// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2007-2010 Advanced Micro Devices, Inc. * Author: Joerg Roedel * Leo Duran */ #define pr_fmt(fmt) "AMD-Vi: " fmt #define dev_fmt(fmt) pr_fmt(fmt) #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "amd_iommu.h" #include "../irq_remapping.h" /* * definitions for the ACPI scanning code */ #define IVRS_HEADER_LENGTH 48 #define ACPI_IVHD_TYPE_MAX_SUPPORTED 0x40 #define ACPI_IVMD_TYPE_ALL 0x20 #define ACPI_IVMD_TYPE 0x21 #define ACPI_IVMD_TYPE_RANGE 0x22 #define IVHD_DEV_ALL 0x01 #define IVHD_DEV_SELECT 0x02 #define IVHD_DEV_SELECT_RANGE_START 0x03 #define IVHD_DEV_RANGE_END 0x04 #define IVHD_DEV_ALIAS 0x42 #define IVHD_DEV_ALIAS_RANGE 0x43 #define IVHD_DEV_EXT_SELECT 0x46 #define IVHD_DEV_EXT_SELECT_RANGE 0x47 #define IVHD_DEV_SPECIAL 0x48 #define IVHD_DEV_ACPI_HID 0xf0 #define UID_NOT_PRESENT 0 #define UID_IS_INTEGER 1 #define UID_IS_CHARACTER 2 #define IVHD_SPECIAL_IOAPIC 1 #define IVHD_SPECIAL_HPET 2 #define IVHD_FLAG_HT_TUN_EN_MASK 0x01 #define IVHD_FLAG_PASSPW_EN_MASK 0x02 #define IVHD_FLAG_RESPASSPW_EN_MASK 0x04 #define IVHD_FLAG_ISOC_EN_MASK 0x08 #define IVMD_FLAG_EXCL_RANGE 0x08 #define IVMD_FLAG_IW 0x04 #define IVMD_FLAG_IR 0x02 #define IVMD_FLAG_UNITY_MAP 0x01 #define ACPI_DEVFLAG_INITPASS 0x01 #define ACPI_DEVFLAG_EXTINT 0x02 #define ACPI_DEVFLAG_NMI 0x04 #define ACPI_DEVFLAG_SYSMGT1 0x10 #define ACPI_DEVFLAG_SYSMGT2 0x20 #define ACPI_DEVFLAG_LINT0 0x40 #define ACPI_DEVFLAG_LINT1 0x80 #define ACPI_DEVFLAG_ATSDIS 0x10000000 #define LOOP_TIMEOUT 2000000 #define IVRS_GET_SBDF_ID(seg, bus, dev, fn) (((seg & 0xffff) << 16) | ((bus & 0xff) << 8) \ | ((dev & 0x1f) << 3) | (fn & 0x7)) /* * ACPI table definitions * * These data structures are laid over the table to parse the important values * out of it. */ /* * structure describing one IOMMU in the ACPI table. Typically followed by one * or more ivhd_entrys. */ struct ivhd_header { u8 type; u8 flags; u16 length; u16 devid; u16 cap_ptr; u64 mmio_phys; u16 pci_seg; u16 info; u32 efr_attr; /* Following only valid on IVHD type 11h and 40h */ u64 efr_reg; /* Exact copy of MMIO_EXT_FEATURES */ u64 efr_reg2; } __attribute__((packed)); /* * A device entry describing which devices a specific IOMMU translates and * which requestor ids they use. */ struct ivhd_entry { u8 type; u16 devid; u8 flags; struct_group(ext_hid, u32 ext; u32 hidh; ); u64 cid; u8 uidf; u8 uidl; u8 uid; } __attribute__((packed)); /* * An AMD IOMMU memory definition structure. It defines things like exclusion * ranges for devices and regions that should be unity mapped. */ struct ivmd_header { u8 type; u8 flags; u16 length; u16 devid; u16 aux; u16 pci_seg; u8 resv[6]; u64 range_start; u64 range_length; } __attribute__((packed)); bool amd_iommu_dump; bool amd_iommu_irq_remap __read_mostly; enum io_pgtable_fmt amd_iommu_pgtable = AMD_IOMMU_V1; int amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_VAPIC; static int amd_iommu_xt_mode = IRQ_REMAP_XAPIC_MODE; static bool amd_iommu_detected; static bool amd_iommu_disabled __initdata; static bool amd_iommu_force_enable __initdata; static int amd_iommu_target_ivhd_type; /* Global EFR and EFR2 registers */ u64 amd_iommu_efr; u64 amd_iommu_efr2; /* SNP is enabled on the system? */ bool amd_iommu_snp_en; EXPORT_SYMBOL(amd_iommu_snp_en); LIST_HEAD(amd_iommu_pci_seg_list); /* list of all PCI segments */ LIST_HEAD(amd_iommu_list); /* list of all AMD IOMMUs in the system */ /* Array to assign indices to IOMMUs*/ struct amd_iommu *amd_iommus[MAX_IOMMUS]; /* Number of IOMMUs present in the system */ static int amd_iommus_present; /* IOMMUs have a non-present cache? */ bool amd_iommu_np_cache __read_mostly; bool amd_iommu_iotlb_sup __read_mostly = true; u32 amd_iommu_max_pasid __read_mostly = ~0; bool amd_iommu_v2_present __read_mostly; static bool amd_iommu_pc_present __read_mostly; bool amdr_ivrs_remap_support __read_mostly; bool amd_iommu_force_isolation __read_mostly; /* * AMD IOMMU allows up to 2^16 different protection domains. This is a bitmap * to know which ones are already in use. */ unsigned long *amd_iommu_pd_alloc_bitmap; enum iommu_init_state { IOMMU_START_STATE, IOMMU_IVRS_DETECTED, IOMMU_ACPI_FINISHED, IOMMU_ENABLED, IOMMU_PCI_INIT, IOMMU_INTERRUPTS_EN, IOMMU_INITIALIZED, IOMMU_NOT_FOUND, IOMMU_INIT_ERROR, IOMMU_CMDLINE_DISABLED, }; /* Early ioapic and hpet maps from kernel command line */ #define EARLY_MAP_SIZE 4 static struct devid_map __initdata early_ioapic_map[EARLY_MAP_SIZE]; static struct devid_map __initdata early_hpet_map[EARLY_MAP_SIZE]; static struct acpihid_map_entry __initdata early_acpihid_map[EARLY_MAP_SIZE]; static int __initdata early_ioapic_map_size; static int __initdata early_hpet_map_size; static int __initdata early_acpihid_map_size; static bool __initdata cmdline_maps; static enum iommu_init_state init_state = IOMMU_START_STATE; static int amd_iommu_enable_interrupts(void); static int __init iommu_go_to_state(enum iommu_init_state state); static void init_device_table_dma(struct amd_iommu_pci_seg *pci_seg); static bool amd_iommu_pre_enabled = true; static u32 amd_iommu_ivinfo __initdata; bool translation_pre_enabled(struct amd_iommu *iommu) { return (iommu->flags & AMD_IOMMU_FLAG_TRANS_PRE_ENABLED); } static void clear_translation_pre_enabled(struct amd_iommu *iommu) { iommu->flags &= ~AMD_IOMMU_FLAG_TRANS_PRE_ENABLED; } static void init_translation_status(struct amd_iommu *iommu) { u64 ctrl; ctrl = readq(iommu->mmio_base + MMIO_CONTROL_OFFSET); if (ctrl & (1<flags |= AMD_IOMMU_FLAG_TRANS_PRE_ENABLED; } static inline unsigned long tbl_size(int entry_size, int last_bdf) { unsigned shift = PAGE_SHIFT + get_order((last_bdf + 1) * entry_size); return 1UL << shift; } int amd_iommu_get_num_iommus(void) { return amd_iommus_present; } /* * Iterate through all the IOMMUs to get common EFR * masks among all IOMMUs and warn if found inconsistency. */ static void get_global_efr(void) { struct amd_iommu *iommu; for_each_iommu(iommu) { u64 tmp = iommu->features; u64 tmp2 = iommu->features2; if (list_is_first(&iommu->list, &amd_iommu_list)) { amd_iommu_efr = tmp; amd_iommu_efr2 = tmp2; continue; } if (amd_iommu_efr == tmp && amd_iommu_efr2 == tmp2) continue; pr_err(FW_BUG "Found inconsistent EFR/EFR2 %#llx,%#llx (global %#llx,%#llx) on iommu%d (%04x:%02x:%02x.%01x).\n", tmp, tmp2, amd_iommu_efr, amd_iommu_efr2, iommu->index, iommu->pci_seg->id, PCI_BUS_NUM(iommu->devid), PCI_SLOT(iommu->devid), PCI_FUNC(iommu->devid)); amd_iommu_efr &= tmp; amd_iommu_efr2 &= tmp2; } pr_info("Using global IVHD EFR:%#llx, EFR2:%#llx\n", amd_iommu_efr, amd_iommu_efr2); } static bool check_feature_on_all_iommus(u64 mask) { return !!(amd_iommu_efr & mask); } /* * For IVHD type 0x11/0x40, EFR is also available via IVHD. * Default to IVHD EFR since it is available sooner * (i.e. before PCI init). */ static void __init early_iommu_features_init(struct amd_iommu *iommu, struct ivhd_header *h) { if (amd_iommu_ivinfo & IOMMU_IVINFO_EFRSUP) { iommu->features = h->efr_reg; iommu->features2 = h->efr_reg2; } if (amd_iommu_ivinfo & IOMMU_IVINFO_DMA_REMAP) amdr_ivrs_remap_support = true; } /* Access to l1 and l2 indexed register spaces */ static u32 iommu_read_l1(struct amd_iommu *iommu, u16 l1, u8 address) { u32 val; pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16)); pci_read_config_dword(iommu->dev, 0xfc, &val); return val; } static void iommu_write_l1(struct amd_iommu *iommu, u16 l1, u8 address, u32 val) { pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16 | 1 << 31)); pci_write_config_dword(iommu->dev, 0xfc, val); pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16)); } static u32 iommu_read_l2(struct amd_iommu *iommu, u8 address) { u32 val; pci_write_config_dword(iommu->dev, 0xf0, address); pci_read_config_dword(iommu->dev, 0xf4, &val); return val; } static void iommu_write_l2(struct amd_iommu *iommu, u8 address, u32 val) { pci_write_config_dword(iommu->dev, 0xf0, (address | 1 << 8)); pci_write_config_dword(iommu->dev, 0xf4, val); } /**************************************************************************** * * AMD IOMMU MMIO register space handling functions * * These functions are used to program the IOMMU device registers in * MMIO space required for that driver. * ****************************************************************************/ /* * This function set the exclusion range in the IOMMU. DMA accesses to the * exclusion range are passed through untranslated */ static void iommu_set_exclusion_range(struct amd_iommu *iommu) { u64 start = iommu->exclusion_start & PAGE_MASK; u64 limit = (start + iommu->exclusion_length - 1) & PAGE_MASK; u64 entry; if (!iommu->exclusion_start) return; entry = start | MMIO_EXCL_ENABLE_MASK; memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET, &entry, sizeof(entry)); entry = limit; memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET, &entry, sizeof(entry)); } static void iommu_set_cwwb_range(struct amd_iommu *iommu) { u64 start = iommu_virt_to_phys((void *)iommu->cmd_sem); u64 entry = start & PM_ADDR_MASK; if (!check_feature_on_all_iommus(FEATURE_SNP)) return; /* Note: * Re-purpose Exclusion base/limit registers for Completion wait * write-back base/limit. */ memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET, &entry, sizeof(entry)); /* Note: * Default to 4 Kbytes, which can be specified by setting base * address equal to the limit address. */ memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET, &entry, sizeof(entry)); } /* Programs the physical address of the device table into the IOMMU hardware */ static void iommu_set_device_table(struct amd_iommu *iommu) { u64 entry; u32 dev_table_size = iommu->pci_seg->dev_table_size; void *dev_table = (void *)get_dev_table(iommu); BUG_ON(iommu->mmio_base == NULL); entry = iommu_virt_to_phys(dev_table); entry |= (dev_table_size >> 12) - 1; memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET, &entry, sizeof(entry)); } /* Generic functions to enable/disable certain features of the IOMMU. */ static void iommu_feature_enable(struct amd_iommu *iommu, u8 bit) { u64 ctrl; ctrl = readq(iommu->mmio_base + MMIO_CONTROL_OFFSET); ctrl |= (1ULL << bit); writeq(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET); } static void iommu_feature_disable(struct amd_iommu *iommu, u8 bit) { u64 ctrl; ctrl = readq(iommu->mmio_base + MMIO_CONTROL_OFFSET); ctrl &= ~(1ULL << bit); writeq(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET); } static void iommu_set_inv_tlb_timeout(struct amd_iommu *iommu, int timeout) { u64 ctrl; ctrl = readq(iommu->mmio_base + MMIO_CONTROL_OFFSET); ctrl &= ~CTRL_INV_TO_MASK; ctrl |= (timeout << CONTROL_INV_TIMEOUT) & CTRL_INV_TO_MASK; writeq(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET); } /* Function to enable the hardware */ static void iommu_enable(struct amd_iommu *iommu) { iommu_feature_enable(iommu, CONTROL_IOMMU_EN); } static void iommu_disable(struct amd_iommu *iommu) { if (!iommu->mmio_base) return; /* Disable command buffer */ iommu_feature_disable(iommu, CONTROL_CMDBUF_EN); /* Disable event logging and event interrupts */ iommu_feature_disable(iommu, CONTROL_EVT_INT_EN); iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN); /* Disable IOMMU GA_LOG */ iommu_feature_disable(iommu, CONTROL_GALOG_EN); iommu_feature_disable(iommu, CONTROL_GAINT_EN); /* Disable IOMMU hardware itself */ iommu_feature_disable(iommu, CONTROL_IOMMU_EN); } /* * mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in * the system has one. */ static u8 __iomem * __init iommu_map_mmio_space(u64 address, u64 end) { if (!request_mem_region(address, end, "amd_iommu")) { pr_err("Can not reserve memory region %llx-%llx for mmio\n", address, end); pr_err("This is a BIOS bug. Please contact your hardware vendor\n"); return NULL; } return (u8 __iomem *)ioremap(address, end); } static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu) { if (iommu->mmio_base) iounmap(iommu->mmio_base); release_mem_region(iommu->mmio_phys, iommu->mmio_phys_end); } static inline u32 get_ivhd_header_size(struct ivhd_header *h) { u32 size = 0; switch (h->type) { case 0x10: size = 24; break; case 0x11: case 0x40: size = 40; break; } return size; } /**************************************************************************** * * The functions below belong to the first pass of AMD IOMMU ACPI table * parsing. In this pass we try to find out the highest device id this * code has to handle. Upon this information the size of the shared data * structures is determined later. * ****************************************************************************/ /* * This function calculates the length of a given IVHD entry */ static inline int ivhd_entry_length(u8 *ivhd) { u32 type = ((struct ivhd_entry *)ivhd)->type; if (type < 0x80) { return 0x04 << (*ivhd >> 6); } else if (type == IVHD_DEV_ACPI_HID) { /* For ACPI_HID, offset 21 is uid len */ return *((u8 *)ivhd + 21) + 22; } return 0; } /* * After reading the highest device id from the IOMMU PCI capability header * this function looks if there is a higher device id defined in the ACPI table */ static int __init find_last_devid_from_ivhd(struct ivhd_header *h) { u8 *p = (void *)h, *end = (void *)h; struct ivhd_entry *dev; int last_devid = -EINVAL; u32 ivhd_size = get_ivhd_header_size(h); if (!ivhd_size) { pr_err("Unsupported IVHD type %#x\n", h->type); return -EINVAL; } p += ivhd_size; end += h->length; while (p < end) { dev = (struct ivhd_entry *)p; switch (dev->type) { case IVHD_DEV_ALL: /* Use maximum BDF value for DEV_ALL */ return 0xffff; case IVHD_DEV_SELECT: case IVHD_DEV_RANGE_END: case IVHD_DEV_ALIAS: case IVHD_DEV_EXT_SELECT: /* all the above subfield types refer to device ids */ if (dev->devid > last_devid) last_devid = dev->devid; break; default: break; } p += ivhd_entry_length(p); } WARN_ON(p != end); return last_devid; } static int __init check_ivrs_checksum(struct acpi_table_header *table) { int i; u8 checksum = 0, *p = (u8 *)table; for (i = 0; i < table->length; ++i) checksum += p[i]; if (checksum != 0) { /* ACPI table corrupt */ pr_err(FW_BUG "IVRS invalid checksum\n"); return -ENODEV; } return 0; } /* * Iterate over all IVHD entries in the ACPI table and find the highest device * id which we need to handle. This is the first of three functions which parse * the ACPI table. So we check the checksum here. */ static int __init find_last_devid_acpi(struct acpi_table_header *table, u16 pci_seg) { u8 *p = (u8 *)table, *end = (u8 *)table; struct ivhd_header *h; int last_devid, last_bdf = 0; p += IVRS_HEADER_LENGTH; end += table->length; while (p < end) { h = (struct ivhd_header *)p; if (h->pci_seg == pci_seg && h->type == amd_iommu_target_ivhd_type) { last_devid = find_last_devid_from_ivhd(h); if (last_devid < 0) return -EINVAL; if (last_devid > last_bdf) last_bdf = last_devid; } p += h->length; } WARN_ON(p != end); return last_bdf; } /**************************************************************************** * * The following functions belong to the code path which parses the ACPI table * the second time. In this ACPI parsing iteration we allocate IOMMU specific * data structures, initialize the per PCI segment device/alias/rlookup table * and also basically initialize the hardware. * ****************************************************************************/ /* Allocate per PCI segment device table */ static inline int __init alloc_dev_table(struct amd_iommu_pci_seg *pci_seg) { pci_seg->dev_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO | GFP_DMA32, get_order(pci_seg->dev_table_size)); if (!pci_seg->dev_table) return -ENOMEM; return 0; } static inline void free_dev_table(struct amd_iommu_pci_seg *pci_seg) { free_pages((unsigned long)pci_seg->dev_table, get_order(pci_seg->dev_table_size)); pci_seg->dev_table = NULL; } /* Allocate per PCI segment IOMMU rlookup table. */ static inline int __init alloc_rlookup_table(struct amd_iommu_pci_seg *pci_seg) { pci_seg->rlookup_table = (void *)__get_free_pages( GFP_KERNEL | __GFP_ZERO, get_order(pci_seg->rlookup_table_size)); if (pci_seg->rlookup_table == NULL) return -ENOMEM; return 0; } static inline void free_rlookup_table(struct amd_iommu_pci_seg *pci_seg) { free_pages((unsigned long)pci_seg->rlookup_table, get_order(pci_seg->rlookup_table_size)); pci_seg->rlookup_table = NULL; } static inline int __init alloc_irq_lookup_table(struct amd_iommu_pci_seg *pci_seg) { pci_seg->irq_lookup_table = (void *)__get_free_pages( GFP_KERNEL | __GFP_ZERO, get_order(pci_seg->rlookup_table_size)); kmemleak_alloc(pci_seg->irq_lookup_table, pci_seg->rlookup_table_size, 1, GFP_KERNEL); if (pci_seg->irq_lookup_table == NULL) return -ENOMEM; return 0; } static inline void free_irq_lookup_table(struct amd_iommu_pci_seg *pci_seg) { kmemleak_free(pci_seg->irq_lookup_table); free_pages((unsigned long)pci_seg->irq_lookup_table, get_order(pci_seg->rlookup_table_size)); pci_seg->irq_lookup_table = NULL; } static int __init alloc_alias_table(struct amd_iommu_pci_seg *pci_seg) { int i; pci_seg->alias_table = (void *)__get_free_pages(GFP_KERNEL, get_order(pci_seg->alias_table_size)); if (!pci_seg->alias_table) return -ENOMEM; /* * let all alias entries point to itself */ for (i = 0; i <= pci_seg->last_bdf; ++i) pci_seg->alias_table[i] = i; return 0; } static void __init free_alias_table(struct amd_iommu_pci_seg *pci_seg) { free_pages((unsigned long)pci_seg->alias_table, get_order(pci_seg->alias_table_size)); pci_seg->alias_table = NULL; } /* * Allocates the command buffer. This buffer is per AMD IOMMU. We can * write commands to that buffer later and the IOMMU will execute them * asynchronously */ static int __init alloc_command_buffer(struct amd_iommu *iommu) { iommu->cmd_buf = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, get_order(CMD_BUFFER_SIZE)); return iommu->cmd_buf ? 0 : -ENOMEM; } /* * This function restarts event logging in case the IOMMU experienced * an event log buffer overflow. */ void amd_iommu_restart_event_logging(struct amd_iommu *iommu) { iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN); iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN); } /* * This function restarts event logging in case the IOMMU experienced * an GA log overflow. */ void amd_iommu_restart_ga_log(struct amd_iommu *iommu) { u32 status; status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); if (status & MMIO_STATUS_GALOG_RUN_MASK) return; pr_info_ratelimited("IOMMU GA Log restarting\n"); iommu_feature_disable(iommu, CONTROL_GALOG_EN); iommu_feature_disable(iommu, CONTROL_GAINT_EN); writel(MMIO_STATUS_GALOG_OVERFLOW_MASK, iommu->mmio_base + MMIO_STATUS_OFFSET); iommu_feature_enable(iommu, CONTROL_GAINT_EN); iommu_feature_enable(iommu, CONTROL_GALOG_EN); } /* * This function resets the command buffer if the IOMMU stopped fetching * commands from it. */ static void amd_iommu_reset_cmd_buffer(struct amd_iommu *iommu) { iommu_feature_disable(iommu, CONTROL_CMDBUF_EN); writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET); writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); iommu->cmd_buf_head = 0; iommu->cmd_buf_tail = 0; iommu_feature_enable(iommu, CONTROL_CMDBUF_EN); } /* * This function writes the command buffer address to the hardware and * enables it. */ static void iommu_enable_command_buffer(struct amd_iommu *iommu) { u64 entry; BUG_ON(iommu->cmd_buf == NULL); entry = iommu_virt_to_phys(iommu->cmd_buf); entry |= MMIO_CMD_SIZE_512; memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET, &entry, sizeof(entry)); amd_iommu_reset_cmd_buffer(iommu); } /* * This function disables the command buffer */ static void iommu_disable_command_buffer(struct amd_iommu *iommu) { iommu_feature_disable(iommu, CONTROL_CMDBUF_EN); } static void __init free_command_buffer(struct amd_iommu *iommu) { free_pages((unsigned long)iommu->cmd_buf, get_order(CMD_BUFFER_SIZE)); } static void *__init iommu_alloc_4k_pages(struct amd_iommu *iommu, gfp_t gfp, size_t size) { int order = get_order(size); void *buf = (void *)__get_free_pages(gfp, order); if (buf && check_feature_on_all_iommus(FEATURE_SNP) && set_memory_4k((unsigned long)buf, (1 << order))) { free_pages((unsigned long)buf, order); buf = NULL; } return buf; } /* allocates the memory where the IOMMU will log its events to */ static int __init alloc_event_buffer(struct amd_iommu *iommu) { iommu->evt_buf = iommu_alloc_4k_pages(iommu, GFP_KERNEL | __GFP_ZERO, EVT_BUFFER_SIZE); return iommu->evt_buf ? 0 : -ENOMEM; } static void iommu_enable_event_buffer(struct amd_iommu *iommu) { u64 entry; BUG_ON(iommu->evt_buf == NULL); entry = iommu_virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK; memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET, &entry, sizeof(entry)); /* set head and tail to zero manually */ writel(0x00, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); writel(0x00, iommu->mmio_base + MMIO_EVT_TAIL_OFFSET); iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN); } /* * This function disables the event log buffer */ static void iommu_disable_event_buffer(struct amd_iommu *iommu) { iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN); } static void __init free_event_buffer(struct amd_iommu *iommu) { free_pages((unsigned long)iommu->evt_buf, get_order(EVT_BUFFER_SIZE)); } /* allocates the memory where the IOMMU will log its events to */ static int __init alloc_ppr_log(struct amd_iommu *iommu) { iommu->ppr_log = iommu_alloc_4k_pages(iommu, GFP_KERNEL | __GFP_ZERO, PPR_LOG_SIZE); return iommu->ppr_log ? 0 : -ENOMEM; } static void iommu_enable_ppr_log(struct amd_iommu *iommu) { u64 entry; if (iommu->ppr_log == NULL) return; entry = iommu_virt_to_phys(iommu->ppr_log) | PPR_LOG_SIZE_512; memcpy_toio(iommu->mmio_base + MMIO_PPR_LOG_OFFSET, &entry, sizeof(entry)); /* set head and tail to zero manually */ writel(0x00, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); writel(0x00, iommu->mmio_base + MMIO_PPR_TAIL_OFFSET); iommu_feature_enable(iommu, CONTROL_PPRLOG_EN); iommu_feature_enable(iommu, CONTROL_PPR_EN); } static void __init free_ppr_log(struct amd_iommu *iommu) { free_pages((unsigned long)iommu->ppr_log, get_order(PPR_LOG_SIZE)); } static void free_ga_log(struct amd_iommu *iommu) { #ifdef CONFIG_IRQ_REMAP free_pages((unsigned long)iommu->ga_log, get_order(GA_LOG_SIZE)); free_pages((unsigned long)iommu->ga_log_tail, get_order(8)); #endif } #ifdef CONFIG_IRQ_REMAP static int iommu_ga_log_enable(struct amd_iommu *iommu) { u32 status, i; u64 entry; if (!iommu->ga_log) return -EINVAL; entry = iommu_virt_to_phys(iommu->ga_log) | GA_LOG_SIZE_512; memcpy_toio(iommu->mmio_base + MMIO_GA_LOG_BASE_OFFSET, &entry, sizeof(entry)); entry = (iommu_virt_to_phys(iommu->ga_log_tail) & (BIT_ULL(52)-1)) & ~7ULL; memcpy_toio(iommu->mmio_base + MMIO_GA_LOG_TAIL_OFFSET, &entry, sizeof(entry)); writel(0x00, iommu->mmio_base + MMIO_GA_HEAD_OFFSET); writel(0x00, iommu->mmio_base + MMIO_GA_TAIL_OFFSET); iommu_feature_enable(iommu, CONTROL_GAINT_EN); iommu_feature_enable(iommu, CONTROL_GALOG_EN); for (i = 0; i < LOOP_TIMEOUT; ++i) { status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); if (status & (MMIO_STATUS_GALOG_RUN_MASK)) break; udelay(10); } if (WARN_ON(i >= LOOP_TIMEOUT)) return -EINVAL; return 0; } static int iommu_init_ga_log(struct amd_iommu *iommu) { if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) return 0; iommu->ga_log = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, get_order(GA_LOG_SIZE)); if (!iommu->ga_log) goto err_out; iommu->ga_log_tail = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, get_order(8)); if (!iommu->ga_log_tail) goto err_out; return 0; err_out: free_ga_log(iommu); return -EINVAL; } #endif /* CONFIG_IRQ_REMAP */ static int __init alloc_cwwb_sem(struct amd_iommu *iommu) { iommu->cmd_sem = iommu_alloc_4k_pages(iommu, GFP_KERNEL | __GFP_ZERO, 1); return iommu->cmd_sem ? 0 : -ENOMEM; } static void __init free_cwwb_sem(struct amd_iommu *iommu) { if (iommu->cmd_sem) free_page((unsigned long)iommu->cmd_sem); } static void iommu_enable_xt(struct amd_iommu *iommu) { #ifdef CONFIG_IRQ_REMAP /* * XT mode (32-bit APIC destination ID) requires * GA mode (128-bit IRTE support) as a prerequisite. */ if (AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir) && amd_iommu_xt_mode == IRQ_REMAP_X2APIC_MODE) iommu_feature_enable(iommu, CONTROL_XT_EN); #endif /* CONFIG_IRQ_REMAP */ } static void iommu_enable_gt(struct amd_iommu *iommu) { if (!iommu_feature(iommu, FEATURE_GT)) return; iommu_feature_enable(iommu, CONTROL_GT_EN); } /* sets a specific bit in the device table entry. */ static void __set_dev_entry_bit(struct dev_table_entry *dev_table, u16 devid, u8 bit) { int i = (bit >> 6) & 0x03; int _bit = bit & 0x3f; dev_table[devid].data[i] |= (1UL << _bit); } static void set_dev_entry_bit(struct amd_iommu *iommu, u16 devid, u8 bit) { struct dev_table_entry *dev_table = get_dev_table(iommu); return __set_dev_entry_bit(dev_table, devid, bit); } static int __get_dev_entry_bit(struct dev_table_entry *dev_table, u16 devid, u8 bit) { int i = (bit >> 6) & 0x03; int _bit = bit & 0x3f; return (dev_table[devid].data[i] & (1UL << _bit)) >> _bit; } static int get_dev_entry_bit(struct amd_iommu *iommu, u16 devid, u8 bit) { struct dev_table_entry *dev_table = get_dev_table(iommu); return __get_dev_entry_bit(dev_table, devid, bit); } static bool __copy_device_table(struct amd_iommu *iommu) { u64 int_ctl, int_tab_len, entry = 0; struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; struct dev_table_entry *old_devtb = NULL; u32 lo, hi, devid, old_devtb_size; phys_addr_t old_devtb_phys; u16 dom_id, dte_v, irq_v; gfp_t gfp_flag; u64 tmp; /* Each IOMMU use separate device table with the same size */ lo = readl(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET); hi = readl(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET + 4); entry = (((u64) hi) << 32) + lo; old_devtb_size = ((entry & ~PAGE_MASK) + 1) << 12; if (old_devtb_size != pci_seg->dev_table_size) { pr_err("The device table size of IOMMU:%d is not expected!\n", iommu->index); return false; } /* * When SME is enabled in the first kernel, the entry includes the * memory encryption mask(sme_me_mask), we must remove the memory * encryption mask to obtain the true physical address in kdump kernel. */ old_devtb_phys = __sme_clr(entry) & PAGE_MASK; if (old_devtb_phys >= 0x100000000ULL) { pr_err("The address of old device table is above 4G, not trustworthy!\n"); return false; } old_devtb = (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT) && is_kdump_kernel()) ? (__force void *)ioremap_encrypted(old_devtb_phys, pci_seg->dev_table_size) : memremap(old_devtb_phys, pci_seg->dev_table_size, MEMREMAP_WB); if (!old_devtb) return false; gfp_flag = GFP_KERNEL | __GFP_ZERO | GFP_DMA32; pci_seg->old_dev_tbl_cpy = (void *)__get_free_pages(gfp_flag, get_order(pci_seg->dev_table_size)); if (pci_seg->old_dev_tbl_cpy == NULL) { pr_err("Failed to allocate memory for copying old device table!\n"); memunmap(old_devtb); return false; } for (devid = 0; devid <= pci_seg->last_bdf; ++devid) { pci_seg->old_dev_tbl_cpy[devid] = old_devtb[devid]; dom_id = old_devtb[devid].data[1] & DEV_DOMID_MASK; dte_v = old_devtb[devid].data[0] & DTE_FLAG_V; if (dte_v && dom_id) { pci_seg->old_dev_tbl_cpy[devid].data[0] = old_devtb[devid].data[0]; pci_seg->old_dev_tbl_cpy[devid].data[1] = old_devtb[devid].data[1]; __set_bit(dom_id, amd_iommu_pd_alloc_bitmap); /* If gcr3 table existed, mask it out */ if (old_devtb[devid].data[0] & DTE_FLAG_GV) { tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B; tmp |= DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C; pci_seg->old_dev_tbl_cpy[devid].data[1] &= ~tmp; tmp = DTE_GCR3_VAL_A(~0ULL) << DTE_GCR3_SHIFT_A; tmp |= DTE_FLAG_GV; pci_seg->old_dev_tbl_cpy[devid].data[0] &= ~tmp; } } irq_v = old_devtb[devid].data[2] & DTE_IRQ_REMAP_ENABLE; int_ctl = old_devtb[devid].data[2] & DTE_IRQ_REMAP_INTCTL_MASK; int_tab_len = old_devtb[devid].data[2] & DTE_INTTABLEN_MASK; if (irq_v && (int_ctl || int_tab_len)) { if ((int_ctl != DTE_IRQ_REMAP_INTCTL) || (int_tab_len != DTE_INTTABLEN)) { pr_err("Wrong old irq remapping flag: %#x\n", devid); memunmap(old_devtb); return false; } pci_seg->old_dev_tbl_cpy[devid].data[2] = old_devtb[devid].data[2]; } } memunmap(old_devtb); return true; } static bool copy_device_table(void) { struct amd_iommu *iommu; struct amd_iommu_pci_seg *pci_seg; if (!amd_iommu_pre_enabled) return false; pr_warn("Translation is already enabled - trying to copy translation structures\n"); /* * All IOMMUs within PCI segment shares common device table. * Hence copy device table only once per PCI segment. */ for_each_pci_segment(pci_seg) { for_each_iommu(iommu) { if (pci_seg->id != iommu->pci_seg->id) continue; if (!__copy_device_table(iommu)) return false; break; } } return true; } void amd_iommu_apply_erratum_63(struct amd_iommu *iommu, u16 devid) { int sysmgt; sysmgt = get_dev_entry_bit(iommu, devid, DEV_ENTRY_SYSMGT1) | (get_dev_entry_bit(iommu, devid, DEV_ENTRY_SYSMGT2) << 1); if (sysmgt == 0x01) set_dev_entry_bit(iommu, devid, DEV_ENTRY_IW); } /* * This function takes the device specific flags read from the ACPI * table and sets up the device table entry with that information */ static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu, u16 devid, u32 flags, u32 ext_flags) { if (flags & ACPI_DEVFLAG_INITPASS) set_dev_entry_bit(iommu, devid, DEV_ENTRY_INIT_PASS); if (flags & ACPI_DEVFLAG_EXTINT) set_dev_entry_bit(iommu, devid, DEV_ENTRY_EINT_PASS); if (flags & ACPI_DEVFLAG_NMI) set_dev_entry_bit(iommu, devid, DEV_ENTRY_NMI_PASS); if (flags & ACPI_DEVFLAG_SYSMGT1) set_dev_entry_bit(iommu, devid, DEV_ENTRY_SYSMGT1); if (flags & ACPI_DEVFLAG_SYSMGT2) set_dev_entry_bit(iommu, devid, DEV_ENTRY_SYSMGT2); if (flags & ACPI_DEVFLAG_LINT0) set_dev_entry_bit(iommu, devid, DEV_ENTRY_LINT0_PASS); if (flags & ACPI_DEVFLAG_LINT1) set_dev_entry_bit(iommu, devid, DEV_ENTRY_LINT1_PASS); amd_iommu_apply_erratum_63(iommu, devid); amd_iommu_set_rlookup_table(iommu, devid); } int __init add_special_device(u8 type, u8 id, u32 *devid, bool cmd_line) { struct devid_map *entry; struct list_head *list; if (type == IVHD_SPECIAL_IOAPIC) list = &ioapic_map; else if (type == IVHD_SPECIAL_HPET) list = &hpet_map; else return -EINVAL; list_for_each_entry(entry, list, list) { if (!(entry->id == id && entry->cmd_line)) continue; pr_info("Command-line override present for %s id %d - ignoring\n", type == IVHD_SPECIAL_IOAPIC ? "IOAPIC" : "HPET", id); *devid = entry->devid; return 0; } entry = kzalloc(sizeof(*entry), GFP_KERNEL); if (!entry) return -ENOMEM; entry->id = id; entry->devid = *devid; entry->cmd_line = cmd_line; list_add_tail(&entry->list, list); return 0; } static int __init add_acpi_hid_device(u8 *hid, u8 *uid, u32 *devid, bool cmd_line) { struct acpihid_map_entry *entry; struct list_head *list = &acpihid_map; list_for_each_entry(entry, list, list) { if (strcmp(entry->hid, hid) || (*uid && *entry->uid && strcmp(entry->uid, uid)) || !entry->cmd_line) continue; pr_info("Command-line override for hid:%s uid:%s\n", hid, uid); *devid = entry->devid; return 0; } entry = kzalloc(sizeof(*entry), GFP_KERNEL); if (!entry) return -ENOMEM; memcpy(entry->uid, uid, strlen(uid)); memcpy(entry->hid, hid, strlen(hid)); entry->devid = *devid; entry->cmd_line = cmd_line; entry->root_devid = (entry->devid & (~0x7)); pr_info("%s, add hid:%s, uid:%s, rdevid:%d\n", entry->cmd_line ? "cmd" : "ivrs", entry->hid, entry->uid, entry->root_devid); list_add_tail(&entry->list, list); return 0; } static int __init add_early_maps(void) { int i, ret; for (i = 0; i < early_ioapic_map_size; ++i) { ret = add_special_device(IVHD_SPECIAL_IOAPIC, early_ioapic_map[i].id, &early_ioapic_map[i].devid, early_ioapic_map[i].cmd_line); if (ret) return ret; } for (i = 0; i < early_hpet_map_size; ++i) { ret = add_special_device(IVHD_SPECIAL_HPET, early_hpet_map[i].id, &early_hpet_map[i].devid, early_hpet_map[i].cmd_line); if (ret) return ret; } for (i = 0; i < early_acpihid_map_size; ++i) { ret = add_acpi_hid_device(early_acpihid_map[i].hid, early_acpihid_map[i].uid, &early_acpihid_map[i].devid, early_acpihid_map[i].cmd_line); if (ret) return ret; } return 0; } /* * Takes a pointer to an AMD IOMMU entry in the ACPI table and * initializes the hardware and our data structures with it. */ static int __init init_iommu_from_acpi(struct amd_iommu *iommu, struct ivhd_header *h) { u8 *p = (u8 *)h; u8 *end = p, flags = 0; u16 devid = 0, devid_start = 0, devid_to = 0, seg_id; u32 dev_i, ext_flags = 0; bool alias = false; struct ivhd_entry *e; struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; u32 ivhd_size; int ret; ret = add_early_maps(); if (ret) return ret; amd_iommu_apply_ivrs_quirks(); /* * First save the recommended feature enable bits from ACPI */ iommu->acpi_flags = h->flags; /* * Done. Now parse the device entries */ ivhd_size = get_ivhd_header_size(h); if (!ivhd_size) { pr_err("Unsupported IVHD type %#x\n", h->type); return -EINVAL; } p += ivhd_size; end += h->length; while (p < end) { e = (struct ivhd_entry *)p; seg_id = pci_seg->id; switch (e->type) { case IVHD_DEV_ALL: DUMP_printk(" DEV_ALL\t\t\tflags: %02x\n", e->flags); for (dev_i = 0; dev_i <= pci_seg->last_bdf; ++dev_i) set_dev_entry_from_acpi(iommu, dev_i, e->flags, 0); break; case IVHD_DEV_SELECT: DUMP_printk(" DEV_SELECT\t\t\t devid: %04x:%02x:%02x.%x " "flags: %02x\n", seg_id, PCI_BUS_NUM(e->devid), PCI_SLOT(e->devid), PCI_FUNC(e->devid), e->flags); devid = e->devid; set_dev_entry_from_acpi(iommu, devid, e->flags, 0); break; case IVHD_DEV_SELECT_RANGE_START: DUMP_printk(" DEV_SELECT_RANGE_START\t " "devid: %04x:%02x:%02x.%x flags: %02x\n", seg_id, PCI_BUS_NUM(e->devid), PCI_SLOT(e->devid), PCI_FUNC(e->devid), e->flags); devid_start = e->devid; flags = e->flags; ext_flags = 0; alias = false; break; case IVHD_DEV_ALIAS: DUMP_printk(" DEV_ALIAS\t\t\t devid: %04x:%02x:%02x.%x " "flags: %02x devid_to: %02x:%02x.%x\n", seg_id, PCI_BUS_NUM(e->devid), PCI_SLOT(e->devid), PCI_FUNC(e->devid), e->flags, PCI_BUS_NUM(e->ext >> 8), PCI_SLOT(e->ext >> 8), PCI_FUNC(e->ext >> 8)); devid = e->devid; devid_to = e->ext >> 8; set_dev_entry_from_acpi(iommu, devid , e->flags, 0); set_dev_entry_from_acpi(iommu, devid_to, e->flags, 0); pci_seg->alias_table[devid] = devid_to; break; case IVHD_DEV_ALIAS_RANGE: DUMP_printk(" DEV_ALIAS_RANGE\t\t " "devid: %04x:%02x:%02x.%x flags: %02x " "devid_to: %04x:%02x:%02x.%x\n", seg_id, PCI_BUS_NUM(e->devid), PCI_SLOT(e->devid), PCI_FUNC(e->devid), e->flags, seg_id, PCI_BUS_NUM(e->ext >> 8), PCI_SLOT(e->ext >> 8), PCI_FUNC(e->ext >> 8)); devid_start = e->devid; flags = e->flags; devid_to = e->ext >> 8; ext_flags = 0; alias = true; break; case IVHD_DEV_EXT_SELECT: DUMP_printk(" DEV_EXT_SELECT\t\t devid: %04x:%02x:%02x.%x " "flags: %02x ext: %08x\n", seg_id, PCI_BUS_NUM(e->devid), PCI_SLOT(e->devid), PCI_FUNC(e->devid), e->flags, e->ext); devid = e->devid; set_dev_entry_from_acpi(iommu, devid, e->flags, e->ext); break; case IVHD_DEV_EXT_SELECT_RANGE: DUMP_printk(" DEV_EXT_SELECT_RANGE\t devid: " "%04x:%02x:%02x.%x flags: %02x ext: %08x\n", seg_id, PCI_BUS_NUM(e->devid), PCI_SLOT(e->devid), PCI_FUNC(e->devid), e->flags, e->ext); devid_start = e->devid; flags = e->flags; ext_flags = e->ext; alias = false; break; case IVHD_DEV_RANGE_END: DUMP_printk(" DEV_RANGE_END\t\t devid: %04x:%02x:%02x.%x\n", seg_id, PCI_BUS_NUM(e->devid), PCI_SLOT(e->devid), PCI_FUNC(e->devid)); devid = e->devid; for (dev_i = devid_start; dev_i <= devid; ++dev_i) { if (alias) { pci_seg->alias_table[dev_i] = devid_to; set_dev_entry_from_acpi(iommu, devid_to, flags, ext_flags); } set_dev_entry_from_acpi(iommu, dev_i, flags, ext_flags); } break; case IVHD_DEV_SPECIAL: { u8 handle, type; const char *var; u32 devid; int ret; handle = e->ext & 0xff; devid = PCI_SEG_DEVID_TO_SBDF(seg_id, (e->ext >> 8)); type = (e->ext >> 24) & 0xff; if (type == IVHD_SPECIAL_IOAPIC) var = "IOAPIC"; else if (type == IVHD_SPECIAL_HPET) var = "HPET"; else var = "UNKNOWN"; DUMP_printk(" DEV_SPECIAL(%s[%d])\t\tdevid: %04x:%02x:%02x.%x\n", var, (int)handle, seg_id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid)); ret = add_special_device(type, handle, &devid, false); if (ret) return ret; /* * add_special_device might update the devid in case a * command-line override is present. So call * set_dev_entry_from_acpi after add_special_device. */ set_dev_entry_from_acpi(iommu, devid, e->flags, 0); break; } case IVHD_DEV_ACPI_HID: { u32 devid; u8 hid[ACPIHID_HID_LEN]; u8 uid[ACPIHID_UID_LEN]; int ret; if (h->type != 0x40) { pr_err(FW_BUG "Invalid IVHD device type %#x\n", e->type); break; } BUILD_BUG_ON(sizeof(e->ext_hid) != ACPIHID_HID_LEN - 1); memcpy(hid, &e->ext_hid, ACPIHID_HID_LEN - 1); hid[ACPIHID_HID_LEN - 1] = '\0'; if (!(*hid)) { pr_err(FW_BUG "Invalid HID.\n"); break; } uid[0] = '\0'; switch (e->uidf) { case UID_NOT_PRESENT: if (e->uidl != 0) pr_warn(FW_BUG "Invalid UID length.\n"); break; case UID_IS_INTEGER: sprintf(uid, "%d", e->uid); break; case UID_IS_CHARACTER: memcpy(uid, &e->uid, e->uidl); uid[e->uidl] = '\0'; break; default: break; } devid = PCI_SEG_DEVID_TO_SBDF(seg_id, e->devid); DUMP_printk(" DEV_ACPI_HID(%s[%s])\t\tdevid: %04x:%02x:%02x.%x\n", hid, uid, seg_id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid)); flags = e->flags; ret = add_acpi_hid_device(hid, uid, &devid, false); if (ret) return ret; /* * add_special_device might update the devid in case a * command-line override is present. So call * set_dev_entry_from_acpi after add_special_device. */ set_dev_entry_from_acpi(iommu, devid, e->flags, 0); break; } default: break; } p += ivhd_entry_length(p); } return 0; } /* Allocate PCI segment data structure */ static struct amd_iommu_pci_seg *__init alloc_pci_segment(u16 id, struct acpi_table_header *ivrs_base) { struct amd_iommu_pci_seg *pci_seg; int last_bdf; /* * First parse ACPI tables to find the largest Bus/Dev/Func we need to * handle in this PCI segment. Upon this information the shared data * structures for the PCI segments in the system will be allocated. */ last_bdf = find_last_devid_acpi(ivrs_base, id); if (last_bdf < 0) return NULL; pci_seg = kzalloc(sizeof(struct amd_iommu_pci_seg), GFP_KERNEL); if (pci_seg == NULL) return NULL; pci_seg->last_bdf = last_bdf; DUMP_printk("PCI segment : 0x%0x, last bdf : 0x%04x\n", id, last_bdf); pci_seg->dev_table_size = tbl_size(DEV_TABLE_ENTRY_SIZE, last_bdf); pci_seg->alias_table_size = tbl_size(ALIAS_TABLE_ENTRY_SIZE, last_bdf); pci_seg->rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE, last_bdf); pci_seg->id = id; init_llist_head(&pci_seg->dev_data_list); INIT_LIST_HEAD(&pci_seg->unity_map); list_add_tail(&pci_seg->list, &amd_iommu_pci_seg_list); if (alloc_dev_table(pci_seg)) return NULL; if (alloc_alias_table(pci_seg)) return NULL; if (alloc_rlookup_table(pci_seg)) return NULL; return pci_seg; } static struct amd_iommu_pci_seg *__init get_pci_segment(u16 id, struct acpi_table_header *ivrs_base) { struct amd_iommu_pci_seg *pci_seg; for_each_pci_segment(pci_seg) { if (pci_seg->id == id) return pci_seg; } return alloc_pci_segment(id, ivrs_base); } static void __init free_pci_segments(void) { struct amd_iommu_pci_seg *pci_seg, *next; for_each_pci_segment_safe(pci_seg, next) { list_del(&pci_seg->list); free_irq_lookup_table(pci_seg); free_rlookup_table(pci_seg); free_alias_table(pci_seg); free_dev_table(pci_seg); kfree(pci_seg); } } static void __init free_iommu_one(struct amd_iommu *iommu) { free_cwwb_sem(iommu); free_command_buffer(iommu); free_event_buffer(iommu); free_ppr_log(iommu); free_ga_log(iommu); iommu_unmap_mmio_space(iommu); } static void __init free_iommu_all(void) { struct amd_iommu *iommu, *next; for_each_iommu_safe(iommu, next) { list_del(&iommu->list); free_iommu_one(iommu); kfree(iommu); } } /* * Family15h Model 10h-1fh erratum 746 (IOMMU Logging May Stall Translations) * Workaround: * BIOS should disable L2B micellaneous clock gating by setting * L2_L2B_CK_GATE_CONTROL[CKGateL2BMiscDisable](D0F2xF4_x90[2]) = 1b */ static void amd_iommu_erratum_746_workaround(struct amd_iommu *iommu) { u32 value; if ((boot_cpu_data.x86 != 0x15) || (boot_cpu_data.x86_model < 0x10) || (boot_cpu_data.x86_model > 0x1f)) return; pci_write_config_dword(iommu->dev, 0xf0, 0x90); pci_read_config_dword(iommu->dev, 0xf4, &value); if (value & BIT(2)) return; /* Select NB indirect register 0x90 and enable writing */ pci_write_config_dword(iommu->dev, 0xf0, 0x90 | (1 << 8)); pci_write_config_dword(iommu->dev, 0xf4, value | 0x4); pci_info(iommu->dev, "Applying erratum 746 workaround\n"); /* Clear the enable writing bit */ pci_write_config_dword(iommu->dev, 0xf0, 0x90); } /* * Family15h Model 30h-3fh (IOMMU Mishandles ATS Write Permission) * Workaround: * BIOS should enable ATS write permission check by setting * L2_DEBUG_3[AtsIgnoreIWDis](D0F2xF4_x47[0]) = 1b */ static void amd_iommu_ats_write_check_workaround(struct amd_iommu *iommu) { u32 value; if ((boot_cpu_data.x86 != 0x15) || (boot_cpu_data.x86_model < 0x30) || (boot_cpu_data.x86_model > 0x3f)) return; /* Test L2_DEBUG_3[AtsIgnoreIWDis] == 1 */ value = iommu_read_l2(iommu, 0x47); if (value & BIT(0)) return; /* Set L2_DEBUG_3[AtsIgnoreIWDis] = 1 */ iommu_write_l2(iommu, 0x47, value | BIT(0)); pci_info(iommu->dev, "Applying ATS write check workaround\n"); } /* * This function glues the initialization function for one IOMMU * together and also allocates the command buffer and programs the * hardware. It does NOT enable the IOMMU. This is done afterwards. */ static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h, struct acpi_table_header *ivrs_base) { struct amd_iommu_pci_seg *pci_seg; pci_seg = get_pci_segment(h->pci_seg, ivrs_base); if (pci_seg == NULL) return -ENOMEM; iommu->pci_seg = pci_seg; raw_spin_lock_init(&iommu->lock); iommu->cmd_sem_val = 0; /* Add IOMMU to internal data structures */ list_add_tail(&iommu->list, &amd_iommu_list); iommu->index = amd_iommus_present++; if (unlikely(iommu->index >= MAX_IOMMUS)) { WARN(1, "System has more IOMMUs than supported by this driver\n"); return -ENOSYS; } /* Index is fine - add IOMMU to the array */ amd_iommus[iommu->index] = iommu; /* * Copy data from ACPI table entry to the iommu struct */ iommu->devid = h->devid; iommu->cap_ptr = h->cap_ptr; iommu->mmio_phys = h->mmio_phys; switch (h->type) { case 0x10: /* Check if IVHD EFR contains proper max banks/counters */ if ((h->efr_attr != 0) && ((h->efr_attr & (0xF << 13)) != 0) && ((h->efr_attr & (0x3F << 17)) != 0)) iommu->mmio_phys_end = MMIO_REG_END_OFFSET; else iommu->mmio_phys_end = MMIO_CNTR_CONF_OFFSET; /* * Note: GA (128-bit IRTE) mode requires cmpxchg16b supports. * GAM also requires GA mode. Therefore, we need to * check cmpxchg16b support before enabling it. */ if (!boot_cpu_has(X86_FEATURE_CX16) || ((h->efr_attr & (0x1 << IOMMU_FEAT_GASUP_SHIFT)) == 0)) amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_LEGACY; break; case 0x11: case 0x40: if (h->efr_reg & (1 << 9)) iommu->mmio_phys_end = MMIO_REG_END_OFFSET; else iommu->mmio_phys_end = MMIO_CNTR_CONF_OFFSET; /* * Note: GA (128-bit IRTE) mode requires cmpxchg16b supports. * XT, GAM also requires GA mode. Therefore, we need to * check cmpxchg16b support before enabling them. */ if (!boot_cpu_has(X86_FEATURE_CX16) || ((h->efr_reg & (0x1 << IOMMU_EFR_GASUP_SHIFT)) == 0)) { amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_LEGACY; break; } if (h->efr_reg & BIT(IOMMU_EFR_XTSUP_SHIFT)) amd_iommu_xt_mode = IRQ_REMAP_X2APIC_MODE; early_iommu_features_init(iommu, h); break; default: return -EINVAL; } iommu->mmio_base = iommu_map_mmio_space(iommu->mmio_phys, iommu->mmio_phys_end); if (!iommu->mmio_base) return -ENOMEM; return init_iommu_from_acpi(iommu, h); } static int __init init_iommu_one_late(struct amd_iommu *iommu) { int ret; if (alloc_cwwb_sem(iommu)) return -ENOMEM; if (alloc_command_buffer(iommu)) return -ENOMEM; if (alloc_event_buffer(iommu)) return -ENOMEM; iommu->int_enabled = false; init_translation_status(iommu); if (translation_pre_enabled(iommu) && !is_kdump_kernel()) { iommu_disable(iommu); clear_translation_pre_enabled(iommu); pr_warn("Translation was enabled for IOMMU:%d but we are not in kdump mode\n", iommu->index); } if (amd_iommu_pre_enabled) amd_iommu_pre_enabled = translation_pre_enabled(iommu); if (amd_iommu_irq_remap) { ret = amd_iommu_create_irq_domain(iommu); if (ret) return ret; } /* * Make sure IOMMU is not considered to translate itself. The IVRS * table tells us so, but this is a lie! */ iommu->pci_seg->rlookup_table[iommu->devid] = NULL; return 0; } /** * get_highest_supported_ivhd_type - Look up the appropriate IVHD type * @ivrs: Pointer to the IVRS header * * This function search through all IVDB of the maximum supported IVHD */ static u8 get_highest_supported_ivhd_type(struct acpi_table_header *ivrs) { u8 *base = (u8 *)ivrs; struct ivhd_header *ivhd = (struct ivhd_header *) (base + IVRS_HEADER_LENGTH); u8 last_type = ivhd->type; u16 devid = ivhd->devid; while (((u8 *)ivhd - base < ivrs->length) && (ivhd->type <= ACPI_IVHD_TYPE_MAX_SUPPORTED)) { u8 *p = (u8 *) ivhd; if (ivhd->devid == devid) last_type = ivhd->type; ivhd = (struct ivhd_header *)(p + ivhd->length); } return last_type; } /* * Iterates over all IOMMU entries in the ACPI table, allocates the * IOMMU structure and initializes it with init_iommu_one() */ static int __init init_iommu_all(struct acpi_table_header *table) { u8 *p = (u8 *)table, *end = (u8 *)table; struct ivhd_header *h; struct amd_iommu *iommu; int ret; end += table->length; p += IVRS_HEADER_LENGTH; /* Phase 1: Process all IVHD blocks */ while (p < end) { h = (struct ivhd_header *)p; if (*p == amd_iommu_target_ivhd_type) { DUMP_printk("device: %04x:%02x:%02x.%01x cap: %04x " "flags: %01x info %04x\n", h->pci_seg, PCI_BUS_NUM(h->devid), PCI_SLOT(h->devid), PCI_FUNC(h->devid), h->cap_ptr, h->flags, h->info); DUMP_printk(" mmio-addr: %016llx\n", h->mmio_phys); iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL); if (iommu == NULL) return -ENOMEM; ret = init_iommu_one(iommu, h, table); if (ret) return ret; } p += h->length; } WARN_ON(p != end); /* Phase 2 : Early feature support check */ get_global_efr(); /* Phase 3 : Enabling IOMMU features */ for_each_iommu(iommu) { ret = init_iommu_one_late(iommu); if (ret) return ret; } return 0; } static void init_iommu_perf_ctr(struct amd_iommu *iommu) { u64 val; struct pci_dev *pdev = iommu->dev; if (!iommu_feature(iommu, FEATURE_PC)) return; amd_iommu_pc_present = true; pci_info(pdev, "IOMMU performance counters supported\n"); val = readl(iommu->mmio_base + MMIO_CNTR_CONF_OFFSET); iommu->max_banks = (u8) ((val >> 12) & 0x3f); iommu->max_counters = (u8) ((val >> 7) & 0xf); return; } static ssize_t amd_iommu_show_cap(struct device *dev, struct device_attribute *attr, char *buf) { struct amd_iommu *iommu = dev_to_amd_iommu(dev); return sprintf(buf, "%x\n", iommu->cap); } static DEVICE_ATTR(cap, S_IRUGO, amd_iommu_show_cap, NULL); static ssize_t amd_iommu_show_features(struct device *dev, struct device_attribute *attr, char *buf) { struct amd_iommu *iommu = dev_to_amd_iommu(dev); return sprintf(buf, "%llx:%llx\n", iommu->features2, iommu->features); } static DEVICE_ATTR(features, S_IRUGO, amd_iommu_show_features, NULL); static struct attribute *amd_iommu_attrs[] = { &dev_attr_cap.attr, &dev_attr_features.attr, NULL, }; static struct attribute_group amd_iommu_group = { .name = "amd-iommu", .attrs = amd_iommu_attrs, }; static const struct attribute_group *amd_iommu_groups[] = { &amd_iommu_group, NULL, }; /* * Note: IVHD 0x11 and 0x40 also contains exact copy * of the IOMMU Extended Feature Register [MMIO Offset 0030h]. * Default to EFR in IVHD since it is available sooner (i.e. before PCI init). */ static void __init late_iommu_features_init(struct amd_iommu *iommu) { u64 features, features2; if (!(iommu->cap & (1 << IOMMU_CAP_EFR))) return; /* read extended feature bits */ features = readq(iommu->mmio_base + MMIO_EXT_FEATURES); features2 = readq(iommu->mmio_base + MMIO_EXT_FEATURES2); if (!iommu->features) { iommu->features = features; iommu->features2 = features2; return; } /* * Sanity check and warn if EFR values from * IVHD and MMIO conflict. */ if (features != iommu->features || features2 != iommu->features2) { pr_warn(FW_WARN "EFR mismatch. Use IVHD EFR (%#llx : %#llx), EFR2 (%#llx : %#llx).\n", features, iommu->features, features2, iommu->features2); } } static int __init iommu_init_pci(struct amd_iommu *iommu) { int cap_ptr = iommu->cap_ptr; int ret; iommu->dev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(iommu->devid), iommu->devid & 0xff); if (!iommu->dev) return -ENODEV; /* Prevent binding other PCI device drivers to IOMMU devices */ iommu->dev->match_driver = false; pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET, &iommu->cap); if (!(iommu->cap & (1 << IOMMU_CAP_IOTLB))) amd_iommu_iotlb_sup = false; late_iommu_features_init(iommu); if (iommu_feature(iommu, FEATURE_GT)) { int glxval; u32 max_pasid; u64 pasmax; pasmax = iommu->features & FEATURE_PASID_MASK; pasmax >>= FEATURE_PASID_SHIFT; max_pasid = (1 << (pasmax + 1)) - 1; amd_iommu_max_pasid = min(amd_iommu_max_pasid, max_pasid); BUG_ON(amd_iommu_max_pasid & ~PASID_MASK); glxval = iommu->features & FEATURE_GLXVAL_MASK; glxval >>= FEATURE_GLXVAL_SHIFT; if (amd_iommu_max_glx_val == -1) amd_iommu_max_glx_val = glxval; else amd_iommu_max_glx_val = min(amd_iommu_max_glx_val, glxval); } if (iommu_feature(iommu, FEATURE_GT) && iommu_feature(iommu, FEATURE_PPR)) { iommu->is_iommu_v2 = true; amd_iommu_v2_present = true; } if (iommu_feature(iommu, FEATURE_PPR) && alloc_ppr_log(iommu)) return -ENOMEM; if (iommu->cap & (1UL << IOMMU_CAP_NPCACHE)) { pr_info("Using strict mode due to virtualization\n"); iommu_set_dma_strict(); amd_iommu_np_cache = true; } init_iommu_perf_ctr(iommu); if (amd_iommu_pgtable == AMD_IOMMU_V2) { if (!iommu_feature(iommu, FEATURE_GIOSUP) || !iommu_feature(iommu, FEATURE_GT)) { pr_warn("Cannot enable v2 page table for DMA-API. Fallback to v1.\n"); amd_iommu_pgtable = AMD_IOMMU_V1; } else if (iommu_default_passthrough()) { pr_warn("V2 page table doesn't support passthrough mode. Fallback to v1.\n"); amd_iommu_pgtable = AMD_IOMMU_V1; } } if (is_rd890_iommu(iommu->dev)) { int i, j; iommu->root_pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, iommu->dev->bus->number, PCI_DEVFN(0, 0)); /* * Some rd890 systems may not be fully reconfigured by the * BIOS, so it's necessary for us to store this information so * it can be reprogrammed on resume */ pci_read_config_dword(iommu->dev, iommu->cap_ptr + 4, &iommu->stored_addr_lo); pci_read_config_dword(iommu->dev, iommu->cap_ptr + 8, &iommu->stored_addr_hi); /* Low bit locks writes to configuration space */ iommu->stored_addr_lo &= ~1; for (i = 0; i < 6; i++) for (j = 0; j < 0x12; j++) iommu->stored_l1[i][j] = iommu_read_l1(iommu, i, j); for (i = 0; i < 0x83; i++) iommu->stored_l2[i] = iommu_read_l2(iommu, i); } amd_iommu_erratum_746_workaround(iommu); amd_iommu_ats_write_check_workaround(iommu); ret = iommu_device_sysfs_add(&iommu->iommu, &iommu->dev->dev, amd_iommu_groups, "ivhd%d", iommu->index); if (ret) return ret; iommu_device_register(&iommu->iommu, &amd_iommu_ops, NULL); return pci_enable_device(iommu->dev); } static void print_iommu_info(void) { static const char * const feat_str[] = { "PreF", "PPR", "X2APIC", "NX", "GT", "[5]", "IA", "GA", "HE", "PC" }; struct amd_iommu *iommu; for_each_iommu(iommu) { struct pci_dev *pdev = iommu->dev; int i; pci_info(pdev, "Found IOMMU cap 0x%x\n", iommu->cap_ptr); if (iommu->cap & (1 << IOMMU_CAP_EFR)) { pr_info("Extended features (%#llx, %#llx):", iommu->features, iommu->features2); for (i = 0; i < ARRAY_SIZE(feat_str); ++i) { if (iommu_feature(iommu, (1ULL << i))) pr_cont(" %s", feat_str[i]); } if (iommu->features & FEATURE_GAM_VAPIC) pr_cont(" GA_vAPIC"); if (iommu->features & FEATURE_SNP) pr_cont(" SNP"); pr_cont("\n"); } } if (irq_remapping_enabled) { pr_info("Interrupt remapping enabled\n"); if (amd_iommu_xt_mode == IRQ_REMAP_X2APIC_MODE) pr_info("X2APIC enabled\n"); } if (amd_iommu_pgtable == AMD_IOMMU_V2) pr_info("V2 page table enabled\n"); } static int __init amd_iommu_init_pci(void) { struct amd_iommu *iommu; struct amd_iommu_pci_seg *pci_seg; int ret; for_each_iommu(iommu) { ret = iommu_init_pci(iommu); if (ret) { pr_err("IOMMU%d: Failed to initialize IOMMU Hardware (error=%d)!\n", iommu->index, ret); goto out; } /* Need to setup range after PCI init */ iommu_set_cwwb_range(iommu); } /* * Order is important here to make sure any unity map requirements are * fulfilled. The unity mappings are created and written to the device * table during the iommu_init_pci() call. * * After that we call init_device_table_dma() to make sure any * uninitialized DTE will block DMA, and in the end we flush the caches * of all IOMMUs to make sure the changes to the device table are * active. */ for_each_pci_segment(pci_seg) init_device_table_dma(pci_seg); for_each_iommu(iommu) iommu_flush_all_caches(iommu); print_iommu_info(); out: return ret; } /**************************************************************************** * * The following functions initialize the MSI interrupts for all IOMMUs * in the system. It's a bit challenging because there could be multiple * IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per * pci_dev. * ****************************************************************************/ static int iommu_setup_msi(struct amd_iommu *iommu) { int r; r = pci_enable_msi(iommu->dev); if (r) return r; r = request_threaded_irq(iommu->dev->irq, amd_iommu_int_handler, amd_iommu_int_thread, 0, "AMD-Vi", iommu); if (r) { pci_disable_msi(iommu->dev); return r; } return 0; } union intcapxt { u64 capxt; struct { u64 reserved_0 : 2, dest_mode_logical : 1, reserved_1 : 5, destid_0_23 : 24, vector : 8, reserved_2 : 16, destid_24_31 : 8; }; } __attribute__ ((packed)); static struct irq_chip intcapxt_controller; static int intcapxt_irqdomain_activate(struct irq_domain *domain, struct irq_data *irqd, bool reserve) { return 0; } static void intcapxt_irqdomain_deactivate(struct irq_domain *domain, struct irq_data *irqd) { } static int intcapxt_irqdomain_alloc(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs, void *arg) { struct irq_alloc_info *info = arg; int i, ret; if (!info || info->type != X86_IRQ_ALLOC_TYPE_AMDVI) return -EINVAL; ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg); if (ret < 0) return ret; for (i = virq; i < virq + nr_irqs; i++) { struct irq_data *irqd = irq_domain_get_irq_data(domain, i); irqd->chip = &intcapxt_controller; irqd->chip_data = info->data; __irq_set_handler(i, handle_edge_irq, 0, "edge"); } return ret; } static void intcapxt_irqdomain_free(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs) { irq_domain_free_irqs_top(domain, virq, nr_irqs); } static void intcapxt_unmask_irq(struct irq_data *irqd) { struct amd_iommu *iommu = irqd->chip_data; struct irq_cfg *cfg = irqd_cfg(irqd); union intcapxt xt; xt.capxt = 0ULL; xt.dest_mode_logical = apic->dest_mode_logical; xt.vector = cfg->vector; xt.destid_0_23 = cfg->dest_apicid & GENMASK(23, 0); xt.destid_24_31 = cfg->dest_apicid >> 24; /** * Current IOMMU implementation uses the same IRQ for all * 3 IOMMU interrupts. */ writeq(xt.capxt, iommu->mmio_base + MMIO_INTCAPXT_EVT_OFFSET); writeq(xt.capxt, iommu->mmio_base + MMIO_INTCAPXT_PPR_OFFSET); writeq(xt.capxt, iommu->mmio_base + MMIO_INTCAPXT_GALOG_OFFSET); } static void intcapxt_mask_irq(struct irq_data *irqd) { struct amd_iommu *iommu = irqd->chip_data; writeq(0, iommu->mmio_base + MMIO_INTCAPXT_EVT_OFFSET); writeq(0, iommu->mmio_base + MMIO_INTCAPXT_PPR_OFFSET); writeq(0, iommu->mmio_base + MMIO_INTCAPXT_GALOG_OFFSET); } static int intcapxt_set_affinity(struct irq_data *irqd, const struct cpumask *mask, bool force) { struct irq_data *parent = irqd->parent_data; int ret; ret = parent->chip->irq_set_affinity(parent, mask, force); if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE) return ret; return 0; } static int intcapxt_set_wake(struct irq_data *irqd, unsigned int on) { return on ? -EOPNOTSUPP : 0; } static struct irq_chip intcapxt_controller = { .name = "IOMMU-MSI", .irq_unmask = intcapxt_unmask_irq, .irq_mask = intcapxt_mask_irq, .irq_ack = irq_chip_ack_parent, .irq_retrigger = irq_chip_retrigger_hierarchy, .irq_set_affinity = intcapxt_set_affinity, .irq_set_wake = intcapxt_set_wake, .flags = IRQCHIP_MASK_ON_SUSPEND, }; static const struct irq_domain_ops intcapxt_domain_ops = { .alloc = intcapxt_irqdomain_alloc, .free = intcapxt_irqdomain_free, .activate = intcapxt_irqdomain_activate, .deactivate = intcapxt_irqdomain_deactivate, }; static struct irq_domain *iommu_irqdomain; static struct irq_domain *iommu_get_irqdomain(void) { struct fwnode_handle *fn; /* No need for locking here (yet) as the init is single-threaded */ if (iommu_irqdomain) return iommu_irqdomain; fn = irq_domain_alloc_named_fwnode("AMD-Vi-MSI"); if (!fn) return NULL; iommu_irqdomain = irq_domain_create_hierarchy(x86_vector_domain, 0, 0, fn, &intcapxt_domain_ops, NULL); if (!iommu_irqdomain) irq_domain_free_fwnode(fn); return iommu_irqdomain; } static int iommu_setup_intcapxt(struct amd_iommu *iommu) { struct irq_domain *domain; struct irq_alloc_info info; int irq, ret; domain = iommu_get_irqdomain(); if (!domain) return -ENXIO; init_irq_alloc_info(&info, NULL); info.type = X86_IRQ_ALLOC_TYPE_AMDVI; info.data = iommu; irq = irq_domain_alloc_irqs(domain, 1, NUMA_NO_NODE, &info); if (irq < 0) { irq_domain_remove(domain); return irq; } ret = request_threaded_irq(irq, amd_iommu_int_handler, amd_iommu_int_thread, 0, "AMD-Vi", iommu); if (ret) { irq_domain_free_irqs(irq, 1); irq_domain_remove(domain); return ret; } return 0; } static int iommu_init_irq(struct amd_iommu *iommu) { int ret; if (iommu->int_enabled) goto enable_faults; if (amd_iommu_xt_mode == IRQ_REMAP_X2APIC_MODE) ret = iommu_setup_intcapxt(iommu); else if (iommu->dev->msi_cap) ret = iommu_setup_msi(iommu); else ret = -ENODEV; if (ret) return ret; iommu->int_enabled = true; enable_faults: if (amd_iommu_xt_mode == IRQ_REMAP_X2APIC_MODE) iommu_feature_enable(iommu, CONTROL_INTCAPXT_EN); iommu_feature_enable(iommu, CONTROL_EVT_INT_EN); if (iommu->ppr_log != NULL) iommu_feature_enable(iommu, CONTROL_PPRINT_EN); return 0; } /**************************************************************************** * * The next functions belong to the third pass of parsing the ACPI * table. In this last pass the memory mapping requirements are * gathered (like exclusion and unity mapping ranges). * ****************************************************************************/ static void __init free_unity_maps(void) { struct unity_map_entry *entry, *next; struct amd_iommu_pci_seg *p, *pci_seg; for_each_pci_segment_safe(pci_seg, p) { list_for_each_entry_safe(entry, next, &pci_seg->unity_map, list) { list_del(&entry->list); kfree(entry); } } } /* called for unity map ACPI definition */ static int __init init_unity_map_range(struct ivmd_header *m, struct acpi_table_header *ivrs_base) { struct unity_map_entry *e = NULL; struct amd_iommu_pci_seg *pci_seg; char *s; pci_seg = get_pci_segment(m->pci_seg, ivrs_base); if (pci_seg == NULL) return -ENOMEM; e = kzalloc(sizeof(*e), GFP_KERNEL); if (e == NULL) return -ENOMEM; switch (m->type) { default: kfree(e); return 0; case ACPI_IVMD_TYPE: s = "IVMD_TYPEi\t\t\t"; e->devid_start = e->devid_end = m->devid; break; case ACPI_IVMD_TYPE_ALL: s = "IVMD_TYPE_ALL\t\t"; e->devid_start = 0; e->devid_end = pci_seg->last_bdf; break; case ACPI_IVMD_TYPE_RANGE: s = "IVMD_TYPE_RANGE\t\t"; e->devid_start = m->devid; e->devid_end = m->aux; break; } e->address_start = PAGE_ALIGN(m->range_start); e->address_end = e->address_start + PAGE_ALIGN(m->range_length); e->prot = m->flags >> 1; /* * Treat per-device exclusion ranges as r/w unity-mapped regions * since some buggy BIOSes might lead to the overwritten exclusion * range (exclusion_start and exclusion_length members). This * happens when there are multiple exclusion ranges (IVMD entries) * defined in ACPI table. */ if (m->flags & IVMD_FLAG_EXCL_RANGE) e->prot = (IVMD_FLAG_IW | IVMD_FLAG_IR) >> 1; DUMP_printk("%s devid_start: %04x:%02x:%02x.%x devid_end: " "%04x:%02x:%02x.%x range_start: %016llx range_end: %016llx" " flags: %x\n", s, m->pci_seg, PCI_BUS_NUM(e->devid_start), PCI_SLOT(e->devid_start), PCI_FUNC(e->devid_start), m->pci_seg, PCI_BUS_NUM(e->devid_end), PCI_SLOT(e->devid_end), PCI_FUNC(e->devid_end), e->address_start, e->address_end, m->flags); list_add_tail(&e->list, &pci_seg->unity_map); return 0; } /* iterates over all memory definitions we find in the ACPI table */ static int __init init_memory_definitions(struct acpi_table_header *table) { u8 *p = (u8 *)table, *end = (u8 *)table; struct ivmd_header *m; end += table->length; p += IVRS_HEADER_LENGTH; while (p < end) { m = (struct ivmd_header *)p; if (m->flags & (IVMD_FLAG_UNITY_MAP | IVMD_FLAG_EXCL_RANGE)) init_unity_map_range(m, table); p += m->length; } return 0; } /* * Init the device table to not allow DMA access for devices */ static void init_device_table_dma(struct amd_iommu_pci_seg *pci_seg) { u32 devid; struct dev_table_entry *dev_table = pci_seg->dev_table; if (dev_table == NULL) return; for (devid = 0; devid <= pci_seg->last_bdf; ++devid) { __set_dev_entry_bit(dev_table, devid, DEV_ENTRY_VALID); if (!amd_iommu_snp_en) __set_dev_entry_bit(dev_table, devid, DEV_ENTRY_TRANSLATION); } } static void __init uninit_device_table_dma(struct amd_iommu_pci_seg *pci_seg) { u32 devid; struct dev_table_entry *dev_table = pci_seg->dev_table; if (dev_table == NULL) return; for (devid = 0; devid <= pci_seg->last_bdf; ++devid) { dev_table[devid].data[0] = 0ULL; dev_table[devid].data[1] = 0ULL; } } static void init_device_table(void) { struct amd_iommu_pci_seg *pci_seg; u32 devid; if (!amd_iommu_irq_remap) return; for_each_pci_segment(pci_seg) { for (devid = 0; devid <= pci_seg->last_bdf; ++devid) __set_dev_entry_bit(pci_seg->dev_table, devid, DEV_ENTRY_IRQ_TBL_EN); } } static void iommu_init_flags(struct amd_iommu *iommu) { iommu->acpi_flags & IVHD_FLAG_HT_TUN_EN_MASK ? iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) : iommu_feature_disable(iommu, CONTROL_HT_TUN_EN); iommu->acpi_flags & IVHD_FLAG_PASSPW_EN_MASK ? iommu_feature_enable(iommu, CONTROL_PASSPW_EN) : iommu_feature_disable(iommu, CONTROL_PASSPW_EN); iommu->acpi_flags & IVHD_FLAG_RESPASSPW_EN_MASK ? iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) : iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN); iommu->acpi_flags & IVHD_FLAG_ISOC_EN_MASK ? iommu_feature_enable(iommu, CONTROL_ISOC_EN) : iommu_feature_disable(iommu, CONTROL_ISOC_EN); /* * make IOMMU memory accesses cache coherent */ iommu_feature_enable(iommu, CONTROL_COHERENT_EN); /* Set IOTLB invalidation timeout to 1s */ iommu_set_inv_tlb_timeout(iommu, CTRL_INV_TO_1S); } static void iommu_apply_resume_quirks(struct amd_iommu *iommu) { int i, j; u32 ioc_feature_control; struct pci_dev *pdev = iommu->root_pdev; /* RD890 BIOSes may not have completely reconfigured the iommu */ if (!is_rd890_iommu(iommu->dev) || !pdev) return; /* * First, we need to ensure that the iommu is enabled. This is * controlled by a register in the northbridge */ /* Select Northbridge indirect register 0x75 and enable writing */ pci_write_config_dword(pdev, 0x60, 0x75 | (1 << 7)); pci_read_config_dword(pdev, 0x64, &ioc_feature_control); /* Enable the iommu */ if (!(ioc_feature_control & 0x1)) pci_write_config_dword(pdev, 0x64, ioc_feature_control | 1); /* Restore the iommu BAR */ pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4, iommu->stored_addr_lo); pci_write_config_dword(iommu->dev, iommu->cap_ptr + 8, iommu->stored_addr_hi); /* Restore the l1 indirect regs for each of the 6 l1s */ for (i = 0; i < 6; i++) for (j = 0; j < 0x12; j++) iommu_write_l1(iommu, i, j, iommu->stored_l1[i][j]); /* Restore the l2 indirect regs */ for (i = 0; i < 0x83; i++) iommu_write_l2(iommu, i, iommu->stored_l2[i]); /* Lock PCI setup registers */ pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4, iommu->stored_addr_lo | 1); } static void iommu_enable_ga(struct amd_iommu *iommu) { #ifdef CONFIG_IRQ_REMAP switch (amd_iommu_guest_ir) { case AMD_IOMMU_GUEST_IR_VAPIC: case AMD_IOMMU_GUEST_IR_LEGACY_GA: iommu_feature_enable(iommu, CONTROL_GA_EN); iommu->irte_ops = &irte_128_ops; break; default: iommu->irte_ops = &irte_32_ops; break; } #endif } static void early_enable_iommu(struct amd_iommu *iommu) { iommu_disable(iommu); iommu_init_flags(iommu); iommu_set_device_table(iommu); iommu_enable_command_buffer(iommu); iommu_enable_event_buffer(iommu); iommu_set_exclusion_range(iommu); iommu_enable_ga(iommu); iommu_enable_xt(iommu); iommu_enable(iommu); iommu_flush_all_caches(iommu); } /* * This function finally enables all IOMMUs found in the system after * they have been initialized. * * Or if in kdump kernel and IOMMUs are all pre-enabled, try to copy * the old content of device table entries. Not this case or copy failed, * just continue as normal kernel does. */ static void early_enable_iommus(void) { struct amd_iommu *iommu; struct amd_iommu_pci_seg *pci_seg; if (!copy_device_table()) { /* * If come here because of failure in copying device table from old * kernel with all IOMMUs enabled, print error message and try to * free allocated old_dev_tbl_cpy. */ if (amd_iommu_pre_enabled) pr_err("Failed to copy DEV table from previous kernel.\n"); for_each_pci_segment(pci_seg) { if (pci_seg->old_dev_tbl_cpy != NULL) { free_pages((unsigned long)pci_seg->old_dev_tbl_cpy, get_order(pci_seg->dev_table_size)); pci_seg->old_dev_tbl_cpy = NULL; } } for_each_iommu(iommu) { clear_translation_pre_enabled(iommu); early_enable_iommu(iommu); } } else { pr_info("Copied DEV table from previous kernel.\n"); for_each_pci_segment(pci_seg) { free_pages((unsigned long)pci_seg->dev_table, get_order(pci_seg->dev_table_size)); pci_seg->dev_table = pci_seg->old_dev_tbl_cpy; } for_each_iommu(iommu) { iommu_disable_command_buffer(iommu); iommu_disable_event_buffer(iommu); iommu_enable_command_buffer(iommu); iommu_enable_event_buffer(iommu); iommu_enable_ga(iommu); iommu_enable_xt(iommu); iommu_set_device_table(iommu); iommu_flush_all_caches(iommu); } } } static void enable_iommus_v2(void) { struct amd_iommu *iommu; for_each_iommu(iommu) { iommu_enable_ppr_log(iommu); iommu_enable_gt(iommu); } } static void enable_iommus_vapic(void) { #ifdef CONFIG_IRQ_REMAP u32 status, i; struct amd_iommu *iommu; for_each_iommu(iommu) { /* * Disable GALog if already running. It could have been enabled * in the previous boot before kdump. */ status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); if (!(status & MMIO_STATUS_GALOG_RUN_MASK)) continue; iommu_feature_disable(iommu, CONTROL_GALOG_EN); iommu_feature_disable(iommu, CONTROL_GAINT_EN); /* * Need to set and poll check the GALOGRun bit to zero before * we can set/ modify GA Log registers safely. */ for (i = 0; i < LOOP_TIMEOUT; ++i) { status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); if (!(status & MMIO_STATUS_GALOG_RUN_MASK)) break; udelay(10); } if (WARN_ON(i >= LOOP_TIMEOUT)) return; } if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) && !check_feature_on_all_iommus(FEATURE_GAM_VAPIC)) { amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_LEGACY_GA; return; } if (amd_iommu_snp_en && !FEATURE_SNPAVICSUP_GAM(amd_iommu_efr2)) { pr_warn("Force to disable Virtual APIC due to SNP\n"); amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_LEGACY_GA; return; } /* Enabling GAM and SNPAVIC support */ for_each_iommu(iommu) { if (iommu_init_ga_log(iommu) || iommu_ga_log_enable(iommu)) return; iommu_feature_enable(iommu, CONTROL_GAM_EN); if (amd_iommu_snp_en) iommu_feature_enable(iommu, CONTROL_SNPAVIC_EN); } amd_iommu_irq_ops.capability |= (1 << IRQ_POSTING_CAP); pr_info("Virtual APIC enabled\n"); #endif } static void enable_iommus(void) { early_enable_iommus(); enable_iommus_vapic(); enable_iommus_v2(); } static void disable_iommus(void) { struct amd_iommu *iommu; for_each_iommu(iommu) iommu_disable(iommu); #ifdef CONFIG_IRQ_REMAP if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) amd_iommu_irq_ops.capability &= ~(1 << IRQ_POSTING_CAP); #endif } /* * Suspend/Resume support * disable suspend until real resume implemented */ static void amd_iommu_resume(void) { struct amd_iommu *iommu; for_each_iommu(iommu) iommu_apply_resume_quirks(iommu); /* re-load the hardware */ enable_iommus(); amd_iommu_enable_interrupts(); } static int amd_iommu_suspend(void) { /* disable IOMMUs to go out of the way for BIOS */ disable_iommus(); return 0; } static struct syscore_ops amd_iommu_syscore_ops = { .suspend = amd_iommu_suspend, .resume = amd_iommu_resume, }; static void __init free_iommu_resources(void) { kmem_cache_destroy(amd_iommu_irq_cache); amd_iommu_irq_cache = NULL; free_iommu_all(); free_pci_segments(); } /* SB IOAPIC is always on this device in AMD systems */ #define IOAPIC_SB_DEVID ((0x00 << 8) | PCI_DEVFN(0x14, 0)) static bool __init check_ioapic_information(void) { const char *fw_bug = FW_BUG; bool ret, has_sb_ioapic; int idx; has_sb_ioapic = false; ret = false; /* * If we have map overrides on the kernel command line the * messages in this function might not describe firmware bugs * anymore - so be careful */ if (cmdline_maps) fw_bug = ""; for (idx = 0; idx < nr_ioapics; idx++) { int devid, id = mpc_ioapic_id(idx); devid = get_ioapic_devid(id); if (devid < 0) { pr_err("%s: IOAPIC[%d] not in IVRS table\n", fw_bug, id); ret = false; } else if (devid == IOAPIC_SB_DEVID) { has_sb_ioapic = true; ret = true; } } if (!has_sb_ioapic) { /* * We expect the SB IOAPIC to be listed in the IVRS * table. The system timer is connected to the SB IOAPIC * and if we don't have it in the list the system will * panic at boot time. This situation usually happens * when the BIOS is buggy and provides us the wrong * device id for the IOAPIC in the system. */ pr_err("%s: No southbridge IOAPIC found\n", fw_bug); } if (!ret) pr_err("Disabling interrupt remapping\n"); return ret; } static void __init free_dma_resources(void) { free_pages((unsigned long)amd_iommu_pd_alloc_bitmap, get_order(MAX_DOMAIN_ID/8)); amd_iommu_pd_alloc_bitmap = NULL; free_unity_maps(); } static void __init ivinfo_init(void *ivrs) { amd_iommu_ivinfo = *((u32 *)(ivrs + IOMMU_IVINFO_OFFSET)); } /* * This is the hardware init function for AMD IOMMU in the system. * This function is called either from amd_iommu_init or from the interrupt * remapping setup code. * * This function basically parses the ACPI table for AMD IOMMU (IVRS) * four times: * * 1 pass) Discover the most comprehensive IVHD type to use. * * 2 pass) Find the highest PCI device id the driver has to handle. * Upon this information the size of the data structures is * determined that needs to be allocated. * * 3 pass) Initialize the data structures just allocated with the * information in the ACPI table about available AMD IOMMUs * in the system. It also maps the PCI devices in the * system to specific IOMMUs * * 4 pass) After the basic data structures are allocated and * initialized we update them with information about memory * remapping requirements parsed out of the ACPI table in * this last pass. * * After everything is set up the IOMMUs are enabled and the necessary * hotplug and suspend notifiers are registered. */ static int __init early_amd_iommu_init(void) { struct acpi_table_header *ivrs_base; int remap_cache_sz, ret; acpi_status status; if (!amd_iommu_detected) return -ENODEV; status = acpi_get_table("IVRS", 0, &ivrs_base); if (status == AE_NOT_FOUND) return -ENODEV; else if (ACPI_FAILURE(status)) { const char *err = acpi_format_exception(status); pr_err("IVRS table error: %s\n", err); return -EINVAL; } /* * Validate checksum here so we don't need to do it when * we actually parse the table */ ret = check_ivrs_checksum(ivrs_base); if (ret) goto out; ivinfo_init(ivrs_base); amd_iommu_target_ivhd_type = get_highest_supported_ivhd_type(ivrs_base); DUMP_printk("Using IVHD type %#x\n", amd_iommu_target_ivhd_type); /* Device table - directly used by all IOMMUs */ ret = -ENOMEM; amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages( GFP_KERNEL | __GFP_ZERO, get_order(MAX_DOMAIN_ID/8)); if (amd_iommu_pd_alloc_bitmap == NULL) goto out; /* * never allocate domain 0 because its used as the non-allocated and * error value placeholder */ __set_bit(0, amd_iommu_pd_alloc_bitmap); /* * now the data structures are allocated and basically initialized * start the real acpi table scan */ ret = init_iommu_all(ivrs_base); if (ret) goto out; /* Disable any previously enabled IOMMUs */ if (!is_kdump_kernel() || amd_iommu_disabled) disable_iommus(); if (amd_iommu_irq_remap) amd_iommu_irq_remap = check_ioapic_information(); if (amd_iommu_irq_remap) { struct amd_iommu_pci_seg *pci_seg; /* * Interrupt remapping enabled, create kmem_cache for the * remapping tables. */ ret = -ENOMEM; if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir)) remap_cache_sz = MAX_IRQS_PER_TABLE * sizeof(u32); else remap_cache_sz = MAX_IRQS_PER_TABLE * (sizeof(u64) * 2); amd_iommu_irq_cache = kmem_cache_create("irq_remap_cache", remap_cache_sz, DTE_INTTAB_ALIGNMENT, 0, NULL); if (!amd_iommu_irq_cache) goto out; for_each_pci_segment(pci_seg) { if (alloc_irq_lookup_table(pci_seg)) goto out; } } ret = init_memory_definitions(ivrs_base); if (ret) goto out; /* init the device table */ init_device_table(); out: /* Don't leak any ACPI memory */ acpi_put_table(ivrs_base); return ret; } static int amd_iommu_enable_interrupts(void) { struct amd_iommu *iommu; int ret = 0; for_each_iommu(iommu) { ret = iommu_init_irq(iommu); if (ret) goto out; } out: return ret; } static bool __init detect_ivrs(void) { struct acpi_table_header *ivrs_base; acpi_status status; int i; status = acpi_get_table("IVRS", 0, &ivrs_base); if (status == AE_NOT_FOUND) return false; else if (ACPI_FAILURE(status)) { const char *err = acpi_format_exception(status); pr_err("IVRS table error: %s\n", err); return false; } acpi_put_table(ivrs_base); if (amd_iommu_force_enable) goto out; /* Don't use IOMMU if there is Stoney Ridge graphics */ for (i = 0; i < 32; i++) { u32 pci_id; pci_id = read_pci_config(0, i, 0, 0); if ((pci_id & 0xffff) == 0x1002 && (pci_id >> 16) == 0x98e4) { pr_info("Disable IOMMU on Stoney Ridge\n"); return false; } } out: /* Make sure ACS will be enabled during PCI probe */ pci_request_acs(); return true; } /**************************************************************************** * * AMD IOMMU Initialization State Machine * ****************************************************************************/ static int __init state_next(void) { int ret = 0; switch (init_state) { case IOMMU_START_STATE: if (!detect_ivrs()) { init_state = IOMMU_NOT_FOUND; ret = -ENODEV; } else { init_state = IOMMU_IVRS_DETECTED; } break; case IOMMU_IVRS_DETECTED: if (amd_iommu_disabled) { init_state = IOMMU_CMDLINE_DISABLED; ret = -EINVAL; } else { ret = early_amd_iommu_init(); init_state = ret ? IOMMU_INIT_ERROR : IOMMU_ACPI_FINISHED; } break; case IOMMU_ACPI_FINISHED: early_enable_iommus(); x86_platform.iommu_shutdown = disable_iommus; init_state = IOMMU_ENABLED; break; case IOMMU_ENABLED: register_syscore_ops(&amd_iommu_syscore_ops); ret = amd_iommu_init_pci(); init_state = ret ? IOMMU_INIT_ERROR : IOMMU_PCI_INIT; enable_iommus_vapic(); enable_iommus_v2(); break; case IOMMU_PCI_INIT: ret = amd_iommu_enable_interrupts(); init_state = ret ? IOMMU_INIT_ERROR : IOMMU_INTERRUPTS_EN; break; case IOMMU_INTERRUPTS_EN: init_state = IOMMU_INITIALIZED; break; case IOMMU_INITIALIZED: /* Nothing to do */ break; case IOMMU_NOT_FOUND: case IOMMU_INIT_ERROR: case IOMMU_CMDLINE_DISABLED: /* Error states => do nothing */ ret = -EINVAL; break; default: /* Unknown state */ BUG(); } if (ret) { free_dma_resources(); if (!irq_remapping_enabled) { disable_iommus(); free_iommu_resources(); } else { struct amd_iommu *iommu; struct amd_iommu_pci_seg *pci_seg; for_each_pci_segment(pci_seg) uninit_device_table_dma(pci_seg); for_each_iommu(iommu) iommu_flush_all_caches(iommu); } } return ret; } static int __init iommu_go_to_state(enum iommu_init_state state) { int ret = -EINVAL; while (init_state != state) { if (init_state == IOMMU_NOT_FOUND || init_state == IOMMU_INIT_ERROR || init_state == IOMMU_CMDLINE_DISABLED) break; ret = state_next(); } return ret; } #ifdef CONFIG_IRQ_REMAP int __init amd_iommu_prepare(void) { int ret; amd_iommu_irq_remap = true; ret = iommu_go_to_state(IOMMU_ACPI_FINISHED); if (ret) { amd_iommu_irq_remap = false; return ret; } return amd_iommu_irq_remap ? 0 : -ENODEV; } int __init amd_iommu_enable(void) { int ret; ret = iommu_go_to_state(IOMMU_ENABLED); if (ret) return ret; irq_remapping_enabled = 1; return amd_iommu_xt_mode; } void amd_iommu_disable(void) { amd_iommu_suspend(); } int amd_iommu_reenable(int mode) { amd_iommu_resume(); return 0; } int __init amd_iommu_enable_faulting(void) { /* We enable MSI later when PCI is initialized */ return 0; } #endif /* * This is the core init function for AMD IOMMU hardware in the system. * This function is called from the generic x86 DMA layer initialization * code. */ static int __init amd_iommu_init(void) { struct amd_iommu *iommu; int ret; ret = iommu_go_to_state(IOMMU_INITIALIZED); #ifdef CONFIG_GART_IOMMU if (ret && list_empty(&amd_iommu_list)) { /* * We failed to initialize the AMD IOMMU - try fallback * to GART if possible. */ gart_iommu_init(); } #endif for_each_iommu(iommu) amd_iommu_debugfs_setup(iommu); return ret; } static bool amd_iommu_sme_check(void) { if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT) || (boot_cpu_data.x86 != 0x17)) return true; /* For Fam17h, a specific level of support is required */ if (boot_cpu_data.microcode >= 0x08001205) return true; if ((boot_cpu_data.microcode >= 0x08001126) && (boot_cpu_data.microcode <= 0x080011ff)) return true; pr_notice("IOMMU not currently supported when SME is active\n"); return false; } /**************************************************************************** * * Early detect code. This code runs at IOMMU detection time in the DMA * layer. It just looks if there is an IVRS ACPI table to detect AMD * IOMMUs * ****************************************************************************/ int __init amd_iommu_detect(void) { int ret; if (no_iommu || (iommu_detected && !gart_iommu_aperture)) return -ENODEV; if (!amd_iommu_sme_check()) return -ENODEV; ret = iommu_go_to_state(IOMMU_IVRS_DETECTED); if (ret) return ret; amd_iommu_detected = true; iommu_detected = 1; x86_init.iommu.iommu_init = amd_iommu_init; return 1; } /**************************************************************************** * * Parsing functions for the AMD IOMMU specific kernel command line * options. * ****************************************************************************/ static int __init parse_amd_iommu_dump(char *str) { amd_iommu_dump = true; return 1; } static int __init parse_amd_iommu_intr(char *str) { for (; *str; ++str) { if (strncmp(str, "legacy", 6) == 0) { amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_LEGACY_GA; break; } if (strncmp(str, "vapic", 5) == 0) { amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_VAPIC; break; } } return 1; } static int __init parse_amd_iommu_options(char *str) { if (!str) return -EINVAL; while (*str) { if (strncmp(str, "fullflush", 9) == 0) { pr_warn("amd_iommu=fullflush deprecated; use iommu.strict=1 instead\n"); iommu_set_dma_strict(); } else if (strncmp(str, "force_enable", 12) == 0) { amd_iommu_force_enable = true; } else if (strncmp(str, "off", 3) == 0) { amd_iommu_disabled = true; } else if (strncmp(str, "force_isolation", 15) == 0) { amd_iommu_force_isolation = true; } else if (strncmp(str, "pgtbl_v1", 8) == 0) { amd_iommu_pgtable = AMD_IOMMU_V1; } else if (strncmp(str, "pgtbl_v2", 8) == 0) { amd_iommu_pgtable = AMD_IOMMU_V2; } else { pr_notice("Unknown option - '%s'\n", str); } str += strcspn(str, ","); while (*str == ',') str++; } return 1; } static int __init parse_ivrs_ioapic(char *str) { u32 seg = 0, bus, dev, fn; int id, i; u32 devid; if (sscanf(str, "=%d@%x:%x.%x", &id, &bus, &dev, &fn) == 4 || sscanf(str, "=%d@%x:%x:%x.%x", &id, &seg, &bus, &dev, &fn) == 5) goto found; if (sscanf(str, "[%d]=%x:%x.%x", &id, &bus, &dev, &fn) == 4 || sscanf(str, "[%d]=%x:%x:%x.%x", &id, &seg, &bus, &dev, &fn) == 5) { pr_warn("ivrs_ioapic%s option format deprecated; use ivrs_ioapic=%d@%04x:%02x:%02x.%d instead\n", str, id, seg, bus, dev, fn); goto found; } pr_err("Invalid command line: ivrs_ioapic%s\n", str); return 1; found: if (early_ioapic_map_size == EARLY_MAP_SIZE) { pr_err("Early IOAPIC map overflow - ignoring ivrs_ioapic%s\n", str); return 1; } devid = IVRS_GET_SBDF_ID(seg, bus, dev, fn); cmdline_maps = true; i = early_ioapic_map_size++; early_ioapic_map[i].id = id; early_ioapic_map[i].devid = devid; early_ioapic_map[i].cmd_line = true; return 1; } static int __init parse_ivrs_hpet(char *str) { u32 seg = 0, bus, dev, fn; int id, i; u32 devid; if (sscanf(str, "=%d@%x:%x.%x", &id, &bus, &dev, &fn) == 4 || sscanf(str, "=%d@%x:%x:%x.%x", &id, &seg, &bus, &dev, &fn) == 5) goto found; if (sscanf(str, "[%d]=%x:%x.%x", &id, &bus, &dev, &fn) == 4 || sscanf(str, "[%d]=%x:%x:%x.%x", &id, &seg, &bus, &dev, &fn) == 5) { pr_warn("ivrs_hpet%s option format deprecated; use ivrs_hpet=%d@%04x:%02x:%02x.%d instead\n", str, id, seg, bus, dev, fn); goto found; } pr_err("Invalid command line: ivrs_hpet%s\n", str); return 1; found: if (early_hpet_map_size == EARLY_MAP_SIZE) { pr_err("Early HPET map overflow - ignoring ivrs_hpet%s\n", str); return 1; } devid = IVRS_GET_SBDF_ID(seg, bus, dev, fn); cmdline_maps = true; i = early_hpet_map_size++; early_hpet_map[i].id = id; early_hpet_map[i].devid = devid; early_hpet_map[i].cmd_line = true; return 1; } #define ACPIID_LEN (ACPIHID_UID_LEN + ACPIHID_HID_LEN) static int __init parse_ivrs_acpihid(char *str) { u32 seg = 0, bus, dev, fn; char *hid, *uid, *p, *addr; char acpiid[ACPIID_LEN] = {0}; int i; addr = strchr(str, '@'); if (!addr) { addr = strchr(str, '='); if (!addr) goto not_found; ++addr; if (strlen(addr) > ACPIID_LEN) goto not_found; if (sscanf(str, "[%x:%x.%x]=%s", &bus, &dev, &fn, acpiid) == 4 || sscanf(str, "[%x:%x:%x.%x]=%s", &seg, &bus, &dev, &fn, acpiid) == 5) { pr_warn("ivrs_acpihid%s option format deprecated; use ivrs_acpihid=%s@%04x:%02x:%02x.%d instead\n", str, acpiid, seg, bus, dev, fn); goto found; } goto not_found; } /* We have the '@', make it the terminator to get just the acpiid */ *addr++ = 0; if (strlen(str) > ACPIID_LEN + 1) goto not_found; if (sscanf(str, "=%s", acpiid) != 1) goto not_found; if (sscanf(addr, "%x:%x.%x", &bus, &dev, &fn) == 3 || sscanf(addr, "%x:%x:%x.%x", &seg, &bus, &dev, &fn) == 4) goto found; not_found: pr_err("Invalid command line: ivrs_acpihid%s\n", str); return 1; found: p = acpiid; hid = strsep(&p, ":"); uid = p; if (!hid || !(*hid) || !uid) { pr_err("Invalid command line: hid or uid\n"); return 1; } /* * Ignore leading zeroes after ':', so e.g., AMDI0095:00 * will match AMDI0095:0 in the second strcmp in acpi_dev_hid_uid_match */ while (*uid == '0' && *(uid + 1)) uid++; i = early_acpihid_map_size++; memcpy(early_acpihid_map[i].hid, hid, strlen(hid)); memcpy(early_acpihid_map[i].uid, uid, strlen(uid)); early_acpihid_map[i].devid = IVRS_GET_SBDF_ID(seg, bus, dev, fn); early_acpihid_map[i].cmd_line = true; return 1; } __setup("amd_iommu_dump", parse_amd_iommu_dump); __setup("amd_iommu=", parse_amd_iommu_options); __setup("amd_iommu_intr=", parse_amd_iommu_intr); __setup("ivrs_ioapic", parse_ivrs_ioapic); __setup("ivrs_hpet", parse_ivrs_hpet); __setup("ivrs_acpihid", parse_ivrs_acpihid); bool amd_iommu_v2_supported(void) { /* * Since DTE[Mode]=0 is prohibited on SNP-enabled system * (i.e. EFR[SNPSup]=1), IOMMUv2 page table cannot be used without * setting up IOMMUv1 page table. */ return amd_iommu_v2_present && !amd_iommu_snp_en; } EXPORT_SYMBOL(amd_iommu_v2_supported); struct amd_iommu *get_amd_iommu(unsigned int idx) { unsigned int i = 0; struct amd_iommu *iommu; for_each_iommu(iommu) if (i++ == idx) return iommu; return NULL; } /**************************************************************************** * * IOMMU EFR Performance Counter support functionality. This code allows * access to the IOMMU PC functionality. * ****************************************************************************/ u8 amd_iommu_pc_get_max_banks(unsigned int idx) { struct amd_iommu *iommu = get_amd_iommu(idx); if (iommu) return iommu->max_banks; return 0; } EXPORT_SYMBOL(amd_iommu_pc_get_max_banks); bool amd_iommu_pc_supported(void) { return amd_iommu_pc_present; } EXPORT_SYMBOL(amd_iommu_pc_supported); u8 amd_iommu_pc_get_max_counters(unsigned int idx) { struct amd_iommu *iommu = get_amd_iommu(idx); if (iommu) return iommu->max_counters; return 0; } EXPORT_SYMBOL(amd_iommu_pc_get_max_counters); static int iommu_pc_get_set_reg(struct amd_iommu *iommu, u8 bank, u8 cntr, u8 fxn, u64 *value, bool is_write) { u32 offset; u32 max_offset_lim; /* Make sure the IOMMU PC resource is available */ if (!amd_iommu_pc_present) return -ENODEV; /* Check for valid iommu and pc register indexing */ if (WARN_ON(!iommu || (fxn > 0x28) || (fxn & 7))) return -ENODEV; offset = (u32)(((0x40 | bank) << 12) | (cntr << 8) | fxn); /* Limit the offset to the hw defined mmio region aperture */ max_offset_lim = (u32)(((0x40 | iommu->max_banks) << 12) | (iommu->max_counters << 8) | 0x28); if ((offset < MMIO_CNTR_REG_OFFSET) || (offset > max_offset_lim)) return -EINVAL; if (is_write) { u64 val = *value & GENMASK_ULL(47, 0); writel((u32)val, iommu->mmio_base + offset); writel((val >> 32), iommu->mmio_base + offset + 4); } else { *value = readl(iommu->mmio_base + offset + 4); *value <<= 32; *value |= readl(iommu->mmio_base + offset); *value &= GENMASK_ULL(47, 0); } return 0; } int amd_iommu_pc_get_reg(struct amd_iommu *iommu, u8 bank, u8 cntr, u8 fxn, u64 *value) { if (!iommu) return -EINVAL; return iommu_pc_get_set_reg(iommu, bank, cntr, fxn, value, false); } int amd_iommu_pc_set_reg(struct amd_iommu *iommu, u8 bank, u8 cntr, u8 fxn, u64 *value) { if (!iommu) return -EINVAL; return iommu_pc_get_set_reg(iommu, bank, cntr, fxn, value, true); } #ifdef CONFIG_AMD_MEM_ENCRYPT int amd_iommu_snp_enable(void) { /* * The SNP support requires that IOMMU must be enabled, and is * not configured in the passthrough mode. */ if (no_iommu || iommu_default_passthrough()) { pr_err("SNP: IOMMU is disabled or configured in passthrough mode, SNP cannot be supported"); return -EINVAL; } /* * Prevent enabling SNP after IOMMU_ENABLED state because this process * affect how IOMMU driver sets up data structures and configures * IOMMU hardware. */ if (init_state > IOMMU_ENABLED) { pr_err("SNP: Too late to enable SNP for IOMMU.\n"); return -EINVAL; } amd_iommu_snp_en = check_feature_on_all_iommus(FEATURE_SNP); if (!amd_iommu_snp_en) return -EINVAL; pr_info("SNP enabled\n"); /* Enforce IOMMU v1 pagetable when SNP is enabled. */ if (amd_iommu_pgtable != AMD_IOMMU_V1) { pr_warn("Force to using AMD IOMMU v1 page table due to SNP\n"); amd_iommu_pgtable = AMD_IOMMU_V1; } return 0; } #endif