & I915_ERROR_CAPTURE) { i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_NONE); intel_gt_clear_error_registers(gt, engine_mask); } /* * Try engine reset when available. We fall back to full reset if * single reset fails. */ if (!intel_uc_uses_guc_submission(>->uc) && intel_has_reset_engine(gt) && !intel_gt_is_wedged(gt)) { local_bh_disable(); for_each_engine_masked(engine, gt, engine_mask, tmp) { BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE); if (test_and_set_bit(I915_RESET_ENGINE + engine->id, >->reset.flags)) continue; if (__intel_engine_reset_bh(engine, msg) == 0) engine_mask &= ~engine->mask; clear_and_wake_up_bit(I915_RESET_ENGINE + engine->id, >->reset.flags); } local_bh_enable(); } if (!engine_mask) goto out; /* Full reset needs the mutex, stop any other user trying to do so. */ if (test_and_set_bit(I915_RESET_BACKOFF, >->reset.flags)) { wait_event(gt->reset.queue, !test_bit(I915_RESET_BACKOFF, >->reset.flags)); goto out; /* piggy-back on the other reset */ } /* Make sure i915_reset_trylock() sees the I915_RESET_BACKOFF */ synchronize_rcu_expedited(); /* * Prevent any other reset-engine attempt. We don't do this for GuC * submission the GuC owns the per-engine reset, not the i915. */ if (!intel_uc_uses_guc_submission(>->uc)) { for_each_engine(engine, gt, tmp) { while (test_and_set_bit(I915_RESET_ENGINE + engine->id, >->reset.flags)) wait_on_bit(>->reset.flags, I915_RESET_ENGINE + engine->id, TASK_UNINTERRUPTIBLE); } } /* Flush everyone using a resource about to be clobbered */ synchronize_srcu_expedited(>->reset.backoff_srcu); intel_gt_reset_global(gt, engine_mask, msg); if (!intel_uc_uses_guc_submission(>->uc)) { for_each_engine(engine, gt, tmp) clear_bit_unlock(I915_RESET_ENGINE + engine->id, >->reset.flags); } clear_bit_unlock(I915_RESET_BACKOFF, >->reset.flags); smp_mb__after_atomic(); wake_up_all(>->reset.queue); out: intel_runtime_pm_put(gt->uncore->rpm, wakeref); } static int _intel_gt_reset_lock(struct intel_gt *gt, int *srcu, bool retry) { might_lock(>->reset.backoff_srcu); if (retry) might_sleep(); rcu_read_lock(); while (test_bit(I915_RESET_BACKOFF, >->reset.flags)) { rcu_read_unlock(); if (!retry) return -EBUSY; if (wait_event_interruptible(gt->reset.queue, !test_bit(I915_RESET_BACKOFF, >->reset.flags))) return -EINTR; rcu_read_lock(); } *srcu = srcu_read_lock(>->reset.backoff_srcu); rcu_read_unlock(); return 0; } int intel_gt_reset_trylock(struct intel_gt *gt, int *srcu) { return _intel_gt_reset_lock(gt, srcu, false); } int intel_gt_reset_lock_interruptible(struct intel_gt *gt, int *srcu) { return _intel_gt_reset_lock(gt, srcu, true); } void intel_gt_reset_unlock(struct intel_gt *gt, int tag) __releases(>->reset.backoff_srcu) { srcu_read_unlock(>->reset.backoff_srcu, tag); } int intel_gt_terminally_wedged(struct intel_gt *gt) { might_sleep(); if (!intel_gt_is_wedged(gt)) return 0; if (intel_gt_has_unrecoverable_error(gt)) return -EIO; /* Reset still in progress? Maybe we will recover? */ if (wait_event_interruptible(gt->reset.queue, !test_bit(I915_RESET_BACKOFF, >->reset.flags))) return -EINTR; return intel_gt_is_wedged(gt) ? -EIO : 0; } void intel_gt_set_wedged_on_init(struct intel_gt *gt) { BUILD_BUG_ON(I915_RESET_ENGINE + I915_NUM_ENGINES > I915_WEDGED_ON_INIT); intel_gt_set_wedged(gt); i915_disable_error_state(gt->i915, -ENODEV); set_bit(I915_WEDGED_ON_INIT, >->reset.flags); /* Wedged on init is non-recoverable */ add_taint_for_CI(gt->i915, TAINT_WARN); } void intel_gt_set_wedged_on_fini(struct intel_gt *gt) { intel_gt_set_wedged(gt); i915_disable_error_state(gt->i915, -ENODEV); set_bit(I915_WEDGED_ON_FINI, >->reset.flags); intel_gt_retire_requests(gt); /* cleanup any wedged requests */ } void intel_gt_init_reset(struct intel_gt *gt) { init_waitqueue_head(>->reset.queue); mutex_init(>->reset.mutex); init_srcu_struct(>->reset.backoff_srcu); /* * While undesirable to wait inside the shrinker, complain anyway. * * If we have to wait during shrinking, we guarantee forward progress * by forcing the reset. Therefore during the reset we must not * re-enter the shrinker. By declaring that we take the reset mutex * within the shrinker, we forbid ourselves from performing any * fs-reclaim or taking related locks during reset. */ i915_gem_shrinker_taints_mutex(gt->i915, >->reset.mutex); /* no GPU until we are ready! */ __set_bit(I915_WEDGED, >->reset.flags); } void intel_gt_fini_reset(struct intel_gt *gt) { cleanup_srcu_struct(>->reset.backoff_srcu); } static void intel_wedge_me(struct work_struct *work) { struct intel_wedge_me *w = container_of(work, typeof(*w), work.work); drm_err(&w->gt->i915->drm, "%s timed out, cancelling all in-flight rendering.\n", w->name); intel_gt_set_wedged(w->gt); } void __intel_init_wedge(struct intel_wedge_me *w, struct intel_gt *gt, long timeout, const char *name) { w->gt = gt; w->name = name; INIT_DELAYED_WORK_ONSTACK(&w->work, intel_wedge_me); schedule_delayed_work(&w->work, timeout); } void __intel_fini_wedge(struct intel_wedge_me *w) { cancel_delayed_work_sync(&w->work); destroy_delayed_work_on_stack(&w->work); w->gt = NULL; } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftest_reset.c" #include "selftest_hangcheck.c" #endif