// SPDX-License-Identifier: MIT /* * Copyright © 2019 Intel Corporation */ #include #include #include "display/intel_display.h" #include "i915_drv.h" #include "i915_irq.h" #include "intel_breadcrumbs.h" #include "intel_gt.h" #include "intel_gt_clock_utils.h" #include "intel_gt_irq.h" #include "intel_gt_pm_irq.h" #include "intel_gt_regs.h" #include "intel_mchbar_regs.h" #include "intel_pcode.h" #include "intel_rps.h" #include "vlv_sideband.h" #include "../../../platform/x86/intel_ips.h" #define BUSY_MAX_EI 20u /* ms */ /* * Lock protecting IPS related data structures */ static DEFINE_SPINLOCK(mchdev_lock); static struct intel_gt *rps_to_gt(struct intel_rps *rps) { return container_of(rps, struct intel_gt, rps); } static struct drm_i915_private *rps_to_i915(struct intel_rps *rps) { return rps_to_gt(rps)->i915; } static struct intel_uncore *rps_to_uncore(struct intel_rps *rps) { return rps_to_gt(rps)->uncore; } static struct intel_guc_slpc *rps_to_slpc(struct intel_rps *rps) { struct intel_gt *gt = rps_to_gt(rps); return >->uc.guc.slpc; } static bool rps_uses_slpc(struct intel_rps *rps) { struct intel_gt *gt = rps_to_gt(rps); return intel_uc_uses_guc_slpc(>->uc); } static u32 rps_pm_sanitize_mask(struct intel_rps *rps, u32 mask) { return mask & ~rps->pm_intrmsk_mbz; } static void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val) { intel_uncore_write_fw(uncore, reg, val); } static void rps_timer(struct timer_list *t) { struct intel_rps *rps = from_timer(rps, t, timer); struct intel_engine_cs *engine; ktime_t dt, last, timestamp; enum intel_engine_id id; s64 max_busy[3] = {}; timestamp = 0; for_each_engine(engine, rps_to_gt(rps), id) { s64 busy; int i; dt = intel_engine_get_busy_time(engine, ×tamp); last = engine->stats.rps; engine->stats.rps = dt; busy = ktime_to_ns(ktime_sub(dt, last)); for (i = 0; i < ARRAY_SIZE(max_busy); i++) { if (busy > max_busy[i]) swap(busy, max_busy[i]); } } last = rps->pm_timestamp; rps->pm_timestamp = timestamp; if (intel_rps_is_active(rps)) { s64 busy; int i; dt = ktime_sub(timestamp, last); /* * Our goal is to evaluate each engine independently, so we run * at the lowest clocks required to sustain the heaviest * workload. However, a task may be split into sequential * dependent operations across a set of engines, such that * the independent contributions do not account for high load, * but overall the task is GPU bound. For example, consider * video decode on vcs followed by colour post-processing * on vecs, followed by general post-processing on rcs. * Since multi-engines being active does imply a single * continuous workload across all engines, we hedge our * bets by only contributing a factor of the distributed * load into our busyness calculation. */ busy = max_busy[0]; for (i = 1; i < ARRAY_SIZE(max_busy); i++) { if (!max_busy[i]) break; busy += div_u64(max_busy[i], 1 << i); } GT_TRACE(rps_to_gt(rps), "busy:%lld [%d%%], max:[%lld, %lld, %lld], interval:%d\n", busy, (int)div64_u64(100 * busy, dt), max_busy[0], max_busy[1], max_busy[2], rps->pm_interval); if (100 * busy > rps->power.up_threshold * dt && rps->cur_freq < rps->max_freq_softlimit) { rps->pm_iir |= GEN6_PM_RP_UP_THRESHOLD; rps->pm_interval = 1; schedule_work(&rps->work); } else if (100 * busy < rps->power.down_threshold * dt && rps->cur_freq > rps->min_freq_softlimit) { rps->pm_iir |= GEN6_PM_RP_DOWN_THRESHOLD; rps->pm_interval = 1; schedule_work(&rps->work); } else { rps->last_adj = 0; } mod_timer(&rps->timer, jiffies + msecs_to_jiffies(rps->pm_interval)); rps->pm_interval = min(rps->pm_interval * 2, BUSY_MAX_EI); } } static void rps_start_timer(struct intel_rps *rps) { rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp); rps->pm_interval = 1; mod_timer(&rps->timer, jiffies + 1); } static void rps_stop_timer(struct intel_rps *rps) { del_timer_sync(&rps->timer); rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp); cancel_work_sync(&rps->work); } static u32 rps_pm_mask(struct intel_rps *rps, u8 val) { u32 mask = 0; /* We use UP_EI_EXPIRED interrupts for both up/down in manual mode */ if (val > rps->min_freq_softlimit) mask |= (GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT); if (val < rps->max_freq_softlimit) mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD; mask &= rps->pm_events; return rps_pm_sanitize_mask(rps, ~mask); } static void rps_reset_ei(struct intel_rps *rps) { memset(&rps->ei, 0, sizeof(rps->ei)); } static void rps_enable_interrupts(struct intel_rps *rps) { struct intel_gt *gt = rps_to_gt(rps); GEM_BUG_ON(rps_uses_slpc(rps)); GT_TRACE(gt, "interrupts:on rps->pm_events: %x, rps_pm_mask:%x\n", rps->pm_events, rps_pm_mask(rps, rps->last_freq)); rps_reset_ei(rps); spin_lock_irq(gt->irq_lock); gen6_gt_pm_enable_irq(gt, rps->pm_events); spin_unlock_irq(gt->irq_lock); intel_uncore_write(gt->uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, rps->last_freq)); } static void gen6_rps_reset_interrupts(struct intel_rps *rps) { gen6_gt_pm_reset_iir(rps_to_gt(rps), GEN6_PM_RPS_EVENTS); } static void gen11_rps_reset_interrupts(struct intel_rps *rps) { while (gen11_gt_reset_one_iir(rps_to_gt(rps), 0, GEN11_GTPM)) ; } static void rps_reset_interrupts(struct intel_rps *rps) { struct intel_gt *gt = rps_to_gt(rps); spin_lock_irq(gt->irq_lock); if (GRAPHICS_VER(gt->i915) >= 11) gen11_rps_reset_interrupts(rps); else gen6_rps_reset_interrupts(rps); rps->pm_iir = 0; spin_unlock_irq(gt->irq_lock); } static void rps_disable_interrupts(struct intel_rps *rps) { struct intel_gt *gt = rps_to_gt(rps); intel_uncore_write(gt->uncore, GEN6_PMINTRMSK, rps_pm_sanitize_mask(rps, ~0u)); spin_lock_irq(gt->irq_lock); gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS); spin_unlock_irq(gt->irq_lock); intel_synchronize_irq(gt->i915); /* * Now that we will not be generating any more work, flush any * outstanding tasks. As we are called on the RPS idle path, * we will reset the GPU to minimum frequencies, so the current * state of the worker can be discarded. */ cancel_work_sync(&rps->work); rps_reset_interrupts(rps); GT_TRACE(gt, "interrupts:off\n"); } static const struct cparams { u16 i; u16 t; u16 m; u16 c; } cparams[] = { { 1, 1333, 301, 28664 }, { 1, 1066, 294, 24460 }, { 1, 800, 294, 25192 }, { 0, 1333, 276, 27605 }, { 0, 1066, 276, 27605 }, { 0, 800, 231, 23784 }, }; static void gen5_rps_init(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); struct intel_uncore *uncore = rps_to_uncore(rps); u8 fmax, fmin, fstart; u32 rgvmodectl; int c_m, i; if (i915->fsb_freq <= 3200) c_m = 0; else if (i915->fsb_freq <= 4800) c_m = 1; else c_m = 2; for (i = 0; i < ARRAY_SIZE(cparams); i++) { if (cparams[i].i == c_m && cparams[i].t == i915->mem_freq) { rps->ips.m = cparams[i].m; rps->ips.c = cparams[i].c; break; } } rgvmodectl = intel_uncore_read(uncore, MEMMODECTL); /* Set up min, max, and cur for interrupt handling */ fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT; fmin = (rgvmodectl & MEMMODE_FMIN_MASK); fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT; drm_dbg(&i915->drm, "fmax: %d, fmin: %d, fstart: %d\n", fmax, fmin, fstart); rps->min_freq = fmax; rps->efficient_freq = fstart; rps->max_freq = fmin; } static unsigned long __ips_chipset_val(struct intel_ips *ips) { struct intel_uncore *uncore = rps_to_uncore(container_of(ips, struct intel_rps, ips)); unsigned long now = jiffies_to_msecs(jiffies), dt; unsigned long result; u64 total, delta; lockdep_assert_held(&mchdev_lock); /* * Prevent division-by-zero if we are asking too fast. * Also, we don't get interesting results if we are polling * faster than once in 10ms, so just return the saved value * in such cases. */ dt = now - ips->last_time1; if (dt <= 10) return ips->chipset_power; /* FIXME: handle per-counter overflow */ total = intel_uncore_read(uncore, DMIEC); total += intel_uncore_read(uncore, DDREC); total += intel_uncore_read(uncore, CSIEC); delta = total - ips->last_count1; result = div_u64(div_u64(ips->m * delta, dt) + ips->c, 10); ips->last_count1 = total; ips->last_time1 = now; ips->chipset_power = result; return result; } static unsigned long ips_mch_val(struct intel_uncore *uncore) { unsigned int m, x, b; u32 tsfs; tsfs = intel_uncore_read(uncore, TSFS); x = intel_uncore_read8(uncore, TR1); b = tsfs & TSFS_INTR_MASK; m = (tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT; return m * x / 127 - b; } static int _pxvid_to_vd(u8 pxvid) { if (pxvid == 0) return 0; if (pxvid >= 8 && pxvid < 31) pxvid = 31; return (pxvid + 2) * 125; } static u32 pvid_to_extvid(struct drm_i915_private *i915, u8 pxvid) { const int vd = _pxvid_to_vd(pxvid); if (INTEL_INFO(i915)->is_mobile) return max(vd - 1125, 0); return vd; } static void __gen5_ips_update(struct intel_ips *ips) { struct intel_uncore *uncore = rps_to_uncore(container_of(ips, struct intel_rps, ips)); u64 now, delta, dt; u32 count; lockdep_assert_held(&mchdev_lock); now = ktime_get_raw_ns(); dt = now - ips->last_time2; do_div(dt, NSEC_PER_MSEC); /* Don't divide by 0 */ if (dt <= 10) return; count = intel_uncore_read(uncore, GFXEC); delta = count - ips->last_count2; ips->last_count2 = count; ips->last_time2 = now; /* More magic constants... */ ips->gfx_power = div_u64(delta * 1181, dt * 10); } static void gen5_rps_update(struct intel_rps *rps) { spin_lock_irq(&mchdev_lock); __gen5_ips_update(&rps->ips); spin_unlock_irq(&mchdev_lock); } static unsigned int gen5_invert_freq(struct intel_rps *rps, unsigned int val) { /* Invert the frequency bin into an ips delay */ val = rps->max_freq - val; val = rps->min_freq + val; return val; } static int __gen5_rps_set(struct intel_rps *rps, u8 val) { struct intel_uncore *uncore = rps_to_uncore(rps); u16 rgvswctl; lockdep_assert_held(&mchdev_lock); rgvswctl = intel_uncore_read16(uncore, MEMSWCTL); if (rgvswctl & MEMCTL_CMD_STS) { drm_dbg(&rps_to_i915(rps)->drm, "gpu busy, RCS change rejected\n"); return -EBUSY; /* still busy with another command */ } /* Invert the frequency bin into an ips delay */ val = gen5_invert_freq(rps, val); rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) | (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM; intel_uncore_write16(uncore, MEMSWCTL, rgvswctl); intel_uncore_posting_read16(uncore, MEMSWCTL); rgvswctl |= MEMCTL_CMD_STS; intel_uncore_write16(uncore, MEMSWCTL, rgvswctl); return 0; } static int gen5_rps_set(struct intel_rps *rps, u8 val) { int err; spin_lock_irq(&mchdev_lock); err = __gen5_rps_set(rps, val); spin_unlock_irq(&mchdev_lock); return err; } static unsigned long intel_pxfreq(u32 vidfreq) { int div = (vidfreq & 0x3f0000) >> 16; int post = (vidfreq & 0x3000) >> 12; int pre = (vidfreq & 0x7); if (!pre) return 0; return div * 133333 / (pre << post); } static unsigned int init_emon(struct intel_uncore *uncore) { u8 pxw[16]; int i; /* Disable to program */ intel_uncore_write(uncore, ECR, 0); intel_uncore_posting_read(uncore, ECR); /* Program energy weights for various events */ intel_uncore_write(uncore, SDEW, 0x15040d00); intel_uncore_write(uncore, CSIEW0, 0x007f0000); intel_uncore_write(uncore, CSIEW1, 0x1e220004); intel_uncore_write(uncore, CSIEW2, 0x04000004); for (i = 0; i < 5; i++) intel_uncore_write(uncore, PEW(i), 0); for (i = 0; i < 3; i++) intel_uncore_write(uncore, DEW(i), 0); /* Program P-state weights to account for frequency power adjustment */ for (i = 0; i < 16; i++) { u32 pxvidfreq = intel_uncore_read(uncore, PXVFREQ(i)); unsigned int freq = intel_pxfreq(pxvidfreq); unsigned int vid = (pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT; unsigned int val; val = vid * vid * freq / 1000 * 255; val /= 127 * 127 * 900; pxw[i] = val; } /* Render standby states get 0 weight */ pxw[14] = 0; pxw[15] = 0; for (i = 0; i < 4; i++) { intel_uncore_write(uncore, PXW(i), pxw[i * 4 + 0] << 24 | pxw[i * 4 + 1] << 16 | pxw[i * 4 + 2] << 8 | pxw[i * 4 + 3] << 0); } /* Adjust magic regs to magic values (more experimental results) */ intel_uncore_write(uncore, OGW0, 0); intel_uncore_write(uncore, OGW1, 0); intel_uncore_write(uncore, EG0, 0x00007f00); intel_uncore_write(uncore, EG1, 0x0000000e); intel_uncore_write(uncore, EG2, 0x000e0000); intel_uncore_write(uncore, EG3, 0x68000300); intel_uncore_write(uncore, EG4, 0x42000000); intel_uncore_write(uncore, EG5, 0x00140031); intel_uncore_write(uncore, EG6, 0); intel_uncore_write(uncore, EG7, 0); for (i = 0; i < 8; i++) intel_uncore_write(uncore, PXWL(i), 0); /* Enable PMON + select events */ intel_uncore_write(uncore, ECR, 0x80000019); return intel_uncore_read(uncore, LCFUSE02) & LCFUSE_HIV_MASK; } static bool gen5_rps_enable(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); struct intel_uncore *uncore = rps_to_uncore(rps); u8 fstart, vstart; u32 rgvmodectl; spin_lock_irq(&mchdev_lock); rgvmodectl = intel_uncore_read(uncore, MEMMODECTL); /* Enable temp reporting */ intel_uncore_write16(uncore, PMMISC, intel_uncore_read16(uncore, PMMISC) | MCPPCE_EN); intel_uncore_write16(uncore, TSC1, intel_uncore_read16(uncore, TSC1) | TSE); /* 100ms RC evaluation intervals */ intel_uncore_write(uncore, RCUPEI, 100000); intel_uncore_write(uncore, RCDNEI, 100000); /* Set max/min thresholds to 90ms and 80ms respectively */ intel_uncore_write(uncore, RCBMAXAVG, 90000); intel_uncore_write(uncore, RCBMINAVG, 80000); intel_uncore_write(uncore, MEMIHYST, 1); /* Set up min, max, and cur for interrupt handling */ fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT; vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT; intel_uncore_write(uncore, MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN); intel_uncore_write(uncore, VIDSTART, vstart); intel_uncore_posting_read(uncore, VIDSTART); rgvmodectl |= MEMMODE_SWMODE_EN; intel_uncore_write(uncore, MEMMODECTL, rgvmodectl); if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10)) drm_err(&uncore->i915->drm, "stuck trying to change perf mode\n"); mdelay(1); __gen5_rps_set(rps, rps->cur_freq); rps->ips.last_count1 = intel_uncore_read(uncore, DMIEC); rps->ips.last_count1 += intel_uncore_read(uncore, DDREC); rps->ips.last_count1 += intel_uncore_read(uncore, CSIEC); rps->ips.last_time1 = jiffies_to_msecs(jiffies); rps->ips.last_count2 = intel_uncore_read(uncore, GFXEC); rps->ips.last_time2 = ktime_get_raw_ns(); spin_lock(&i915->irq_lock); ilk_enable_display_irq(i915, DE_PCU_EVENT); spin_unlock(&i915->irq_lock); spin_unlock_irq(&mchdev_lock); rps->ips.corr = init_emon(uncore); return true; } static void gen5_rps_disable(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); struct intel_uncore *uncore = rps_to_uncore(rps); u16 rgvswctl; spin_lock_irq(&mchdev_lock); spin_lock(&i915->irq_lock); ilk_disable_display_irq(i915, DE_PCU_EVENT); spin_unlock(&i915->irq_lock); rgvswctl = intel_uncore_read16(uncore, MEMSWCTL); /* Ack interrupts, disable EFC interrupt */ intel_uncore_rmw(uncore, MEMINTREN, MEMINT_EVAL_CHG_EN, 0); intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG); /* Go back to the starting frequency */ __gen5_rps_set(rps, rps->idle_freq); mdelay(1); rgvswctl |= MEMCTL_CMD_STS; intel_uncore_write(uncore, MEMSWCTL, rgvswctl); mdelay(1); spin_unlock_irq(&mchdev_lock); } static u32 rps_limits(struct intel_rps *rps, u8 val) { u32 limits; /* * Only set the down limit when we've reached the lowest level to avoid * getting more interrupts, otherwise leave this clear. This prevents a * race in the hw when coming out of rc6: There's a tiny window where * the hw runs at the minimal clock before selecting the desired * frequency, if the down threshold expires in that window we will not * receive a down interrupt. */ if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) { limits = rps->max_freq_softlimit << 23; if (val <= rps->min_freq_softlimit) limits |= rps->min_freq_softlimit << 14; } else { limits = rps->max_freq_softlimit << 24; if (val <= rps->min_freq_softlimit) limits |= rps->min_freq_softlimit << 16; } return limits; } static void rps_set_power(struct intel_rps *rps, int new_power) { struct intel_gt *gt = rps_to_gt(rps); struct intel_uncore *uncore = gt->uncore; u32 threshold_up = 0, threshold_down = 0; /* in % */ u32 ei_up = 0, ei_down = 0; lockdep_assert_held(&rps->power.mutex); if (new_power == rps->power.mode) return; threshold_up = 95; threshold_down = 85; /* Note the units here are not exactly 1us, but 1280ns. */ switch (new_power) { case LOW_POWER: ei_up = 16000; ei_down = 32000; break; case BETWEEN: ei_up = 13000; ei_down = 32000; break; case HIGH_POWER: ei_up = 10000; ei_down = 32000; break; } /* When byt can survive without system hang with dynamic * sw freq adjustments, this restriction can be lifted. */ if (IS_VALLEYVIEW(gt->i915)) goto skip_hw_write; GT_TRACE(gt, "changing power mode [%d], up %d%% @ %dus, down %d%% @ %dus\n", new_power, threshold_up, ei_up, threshold_down, ei_down); set(uncore, GEN6_RP_UP_EI, intel_gt_ns_to_pm_interval(gt, ei_up * 1000)); set(uncore, GEN6_RP_UP_THRESHOLD, intel_gt_ns_to_pm_interval(gt, ei_up * threshold_up * 10)); set(uncore, GEN6_RP_DOWN_EI, intel_gt_ns_to_pm_interval(gt, ei_down * 1000)); set(uncore, GEN6_RP_DOWN_THRESHOLD, intel_gt_ns_to_pm_interval(gt, ei_down * threshold_down * 10)); set(uncore, GEN6_RP_CONTROL, (GRAPHICS_VER(gt->i915) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) | GEN6_RP_MEDIA_HW_NORMAL_MODE | GEN6_RP_MEDIA_IS_GFX | GEN6_RP_ENABLE | GEN6_RP_UP_BUSY_AVG | GEN6_RP_DOWN_IDLE_AVG); skip_hw_write: rps->power.mode = new_power; rps->power.up_threshold = threshold_up; rps->power.down_threshold = threshold_down; } static void gen6_rps_set_thresholds(struct intel_rps *rps, u8 val) { int new_power; new_power = rps->power.mode; switch (rps->power.mode) { case LOW_POWER: if (val > rps->efficient_freq + 1 && val > rps->cur_freq) new_power = BETWEEN; break; case BETWEEN: if (val <= rps->efficient_freq && val < rps->cur_freq) new_power = LOW_POWER; else if (val >= rps->rp0_freq && val > rps->cur_freq) new_power = HIGH_POWER; break; case HIGH_POWER: if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 && val < rps->cur_freq) new_power = BETWEEN; break; } /* Max/min bins are special */ if (val <= rps->min_freq_softlimit) new_power = LOW_POWER; if (val >= rps->max_freq_softlimit) new_power = HIGH_POWER; mutex_lock(&rps->power.mutex); if (rps->power.interactive) new_power = HIGH_POWER; rps_set_power(rps, new_power); mutex_unlock(&rps->power.mutex); } void intel_rps_mark_interactive(struct intel_rps *rps, bool interactive) { GT_TRACE(rps_to_gt(rps), "mark interactive: %s\n", str_yes_no(interactive)); mutex_lock(&rps->power.mutex); if (interactive) { if (!rps->power.interactive++ && intel_rps_is_active(rps)) rps_set_power(rps, HIGH_POWER); } else { GEM_BUG_ON(!rps->power.interactive); rps->power.interactive--; } mutex_unlock(&rps->power.mutex); } static int gen6_rps_set(struct intel_rps *rps, u8 val) { struct intel_uncore *uncore = rps_to_uncore(rps); struct drm_i915_private *i915 = rps_to_i915(rps); u32 swreq; GEM_BUG_ON(rps_uses_slpc(rps)); if (GRAPHICS_VER(i915) >= 9) swreq = GEN9_FREQUENCY(val); else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) swreq = HSW_FREQUENCY(val); else swreq = (GEN6_FREQUENCY(val) | GEN6_OFFSET(0) | GEN6_AGGRESSIVE_TURBO); set(uncore, GEN6_RPNSWREQ, swreq); GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d, swreq:%x\n", val, intel_gpu_freq(rps, val), swreq); return 0; } static int vlv_rps_set(struct intel_rps *rps, u8 val) { struct drm_i915_private *i915 = rps_to_i915(rps); int err; vlv_punit_get(i915); err = vlv_punit_write(i915, PUNIT_REG_GPU_FREQ_REQ, val); vlv_punit_put(i915); GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d\n", val, intel_gpu_freq(rps, val)); return err; } static int rps_set(struct intel_rps *rps, u8 val, bool update) { struct drm_i915_private *i915 = rps_to_i915(rps); int err; if (val == rps->last_freq) return 0; if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) err = vlv_rps_set(rps, val); else if (GRAPHICS_VER(i915) >= 6) err = gen6_rps_set(rps, val); else err = gen5_rps_set(rps, val); if (err) return err; if (update && GRAPHICS_VER(i915) >= 6) gen6_rps_set_thresholds(rps, val); rps->last_freq = val; return 0; } void intel_rps_unpark(struct intel_rps *rps) { if (!intel_rps_is_enabled(rps)) return; GT_TRACE(rps_to_gt(rps), "unpark:%x\n", rps->cur_freq); /* * Use the user's desired frequency as a guide, but for better * performance, jump directly to RPe as our starting frequency. */ mutex_lock(&rps->lock); intel_rps_set_active(rps); intel_rps_set(rps, clamp(rps->cur_freq, rps->min_freq_softlimit, rps->max_freq_softlimit)); mutex_unlock(&rps->lock); rps->pm_iir = 0; if (intel_rps_has_interrupts(rps)) rps_enable_interrupts(rps); if (intel_rps_uses_timer(rps)) rps_start_timer(rps); if (GRAPHICS_VER(rps_to_i915(rps)) == 5) gen5_rps_update(rps); } void intel_rps_park(struct intel_rps *rps) { int adj; if (!intel_rps_is_enabled(rps)) return; if (!intel_rps_clear_active(rps)) return; if (intel_rps_uses_timer(rps)) rps_stop_timer(rps); if (intel_rps_has_interrupts(rps)) rps_disable_interrupts(rps); if (rps->last_freq <= rps->idle_freq) return; /* * The punit delays the write of the frequency and voltage until it * determines the GPU is awake. During normal usage we don't want to * waste power changing the frequency if the GPU is sleeping (rc6). * However, the GPU and driver is now idle and we do not want to delay * switching to minimum voltage (reducing power whilst idle) as we do * not expect to be woken in the near future and so must flush the * change by waking the device. * * We choose to take the media powerwell (either would do to trick the * punit into committing the voltage change) as that takes a lot less * power than the render powerwell. */ intel_uncore_forcewake_get(rps_to_uncore(rps), FORCEWAKE_MEDIA); rps_set(rps, rps->idle_freq, false); intel_uncore_forcewake_put(rps_to_uncore(rps), FORCEWAKE_MEDIA); /* * Since we will try and restart from the previously requested * frequency on unparking, treat this idle point as a downclock * interrupt and reduce the frequency for resume. If we park/unpark * more frequently than the rps worker can run, we will not respond * to any EI and never see a change in frequency. * * (Note we accommodate Cherryview's limitation of only using an * even bin by applying it to all.) */ adj = rps->last_adj; if (adj < 0) adj *= 2; else /* CHV needs even encode values */ adj = -2; rps->last_adj = adj; rps->cur_freq = max_t(int, rps->cur_freq + adj, rps->min_freq); if (rps->cur_freq < rps->efficient_freq) { rps->cur_freq = rps->efficient_freq; rps->last_adj = 0; } GT_TRACE(rps_to_gt(rps), "park:%x\n", rps->cur_freq); } u32 intel_rps_get_boost_frequency(struct intel_rps *rps) { struct intel_guc_slpc *slpc; if (rps_uses_slpc(rps)) { slpc = rps_to_slpc(rps); return slpc->boost_freq; } else { return intel_gpu_freq(rps, rps->boost_freq); } } static int rps_set_boost_freq(struct intel_rps *rps, u32 val) { bool boost = false; /* Validate against (static) hardware limits */ val = intel_freq_opcode(rps, val); if (val < rps->min_freq || val > rps->max_freq) return -EINVAL; mutex_lock(&rps->lock); if (val != rps->boost_freq) { rps->boost_freq = val; boost = atomic_read(&rps->num_waiters); } mutex_unlock(&rps->lock); if (boost) schedule_work(&rps->work); return 0; } int intel_rps_set_boost_frequency(struct intel_rps *rps, u32 freq) { struct intel_guc_slpc *slpc; if (rps_uses_slpc(rps)) { slpc = rps_to_slpc(rps); return intel_guc_slpc_set_boost_freq(slpc, freq); } else { return rps_set_boost_freq(rps, freq); } } void intel_rps_dec_waiters(struct intel_rps *rps) { struct intel_guc_slpc *slpc; if (rps_uses_slpc(rps)) { slpc = rps_to_slpc(rps); intel_guc_slpc_dec_waiters(slpc); } else { atomic_dec(&rps->num_waiters); } } void intel_rps_boost(struct i915_request *rq) { struct intel_guc_slpc *slpc; if (i915_request_signaled(rq) || i915_request_has_waitboost(rq)) return; /* Serializes with i915_request_retire() */ if (!test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) { struct intel_rps *rps = &READ_ONCE(rq->engine)->gt->rps; if (rps_uses_slpc(rps)) { slpc = rps_to_slpc(rps); if (slpc->min_freq_softlimit >= slpc->boost_freq) return; /* Return if old value is non zero */ if (!atomic_fetch_inc(&slpc->num_waiters)) { GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n", rq->fence.context, rq->fence.seqno); schedule_work(&slpc->boost_work); } return; } if (atomic_fetch_inc(&rps->num_waiters)) return; if (!intel_rps_is_active(rps)) return; GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n", rq->fence.context, rq->fence.seqno); if (READ_ONCE(rps->cur_freq) < rps->boost_freq) schedule_work(&rps->work); WRITE_ONCE(rps->boosts, rps->boosts + 1); /* debug only */ } } int intel_rps_set(struct intel_rps *rps, u8 val) { int err; lockdep_assert_held(&rps->lock); GEM_BUG_ON(val > rps->max_freq); GEM_BUG_ON(val < rps->min_freq); if (intel_rps_is_active(rps)) { err = rps_set(rps, val, true); if (err) return err; /* * Make sure we continue to get interrupts * until we hit the minimum or maximum frequencies. */ if (intel_rps_has_interrupts(rps)) { struct intel_uncore *uncore = rps_to_uncore(rps); set(uncore, GEN6_RP_INTERRUPT_LIMITS, rps_limits(rps, val)); set(uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, val)); } } rps->cur_freq = val; return 0; } static u32 intel_rps_read_state_cap(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); struct intel_uncore *uncore = rps_to_uncore(rps); if (IS_PONTEVECCHIO(i915)) return intel_uncore_read(uncore, PVC_RP_STATE_CAP); else if (IS_XEHPSDV(i915)) return intel_uncore_read(uncore, XEHPSDV_RP_STATE_CAP); else if (IS_GEN9_LP(i915)) return intel_uncore_read(uncore, BXT_RP_STATE_CAP); else return intel_uncore_read(uncore, GEN6_RP_STATE_CAP); } static void mtl_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps) { struct intel_uncore *uncore = rps_to_uncore(rps); u32 rp_state_cap = rps_to_gt(rps)->type == GT_MEDIA ? intel_uncore_read(uncore, MTL_MEDIAP_STATE_CAP) : intel_uncore_read(uncore, MTL_RP_STATE_CAP); u32 rpe = rps_to_gt(rps)->type == GT_MEDIA ? intel_uncore_read(uncore, MTL_MPE_FREQUENCY) : intel_uncore_read(uncore, MTL_GT_RPE_FREQUENCY); /* MTL values are in units of 16.67 MHz */ caps->rp0_freq = REG_FIELD_GET(MTL_RP0_CAP_MASK, rp_state_cap); caps->min_freq = REG_FIELD_GET(MTL_RPN_CAP_MASK, rp_state_cap); caps->rp1_freq = REG_FIELD_GET(MTL_RPE_MASK, rpe); } static void __gen6_rps_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps) { struct drm_i915_private *i915 = rps_to_i915(rps); u32 rp_state_cap; rp_state_cap = intel_rps_read_state_cap(rps); /* static values from HW: RP0 > RP1 > RPn (min_freq) */ if (IS_GEN9_LP(i915)) { caps->rp0_freq = (rp_state_cap >> 16) & 0xff; caps->rp1_freq = (rp_state_cap >> 8) & 0xff; caps->min_freq = (rp_state_cap >> 0) & 0xff; } else { caps->rp0_freq = (rp_state_cap >> 0) & 0xff; if (GRAPHICS_VER(i915) >= 10) caps->rp1_freq = REG_FIELD_GET(RPE_MASK, intel_uncore_read(to_gt(i915)->uncore, GEN10_FREQ_INFO_REC)); else caps->rp1_freq = (rp_state_cap >> 8) & 0xff; caps->min_freq = (rp_state_cap >> 16) & 0xff; } if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) { /* * In this case rp_state_cap register reports frequencies in * units of 50 MHz. Convert these to the actual "hw unit", i.e. * units of 16.67 MHz */ caps->rp0_freq *= GEN9_FREQ_SCALER; caps->rp1_freq *= GEN9_FREQ_SCALER; caps->min_freq *= GEN9_FREQ_SCALER; } } /** * gen6_rps_get_freq_caps - Get freq caps exposed by HW * @rps: the intel_rps structure * @caps: returned freq caps * * Returned "caps" frequencies should be converted to MHz using * intel_gpu_freq() */ void gen6_rps_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps) { struct drm_i915_private *i915 = rps_to_i915(rps); if (IS_METEORLAKE(i915)) return mtl_get_freq_caps(rps, caps); else return __gen6_rps_get_freq_caps(rps, caps); } static void gen6_rps_init(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); struct intel_rps_freq_caps caps; gen6_rps_get_freq_caps(rps, &caps); rps->rp0_freq = caps.rp0_freq; rps->rp1_freq = caps.rp1_freq; rps->min_freq = caps.min_freq; /* hw_max = RP0 until we check for overclocking */ rps->max_freq = rps->rp0_freq; rps->efficient_freq = rps->rp1_freq; if (IS_HASWELL(i915) || IS_BROADWELL(i915) || IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) { u32 ddcc_status = 0; u32 mult = 1; if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) mult = GEN9_FREQ_SCALER; if (snb_pcode_read(rps_to_gt(rps)->uncore, HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL, &ddcc_status, NULL) == 0) rps->efficient_freq = clamp_t(u32, ((ddcc_status >> 8) & 0xff) * mult, rps->min_freq, rps->max_freq); } } static bool rps_reset(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); /* force a reset */ rps->power.mode = -1; rps->last_freq = -1; if (rps_set(rps, rps->min_freq, true)) { drm_err(&i915->drm, "Failed to reset RPS to initial values\n"); return false; } rps->cur_freq = rps->min_freq; return true; } /* See the Gen9_GT_PM_Programming_Guide doc for the below */ static bool gen9_rps_enable(struct intel_rps *rps) { struct intel_gt *gt = rps_to_gt(rps); struct intel_uncore *uncore = gt->uncore; /* Program defaults and thresholds for RPS */ if (GRAPHICS_VER(gt->i915) == 9) intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ, GEN9_FREQUENCY(rps->rp1_freq)); intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 0xa); rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD; return rps_reset(rps); } static bool gen8_rps_enable(struct intel_rps *rps) { struct intel_uncore *uncore = rps_to_uncore(rps); intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ, HSW_FREQUENCY(rps->rp1_freq)); intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10); rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD; return rps_reset(rps); } static bool gen6_rps_enable(struct intel_rps *rps) { struct intel_uncore *uncore = rps_to_uncore(rps); /* Power down if completely idle for over 50ms */ intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 50000); intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10); rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT); return rps_reset(rps); } static int chv_rps_max_freq(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); struct intel_gt *gt = rps_to_gt(rps); u32 val; val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE); switch (gt->info.sseu.eu_total) { case 8: /* (2 * 4) config */ val >>= FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT; break; case 12: /* (2 * 6) config */ val >>= FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT; break; case 16: /* (2 * 8) config */ default: /* Setting (2 * 8) Min RP0 for any other combination */ val >>= FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT; break; } return val & FB_GFX_FREQ_FUSE_MASK; } static int chv_rps_rpe_freq(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); u32 val; val = vlv_punit_read(i915, PUNIT_GPU_DUTYCYCLE_REG); val >>= PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT; return val & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK; } static int chv_rps_guar_freq(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); u32 val; val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE); return val & FB_GFX_FREQ_FUSE_MASK; } static u32 chv_rps_min_freq(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); u32 val; val = vlv_punit_read(i915, FB_GFX_FMIN_AT_VMIN_FUSE); val >>= FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT; return val & FB_GFX_FREQ_FUSE_MASK; } static bool chv_rps_enable(struct intel_rps *rps) { struct intel_uncore *uncore = rps_to_uncore(rps); struct drm_i915_private *i915 = rps_to_i915(rps); u32 val; /* 1: Program defaults and thresholds for RPS*/ intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000); intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400); intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000); intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000); intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000); intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10); /* 2: Enable RPS */ intel_uncore_write_fw(uncore, GEN6_RP_CONTROL, GEN6_RP_MEDIA_HW_NORMAL_MODE | GEN6_RP_MEDIA_IS_GFX | GEN6_RP_ENABLE | GEN6_RP_UP_BUSY_AVG | GEN6_RP_DOWN_IDLE_AVG); rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT); /* Setting Fixed Bias */ vlv_punit_get(i915); val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50; vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val); val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS); vlv_punit_put(i915); /* RPS code assumes GPLL is used */ drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0, "GPLL not enabled\n"); drm_dbg(&i915->drm, "GPLL enabled? %s\n", str_yes_no(val & GPLLENABLE)); drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val); return rps_reset(rps); } static int vlv_rps_guar_freq(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); u32 val, rp1; val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE); rp1 = val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK; rp1 >>= FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT; return rp1; } static int vlv_rps_max_freq(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); u32 val, rp0; val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE); rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT; /* Clamp to max */ rp0 = min_t(u32, rp0, 0xea); return rp0; } static int vlv_rps_rpe_freq(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); u32 val, rpe; val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_LO); rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT; val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_HI); rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5; return rpe; } static int vlv_rps_min_freq(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); u32 val; val = vlv_punit_read(i915, PUNIT_REG_GPU_LFM) & 0xff; /* * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on * a BYT-M B0 the above register contains 0xbf. Moreover when setting * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0 * to make sure it matches what Punit accepts. */ return max_t(u32, val, 0xc0); } static bool vlv_rps_enable(struct intel_rps *rps) { struct intel_uncore *uncore = rps_to_uncore(rps); struct drm_i915_private *i915 = rps_to_i915(rps); u32 val; intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000); intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400); intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000); intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000); intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000); intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10); intel_uncore_write_fw(uncore, GEN6_RP_CONTROL, GEN6_RP_MEDIA_TURBO | GEN6_RP_MEDIA_HW_NORMAL_MODE | GEN6_RP_MEDIA_IS_GFX | GEN6_RP_ENABLE | GEN6_RP_UP_BUSY_AVG | GEN6_RP_DOWN_IDLE_CONT); /* WaGsvRC0ResidencyMethod:vlv */ rps->pm_events = GEN6_PM_RP_UP_EI_EXPIRED; vlv_punit_get(i915); /* Setting Fixed Bias */ val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875; vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val); val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS); vlv_punit_put(i915); /* RPS code assumes GPLL is used */ drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0, "GPLL not enabled\n"); drm_dbg(&i915->drm, "GPLL enabled? %s\n", str_yes_no(val & GPLLENABLE)); drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val); return rps_reset(rps); } static unsigned long __ips_gfx_val(struct intel_ips *ips) { struct intel_rps *rps = container_of(ips, typeof(*rps), ips); struct intel_uncore *uncore = rps_to_uncore(rps); unsigned int t, state1, state2; u32 pxvid, ext_v; u64 corr, corr2; lockdep_assert_held(&mchdev_lock); pxvid = intel_uncore_read(uncore, PXVFREQ(rps->cur_freq)); pxvid = (pxvid >> 24) & 0x7f; ext_v = pvid_to_extvid(rps_to_i915(rps), pxvid); state1 = ext_v; /* Revel in the empirically derived constants */ /* Correction factor in 1/100000 units */ t = ips_mch_val(uncore); if (t > 80) corr = t * 2349 + 135940; else if (t >= 50) corr = t * 964 + 29317; else /* < 50 */ corr = t * 301 + 1004; corr = div_u64(corr * 150142 * state1, 10000) - 78642; corr2 = div_u64(corr, 100000) * ips->corr; state2 = div_u64(corr2 * state1, 10000); state2 /= 100; /* convert to mW */ __gen5_ips_update(ips); return ips->gfx_power + state2; } static bool has_busy_stats(struct intel_rps *rps) { struct intel_engine_cs *engine; enum intel_engine_id id; for_each_engine(engine, rps_to_gt(rps), id) { if (!intel_engine_supports_stats(engine)) return false; } return true; } void intel_rps_enable(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); struct intel_uncore *uncore = rps_to_uncore(rps); bool enabled = false; if (!HAS_RPS(i915)) return; if (rps_uses_slpc(rps)) return; intel_gt_check_clock_frequency(rps_to_gt(rps)); intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); if (rps->max_freq <= rps->min_freq) /* leave disabled, no room for dynamic reclocking */; else if (IS_CHERRYVIEW(i915)) enabled = chv_rps_enable(rps); else if (IS_VALLEYVIEW(i915)) enabled = vlv_rps_enable(rps); else if (GRAPHICS_VER(i915) >= 9) enabled = gen9_rps_enable(rps); else if (GRAPHICS_VER(i915) >= 8) enabled = gen8_rps_enable(rps); else if (GRAPHICS_VER(i915) >= 6) enabled = gen6_rps_enable(rps); else if (IS_IRONLAKE_M(i915)) enabled = gen5_rps_enable(rps); else MISSING_CASE(GRAPHICS_VER(i915)); intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); if (!enabled) return; GT_TRACE(rps_to_gt(rps), "min:%x, max:%x, freq:[%d, %d]\n", rps->min_freq, rps->max_freq, intel_gpu_freq(rps, rps->min_freq), intel_gpu_freq(rps, rps->max_freq)); GEM_BUG_ON(rps->max_freq < rps->min_freq); GEM_BUG_ON(rps->idle_freq > rps->max_freq); GEM_BUG_ON(rps->efficient_freq < rps->min_freq); GEM_BUG_ON(rps->efficient_freq > rps->max_freq); if (has_busy_stats(rps)) intel_rps_set_timer(rps); else if (GRAPHICS_VER(i915) >= 6 && GRAPHICS_VER(i915) <= 11) intel_rps_set_interrupts(rps); else /* Ironlake currently uses intel_ips.ko */ {} intel_rps_set_enabled(rps); } static void gen6_rps_disable(struct intel_rps *rps) { set(rps_to_uncore(rps), GEN6_RP_CONTROL, 0); } void intel_rps_disable(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); if (!intel_rps_is_enabled(rps)) return; intel_rps_clear_enabled(rps); intel_rps_clear_interrupts(rps); intel_rps_clear_timer(rps); if (GRAPHICS_VER(i915) >= 6) gen6_rps_disable(rps); else if (IS_IRONLAKE_M(i915)) gen5_rps_disable(rps); } static int byt_gpu_freq(struct intel_rps *rps, int val) { /* * N = val - 0xb7 * Slow = Fast = GPLL ref * N */ return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000); } static int byt_freq_opcode(struct intel_rps *rps, int val) { return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7; } static int chv_gpu_freq(struct intel_rps *rps, int val) { /* * N = val / 2 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2 */ return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000); } static int chv_freq_opcode(struct intel_rps *rps, int val) { /* CHV needs even values */ return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2; } int intel_gpu_freq(struct intel_rps *rps, int val) { struct drm_i915_private *i915 = rps_to_i915(rps); if (GRAPHICS_VER(i915) >= 9) return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER, GEN9_FREQ_SCALER); else if (IS_CHERRYVIEW(i915)) return chv_gpu_freq(rps, val); else if (IS_VALLEYVIEW(i915)) return byt_gpu_freq(rps, val); else if (GRAPHICS_VER(i915) >= 6) return val * GT_FREQUENCY_MULTIPLIER; else return val; } int intel_freq_opcode(struct intel_rps *rps, int val) { struct drm_i915_private *i915 = rps_to_i915(rps); if (GRAPHICS_VER(i915) >= 9) return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER, GT_FREQUENCY_MULTIPLIER); else if (IS_CHERRYVIEW(i915)) return chv_freq_opcode(rps, val); else if (IS_VALLEYVIEW(i915)) return byt_freq_opcode(rps, val); else if (GRAPHICS_VER(i915) >= 6) return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER); else return val; } static void vlv_init_gpll_ref_freq(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); rps->gpll_ref_freq = vlv_get_cck_clock(i915, "GPLL ref", CCK_GPLL_CLOCK_CONTROL, i915->czclk_freq); drm_dbg(&i915->drm, "GPLL reference freq: %d kHz\n", rps->gpll_ref_freq); } static void vlv_rps_init(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); u32 val; vlv_iosf_sb_get(i915, BIT(VLV_IOSF_SB_PUNIT) | BIT(VLV_IOSF_SB_NC) | BIT(VLV_IOSF_SB_CCK)); vlv_init_gpll_ref_freq(rps); val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS); switch ((val >> 6) & 3) { case 0: case 1: i915->mem_freq = 800; break; case 2: i915->mem_freq = 1066; break; case 3: i915->mem_freq = 1333; break; } drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq); rps->max_freq = vlv_rps_max_freq(rps); rps->rp0_freq = rps->max_freq; drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n", intel_gpu_freq(rps, rps->max_freq), rps->max_freq); rps->efficient_freq = vlv_rps_rpe_freq(rps); drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n", intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq); rps->rp1_freq = vlv_rps_guar_freq(rps); drm_dbg(&i915->drm, "RP1(Guar Freq) GPU freq: %d MHz (%u)\n", intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq); rps->min_freq = vlv_rps_min_freq(rps); drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n", intel_gpu_freq(rps, rps->min_freq), rps->min_freq); vlv_iosf_sb_put(i915, BIT(VLV_IOSF_SB_PUNIT) | BIT(VLV_IOSF_SB_NC) | BIT(VLV_IOSF_SB_CCK)); } static void chv_rps_init(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); u32 val; vlv_iosf_sb_get(i915, BIT(VLV_IOSF_SB_PUNIT) | BIT(VLV_IOSF_SB_NC) | BIT(VLV_IOSF_SB_CCK)); vlv_init_gpll_ref_freq(rps); val = vlv_cck_read(i915, CCK_FUSE_REG); switch ((val >> 2) & 0x7) { case 3: i915->mem_freq = 2000; break; default: i915->mem_freq = 1600; break; } drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq); rps->max_freq = chv_rps_max_freq(rps); rps->rp0_freq = rps->max_freq; drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n", intel_gpu_freq(rps, rps->max_freq), rps->max_freq); rps->efficient_freq = chv_rps_rpe_freq(rps); drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n", intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq); rps->rp1_freq = chv_rps_guar_freq(rps); drm_dbg(&i915->drm, "RP1(Guar) GPU freq: %d MHz (%u)\n", intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq); rps->min_freq = chv_rps_min_freq(rps); drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n", intel_gpu_freq(rps, rps->min_freq), rps->min_freq); vlv_iosf_sb_put(i915, BIT(VLV_IOSF_SB_PUNIT) | BIT(VLV_IOSF_SB_NC) | BIT(VLV_IOSF_SB_CCK)); drm_WARN_ONCE(&i915->drm, (rps->max_freq | rps->efficient_freq | rps->rp1_freq | rps->min_freq) & 1, "Odd GPU freq values\n"); } static void vlv_c0_read(struct intel_uncore *uncore, struct intel_rps_ei *ei) { ei->ktime = ktime_get_raw(); ei->render_c0 = intel_uncore_read(uncore, VLV_RENDER_C0_COUNT); ei->media_c0 = intel_uncore_read(uncore, VLV_MEDIA_C0_COUNT); } static u32 vlv_wa_c0_ei(struct intel_rps *rps, u32 pm_iir) { struct intel_uncore *uncore = rps_to_uncore(rps); const struct intel_rps_ei *prev = &rps->ei; struct intel_rps_ei now; u32 events = 0; if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0) return 0; vlv_c0_read(uncore, &now); if (prev->ktime) { u64 time, c0; u32 render, media; time = ktime_us_delta(now.ktime, prev->ktime); time *= rps_to_i915(rps)->czclk_freq; /* Workload can be split between render + media, * e.g. SwapBuffers being blitted in X after being rendered in * mesa. To account for this we need to combine both engines * into our activity counter. */ render = now.render_c0 - prev->render_c0; media = now.media_c0 - prev->media_c0; c0 = max(render, media); c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */ if (c0 > time * rps->power.up_threshold) events = GEN6_PM_RP_UP_THRESHOLD; else if (c0 < time * rps->power.down_threshold) events = GEN6_PM_RP_DOWN_THRESHOLD; } rps->ei = now; return events; } static void rps_work(struct work_struct *work) { struct intel_rps *rps = container_of(work, typeof(*rps), work); struct intel_gt *gt = rps_to_gt(rps); struct drm_i915_private *i915 = rps_to_i915(rps); bool client_boost = false; int new_freq, adj, min, max; u32 pm_iir = 0; spin_lock_irq(gt->irq_lock); pm_iir = fetch_and_zero(&rps->pm_iir) & rps->pm_events; client_boost = atomic_read(&rps->num_waiters); spin_unlock_irq(gt->irq_lock); /* Make sure we didn't queue anything we're not going to process. */ if (!pm_iir && !client_boost) goto out; mutex_lock(&rps->lock); if (!intel_rps_is_active(rps)) { mutex_unlock(&rps->lock); return; } pm_iir |= vlv_wa_c0_ei(rps, pm_iir); adj = rps->last_adj; new_freq = rps->cur_freq; min = rps->min_freq_softlimit; max = rps->max_freq_softlimit; if (client_boost) max = rps->max_freq; GT_TRACE(gt, "pm_iir:%x, client_boost:%s, last:%d, cur:%x, min:%x, max:%x\n", pm_iir, str_yes_no(client_boost), adj, new_freq, min, max); if (client_boost && new_freq < rps->boost_freq) { new_freq = rps->boost_freq; adj = 0; } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) { if (adj > 0) adj *= 2; else /* CHV needs even encode values */ adj = IS_CHERRYVIEW(gt->i915) ? 2 : 1; if (new_freq >= rps->max_freq_softlimit) adj = 0; } else if (client_boost) { adj = 0; } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) { if (rps->cur_freq > rps->efficient_freq) new_freq = rps->efficient_freq; else if (rps->cur_freq > rps->min_freq_softlimit) new_freq = rps->min_freq_softlimit; adj = 0; } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) { if (adj < 0) adj *= 2; else /* CHV needs even encode values */ adj = IS_CHERRYVIEW(gt->i915) ? -2 : -1; if (new_freq <= rps->min_freq_softlimit) adj = 0; } else { /* unknown event */ adj = 0; } /* * sysfs frequency limits may have snuck in while * servicing the interrupt */ new_freq += adj; new_freq = clamp_t(int, new_freq, min, max); if (intel_rps_set(rps, new_freq)) { drm_dbg(&i915->drm, "Failed to set new GPU frequency\n"); adj = 0; } rps->last_adj = adj; mutex_unlock(&rps->lock); out: spin_lock_irq(gt->irq_lock); gen6_gt_pm_unmask_irq(gt, rps->pm_events); spin_unlock_irq(gt->irq_lock); } void gen11_rps_irq_handler(struct intel_rps *rps, u32 pm_iir) { struct intel_gt *gt = rps_to_gt(rps); const u32 events = rps->pm_events & pm_iir; lockdep_assert_held(gt->irq_lock); if (unlikely(!events)) return; GT_TRACE(gt, "irq events:%x\n", events); gen6_gt_pm_mask_irq(gt, events); rps->pm_iir |= events; schedule_work(&rps->work); } void gen6_rps_irq_handler(struct intel_rps *rps, u32 pm_iir) { struct intel_gt *gt = rps_to_gt(rps); u32 events; events = pm_iir & rps->pm_events; if (events) { spin_lock(gt->irq_lock); GT_TRACE(gt, "irq events:%x\n", events); gen6_gt_pm_mask_irq(gt, events); rps->pm_iir |= events; schedule_work(&rps->work); spin_unlock(gt->irq_lock); } if (GRAPHICS_VER(gt->i915) >= 8) return; if (pm_iir & PM_VEBOX_USER_INTERRUPT) intel_engine_cs_irq(gt->engine[VECS0], pm_iir >> 10); if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) drm_dbg(&rps_to_i915(rps)->drm, "Command parser error, pm_iir 0x%08x\n", pm_iir); } void gen5_rps_irq_handler(struct intel_rps *rps) { struct intel_uncore *uncore = rps_to_uncore(rps); u32 busy_up, busy_down, max_avg, min_avg; u8 new_freq; spin_lock(&mchdev_lock); intel_uncore_write16(uncore, MEMINTRSTS, intel_uncore_read(uncore, MEMINTRSTS)); intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG); busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG); busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG); max_avg = intel_uncore_read(uncore, RCBMAXAVG); min_avg = intel_uncore_read(uncore, RCBMINAVG); /* Handle RCS change request from hw */ new_freq = rps->cur_freq; if (busy_up > max_avg) new_freq++; else if (busy_down < min_avg) new_freq--; new_freq = clamp(new_freq, rps->min_freq_softlimit, rps->max_freq_softlimit); if (new_freq != rps->cur_freq && !__gen5_rps_set(rps, new_freq)) rps->cur_freq = new_freq; spin_unlock(&mchdev_lock); } void intel_rps_init_early(struct intel_rps *rps) { mutex_init(&rps->lock); mutex_init(&rps->power.mutex); INIT_WORK(&rps->work, rps_work); timer_setup(&rps->timer, rps_timer, 0); atomic_set(&rps->num_waiters, 0); } void intel_rps_init(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); if (rps_uses_slpc(rps)) return; if (IS_CHERRYVIEW(i915)) chv_rps_init(rps); else if (IS_VALLEYVIEW(i915)) vlv_rps_init(rps); else if (GRAPHICS_VER(i915) >= 6) gen6_rps_init(rps); else if (IS_IRONLAKE_M(i915)) gen5_rps_init(rps); /* Derive initial user preferences/limits from the hardware limits */ rps->max_freq_softlimit = rps->max_freq; rps_to_gt(rps)->defaults.max_freq = rps->max_freq_softlimit; rps->min_freq_softlimit = rps->min_freq; rps_to_gt(rps)->defaults.min_freq = rps->min_freq_softlimit; /* After setting max-softlimit, find the overclock max freq */ if (GRAPHICS_VER(i915) == 6 || IS_IVYBRIDGE(i915) || IS_HASWELL(i915)) { u32 params = 0; snb_pcode_read(rps_to_gt(rps)->uncore, GEN6_READ_OC_PARAMS, ¶ms, NULL); if (params & BIT(31)) { /* OC supported */ drm_dbg(&i915->drm, "Overclocking supported, max: %dMHz, overclock: %dMHz\n", (rps->max_freq & 0xff) * 50, (params & 0xff) * 50); rps->max_freq = params & 0xff; } } /* Finally allow us to boost to max by default */ rps->boost_freq = rps->max_freq; rps->idle_freq = rps->min_freq; /* Start in the middle, from here we will autotune based on workload */ rps->cur_freq = rps->efficient_freq; rps->pm_intrmsk_mbz = 0; /* * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer * if GEN6_PM_UP_EI_EXPIRED is masked. * * TODO: verify if this can be reproduced on VLV,CHV. */ if (GRAPHICS_VER(i915) <= 7) rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED; if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) < 11) rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC; /* GuC needs ARAT expired interrupt unmasked */ if (intel_uc_uses_guc_submission(&rps_to_gt(rps)->uc)) rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK; } void intel_rps_sanitize(struct intel_rps *rps) { if (rps_uses_slpc(rps)) return; if (GRAPHICS_VER(rps_to_i915(rps)) >= 6) rps_disable_interrupts(rps); } u32 intel_rps_read_rpstat(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); i915_reg_t rpstat; rpstat = (GRAPHICS_VER(i915) >= 12) ? GEN12_RPSTAT1 : GEN6_RPSTAT1; return intel_uncore_read(rps_to_gt(rps)->uncore, rpstat); } static u32 intel_rps_get_cagf(struct intel_rps *rps, u32 rpstat) { struct drm_i915_private *i915 = rps_to_i915(rps); u32 cagf; if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) cagf = REG_FIELD_GET(MTL_CAGF_MASK, rpstat); else if (GRAPHICS_VER(i915) >= 12) cagf = REG_FIELD_GET(GEN12_CAGF_MASK, rpstat); else if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) cagf = REG_FIELD_GET(RPE_MASK, rpstat); else if (GRAPHICS_VER(i915) >= 9) cagf = REG_FIELD_GET(GEN9_CAGF_MASK, rpstat); else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) cagf = REG_FIELD_GET(HSW_CAGF_MASK, rpstat); else if (GRAPHICS_VER(i915) >= 6) cagf = REG_FIELD_GET(GEN6_CAGF_MASK, rpstat); else cagf = gen5_invert_freq(rps, REG_FIELD_GET(MEMSTAT_PSTATE_MASK, rpstat)); return cagf; } static u32 __read_cagf(struct intel_rps *rps, bool take_fw) { struct drm_i915_private *i915 = rps_to_i915(rps); struct intel_uncore *uncore = rps_to_uncore(rps); i915_reg_t r = INVALID_MMIO_REG; u32 freq; /* * For Gen12+ reading freq from HW does not need a forcewake and * registers will return 0 freq when GT is in RC6 */ if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) { r = MTL_MIRROR_TARGET_WP1; } else if (GRAPHICS_VER(i915) >= 12) { r = GEN12_RPSTAT1; } else if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) { vlv_punit_get(i915); freq = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS); vlv_punit_put(i915); } else if (GRAPHICS_VER(i915) >= 6) { r = GEN6_RPSTAT1; } else { r = MEMSTAT_ILK; } if (i915_mmio_reg_valid(r)) freq = take_fw ? intel_uncore_read(uncore, r) : intel_uncore_read_fw(uncore, r); return intel_rps_get_cagf(rps, freq); } static u32 read_cagf(struct intel_rps *rps) { return __read_cagf(rps, true); } u32 intel_rps_read_actual_frequency(struct intel_rps *rps) { struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm; intel_wakeref_t wakeref; u32 freq = 0; with_intel_runtime_pm_if_in_use(rpm, wakeref) freq = intel_gpu_freq(rps, read_cagf(rps)); return freq; } u32 intel_rps_read_actual_frequency_fw(struct intel_rps *rps) { return intel_gpu_freq(rps, __read_cagf(rps, false)); } static u32 intel_rps_read_punit_req(struct intel_rps *rps) { struct intel_uncore *uncore = rps_to_uncore(rps); struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm; intel_wakeref_t wakeref; u32 freq = 0; with_intel_runtime_pm_if_in_use(rpm, wakeref) freq = intel_uncore_read(uncore, GEN6_RPNSWREQ); return freq; } static u32 intel_rps_get_req(u32 pureq) { u32 req = pureq >> GEN9_SW_REQ_UNSLICE_RATIO_SHIFT; return req; } u32 intel_rps_read_punit_req_frequency(struct intel_rps *rps) { u32 freq = intel_rps_get_req(intel_rps_read_punit_req(rps)); return intel_gpu_freq(rps, freq); } u32 intel_rps_get_requested_frequency(struct intel_rps *rps) { if (rps_uses_slpc(rps)) return intel_rps_read_punit_req_frequency(rps); else return intel_gpu_freq(rps, rps->cur_freq); } u32 intel_rps_get_max_frequency(struct intel_rps *rps) { struct intel_guc_slpc *slpc = rps_to_slpc(rps); if (rps_uses_slpc(rps)) return slpc->max_freq_softlimit; else return intel_gpu_freq(rps, rps->max_freq_softlimit); } /** * intel_rps_get_max_raw_freq - returns the max frequency in some raw format. * @rps: the intel_rps structure * * Returns the max frequency in a raw format. In newer platforms raw is in * units of 50 MHz. */ u32 intel_rps_get_max_raw_freq(struct intel_rps *rps) { struct intel_guc_slpc *slpc = rps_to_slpc(rps); u32 freq; if (rps_uses_slpc(rps)) { return DIV_ROUND_CLOSEST(slpc->rp0_freq, GT_FREQUENCY_MULTIPLIER); } else { freq = rps->max_freq; if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) { /* Convert GT frequency to 50 MHz units */ freq /= GEN9_FREQ_SCALER; } return freq; } } u32 intel_rps_get_rp0_frequency(struct intel_rps *rps) { struct intel_guc_slpc *slpc = rps_to_slpc(rps); if (rps_uses_slpc(rps)) return slpc->rp0_freq; else return intel_gpu_freq(rps, rps->rp0_freq); } u32 intel_rps_get_rp1_frequency(struct intel_rps *rps) { struct intel_guc_slpc *slpc = rps_to_slpc(rps); if (rps_uses_slpc(rps)) return slpc->rp1_freq; else return intel_gpu_freq(rps, rps->rp1_freq); } u32 intel_rps_get_rpn_frequency(struct intel_rps *rps) { struct intel_guc_slpc *slpc = rps_to_slpc(rps); if (rps_uses_slpc(rps)) return slpc->min_freq; else return intel_gpu_freq(rps, rps->min_freq); } static void rps_frequency_dump(struct intel_rps *rps, struct drm_printer *p) { struct intel_gt *gt = rps_to_gt(rps); struct drm_i915_private *i915 = gt->i915; struct intel_uncore *uncore = gt->uncore; struct intel_rps_freq_caps caps; u32 rp_state_limits; u32 gt_perf_status; u32 rpmodectl, rpinclimit, rpdeclimit; u32 rpstat, cagf, reqf; u32 rpcurupei, rpcurup, rpprevup; u32 rpcurdownei, rpcurdown, rpprevdown; u32 rpupei, rpupt, rpdownei, rpdownt; u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask; rp_state_limits = intel_uncore_read(uncore, GEN6_RP_STATE_LIMITS); gen6_rps_get_freq_caps(rps, &caps); if (IS_GEN9_LP(i915)) gt_perf_status = intel_uncore_read(uncore, BXT_GT_PERF_STATUS); else gt_perf_status = intel_uncore_read(uncore, GEN6_GT_PERF_STATUS); /* RPSTAT1 is in the GT power well */ intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); reqf = intel_uncore_read(uncore, GEN6_RPNSWREQ); if (GRAPHICS_VER(i915) >= 9) { reqf >>= 23; } else { reqf &= ~GEN6_TURBO_DISABLE; if (IS_HASWELL(i915) || IS_BROADWELL(i915)) reqf >>= 24; else reqf >>= 25; } reqf = intel_gpu_freq(rps, reqf); rpmodectl = intel_uncore_read(uncore, GEN6_RP_CONTROL); rpinclimit = intel_uncore_read(uncore, GEN6_RP_UP_THRESHOLD); rpdeclimit = intel_uncore_read(uncore, GEN6_RP_DOWN_THRESHOLD); rpstat = intel_rps_read_rpstat(rps); rpcurupei = intel_uncore_read(uncore, GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK; rpcurup = intel_uncore_read(uncore, GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK; rpprevup = intel_uncore_read(uncore, GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK; rpcurdownei = intel_uncore_read(uncore, GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK; rpcurdown = intel_uncore_read(uncore, GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK; rpprevdown = intel_uncore_read(uncore, GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK; rpupei = intel_uncore_read(uncore, GEN6_RP_UP_EI); rpupt = intel_uncore_read(uncore, GEN6_RP_UP_THRESHOLD); rpdownei = intel_uncore_read(uncore, GEN6_RP_DOWN_EI); rpdownt = intel_uncore_read(uncore, GEN6_RP_DOWN_THRESHOLD); cagf = intel_rps_read_actual_frequency(rps); intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); if (GRAPHICS_VER(i915) >= 11) { pm_ier = intel_uncore_read(uncore, GEN11_GPM_WGBOXPERF_INTR_ENABLE); pm_imr = intel_uncore_read(uncore, GEN11_GPM_WGBOXPERF_INTR_MASK); /* * The equivalent to the PM ISR & IIR cannot be read * without affecting the current state of the system */ pm_isr = 0; pm_iir = 0; } else if (GRAPHICS_VER(i915) >= 8) { pm_ier = intel_uncore_read(uncore, GEN8_GT_IER(2)); pm_imr = intel_uncore_read(uncore, GEN8_GT_IMR(2)); pm_isr = intel_uncore_read(uncore, GEN8_GT_ISR(2)); pm_iir = intel_uncore_read(uncore, GEN8_GT_IIR(2)); } else { pm_ier = intel_uncore_read(uncore, GEN6_PMIER); pm_imr = intel_uncore_read(uncore, GEN6_PMIMR); pm_isr = intel_uncore_read(uncore, GEN6_PMISR); pm_iir = intel_uncore_read(uncore, GEN6_PMIIR); } pm_mask = intel_uncore_read(uncore, GEN6_PMINTRMSK); drm_printf(p, "Video Turbo Mode: %s\n", str_yes_no(rpmodectl & GEN6_RP_MEDIA_TURBO)); drm_printf(p, "HW control enabled: %s\n", str_yes_no(rpmodectl & GEN6_RP_ENABLE)); drm_printf(p, "SW control enabled: %s\n", str_yes_no((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) == GEN6_RP_MEDIA_SW_MODE)); drm_printf(p, "PM IER=0x%08x IMR=0x%08x, MASK=0x%08x\n", pm_ier, pm_imr, pm_mask); if (GRAPHICS_VER(i915) <= 10) drm_printf(p, "PM ISR=0x%08x IIR=0x%08x\n", pm_isr, pm_iir); drm_printf(p, "pm_intrmsk_mbz: 0x%08x\n", rps->pm_intrmsk_mbz); drm_printf(p, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status); drm_printf(p, "Render p-state ratio: %d\n", (gt_perf_status & (GRAPHICS_VER(i915) >= 9 ? 0x1ff00 : 0xff00)) >> 8); drm_printf(p, "Render p-state VID: %d\n", gt_perf_status & 0xff); drm_printf(p, "Render p-state limit: %d\n", rp_state_limits & 0xff); drm_printf(p, "RPSTAT1: 0x%08x\n", rpstat); drm_printf(p, "RPMODECTL: 0x%08x\n", rpmodectl); drm_printf(p, "RPINCLIMIT: 0x%08x\n", rpinclimit); drm_printf(p, "RPDECLIMIT: 0x%08x\n", rpdeclimit); drm_printf(p, "RPNSWREQ: %dMHz\n", reqf); drm_printf(p, "CAGF: %dMHz\n", cagf); drm_printf(p, "RP CUR UP EI: %d (%lldns)\n", rpcurupei, intel_gt_pm_interval_to_ns(gt, rpcurupei)); drm_printf(p, "RP CUR UP: %d (%lldns)\n", rpcurup, intel_gt_pm_interval_to_ns(gt, rpcurup)); drm_printf(p, "RP PREV UP: %d (%lldns)\n", rpprevup, intel_gt_pm_interval_to_ns(gt, rpprevup)); drm_printf(p, "Up threshold: %d%%\n", rps->power.up_threshold); drm_printf(p, "RP UP EI: %d (%lldns)\n", rpupei, intel_gt_pm_interval_to_ns(gt, rpupei)); drm_printf(p, "RP UP THRESHOLD: %d (%lldns)\n", rpupt, intel_gt_pm_interval_to_ns(gt, rpupt)); drm_printf(p, "RP CUR DOWN EI: %d (%lldns)\n", rpcurdownei, intel_gt_pm_interval_to_ns(gt, rpcurdownei)); drm_printf(p, "RP CUR DOWN: %d (%lldns)\n", rpcurdown, intel_gt_pm_interval_to_ns(gt, rpcurdown)); drm_printf(p, "RP PREV DOWN: %d (%lldns)\n", rpprevdown, intel_gt_pm_interval_to_ns(gt, rpprevdown)); drm_printf(p, "Down threshold: %d%%\n", rps->power.down_threshold); drm_printf(p, "RP DOWN EI: %d (%lldns)\n", rpdownei, intel_gt_pm_interval_to_ns(gt, rpdownei)); drm_printf(p, "RP DOWN THRESHOLD: %d (%lldns)\n", rpdownt, intel_gt_pm_interval_to_ns(gt, rpdownt)); drm_printf(p, "Lowest (RPN) frequency: %dMHz\n", intel_gpu_freq(rps, caps.min_freq)); drm_printf(p, "Nominal (RP1) frequency: %dMHz\n", intel_gpu_freq(rps, caps.rp1_freq)); drm_printf(p, "Max non-overclocked (RP0) frequency: %dMHz\n", intel_gpu_freq(rps, caps.rp0_freq)); drm_printf(p, "Max overclocked frequency: %dMHz\n", intel_gpu_freq(rps, rps->max_freq)); drm_printf(p, "Current freq: %d MHz\n", intel_gpu_freq(rps, rps->cur_freq)); drm_printf(p, "Actual freq: %d MHz\n", cagf); drm_printf(p, "Idle freq: %d MHz\n", intel_gpu_freq(rps, rps->idle_freq)); drm_printf(p, "Min freq: %d MHz\n", intel_gpu_freq(rps, rps->min_freq)); drm_printf(p, "Boost freq: %d MHz\n", intel_gpu_freq(rps, rps->boost_freq)); drm_printf(p, "Max freq: %d MHz\n", intel_gpu_freq(rps, rps->max_freq)); drm_printf(p, "efficient (RPe) frequency: %d MHz\n", intel_gpu_freq(rps, rps->efficient_freq)); } static void slpc_frequency_dump(struct intel_rps *rps, struct drm_printer *p) { struct intel_gt *gt = rps_to_gt(rps); struct intel_uncore *uncore = gt->uncore; struct intel_rps_freq_caps caps; u32 pm_mask; gen6_rps_get_freq_caps(rps, &caps); pm_mask = intel_uncore_read(uncore, GEN6_PMINTRMSK); drm_printf(p, "PM MASK=0x%08x\n", pm_mask); drm_printf(p, "pm_intrmsk_mbz: 0x%08x\n", rps->pm_intrmsk_mbz); drm_printf(p, "RPSTAT1: 0x%08x\n", intel_rps_read_rpstat(rps)); drm_printf(p, "RPNSWREQ: %dMHz\n", intel_rps_get_requested_frequency(rps)); drm_printf(p, "Lowest (RPN) frequency: %dMHz\n", intel_gpu_freq(rps, caps.min_freq)); drm_printf(p, "Nominal (RP1) frequency: %dMHz\n", intel_gpu_freq(rps, caps.rp1_freq)); drm_printf(p, "Max non-overclocked (RP0) frequency: %dMHz\n", intel_gpu_freq(rps, caps.rp0_freq)); drm_printf(p, "Current freq: %d MHz\n", intel_rps_get_requested_frequency(rps)); drm_printf(p, "Actual freq: %d MHz\n", intel_rps_read_actual_frequency(rps)); drm_printf(p, "Min freq: %d MHz\n", intel_rps_get_min_frequency(rps)); drm_printf(p, "Boost freq: %d MHz\n", intel_rps_get_boost_frequency(rps)); drm_printf(p, "Max freq: %d MHz\n", intel_rps_get_max_frequency(rps)); drm_printf(p, "efficient (RPe) frequency: %d MHz\n", intel_gpu_freq(rps, caps.rp1_freq)); } void gen6_rps_frequency_dump(struct intel_rps *rps, struct drm_printer *p) { if (rps_uses_slpc(rps)) return slpc_frequency_dump(rps, p); else return rps_frequency_dump(rps, p); } static int set_max_freq(struct intel_rps *rps, u32 val) { struct drm_i915_private *i915 = rps_to_i915(rps); int ret = 0; mutex_lock(&rps->lock); val = intel_freq_opcode(rps, val); if (val < rps->min_freq || val > rps->max_freq || val < rps->min_freq_softlimit) { ret = -EINVAL; goto unlock; } if (val > rps->rp0_freq) drm_dbg(&i915->drm, "User requested overclocking to %d\n", intel_gpu_freq(rps, val)); rps->max_freq_softlimit = val; val = clamp_t(int, rps->cur_freq, rps->min_freq_softlimit, rps->max_freq_softlimit); /* * We still need *_set_rps to process the new max_delay and * update the interrupt limits and PMINTRMSK even though * frequency request may be unchanged. */ intel_rps_set(rps, val); unlock: mutex_unlock(&rps->lock); return ret; } int intel_rps_set_max_frequency(struct intel_rps *rps, u32 val) { struct intel_guc_slpc *slpc = rps_to_slpc(rps); if (rps_uses_slpc(rps)) return intel_guc_slpc_set_max_freq(slpc, val); else return set_max_freq(rps, val); } u32 intel_rps_get_min_frequency(struct intel_rps *rps) { struct intel_guc_slpc *slpc = rps_to_slpc(rps); if (rps_uses_slpc(rps)) return slpc->min_freq_softlimit; else return intel_gpu_freq(rps, rps->min_freq_softlimit); } /** * intel_rps_get_min_raw_freq - returns the min frequency in some raw format. * @rps: the intel_rps structure * * Returns the min frequency in a raw format. In newer platforms raw is in * units of 50 MHz. */ u32 intel_rps_get_min_raw_freq(struct intel_rps *rps) { struct intel_guc_slpc *slpc = rps_to_slpc(rps); u32 freq; if (rps_uses_slpc(rps)) { return DIV_ROUND_CLOSEST(slpc->min_freq, GT_FREQUENCY_MULTIPLIER); } else { freq = rps->min_freq; if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) { /* Convert GT frequency to 50 MHz units */ freq /= GEN9_FREQ_SCALER; } return freq; } } static int set_min_freq(struct intel_rps *rps, u32 val) { int ret = 0; mutex_lock(&rps->lock); val = intel_freq_opcode(rps, val); if (val < rps->min_freq || val > rps->max_freq || val > rps->max_freq_softlimit) { ret = -EINVAL; goto unlock; } rps->min_freq_softlimit = val; val = clamp_t(int, rps->cur_freq, rps->min_freq_softlimit, rps->max_freq_softlimit); /* * We still need *_set_rps to process the new min_delay and * update the interrupt limits and PMINTRMSK even though * frequency request may be unchanged. */ intel_rps_set(rps, val); unlock: mutex_unlock(&rps->lock); return ret; } int intel_rps_set_min_frequency(struct intel_rps *rps, u32 val) { struct intel_guc_slpc *slpc = rps_to_slpc(rps); if (rps_uses_slpc(rps)) return intel_guc_slpc_set_min_freq(slpc, val); else return set_min_freq(rps, val); } static void intel_rps_set_manual(struct intel_rps *rps, bool enable) { struct intel_uncore *uncore = rps_to_uncore(rps); u32 state = enable ? GEN9_RPSWCTL_ENABLE : GEN9_RPSWCTL_DISABLE; /* Allow punit to process software requests */ intel_uncore_write(uncore, GEN6_RP_CONTROL, state); } void intel_rps_raise_unslice(struct intel_rps *rps) { struct intel_uncore *uncore = rps_to_uncore(rps); mutex_lock(&rps->lock); if (rps_uses_slpc(rps)) { /* RP limits have not been initialized yet for SLPC path */ struct intel_rps_freq_caps caps; gen6_rps_get_freq_caps(rps, &caps); intel_rps_set_manual(rps, true); intel_uncore_write(uncore, GEN6_RPNSWREQ, ((caps.rp0_freq << GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) | GEN9_IGNORE_SLICE_RATIO)); intel_rps_set_manual(rps, false); } else { intel_rps_set(rps, rps->rp0_freq); } mutex_unlock(&rps->lock); } void intel_rps_lower_unslice(struct intel_rps *rps) { struct intel_uncore *uncore = rps_to_uncore(rps); mutex_lock(&rps->lock); if (rps_uses_slpc(rps)) { /* RP limits have not been initialized yet for SLPC path */ struct intel_rps_freq_caps caps; gen6_rps_get_freq_caps(rps, &caps); intel_rps_set_manual(rps, true); intel_uncore_write(uncore, GEN6_RPNSWREQ, ((caps.min_freq << GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) | GEN9_IGNORE_SLICE_RATIO)); intel_rps_set_manual(rps, false); } else { intel_rps_set(rps, rps->min_freq); } mutex_unlock(&rps->lock); } static u32 rps_read_mmio(struct intel_rps *rps, i915_reg_t reg32) { struct intel_gt *gt = rps_to_gt(rps); intel_wakeref_t wakeref; u32 val; with_intel_runtime_pm(gt->uncore->rpm, wakeref) val = intel_uncore_read(gt->uncore, reg32); return val; } bool rps_read_mask_mmio(struct intel_rps *rps, i915_reg_t reg32, u32 mask) { return rps_read_mmio(rps, reg32) & mask; } /* External interface for intel_ips.ko */ static struct drm_i915_private __rcu *ips_mchdev; /** * Tells the intel_ips driver that the i915 driver is now loaded, if * IPS got loaded first. * * This awkward dance is so that neither module has to depend on the * other in order for IPS to do the appropriate communication of * GPU turbo limits to i915. */ static void ips_ping_for_i915_load(void) { void (*link)(void); link = symbol_get(ips_link_to_i915_driver); if (link) { link(); symbol_put(ips_link_to_i915_driver); } } void intel_rps_driver_register(struct intel_rps *rps) { struct intel_gt *gt = rps_to_gt(rps); /* * We only register the i915 ips part with intel-ips once everything is * set up, to avoid intel-ips sneaking in and reading bogus values. */ if (GRAPHICS_VER(gt->i915) == 5) { GEM_BUG_ON(ips_mchdev); rcu_assign_pointer(ips_mchdev, gt->i915); ips_ping_for_i915_load(); } } void intel_rps_driver_unregister(struct intel_rps *rps) { if (rcu_access_pointer(ips_mchdev) == rps_to_i915(rps)) rcu_assign_pointer(ips_mchdev, NULL); } static struct drm_i915_private *mchdev_get(void) { struct drm_i915_private *i915; rcu_read_lock(); i915 = rcu_dereference(ips_mchdev); if (i915 && !kref_get_unless_zero(&i915->drm.ref)) i915 = NULL; rcu_read_unlock(); return i915; } /** * i915_read_mch_val - return value for IPS use * * Calculate and return a value for the IPS driver to use when deciding whether * we have thermal and power headroom to increase CPU or GPU power budget. */ unsigned long i915_read_mch_val(void) { struct drm_i915_private *i915; unsigned long chipset_val = 0; unsigned long graphics_val = 0; intel_wakeref_t wakeref; i915 = mchdev_get(); if (!i915) return 0; with_intel_runtime_pm(&i915->runtime_pm, wakeref) { struct intel_ips *ips = &to_gt(i915)->rps.ips; spin_lock_irq(&mchdev_lock); chipset_val = __ips_chipset_val(ips); graphics_val = __ips_gfx_val(ips); spin_unlock_irq(&mchdev_lock); } drm_dev_put(&i915->drm); return chipset_val + graphics_val; } EXPORT_SYMBOL_GPL(i915_read_mch_val); /** * i915_gpu_raise - raise GPU frequency limit * * Raise the limit; IPS indicates we have thermal headroom. */ bool i915_gpu_raise(void) { struct drm_i915_private *i915; struct intel_rps *rps; i915 = mchdev_get(); if (!i915) return false; rps = &to_gt(i915)->rps; spin_lock_irq(&mchdev_lock); if (rps->max_freq_softlimit < rps->max_freq) rps->max_freq_softlimit++; spin_unlock_irq(&mchdev_lock); drm_dev_put(&i915->drm); return true; } EXPORT_SYMBOL_GPL(i915_gpu_raise); /** * i915_gpu_lower - lower GPU frequency limit * * IPS indicates we're close to a thermal limit, so throttle back the GPU * frequency maximum. */ bool i915_gpu_lower(void) { struct drm_i915_private *i915; struct intel_rps *rps; i915 = mchdev_get(); if (!i915) return false; rps = &to_gt(i915)->rps; spin_lock_irq(&mchdev_lock); if (rps->max_freq_softlimit > rps->min_freq) rps->max_freq_softlimit--; spin_unlock_irq(&mchdev_lock); drm_dev_put(&i915->drm); return true; } EXPORT_SYMBOL_GPL(i915_gpu_lower); /** * i915_gpu_busy - indicate GPU business to IPS * * Tell the IPS driver whether or not the GPU is busy. */ bool i915_gpu_busy(void) { struct drm_i915_private *i915; bool ret; i915 = mchdev_get(); if (!i915) return false; ret = to_gt(i915)->awake; drm_dev_put(&i915->drm); return ret; } EXPORT_SYMBOL_GPL(i915_gpu_busy); /** * i915_gpu_turbo_disable - disable graphics turbo * * Disable graphics turbo by resetting the max frequency and setting the * current frequency to the default. */ bool i915_gpu_turbo_disable(void) { struct drm_i915_private *i915; struct intel_rps *rps; bool ret; i915 = mchdev_get(); if (!i915) return false; rps = &to_gt(i915)->rps; spin_lock_irq(&mchdev_lock); rps->max_freq_softlimit = rps->min_freq; ret = !__gen5_rps_set(&to_gt(i915)->rps, rps->min_freq); spin_unlock_irq(&mchdev_lock); drm_dev_put(&i915->drm); return ret; } EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable); #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftest_rps.c" #include "selftest_slpc.c" #endif