// SPDX-License-Identifier: GPL-2.0-only #include #include #include #include #include #include #include #include #include "sfp.h" /** * struct sfp_bus - internal representation of a sfp bus */ struct sfp_bus { /* private: */ struct kref kref; struct list_head node; const struct fwnode_handle *fwnode; const struct sfp_socket_ops *socket_ops; struct device *sfp_dev; struct sfp *sfp; const struct sfp_quirk *sfp_quirk; const struct sfp_upstream_ops *upstream_ops; void *upstream; struct phy_device *phydev; bool registered; bool started; }; /** * sfp_parse_port() - Parse the EEPROM base ID, setting the port type * @bus: a pointer to the &struct sfp_bus structure for the sfp module * @id: a pointer to the module's &struct sfp_eeprom_id * @support: optional pointer to an array of unsigned long for the * ethtool support mask * * Parse the EEPROM identification given in @id, and return one of * %PORT_TP, %PORT_FIBRE or %PORT_OTHER. If @support is non-%NULL, * also set the ethtool %ETHTOOL_LINK_MODE_xxx_BIT corresponding with * the connector type. * * If the port type is not known, returns %PORT_OTHER. */ int sfp_parse_port(struct sfp_bus *bus, const struct sfp_eeprom_id *id, unsigned long *support) { int port; /* port is the physical connector, set this from the connector field. */ switch (id->base.connector) { case SFF8024_CONNECTOR_SC: case SFF8024_CONNECTOR_FIBERJACK: case SFF8024_CONNECTOR_LC: case SFF8024_CONNECTOR_MT_RJ: case SFF8024_CONNECTOR_MU: case SFF8024_CONNECTOR_OPTICAL_PIGTAIL: case SFF8024_CONNECTOR_MPO_1X12: case SFF8024_CONNECTOR_MPO_2X16: port = PORT_FIBRE; break; case SFF8024_CONNECTOR_RJ45: port = PORT_TP; break; case SFF8024_CONNECTOR_COPPER_PIGTAIL: port = PORT_DA; break; case SFF8024_CONNECTOR_UNSPEC: if (id->base.e1000_base_t) { port = PORT_TP; break; } fallthrough; case SFF8024_CONNECTOR_SG: /* guess */ case SFF8024_CONNECTOR_HSSDC_II: case SFF8024_CONNECTOR_NOSEPARATE: case SFF8024_CONNECTOR_MXC_2X16: port = PORT_OTHER; break; default: dev_warn(bus->sfp_dev, "SFP: unknown connector id 0x%02x\n", id->base.connector); port = PORT_OTHER; break; } if (support) { switch (port) { case PORT_FIBRE: phylink_set(support, FIBRE); break; case PORT_TP: phylink_set(support, TP); break; } } return port; } EXPORT_SYMBOL_GPL(sfp_parse_port); /** * sfp_may_have_phy() - indicate whether the module may have a PHY * @bus: a pointer to the &struct sfp_bus structure for the sfp module * @id: a pointer to the module's &struct sfp_eeprom_id * * Parse the EEPROM identification given in @id, and return whether * this module may have a PHY. */ bool sfp_may_have_phy(struct sfp_bus *bus, const struct sfp_eeprom_id *id) { if (id->base.e1000_base_t) return true; if (id->base.phys_id != SFF8024_ID_DWDM_SFP) { switch (id->base.extended_cc) { case SFF8024_ECC_10GBASE_T_SFI: case SFF8024_ECC_10GBASE_T_SR: case SFF8024_ECC_5GBASE_T: case SFF8024_ECC_2_5GBASE_T: return true; } } return false; } EXPORT_SYMBOL_GPL(sfp_may_have_phy); /** * sfp_parse_support() - Parse the eeprom id for supported link modes * @bus: a pointer to the &struct sfp_bus structure for the sfp module * @id: a pointer to the module's &struct sfp_eeprom_id * @support: pointer to an array of unsigned long for the ethtool support mask * @interfaces: pointer to an array of unsigned long for phy interface modes * mask * * Parse the EEPROM identification information and derive the supported * ethtool link modes for the module. */ void sfp_parse_support(struct sfp_bus *bus, const struct sfp_eeprom_id *id, unsigned long *support, unsigned long *interfaces) { unsigned int br_min, br_nom, br_max; __ETHTOOL_DECLARE_LINK_MODE_MASK(modes) = { 0, }; /* Decode the bitrate information to MBd */ br_min = br_nom = br_max = 0; if (id->base.br_nominal) { if (id->base.br_nominal != 255) { br_nom = id->base.br_nominal * 100; br_min = br_nom - id->base.br_nominal * id->ext.br_min; br_max = br_nom + id->base.br_nominal * id->ext.br_max; } else if (id->ext.br_max) { br_nom = 250 * id->ext.br_max; br_max = br_nom + br_nom * id->ext.br_min / 100; br_min = br_nom - br_nom * id->ext.br_min / 100; } /* When using passive cables, in case neither BR,min nor BR,max * are specified, set br_min to 0 as the nominal value is then * used as the maximum. */ if (br_min == br_max && id->base.sfp_ct_passive) br_min = 0; } /* Set ethtool support from the compliance fields. */ if (id->base.e10g_base_sr) { phylink_set(modes, 10000baseSR_Full); __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces); } if (id->base.e10g_base_lr) { phylink_set(modes, 10000baseLR_Full); __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces); } if (id->base.e10g_base_lrm) { phylink_set(modes, 10000baseLRM_Full); __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces); } if (id->base.e10g_base_er) { phylink_set(modes, 10000baseER_Full); __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces); } if (id->base.e1000_base_sx || id->base.e1000_base_lx || id->base.e1000_base_cx) { phylink_set(modes, 1000baseX_Full); __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces); } if (id->base.e1000_base_t) { phylink_set(modes, 1000baseT_Half); phylink_set(modes, 1000baseT_Full); __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces); __set_bit(PHY_INTERFACE_MODE_SGMII, interfaces); } /* 1000Base-PX or 1000Base-BX10 */ if ((id->base.e_base_px || id->base.e_base_bx10) && br_min <= 1300 && br_max >= 1200) { phylink_set(modes, 1000baseX_Full); __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces); } /* 100Base-FX, 100Base-LX, 100Base-PX, 100Base-BX10 */ if (id->base.e100_base_fx || id->base.e100_base_lx) { phylink_set(modes, 100baseFX_Full); __set_bit(PHY_INTERFACE_MODE_100BASEX, interfaces); } if ((id->base.e_base_px || id->base.e_base_bx10) && br_nom == 100) { phylink_set(modes, 100baseFX_Full); __set_bit(PHY_INTERFACE_MODE_100BASEX, interfaces); } /* For active or passive cables, select the link modes * based on the bit rates and the cable compliance bytes. */ if ((id->base.sfp_ct_passive || id->base.sfp_ct_active) && br_nom) { /* This may look odd, but some manufacturers use 12000MBd */ if (br_min <= 12000 && br_max >= 10300) { phylink_set(modes, 10000baseCR_Full); __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces); } if (br_min <= 3200 && br_max >= 3100) { phylink_set(modes, 2500baseX_Full); __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); } if (br_min <= 1300 && br_max >= 1200) { phylink_set(modes, 1000baseX_Full); __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces); } } if (id->base.sfp_ct_passive) { if (id->base.passive.sff8431_app_e) { phylink_set(modes, 10000baseCR_Full); __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces); } } if (id->base.sfp_ct_active) { if (id->base.active.sff8431_app_e || id->base.active.sff8431_lim) { phylink_set(modes, 10000baseCR_Full); __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces); } } switch (id->base.extended_cc) { case SFF8024_ECC_UNSPEC: break; case SFF8024_ECC_100GBASE_SR4_25GBASE_SR: phylink_set(modes, 100000baseSR4_Full); phylink_set(modes, 25000baseSR_Full); __set_bit(PHY_INTERFACE_MODE_25GBASER, interfaces); break; case SFF8024_ECC_100GBASE_LR4_25GBASE_LR: case SFF8024_ECC_100GBASE_ER4_25GBASE_ER: phylink_set(modes, 100000baseLR4_ER4_Full); break; case SFF8024_ECC_100GBASE_CR4: phylink_set(modes, 100000baseCR4_Full); fallthrough; case SFF8024_ECC_25GBASE_CR_S: case SFF8024_ECC_25GBASE_CR_N: phylink_set(modes, 25000baseCR_Full); __set_bit(PHY_INTERFACE_MODE_25GBASER, interfaces); break; case SFF8024_ECC_10GBASE_T_SFI: case SFF8024_ECC_10GBASE_T_SR: phylink_set(modes, 10000baseT_Full); __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces); break; case SFF8024_ECC_5GBASE_T: phylink_set(modes, 5000baseT_Full); __set_bit(PHY_INTERFACE_MODE_5GBASER, interfaces); break; case SFF8024_ECC_2_5GBASE_T: phylink_set(modes, 2500baseT_Full); __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); break; default: dev_warn(bus->sfp_dev, "Unknown/unsupported extended compliance code: 0x%02x\n", id->base.extended_cc); break; } /* For fibre channel SFP, derive possible BaseX modes */ if (id->base.fc_speed_100 || id->base.fc_speed_200 || id->base.fc_speed_400) { if (id->base.br_nominal >= 31) { phylink_set(modes, 2500baseX_Full); __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); } if (id->base.br_nominal >= 12) { phylink_set(modes, 1000baseX_Full); __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces); } } /* If we haven't discovered any modes that this module supports, try * the bitrate to determine supported modes. Some BiDi modules (eg, * 1310nm/1550nm) are not 1000BASE-BX compliant due to the differing * wavelengths, so do not set any transceiver bits. * * Do the same for modules supporting 2500BASE-X. Note that some * modules use 2500Mbaud rather than 3100 or 3200Mbaud for * 2500BASE-X, so we allow some slack here. */ if (bitmap_empty(modes, __ETHTOOL_LINK_MODE_MASK_NBITS) && br_nom) { if (br_min <= 1300 && br_max >= 1200) { phylink_set(modes, 1000baseX_Full); __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces); } if (br_min <= 3200 && br_max >= 2500) { phylink_set(modes, 2500baseX_Full); __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); } } if (bus->sfp_quirk && bus->sfp_quirk->modes) bus->sfp_quirk->modes(id, modes, interfaces); linkmode_or(support, support, modes); phylink_set(support, Autoneg); phylink_set(support, Pause); phylink_set(support, Asym_Pause); } EXPORT_SYMBOL_GPL(sfp_parse_support); /** * sfp_select_interface() - Select appropriate phy_interface_t mode * @bus: a pointer to the &struct sfp_bus structure for the sfp module * @link_modes: ethtool link modes mask * * Derive the phy_interface_t mode for the SFP module from the link * modes mask. */ phy_interface_t sfp_select_interface(struct sfp_bus *bus, unsigned long *link_modes) { if (phylink_test(link_modes, 25000baseCR_Full) || phylink_test(link_modes, 25000baseKR_Full) || phylink_test(link_modes, 25000baseSR_Full)) return PHY_INTERFACE_MODE_25GBASER; if (phylink_test(link_modes, 10000baseCR_Full) || phylink_test(link_modes, 10000baseSR_Full) || phylink_test(link_modes, 10000baseLR_Full) || phylink_test(link_modes, 10000baseLRM_Full) || phylink_test(link_modes, 10000baseER_Full) || phylink_test(link_modes, 10000baseT_Full)) return PHY_INTERFACE_MODE_10GBASER; if (phylink_test(link_modes, 5000baseT_Full)) return PHY_INTERFACE_MODE_5GBASER; if (phylink_test(link_modes, 2500baseX_Full)) return PHY_INTERFACE_MODE_2500BASEX; if (phylink_test(link_modes, 1000baseT_Half) || phylink_test(link_modes, 1000baseT_Full)) return PHY_INTERFACE_MODE_SGMII; if (phylink_test(link_modes, 1000baseX_Full)) return PHY_INTERFACE_MODE_1000BASEX; if (phylink_test(link_modes, 100baseFX_Full)) return PHY_INTERFACE_MODE_100BASEX; dev_warn(bus->sfp_dev, "Unable to ascertain link mode\n"); return PHY_INTERFACE_MODE_NA; } EXPORT_SYMBOL_GPL(sfp_select_interface); static LIST_HEAD(sfp_buses); static DEFINE_MUTEX(sfp_mutex); static const struct sfp_upstream_ops *sfp_get_upstream_ops(struct sfp_bus *bus) { return bus->registered ? bus->upstream_ops : NULL; } static struct sfp_bus *sfp_bus_get(const struct fwnode_handle *fwnode) { struct sfp_bus *sfp, *new, *found = NULL; new = kzalloc(sizeof(*new), GFP_KERNEL); mutex_lock(&sfp_mutex); list_for_each_entry(sfp, &sfp_buses, node) { if (sfp->fwnode == fwnode) { kref_get(&sfp->kref); found = sfp; break; } } if (!found && new) { kref_init(&new->kref); new->fwnode = fwnode; list_add(&new->node, &sfp_buses); found = new; new = NULL; } mutex_unlock(&sfp_mutex); kfree(new); return found; } static void sfp_bus_release(struct kref *kref) { struct sfp_bus *bus = container_of(kref, struct sfp_bus, kref); list_del(&bus->node); mutex_unlock(&sfp_mutex); kfree(bus); } /** * sfp_bus_put() - put a reference on the &struct sfp_bus * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode() * * Put a reference on the &struct sfp_bus and free the underlying structure * if this was the last reference. */ void sfp_bus_put(struct sfp_bus *bus) { if (bus) kref_put_mutex(&bus->kref, sfp_bus_release, &sfp_mutex); } EXPORT_SYMBOL_GPL(sfp_bus_put); static int sfp_register_bus(struct sfp_bus *bus) { const struct sfp_upstream_ops *ops = bus->upstream_ops; int ret; if (ops) { if (ops->link_down) ops->link_down(bus->upstream); if (ops->connect_phy && bus->phydev) { ret = ops->connect_phy(bus->upstream, bus->phydev); if (ret) return ret; } } bus->registered = true; bus->socket_ops->attach(bus->sfp); if (bus->started) bus->socket_ops->start(bus->sfp); bus->upstream_ops->attach(bus->upstream, bus); return 0; } static void sfp_unregister_bus(struct sfp_bus *bus) { const struct sfp_upstream_ops *ops = bus->upstream_ops; if (bus->registered) { bus->upstream_ops->detach(bus->upstream, bus); if (bus->started) bus->socket_ops->stop(bus->sfp); bus->socket_ops->detach(bus->sfp); if (bus->phydev && ops && ops->disconnect_phy) ops->disconnect_phy(bus->upstream); } bus->registered = false; } /** * sfp_get_module_info() - Get the ethtool_modinfo for a SFP module * @bus: a pointer to the &struct sfp_bus structure for the sfp module * @modinfo: a &struct ethtool_modinfo * * Fill in the type and eeprom_len parameters in @modinfo for a module on * the sfp bus specified by @bus. * * Returns 0 on success or a negative errno number. */ int sfp_get_module_info(struct sfp_bus *bus, struct ethtool_modinfo *modinfo) { return bus->socket_ops->module_info(bus->sfp, modinfo); } EXPORT_SYMBOL_GPL(sfp_get_module_info); /** * sfp_get_module_eeprom() - Read the SFP module EEPROM * @bus: a pointer to the &struct sfp_bus structure for the sfp module * @ee: a &struct ethtool_eeprom * @data: buffer to contain the EEPROM data (must be at least @ee->len bytes) * * Read the EEPROM as specified by the supplied @ee. See the documentation * for &struct ethtool_eeprom for the region to be read. * * Returns 0 on success or a negative errno number. */ int sfp_get_module_eeprom(struct sfp_bus *bus, struct ethtool_eeprom *ee, u8 *data) { return bus->socket_ops->module_eeprom(bus->sfp, ee, data); } EXPORT_SYMBOL_GPL(sfp_get_module_eeprom); /** * sfp_get_module_eeprom_by_page() - Read a page from the SFP module EEPROM * @bus: a pointer to the &struct sfp_bus structure for the sfp module * @page: a &struct ethtool_module_eeprom * @extack: extack for reporting problems * * Read an EEPROM page as specified by the supplied @page. See the * documentation for &struct ethtool_module_eeprom for the page to be read. * * Returns 0 on success or a negative errno number. More error * information might be provided via extack */ int sfp_get_module_eeprom_by_page(struct sfp_bus *bus, const struct ethtool_module_eeprom *page, struct netlink_ext_ack *extack) { return bus->socket_ops->module_eeprom_by_page(bus->sfp, page, extack); } EXPORT_SYMBOL_GPL(sfp_get_module_eeprom_by_page); /** * sfp_upstream_start() - Inform the SFP that the network device is up * @bus: a pointer to the &struct sfp_bus structure for the sfp module * * Inform the SFP socket that the network device is now up, so that the * module can be enabled by allowing TX_DISABLE to be deasserted. This * should be called from the network device driver's &struct net_device_ops * ndo_open() method. */ void sfp_upstream_start(struct sfp_bus *bus) { if (bus->registered) bus->socket_ops->start(bus->sfp); bus->started = true; } EXPORT_SYMBOL_GPL(sfp_upstream_start); /** * sfp_upstream_stop() - Inform the SFP that the network device is down * @bus: a pointer to the &struct sfp_bus structure for the sfp module * * Inform the SFP socket that the network device is now up, so that the * module can be disabled by asserting TX_DISABLE, disabling the laser * in optical modules. This should be called from the network device * driver's &struct net_device_ops ndo_stop() method. */ void sfp_upstream_stop(struct sfp_bus *bus) { if (bus->registered) bus->socket_ops->stop(bus->sfp); bus->started = false; } EXPORT_SYMBOL_GPL(sfp_upstream_stop); static void sfp_upstream_clear(struct sfp_bus *bus) { bus->upstream_ops = NULL; bus->upstream = NULL; } /** * sfp_bus_find_fwnode() - parse and locate the SFP bus from fwnode * @fwnode: firmware node for the parent device (MAC or PHY) * * Parse the parent device's firmware node for a SFP bus, and locate * the sfp_bus structure, incrementing its reference count. This must * be put via sfp_bus_put() when done. * * Returns: * - on success, a pointer to the sfp_bus structure, * - %NULL if no SFP is specified, * - on failure, an error pointer value: * * - corresponding to the errors detailed for * fwnode_property_get_reference_args(). * - %-ENOMEM if we failed to allocate the bus. * - an error from the upstream's connect_phy() method. */ struct sfp_bus *sfp_bus_find_fwnode(const struct fwnode_handle *fwnode) { struct fwnode_reference_args ref; struct sfp_bus *bus; int ret; ret = fwnode_property_get_reference_args(fwnode, "sfp", NULL, 0, 0, &ref); if (ret == -ENOENT) return NULL; else if (ret < 0) return ERR_PTR(ret); if (!fwnode_device_is_available(ref.fwnode)) { fwnode_handle_put(ref.fwnode); return NULL; } bus = sfp_bus_get(ref.fwnode); fwnode_handle_put(ref.fwnode); if (!bus) return ERR_PTR(-ENOMEM); return bus; } EXPORT_SYMBOL_GPL(sfp_bus_find_fwnode); /** * sfp_bus_add_upstream() - parse and register the neighbouring device * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode() * @upstream: the upstream private data * @ops: the upstream's &struct sfp_upstream_ops * * Add upstream driver for the SFP bus, and if the bus is complete, register * the SFP bus using sfp_register_upstream(). This takes a reference on the * bus, so it is safe to put the bus after this call. * * Returns: * - on success, a pointer to the sfp_bus structure, * - %NULL if no SFP is specified, * - on failure, an error pointer value: * * - corresponding to the errors detailed for * fwnode_property_get_reference_args(). * - %-ENOMEM if we failed to allocate the bus. * - an error from the upstream's connect_phy() method. */ int sfp_bus_add_upstream(struct sfp_bus *bus, void *upstream, const struct sfp_upstream_ops *ops) { int ret; /* If no bus, return success */ if (!bus) return 0; rtnl_lock(); kref_get(&bus->kref); bus->upstream_ops = ops; bus->upstream = upstream; if (bus->sfp) { ret = sfp_register_bus(bus); if (ret) sfp_upstream_clear(bus); } else { ret = 0; } rtnl_unlock(); if (ret) sfp_bus_put(bus); return ret; } EXPORT_SYMBOL_GPL(sfp_bus_add_upstream); /** * sfp_bus_del_upstream() - Delete a sfp bus * @bus: a pointer to the &struct sfp_bus structure for the sfp module * * Delete a previously registered upstream connection for the SFP * module. @bus should have been added by sfp_bus_add_upstream(). */ void sfp_bus_del_upstream(struct sfp_bus *bus) { if (bus) { rtnl_lock(); if (bus->sfp) sfp_unregister_bus(bus); sfp_upstream_clear(bus); rtnl_unlock(); sfp_bus_put(bus); } } EXPORT_SYMBOL_GPL(sfp_bus_del_upstream); /* Socket driver entry points */ int sfp_add_phy(struct sfp_bus *bus, struct phy_device *phydev) { const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus); int ret = 0; if (ops && ops->connect_phy) ret = ops->connect_phy(bus->upstream, phydev); if (ret == 0) bus->phydev = phydev; return ret; } EXPORT_SYMBOL_GPL(sfp_add_phy); void sfp_remove_phy(struct sfp_bus *bus) { const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus); if (ops && ops->disconnect_phy) ops->disconnect_phy(bus->upstream); bus->phydev = NULL; } EXPORT_SYMBOL_GPL(sfp_remove_phy); void sfp_link_up(struct sfp_bus *bus) { const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus); if (ops && ops->link_up) ops->link_up(bus->upstream); } EXPORT_SYMBOL_GPL(sfp_link_up); void sfp_link_down(struct sfp_bus *bus) { const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus); if (ops && ops->link_down) ops->link_down(bus->upstream); } EXPORT_SYMBOL_GPL(sfp_link_down); int sfp_module_insert(struct sfp_bus *bus, const struct sfp_eeprom_id *id, const struct sfp_quirk *quirk) { const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus); int ret = 0; bus->sfp_quirk = quirk; if (ops && ops->module_insert) ret = ops->module_insert(bus->upstream, id); return ret; } EXPORT_SYMBOL_GPL(sfp_module_insert); void sfp_module_remove(struct sfp_bus *bus) { const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus); if (ops && ops->module_remove) ops->module_remove(bus->upstream); bus->sfp_quirk = NULL; } EXPORT_SYMBOL_GPL(sfp_module_remove); int sfp_module_start(struct sfp_bus *bus) { const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus); int ret = 0; if (ops && ops->module_start) ret = ops->module_start(bus->upstream); return ret; } EXPORT_SYMBOL_GPL(sfp_module_start); void sfp_module_stop(struct sfp_bus *bus) { const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus); if (ops && ops->module_stop) ops->module_stop(bus->upstream); } EXPORT_SYMBOL_GPL(sfp_module_stop); static void sfp_socket_clear(struct sfp_bus *bus) { bus->sfp_dev = NULL; bus->sfp = NULL; bus->socket_ops = NULL; } struct sfp_bus *sfp_register_socket(struct device *dev, struct sfp *sfp, const struct sfp_socket_ops *ops) { struct sfp_bus *bus = sfp_bus_get(dev->fwnode); int ret = 0; if (bus) { rtnl_lock(); bus->sfp_dev = dev; bus->sfp = sfp; bus->socket_ops = ops; if (bus->upstream_ops) { ret = sfp_register_bus(bus); if (ret) sfp_socket_clear(bus); } rtnl_unlock(); } if (ret) { sfp_bus_put(bus); bus = NULL; } return bus; } EXPORT_SYMBOL_GPL(sfp_register_socket); void sfp_unregister_socket(struct sfp_bus *bus) { rtnl_lock(); if (bus->upstream_ops) sfp_unregister_bus(bus); sfp_socket_clear(bus); rtnl_unlock(); sfp_bus_put(bus); } EXPORT_SYMBOL_GPL(sfp_unregister_socket);