// SPDX-License-Identifier: GPL-2.0-or-later /* * Driver for Broadcom MPI3 Storage Controllers * * Copyright (C) 2017-2022 Broadcom Inc. * (mailto: mpi3mr-linuxdrv.pdl@broadcom.com) * */ #include "mpi3mr.h" #include #include /** * mpi3mr_bsg_pel_abort - sends PEL abort request * @mrioc: Adapter instance reference * * This function sends PEL abort request to the firmware through * admin request queue. * * Return: 0 on success, -1 on failure */ static int mpi3mr_bsg_pel_abort(struct mpi3mr_ioc *mrioc) { struct mpi3_pel_req_action_abort pel_abort_req; struct mpi3_pel_reply *pel_reply; int retval = 0; u16 pe_log_status; if (mrioc->reset_in_progress) { dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__); return -1; } if (mrioc->stop_bsgs) { dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__); return -1; } memset(&pel_abort_req, 0, sizeof(pel_abort_req)); mutex_lock(&mrioc->pel_abort_cmd.mutex); if (mrioc->pel_abort_cmd.state & MPI3MR_CMD_PENDING) { dprint_bsg_err(mrioc, "%s: command is in use\n", __func__); mutex_unlock(&mrioc->pel_abort_cmd.mutex); return -1; } mrioc->pel_abort_cmd.state = MPI3MR_CMD_PENDING; mrioc->pel_abort_cmd.is_waiting = 1; mrioc->pel_abort_cmd.callback = NULL; pel_abort_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_PEL_ABORT); pel_abort_req.function = MPI3_FUNCTION_PERSISTENT_EVENT_LOG; pel_abort_req.action = MPI3_PEL_ACTION_ABORT; pel_abort_req.abort_host_tag = cpu_to_le16(MPI3MR_HOSTTAG_PEL_WAIT); mrioc->pel_abort_requested = 1; init_completion(&mrioc->pel_abort_cmd.done); retval = mpi3mr_admin_request_post(mrioc, &pel_abort_req, sizeof(pel_abort_req), 0); if (retval) { retval = -1; dprint_bsg_err(mrioc, "%s: admin request post failed\n", __func__); mrioc->pel_abort_requested = 0; goto out_unlock; } wait_for_completion_timeout(&mrioc->pel_abort_cmd.done, (MPI3MR_INTADMCMD_TIMEOUT * HZ)); if (!(mrioc->pel_abort_cmd.state & MPI3MR_CMD_COMPLETE)) { mrioc->pel_abort_cmd.is_waiting = 0; dprint_bsg_err(mrioc, "%s: command timedout\n", __func__); if (!(mrioc->pel_abort_cmd.state & MPI3MR_CMD_RESET)) mpi3mr_soft_reset_handler(mrioc, MPI3MR_RESET_FROM_PELABORT_TIMEOUT, 1); retval = -1; goto out_unlock; } if ((mrioc->pel_abort_cmd.ioc_status & MPI3_IOCSTATUS_STATUS_MASK) != MPI3_IOCSTATUS_SUCCESS) { dprint_bsg_err(mrioc, "%s: command failed, ioc_status(0x%04x) log_info(0x%08x)\n", __func__, (mrioc->pel_abort_cmd.ioc_status & MPI3_IOCSTATUS_STATUS_MASK), mrioc->pel_abort_cmd.ioc_loginfo); retval = -1; goto out_unlock; } if (mrioc->pel_abort_cmd.state & MPI3MR_CMD_REPLY_VALID) { pel_reply = (struct mpi3_pel_reply *)mrioc->pel_abort_cmd.reply; pe_log_status = le16_to_cpu(pel_reply->pe_log_status); if (pe_log_status != MPI3_PEL_STATUS_SUCCESS) { dprint_bsg_err(mrioc, "%s: command failed, pel_status(0x%04x)\n", __func__, pe_log_status); retval = -1; } } out_unlock: mrioc->pel_abort_cmd.state = MPI3MR_CMD_NOTUSED; mutex_unlock(&mrioc->pel_abort_cmd.mutex); return retval; } /** * mpi3mr_bsg_verify_adapter - verify adapter number is valid * @ioc_number: Adapter number * * This function returns the adapter instance pointer of given * adapter number. If adapter number does not match with the * driver's adapter list, driver returns NULL. * * Return: adapter instance reference */ static struct mpi3mr_ioc *mpi3mr_bsg_verify_adapter(int ioc_number) { struct mpi3mr_ioc *mrioc = NULL; spin_lock(&mrioc_list_lock); list_for_each_entry(mrioc, &mrioc_list, list) { if (mrioc->id == ioc_number) { spin_unlock(&mrioc_list_lock); return mrioc; } } spin_unlock(&mrioc_list_lock); return NULL; } /** * mpi3mr_enable_logdata - Handler for log data enable * @mrioc: Adapter instance reference * @job: BSG job reference * * This function enables log data caching in the driver if not * already enabled and return the maximum number of log data * entries that can be cached in the driver. * * Return: 0 on success and proper error codes on failure */ static long mpi3mr_enable_logdata(struct mpi3mr_ioc *mrioc, struct bsg_job *job) { struct mpi3mr_logdata_enable logdata_enable; if (!mrioc->logdata_buf) { mrioc->logdata_entry_sz = (mrioc->reply_sz - (sizeof(struct mpi3_event_notification_reply) - 4)) + MPI3MR_BSG_LOGDATA_ENTRY_HEADER_SZ; mrioc->logdata_buf_idx = 0; mrioc->logdata_buf = kcalloc(MPI3MR_BSG_LOGDATA_MAX_ENTRIES, mrioc->logdata_entry_sz, GFP_KERNEL); if (!mrioc->logdata_buf) return -ENOMEM; } memset(&logdata_enable, 0, sizeof(logdata_enable)); logdata_enable.max_entries = MPI3MR_BSG_LOGDATA_MAX_ENTRIES; if (job->request_payload.payload_len >= sizeof(logdata_enable)) { sg_copy_from_buffer(job->request_payload.sg_list, job->request_payload.sg_cnt, &logdata_enable, sizeof(logdata_enable)); return 0; } return -EINVAL; } /** * mpi3mr_get_logdata - Handler for get log data * @mrioc: Adapter instance reference * @job: BSG job pointer * This function copies the log data entries to the user buffer * when log caching is enabled in the driver. * * Return: 0 on success and proper error codes on failure */ static long mpi3mr_get_logdata(struct mpi3mr_ioc *mrioc, struct bsg_job *job) { u16 num_entries, sz, entry_sz = mrioc->logdata_entry_sz; if ((!mrioc->logdata_buf) || (job->request_payload.payload_len < entry_sz)) return -EINVAL; num_entries = job->request_payload.payload_len / entry_sz; if (num_entries > MPI3MR_BSG_LOGDATA_MAX_ENTRIES) num_entries = MPI3MR_BSG_LOGDATA_MAX_ENTRIES; sz = num_entries * entry_sz; if (job->request_payload.payload_len >= sz) { sg_copy_from_buffer(job->request_payload.sg_list, job->request_payload.sg_cnt, mrioc->logdata_buf, sz); return 0; } return -EINVAL; } /** * mpi3mr_bsg_pel_enable - Handler for PEL enable driver * @mrioc: Adapter instance reference * @job: BSG job pointer * * This function is the handler for PEL enable driver. * Validates the application given class and locale and if * requires aborts the existing PEL wait request and/or issues * new PEL wait request to the firmware and returns. * * Return: 0 on success and proper error codes on failure. */ static long mpi3mr_bsg_pel_enable(struct mpi3mr_ioc *mrioc, struct bsg_job *job) { long rval = -EINVAL; struct mpi3mr_bsg_out_pel_enable pel_enable; u8 issue_pel_wait; u8 tmp_class; u16 tmp_locale; if (job->request_payload.payload_len != sizeof(pel_enable)) { dprint_bsg_err(mrioc, "%s: invalid size argument\n", __func__); return rval; } sg_copy_to_buffer(job->request_payload.sg_list, job->request_payload.sg_cnt, &pel_enable, sizeof(pel_enable)); if (pel_enable.pel_class > MPI3_PEL_CLASS_FAULT) { dprint_bsg_err(mrioc, "%s: out of range class %d sent\n", __func__, pel_enable.pel_class); rval = 0; goto out; } if (!mrioc->pel_enabled) issue_pel_wait = 1; else { if ((mrioc->pel_class <= pel_enable.pel_class) && !((mrioc->pel_locale & pel_enable.pel_locale) ^ pel_enable.pel_locale)) { issue_pel_wait = 0; rval = 0; } else { pel_enable.pel_locale |= mrioc->pel_locale; if (mrioc->pel_class < pel_enable.pel_class) pel_enable.pel_class = mrioc->pel_class; rval = mpi3mr_bsg_pel_abort(mrioc); if (rval) { dprint_bsg_err(mrioc, "%s: pel_abort failed, status(%ld)\n", __func__, rval); goto out; } issue_pel_wait = 1; } } if (issue_pel_wait) { tmp_class = mrioc->pel_class; tmp_locale = mrioc->pel_locale; mrioc->pel_class = pel_enable.pel_class; mrioc->pel_locale = pel_enable.pel_locale; mrioc->pel_enabled = 1; rval = mpi3mr_pel_get_seqnum_post(mrioc, NULL); if (rval) { mrioc->pel_class = tmp_class; mrioc->pel_locale = tmp_locale; mrioc->pel_enabled = 0; dprint_bsg_err(mrioc, "%s: pel get sequence number failed, status(%ld)\n", __func__, rval); } } out: return rval; } /** * mpi3mr_get_all_tgt_info - Get all target information * @mrioc: Adapter instance reference * @job: BSG job reference * * This function copies the driver managed target devices device * handle, persistent ID, bus ID and taret ID to the user * provided buffer for the specific controller. This function * also provides the number of devices managed by the driver for * the specific controller. * * Return: 0 on success and proper error codes on failure */ static long mpi3mr_get_all_tgt_info(struct mpi3mr_ioc *mrioc, struct bsg_job *job) { u16 num_devices = 0, i = 0, size; unsigned long flags; struct mpi3mr_tgt_dev *tgtdev; struct mpi3mr_device_map_info *devmap_info = NULL; struct mpi3mr_all_tgt_info *alltgt_info = NULL; uint32_t min_entrylen = 0, kern_entrylen = 0, usr_entrylen = 0; if (job->request_payload.payload_len < sizeof(u32)) { dprint_bsg_err(mrioc, "%s: invalid size argument\n", __func__); return -EINVAL; } spin_lock_irqsave(&mrioc->tgtdev_lock, flags); list_for_each_entry(tgtdev, &mrioc->tgtdev_list, list) num_devices++; spin_unlock_irqrestore(&mrioc->tgtdev_lock, flags); if ((job->request_payload.payload_len <= sizeof(u64)) || list_empty(&mrioc->tgtdev_list)) { sg_copy_from_buffer(job->request_payload.sg_list, job->request_payload.sg_cnt, &num_devices, sizeof(num_devices)); return 0; } kern_entrylen = num_devices * sizeof(*devmap_info); size = sizeof(u64) + kern_entrylen; alltgt_info = kzalloc(size, GFP_KERNEL); if (!alltgt_info) return -ENOMEM; devmap_info = alltgt_info->dmi; memset((u8 *)devmap_info, 0xFF, kern_entrylen); spin_lock_irqsave(&mrioc->tgtdev_lock, flags); list_for_each_entry(tgtdev, &mrioc->tgtdev_list, list) { if (i < num_devices) { devmap_info[i].handle = tgtdev->dev_handle; devmap_info[i].perst_id = tgtdev->perst_id; if (tgtdev->host_exposed && tgtdev->starget) { devmap_info[i].target_id = tgtdev->starget->id; devmap_info[i].bus_id = tgtdev->starget->channel; } i++; } } num_devices = i; spin_unlock_irqrestore(&mrioc->tgtdev_lock, flags); alltgt_info->num_devices = num_devices; usr_entrylen = (job->request_payload.payload_len - sizeof(u64)) / sizeof(*devmap_info); usr_entrylen *= sizeof(*devmap_info); min_entrylen = min(usr_entrylen, kern_entrylen); sg_copy_from_buffer(job->request_payload.sg_list, job->request_payload.sg_cnt, alltgt_info, (min_entrylen + sizeof(u64))); kfree(alltgt_info); return 0; } /** * mpi3mr_get_change_count - Get topology change count * @mrioc: Adapter instance reference * @job: BSG job reference * * This function copies the toplogy change count provided by the * driver in events and cached in the driver to the user * provided buffer for the specific controller. * * Return: 0 on success and proper error codes on failure */ static long mpi3mr_get_change_count(struct mpi3mr_ioc *mrioc, struct bsg_job *job) { struct mpi3mr_change_count chgcnt; memset(&chgcnt, 0, sizeof(chgcnt)); chgcnt.change_count = mrioc->change_count; if (job->request_payload.payload_len >= sizeof(chgcnt)) { sg_copy_from_buffer(job->request_payload.sg_list, job->request_payload.sg_cnt, &chgcnt, sizeof(chgcnt)); return 0; } return -EINVAL; } /** * mpi3mr_bsg_adp_reset - Issue controller reset * @mrioc: Adapter instance reference * @job: BSG job reference * * This function identifies the user provided reset type and * issues approporiate reset to the controller and wait for that * to complete and reinitialize the controller and then returns * * Return: 0 on success and proper error codes on failure */ static long mpi3mr_bsg_adp_reset(struct mpi3mr_ioc *mrioc, struct bsg_job *job) { long rval = -EINVAL; u8 save_snapdump; struct mpi3mr_bsg_adp_reset adpreset; if (job->request_payload.payload_len != sizeof(adpreset)) { dprint_bsg_err(mrioc, "%s: invalid size argument\n", __func__); goto out; } sg_copy_to_buffer(job->request_payload.sg_list, job->request_payload.sg_cnt, &adpreset, sizeof(adpreset)); switch (adpreset.reset_type) { case MPI3MR_BSG_ADPRESET_SOFT: save_snapdump = 0; break; case MPI3MR_BSG_ADPRESET_DIAG_FAULT: save_snapdump = 1; break; default: dprint_bsg_err(mrioc, "%s: unknown reset_type(%d)\n", __func__, adpreset.reset_type); goto out; } rval = mpi3mr_soft_reset_handler(mrioc, MPI3MR_RESET_FROM_APP, save_snapdump); if (rval) dprint_bsg_err(mrioc, "%s: reset handler returned error(%ld) for reset type %d\n", __func__, rval, adpreset.reset_type); out: return rval; } /** * mpi3mr_bsg_populate_adpinfo - Get adapter info command handler * @mrioc: Adapter instance reference * @job: BSG job reference * * This function provides adapter information for the given * controller * * Return: 0 on success and proper error codes on failure */ static long mpi3mr_bsg_populate_adpinfo(struct mpi3mr_ioc *mrioc, struct bsg_job *job) { enum mpi3mr_iocstate ioc_state; struct mpi3mr_bsg_in_adpinfo adpinfo; memset(&adpinfo, 0, sizeof(adpinfo)); adpinfo.adp_type = MPI3MR_BSG_ADPTYPE_AVGFAMILY; adpinfo.pci_dev_id = mrioc->pdev->device; adpinfo.pci_dev_hw_rev = mrioc->pdev->revision; adpinfo.pci_subsys_dev_id = mrioc->pdev->subsystem_device; adpinfo.pci_subsys_ven_id = mrioc->pdev->subsystem_vendor; adpinfo.pci_bus = mrioc->pdev->bus->number; adpinfo.pci_dev = PCI_SLOT(mrioc->pdev->devfn); adpinfo.pci_func = PCI_FUNC(mrioc->pdev->devfn); adpinfo.pci_seg_id = pci_domain_nr(mrioc->pdev->bus); adpinfo.app_intfc_ver = MPI3MR_IOCTL_VERSION; ioc_state = mpi3mr_get_iocstate(mrioc); if (ioc_state == MRIOC_STATE_UNRECOVERABLE) adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_UNRECOVERABLE; else if ((mrioc->reset_in_progress) || (mrioc->stop_bsgs)) adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_IN_RESET; else if (ioc_state == MRIOC_STATE_FAULT) adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_FAULT; else adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_OPERATIONAL; memcpy((u8 *)&adpinfo.driver_info, (u8 *)&mrioc->driver_info, sizeof(adpinfo.driver_info)); if (job->request_payload.payload_len >= sizeof(adpinfo)) { sg_copy_from_buffer(job->request_payload.sg_list, job->request_payload.sg_cnt, &adpinfo, sizeof(adpinfo)); return 0; } return -EINVAL; } /** * mpi3mr_bsg_process_drv_cmds - Driver Command handler * @job: BSG job reference * * This function is the top level handler for driver commands, * this does basic validation of the buffer and identifies the * opcode and switches to correct sub handler. * * Return: 0 on success and proper error codes on failure */ static long mpi3mr_bsg_process_drv_cmds(struct bsg_job *job) { long rval = -EINVAL; struct mpi3mr_ioc *mrioc = NULL; struct mpi3mr_bsg_packet *bsg_req = NULL; struct mpi3mr_bsg_drv_cmd *drvrcmd = NULL; bsg_req = job->request; drvrcmd = &bsg_req->cmd.drvrcmd; mrioc = mpi3mr_bsg_verify_adapter(drvrcmd->mrioc_id); if (!mrioc) return -ENODEV; if (drvrcmd->opcode == MPI3MR_DRVBSG_OPCODE_ADPINFO) { rval = mpi3mr_bsg_populate_adpinfo(mrioc, job); return rval; } if (mutex_lock_interruptible(&mrioc->bsg_cmds.mutex)) return -ERESTARTSYS; switch (drvrcmd->opcode) { case MPI3MR_DRVBSG_OPCODE_ADPRESET: rval = mpi3mr_bsg_adp_reset(mrioc, job); break; case MPI3MR_DRVBSG_OPCODE_ALLTGTDEVINFO: rval = mpi3mr_get_all_tgt_info(mrioc, job); break; case MPI3MR_DRVBSG_OPCODE_GETCHGCNT: rval = mpi3mr_get_change_count(mrioc, job); break; case MPI3MR_DRVBSG_OPCODE_LOGDATAENABLE: rval = mpi3mr_enable_logdata(mrioc, job); break; case MPI3MR_DRVBSG_OPCODE_GETLOGDATA: rval = mpi3mr_get_logdata(mrioc, job); break; case MPI3MR_DRVBSG_OPCODE_PELENABLE: rval = mpi3mr_bsg_pel_enable(mrioc, job); break; case MPI3MR_DRVBSG_OPCODE_UNKNOWN: default: pr_err("%s: unsupported driver command opcode %d\n", MPI3MR_DRIVER_NAME, drvrcmd->opcode); break; } mutex_unlock(&mrioc->bsg_cmds.mutex); return rval; } /** * mpi3mr_bsg_build_sgl - SGL construction for MPI commands * @mpi_req: MPI request * @sgl_offset: offset to start sgl in the MPI request * @drv_bufs: DMA address of the buffers to be placed in sgl * @bufcnt: Number of DMA buffers * @is_rmc: Does the buffer list has management command buffer * @is_rmr: Does the buffer list has management response buffer * @num_datasges: Number of data buffers in the list * * This function places the DMA address of the given buffers in * proper format as SGEs in the given MPI request. * * Return: Nothing */ static void mpi3mr_bsg_build_sgl(u8 *mpi_req, uint32_t sgl_offset, struct mpi3mr_buf_map *drv_bufs, u8 bufcnt, u8 is_rmc, u8 is_rmr, u8 num_datasges) { u8 *sgl = (mpi_req + sgl_offset), count = 0; struct mpi3_mgmt_passthrough_request *rmgmt_req = (struct mpi3_mgmt_passthrough_request *)mpi_req; struct mpi3mr_buf_map *drv_buf_iter = drv_bufs; u8 sgl_flags, sgl_flags_last; sgl_flags = MPI3_SGE_FLAGS_ELEMENT_TYPE_SIMPLE | MPI3_SGE_FLAGS_DLAS_SYSTEM | MPI3_SGE_FLAGS_END_OF_BUFFER; sgl_flags_last = sgl_flags | MPI3_SGE_FLAGS_END_OF_LIST; if (is_rmc) { mpi3mr_add_sg_single(&rmgmt_req->command_sgl, sgl_flags_last, drv_buf_iter->kern_buf_len, drv_buf_iter->kern_buf_dma); sgl = (u8 *)drv_buf_iter->kern_buf + drv_buf_iter->bsg_buf_len; drv_buf_iter++; count++; if (is_rmr) { mpi3mr_add_sg_single(&rmgmt_req->response_sgl, sgl_flags_last, drv_buf_iter->kern_buf_len, drv_buf_iter->kern_buf_dma); drv_buf_iter++; count++; } else mpi3mr_build_zero_len_sge( &rmgmt_req->response_sgl); } if (!num_datasges) { mpi3mr_build_zero_len_sge(sgl); return; } for (; count < bufcnt; count++, drv_buf_iter++) { if (drv_buf_iter->data_dir == DMA_NONE) continue; if (num_datasges == 1 || !is_rmc) mpi3mr_add_sg_single(sgl, sgl_flags_last, drv_buf_iter->kern_buf_len, drv_buf_iter->kern_buf_dma); else mpi3mr_add_sg_single(sgl, sgl_flags, drv_buf_iter->kern_buf_len, drv_buf_iter->kern_buf_dma); sgl += sizeof(struct mpi3_sge_common); num_datasges--; } } /** * mpi3mr_get_nvme_data_fmt - returns the NVMe data format * @nvme_encap_request: NVMe encapsulated MPI request * * This function returns the type of the data format specified * in user provided NVMe command in NVMe encapsulated request. * * Return: Data format of the NVMe command (PRP/SGL etc) */ static unsigned int mpi3mr_get_nvme_data_fmt( struct mpi3_nvme_encapsulated_request *nvme_encap_request) { u8 format = 0; format = ((nvme_encap_request->command[0] & 0xc000) >> 14); return format; } /** * mpi3mr_build_nvme_sgl - SGL constructor for NVME * encapsulated request * @mrioc: Adapter instance reference * @nvme_encap_request: NVMe encapsulated MPI request * @drv_bufs: DMA address of the buffers to be placed in sgl * @bufcnt: Number of DMA buffers * * This function places the DMA address of the given buffers in * proper format as SGEs in the given NVMe encapsulated request. * * Return: 0 on success, -1 on failure */ static int mpi3mr_build_nvme_sgl(struct mpi3mr_ioc *mrioc, struct mpi3_nvme_encapsulated_request *nvme_encap_request, struct mpi3mr_buf_map *drv_bufs, u8 bufcnt) { struct mpi3mr_nvme_pt_sge *nvme_sgl; u64 sgl_ptr; u8 count; size_t length = 0; struct mpi3mr_buf_map *drv_buf_iter = drv_bufs; u64 sgemod_mask = ((u64)((mrioc->facts.sge_mod_mask) << mrioc->facts.sge_mod_shift) << 32); u64 sgemod_val = ((u64)(mrioc->facts.sge_mod_value) << mrioc->facts.sge_mod_shift) << 32; /* * Not all commands require a data transfer. If no data, just return * without constructing any sgl. */ for (count = 0; count < bufcnt; count++, drv_buf_iter++) { if (drv_buf_iter->data_dir == DMA_NONE) continue; sgl_ptr = (u64)drv_buf_iter->kern_buf_dma; length = drv_buf_iter->kern_buf_len; break; } if (!length) return 0; if (sgl_ptr & sgemod_mask) { dprint_bsg_err(mrioc, "%s: SGL address collides with SGE modifier\n", __func__); return -1; } sgl_ptr &= ~sgemod_mask; sgl_ptr |= sgemod_val; nvme_sgl = (struct mpi3mr_nvme_pt_sge *) ((u8 *)(nvme_encap_request->command) + MPI3MR_NVME_CMD_SGL_OFFSET); memset(nvme_sgl, 0, sizeof(struct mpi3mr_nvme_pt_sge)); nvme_sgl->base_addr = sgl_ptr; nvme_sgl->length = length; return 0; } /** * mpi3mr_build_nvme_prp - PRP constructor for NVME * encapsulated request * @mrioc: Adapter instance reference * @nvme_encap_request: NVMe encapsulated MPI request * @drv_bufs: DMA address of the buffers to be placed in SGL * @bufcnt: Number of DMA buffers * * This function places the DMA address of the given buffers in * proper format as PRP entries in the given NVMe encapsulated * request. * * Return: 0 on success, -1 on failure */ static int mpi3mr_build_nvme_prp(struct mpi3mr_ioc *mrioc, struct mpi3_nvme_encapsulated_request *nvme_encap_request, struct mpi3mr_buf_map *drv_bufs, u8 bufcnt) { int prp_size = MPI3MR_NVME_PRP_SIZE; __le64 *prp_entry, *prp1_entry, *prp2_entry; __le64 *prp_page; dma_addr_t prp_entry_dma, prp_page_dma, dma_addr; u32 offset, entry_len, dev_pgsz; u32 page_mask_result, page_mask; size_t length = 0; u8 count; struct mpi3mr_buf_map *drv_buf_iter = drv_bufs; u64 sgemod_mask = ((u64)((mrioc->facts.sge_mod_mask) << mrioc->facts.sge_mod_shift) << 32); u64 sgemod_val = ((u64)(mrioc->facts.sge_mod_value) << mrioc->facts.sge_mod_shift) << 32; u16 dev_handle = nvme_encap_request->dev_handle; struct mpi3mr_tgt_dev *tgtdev; tgtdev = mpi3mr_get_tgtdev_by_handle(mrioc, dev_handle); if (!tgtdev) { dprint_bsg_err(mrioc, "%s: invalid device handle 0x%04x\n", __func__, dev_handle); return -1; } if (tgtdev->dev_spec.pcie_inf.pgsz == 0) { dprint_bsg_err(mrioc, "%s: NVMe device page size is zero for handle 0x%04x\n", __func__, dev_handle); mpi3mr_tgtdev_put(tgtdev); return -1; } dev_pgsz = 1 << (tgtdev->dev_spec.pcie_inf.pgsz); mpi3mr_tgtdev_put(tgtdev); /* * Not all commands require a data transfer. If no data, just return * without constructing any PRP. */ for (count = 0; count < bufcnt; count++, drv_buf_iter++) { if (drv_buf_iter->data_dir == DMA_NONE) continue; dma_addr = drv_buf_iter->kern_buf_dma; length = drv_buf_iter->kern_buf_len; break; } if (!length) return 0; mrioc->prp_sz = 0; mrioc->prp_list_virt = dma_alloc_coherent(&mrioc->pdev->dev, dev_pgsz, &mrioc->prp_list_dma, GFP_KERNEL); if (!mrioc->prp_list_virt) return -1; mrioc->prp_sz = dev_pgsz; /* * Set pointers to PRP1 and PRP2, which are in the NVMe command. * PRP1 is located at a 24 byte offset from the start of the NVMe * command. Then set the current PRP entry pointer to PRP1. */ prp1_entry = (__le64 *)((u8 *)(nvme_encap_request->command) + MPI3MR_NVME_CMD_PRP1_OFFSET); prp2_entry = (__le64 *)((u8 *)(nvme_encap_request->command) + MPI3MR_NVME_CMD_PRP2_OFFSET); prp_entry = prp1_entry; /* * For the PRP entries, use the specially allocated buffer of * contiguous memory. */ prp_page = (__le64 *)mrioc->prp_list_virt; prp_page_dma = mrioc->prp_list_dma; /* * Check if we are within 1 entry of a page boundary we don't * want our first entry to be a PRP List entry. */ page_mask = dev_pgsz - 1; page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask; if (!page_mask_result) { dprint_bsg_err(mrioc, "%s: PRP page is not page aligned\n", __func__); goto err_out; } /* * Set PRP physical pointer, which initially points to the current PRP * DMA memory page. */ prp_entry_dma = prp_page_dma; /* Loop while the length is not zero. */ while (length) { page_mask_result = (prp_entry_dma + prp_size) & page_mask; if (!page_mask_result && (length > dev_pgsz)) { dprint_bsg_err(mrioc, "%s: single PRP page is not sufficient\n", __func__); goto err_out; } /* Need to handle if entry will be part of a page. */ offset = dma_addr & page_mask; entry_len = dev_pgsz - offset; if (prp_entry == prp1_entry) { /* * Must fill in the first PRP pointer (PRP1) before * moving on. */ *prp1_entry = cpu_to_le64(dma_addr); if (*prp1_entry & sgemod_mask) { dprint_bsg_err(mrioc, "%s: PRP1 address collides with SGE modifier\n", __func__); goto err_out; } *prp1_entry &= ~sgemod_mask; *prp1_entry |= sgemod_val; /* * Now point to the second PRP entry within the * command (PRP2). */ prp_entry = prp2_entry; } else if (prp_entry == prp2_entry) { /* * Should the PRP2 entry be a PRP List pointer or just * a regular PRP pointer? If there is more than one * more page of data, must use a PRP List pointer. */ if (length > dev_pgsz) { /* * PRP2 will contain a PRP List pointer because * more PRP's are needed with this command. The * list will start at the beginning of the * contiguous buffer. */ *prp2_entry = cpu_to_le64(prp_entry_dma); if (*prp2_entry & sgemod_mask) { dprint_bsg_err(mrioc, "%s: PRP list address collides with SGE modifier\n", __func__); goto err_out; } *prp2_entry &= ~sgemod_mask; *prp2_entry |= sgemod_val; /* * The next PRP Entry will be the start of the * first PRP List. */ prp_entry = prp_page; continue; } else { /* * After this, the PRP Entries are complete. * This command uses 2 PRP's and no PRP list. */ *prp2_entry = cpu_to_le64(dma_addr); if (*prp2_entry & sgemod_mask) { dprint_bsg_err(mrioc, "%s: PRP2 collides with SGE modifier\n", __func__); goto err_out; } *prp2_entry &= ~sgemod_mask; *prp2_entry |= sgemod_val; } } else { /* * Put entry in list and bump the addresses. * * After PRP1 and PRP2 are filled in, this will fill in * all remaining PRP entries in a PRP List, one per * each time through the loop. */ *prp_entry = cpu_to_le64(dma_addr); if (*prp_entry & sgemod_mask) { dprint_bsg_err(mrioc, "%s: PRP address collides with SGE modifier\n", __func__); goto err_out; } *prp_entry &= ~sgemod_mask; *prp_entry |= sgemod_val; prp_entry++; prp_entry_dma += prp_size; } /* * Bump the phys address of the command's data buffer by the * entry_len. */ dma_addr += entry_len; /* decrement length accounting for last partial page. */ if (entry_len > length) length = 0; else length -= entry_len; } return 0; err_out: if (mrioc->prp_list_virt) { dma_free_coherent(&mrioc->pdev->dev, mrioc->prp_sz, mrioc->prp_list_virt, mrioc->prp_list_dma); mrioc->prp_list_virt = NULL; } return -1; } /** * mpi3mr_bsg_process_mpt_cmds - MPI Pass through BSG handler * @job: BSG job reference * * This function is the top level handler for MPI Pass through * command, this does basic validation of the input data buffers, * identifies the given buffer types and MPI command, allocates * DMAable memory for user given buffers, construstcs SGL * properly and passes the command to the firmware. * * Once the MPI command is completed the driver copies the data * if any and reply, sense information to user provided buffers. * If the command is timed out then issues controller reset * prior to returning. * * Return: 0 on success and proper error codes on failure */ static long mpi3mr_bsg_process_mpt_cmds(struct bsg_job *job, unsigned int *reply_payload_rcv_len) { long rval = -EINVAL; struct mpi3mr_ioc *mrioc = NULL; u8 *mpi_req = NULL, *sense_buff_k = NULL; u8 mpi_msg_size = 0; struct mpi3mr_bsg_packet *bsg_req = NULL; struct mpi3mr_bsg_mptcmd *karg; struct mpi3mr_buf_entry *buf_entries = NULL; struct mpi3mr_buf_map *drv_bufs = NULL, *drv_buf_iter = NULL; u8 count, bufcnt = 0, is_rmcb = 0, is_rmrb = 0, din_cnt = 0, dout_cnt = 0; u8 invalid_be = 0, erb_offset = 0xFF, mpirep_offset = 0xFF, sg_entries = 0; u8 block_io = 0, resp_code = 0, nvme_fmt = 0; struct mpi3_request_header *mpi_header = NULL; struct mpi3_status_reply_descriptor *status_desc; struct mpi3_scsi_task_mgmt_request *tm_req; u32 erbsz = MPI3MR_SENSE_BUF_SZ, tmplen; u16 dev_handle; struct mpi3mr_tgt_dev *tgtdev; struct mpi3mr_stgt_priv_data *stgt_priv = NULL; struct mpi3mr_bsg_in_reply_buf *bsg_reply_buf = NULL; u32 din_size = 0, dout_size = 0; u8 *din_buf = NULL, *dout_buf = NULL; u8 *sgl_iter = NULL, *sgl_din_iter = NULL, *sgl_dout_iter = NULL; bsg_req = job->request; karg = (struct mpi3mr_bsg_mptcmd *)&bsg_req->cmd.mptcmd; mrioc = mpi3mr_bsg_verify_adapter(karg->mrioc_id); if (!mrioc) return -ENODEV; if (karg->timeout < MPI3MR_APP_DEFAULT_TIMEOUT) karg->timeout = MPI3MR_APP_DEFAULT_TIMEOUT; mpi_req = kzalloc(MPI3MR_ADMIN_REQ_FRAME_SZ, GFP_KERNEL); if (!mpi_req) return -ENOMEM; mpi_header = (struct mpi3_request_header *)mpi_req; bufcnt = karg->buf_entry_list.num_of_entries; drv_bufs = kzalloc((sizeof(*drv_bufs) * bufcnt), GFP_KERNEL); if (!drv_bufs) { rval = -ENOMEM; goto out; } dout_buf = kzalloc(job->request_payload.payload_len, GFP_KERNEL); if (!dout_buf) { rval = -ENOMEM; goto out; } din_buf = kzalloc(job->reply_payload.payload_len, GFP_KERNEL); if (!din_buf) { rval = -ENOMEM; goto out; } sg_copy_to_buffer(job->request_payload.sg_list, job->request_payload.sg_cnt, dout_buf, job->request_payload.payload_len); buf_entries = karg->buf_entry_list.buf_entry; sgl_din_iter = din_buf; sgl_dout_iter = dout_buf; drv_buf_iter = drv_bufs; for (count = 0; count < bufcnt; count++, buf_entries++, drv_buf_iter++) { if (sgl_dout_iter > (dout_buf + job->request_payload.payload_len)) { dprint_bsg_err(mrioc, "%s: data_out buffer length mismatch\n", __func__); rval = -EINVAL; goto out; } if (sgl_din_iter > (din_buf + job->reply_payload.payload_len)) { dprint_bsg_err(mrioc, "%s: data_in buffer length mismatch\n", __func__); rval = -EINVAL; goto out; } switch (buf_entries->buf_type) { case MPI3MR_BSG_BUFTYPE_RAIDMGMT_CMD: sgl_iter = sgl_dout_iter; sgl_dout_iter += buf_entries->buf_len; drv_buf_iter->data_dir = DMA_TO_DEVICE; is_rmcb = 1; if (count != 0) invalid_be = 1; break; case MPI3MR_BSG_BUFTYPE_RAIDMGMT_RESP: sgl_iter = sgl_din_iter; sgl_din_iter += buf_entries->buf_len; drv_buf_iter->data_dir = DMA_FROM_DEVICE; is_rmrb = 1; if (count != 1 || !is_rmcb) invalid_be = 1; break; case MPI3MR_BSG_BUFTYPE_DATA_IN: sgl_iter = sgl_din_iter; sgl_din_iter += buf_entries->buf_len; drv_buf_iter->data_dir = DMA_FROM_DEVICE; din_cnt++; din_size += drv_buf_iter->bsg_buf_len; if ((din_cnt > 1) && !is_rmcb) invalid_be = 1; break; case MPI3MR_BSG_BUFTYPE_DATA_OUT: sgl_iter = sgl_dout_iter; sgl_dout_iter += buf_entries->buf_len; drv_buf_iter->data_dir = DMA_TO_DEVICE; dout_cnt++; dout_size += drv_buf_iter->bsg_buf_len; if ((dout_cnt > 1) && !is_rmcb) invalid_be = 1; break; case MPI3MR_BSG_BUFTYPE_MPI_REPLY: sgl_iter = sgl_din_iter; sgl_din_iter += buf_entries->buf_len; drv_buf_iter->data_dir = DMA_NONE; mpirep_offset = count; break; case MPI3MR_BSG_BUFTYPE_ERR_RESPONSE: sgl_iter = sgl_din_iter; sgl_din_iter += buf_entries->buf_len; drv_buf_iter->data_dir = DMA_NONE; erb_offset = count; break; case MPI3MR_BSG_BUFTYPE_MPI_REQUEST: sgl_iter = sgl_dout_iter; sgl_dout_iter += buf_entries->buf_len; drv_buf_iter->data_dir = DMA_NONE; mpi_msg_size = buf_entries->buf_len; if ((!mpi_msg_size || (mpi_msg_size % 4)) || (mpi_msg_size > MPI3MR_ADMIN_REQ_FRAME_SZ)) { dprint_bsg_err(mrioc, "%s: invalid MPI message size\n", __func__); rval = -EINVAL; goto out; } memcpy(mpi_req, sgl_iter, buf_entries->buf_len); break; default: invalid_be = 1; break; } if (invalid_be) { dprint_bsg_err(mrioc, "%s: invalid buffer entries passed\n", __func__); rval = -EINVAL; goto out; } drv_buf_iter->bsg_buf = sgl_iter; drv_buf_iter->bsg_buf_len = buf_entries->buf_len; } if (!is_rmcb && (dout_cnt || din_cnt)) { sg_entries = dout_cnt + din_cnt; if (((mpi_msg_size) + (sg_entries * sizeof(struct mpi3_sge_common))) > MPI3MR_ADMIN_REQ_FRAME_SZ) { dprint_bsg_err(mrioc, "%s:%d: invalid message size passed\n", __func__, __LINE__); rval = -EINVAL; goto out; } } if (din_size > MPI3MR_MAX_APP_XFER_SIZE) { dprint_bsg_err(mrioc, "%s:%d: invalid data transfer size passed for function 0x%x din_size=%d\n", __func__, __LINE__, mpi_header->function, din_size); rval = -EINVAL; goto out; } if (dout_size > MPI3MR_MAX_APP_XFER_SIZE) { dprint_bsg_err(mrioc, "%s:%d: invalid data transfer size passed for function 0x%x dout_size = %d\n", __func__, __LINE__, mpi_header->function, dout_size); rval = -EINVAL; goto out; } drv_buf_iter = drv_bufs; for (count = 0; count < bufcnt; count++, drv_buf_iter++) { if (drv_buf_iter->data_dir == DMA_NONE) continue; drv_buf_iter->kern_buf_len = drv_buf_iter->bsg_buf_len; if (is_rmcb && !count) drv_buf_iter->kern_buf_len += ((dout_cnt + din_cnt) * sizeof(struct mpi3_sge_common)); if (!drv_buf_iter->kern_buf_len) continue; drv_buf_iter->kern_buf = dma_alloc_coherent(&mrioc->pdev->dev, drv_buf_iter->kern_buf_len, &drv_buf_iter->kern_buf_dma, GFP_KERNEL); if (!drv_buf_iter->kern_buf) { rval = -ENOMEM; goto out; } if (drv_buf_iter->data_dir == DMA_TO_DEVICE) { tmplen = min(drv_buf_iter->kern_buf_len, drv_buf_iter->bsg_buf_len); memcpy(drv_buf_iter->kern_buf, drv_buf_iter->bsg_buf, tmplen); } } if (erb_offset != 0xFF) { sense_buff_k = kzalloc(erbsz, GFP_KERNEL); if (!sense_buff_k) { rval = -ENOMEM; goto out; } } if (mutex_lock_interruptible(&mrioc->bsg_cmds.mutex)) { rval = -ERESTARTSYS; goto out; } if (mrioc->bsg_cmds.state & MPI3MR_CMD_PENDING) { rval = -EAGAIN; dprint_bsg_err(mrioc, "%s: command is in use\n", __func__); mutex_unlock(&mrioc->bsg_cmds.mutex); goto out; } if (mrioc->unrecoverable) { dprint_bsg_err(mrioc, "%s: unrecoverable controller\n", __func__); rval = -EFAULT; mutex_unlock(&mrioc->bsg_cmds.mutex); goto out; } if (mrioc->reset_in_progress) { dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__); rval = -EAGAIN; mutex_unlock(&mrioc->bsg_cmds.mutex); goto out; } if (mrioc->stop_bsgs) { dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__); rval = -EAGAIN; mutex_unlock(&mrioc->bsg_cmds.mutex); goto out; } if (mpi_header->function == MPI3_BSG_FUNCTION_NVME_ENCAPSULATED) { nvme_fmt = mpi3mr_get_nvme_data_fmt( (struct mpi3_nvme_encapsulated_request *)mpi_req); if (nvme_fmt == MPI3MR_NVME_DATA_FORMAT_PRP) { if (mpi3mr_build_nvme_prp(mrioc, (struct mpi3_nvme_encapsulated_request *)mpi_req, drv_bufs, bufcnt)) { rval = -ENOMEM; mutex_unlock(&mrioc->bsg_cmds.mutex); goto out; } } else if (nvme_fmt == MPI3MR_NVME_DATA_FORMAT_SGL1 || nvme_fmt == MPI3MR_NVME_DATA_FORMAT_SGL2) { if (mpi3mr_build_nvme_sgl(mrioc, (struct mpi3_nvme_encapsulated_request *)mpi_req, drv_bufs, bufcnt)) { rval = -EINVAL; mutex_unlock(&mrioc->bsg_cmds.mutex); goto out; } } else { dprint_bsg_err(mrioc, "%s:invalid NVMe command format\n", __func__); rval = -EINVAL; mutex_unlock(&mrioc->bsg_cmds.mutex); goto out; } } else { mpi3mr_bsg_build_sgl(mpi_req, (mpi_msg_size), drv_bufs, bufcnt, is_rmcb, is_rmrb, (dout_cnt + din_cnt)); } if (mpi_header->function == MPI3_BSG_FUNCTION_SCSI_TASK_MGMT) { tm_req = (struct mpi3_scsi_task_mgmt_request *)mpi_req; if (tm_req->task_type != MPI3_SCSITASKMGMT_TASKTYPE_ABORT_TASK) { dev_handle = tm_req->dev_handle; block_io = 1; } } if (block_io) { tgtdev = mpi3mr_get_tgtdev_by_handle(mrioc, dev_handle); if (tgtdev && tgtdev->starget && tgtdev->starget->hostdata) { stgt_priv = (struct mpi3mr_stgt_priv_data *) tgtdev->starget->hostdata; atomic_inc(&stgt_priv->block_io); mpi3mr_tgtdev_put(tgtdev); } } mrioc->bsg_cmds.state = MPI3MR_CMD_PENDING; mrioc->bsg_cmds.is_waiting = 1; mrioc->bsg_cmds.callback = NULL; mrioc->bsg_cmds.is_sense = 0; mrioc->bsg_cmds.sensebuf = sense_buff_k; memset(mrioc->bsg_cmds.reply, 0, mrioc->reply_sz); mpi_header->host_tag = cpu_to_le16(MPI3MR_HOSTTAG_BSG_CMDS); if (mrioc->logging_level & MPI3_DEBUG_BSG_INFO) { dprint_bsg_info(mrioc, "%s: posting bsg request to the controller\n", __func__); dprint_dump(mpi_req, MPI3MR_ADMIN_REQ_FRAME_SZ, "bsg_mpi3_req"); if (mpi_header->function == MPI3_BSG_FUNCTION_MGMT_PASSTHROUGH) { drv_buf_iter = &drv_bufs[0]; dprint_dump(drv_buf_iter->kern_buf, drv_buf_iter->kern_buf_len, "mpi3_mgmt_req"); } } init_completion(&mrioc->bsg_cmds.done); rval = mpi3mr_admin_request_post(mrioc, mpi_req, MPI3MR_ADMIN_REQ_FRAME_SZ, 0); if (rval) { mrioc->bsg_cmds.is_waiting = 0; dprint_bsg_err(mrioc, "%s: posting bsg request is failed\n", __func__); rval = -EAGAIN; goto out_unlock; } wait_for_completion_timeout(&mrioc->bsg_cmds.done, (karg->timeout * HZ)); if (block_io && stgt_priv) atomic_dec(&stgt_priv->block_io); if (!(mrioc->bsg_cmds.state & MPI3MR_CMD_COMPLETE)) { mrioc->bsg_cmds.is_waiting = 0; rval = -EAGAIN; if (mrioc->bsg_cmds.state & MPI3MR_CMD_RESET) goto out_unlock; dprint_bsg_err(mrioc, "%s: bsg request timedout after %d seconds\n", __func__, karg->timeout); if (mrioc->logging_level & MPI3_DEBUG_BSG_ERROR) { dprint_dump(mpi_req, MPI3MR_ADMIN_REQ_FRAME_SZ, "bsg_mpi3_req"); if (mpi_header->function == MPI3_BSG_FUNCTION_MGMT_PASSTHROUGH) { drv_buf_iter = &drv_bufs[0]; dprint_dump(drv_buf_iter->kern_buf, drv_buf_iter->kern_buf_len, "mpi3_mgmt_req"); } } if ((mpi_header->function == MPI3_BSG_FUNCTION_NVME_ENCAPSULATED) || (mpi_header->function == MPI3_BSG_FUNCTION_SCSI_IO)) mpi3mr_issue_tm(mrioc, MPI3_SCSITASKMGMT_TASKTYPE_TARGET_RESET, mpi_header->function_dependent, 0, MPI3MR_HOSTTAG_BLK_TMS, MPI3MR_RESETTM_TIMEOUT, &mrioc->host_tm_cmds, &resp_code, NULL); if (!(mrioc->bsg_cmds.state & MPI3MR_CMD_COMPLETE) && !(mrioc->bsg_cmds.state & MPI3MR_CMD_RESET)) mpi3mr_soft_reset_handler(mrioc, MPI3MR_RESET_FROM_APP_TIMEOUT, 1); goto out_unlock; } dprint_bsg_info(mrioc, "%s: bsg request is completed\n", __func__); if (mrioc->prp_list_virt) { dma_free_coherent(&mrioc->pdev->dev, mrioc->prp_sz, mrioc->prp_list_virt, mrioc->prp_list_dma); mrioc->prp_list_virt = NULL; } if ((mrioc->bsg_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK) != MPI3_IOCSTATUS_SUCCESS) { dprint_bsg_info(mrioc, "%s: command failed, ioc_status(0x%04x) log_info(0x%08x)\n", __func__, (mrioc->bsg_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK), mrioc->bsg_cmds.ioc_loginfo); } if ((mpirep_offset != 0xFF) && drv_bufs[mpirep_offset].bsg_buf_len) { drv_buf_iter = &drv_bufs[mpirep_offset]; drv_buf_iter->kern_buf_len = (sizeof(*bsg_reply_buf) - 1 + mrioc->reply_sz); bsg_reply_buf = kzalloc(drv_buf_iter->kern_buf_len, GFP_KERNEL); if (!bsg_reply_buf) { rval = -ENOMEM; goto out_unlock; } if (mrioc->bsg_cmds.state & MPI3MR_CMD_REPLY_VALID) { bsg_reply_buf->mpi_reply_type = MPI3MR_BSG_MPI_REPLY_BUFTYPE_ADDRESS; memcpy(bsg_reply_buf->reply_buf, mrioc->bsg_cmds.reply, mrioc->reply_sz); } else { bsg_reply_buf->mpi_reply_type = MPI3MR_BSG_MPI_REPLY_BUFTYPE_STATUS; status_desc = (struct mpi3_status_reply_descriptor *) bsg_reply_buf->reply_buf; status_desc->ioc_status = mrioc->bsg_cmds.ioc_status; status_desc->ioc_log_info = mrioc->bsg_cmds.ioc_loginfo; } tmplen = min(drv_buf_iter->kern_buf_len, drv_buf_iter->bsg_buf_len); memcpy(drv_buf_iter->bsg_buf, bsg_reply_buf, tmplen); } if (erb_offset != 0xFF && mrioc->bsg_cmds.sensebuf && mrioc->bsg_cmds.is_sense) { drv_buf_iter = &drv_bufs[erb_offset]; tmplen = min(erbsz, drv_buf_iter->bsg_buf_len); memcpy(drv_buf_iter->bsg_buf, sense_buff_k, tmplen); } drv_buf_iter = drv_bufs; for (count = 0; count < bufcnt; count++, drv_buf_iter++) { if (drv_buf_iter->data_dir == DMA_NONE) continue; if (drv_buf_iter->data_dir == DMA_FROM_DEVICE) { tmplen = min(drv_buf_iter->kern_buf_len, drv_buf_iter->bsg_buf_len); memcpy(drv_buf_iter->bsg_buf, drv_buf_iter->kern_buf, tmplen); } } out_unlock: if (din_buf) { *reply_payload_rcv_len = sg_copy_from_buffer(job->reply_payload.sg_list, job->reply_payload.sg_cnt, din_buf, job->reply_payload.payload_len); } mrioc->bsg_cmds.is_sense = 0; mrioc->bsg_cmds.sensebuf = NULL; mrioc->bsg_cmds.state = MPI3MR_CMD_NOTUSED; mutex_unlock(&mrioc->bsg_cmds.mutex); out: kfree(sense_buff_k); kfree(dout_buf); kfree(din_buf); kfree(mpi_req); if (drv_bufs) { drv_buf_iter = drv_bufs; for (count = 0; count < bufcnt; count++, drv_buf_iter++) { if (drv_buf_iter->kern_buf && drv_buf_iter->kern_buf_dma) dma_free_coherent(&mrioc->pdev->dev, drv_buf_iter->kern_buf_len, drv_buf_iter->kern_buf, drv_buf_iter->kern_buf_dma); } kfree(drv_bufs); } kfree(bsg_reply_buf); return rval; } /** * mpi3mr_app_save_logdata - Save Log Data events * @mrioc: Adapter instance reference * @event_data: event data associated with log data event * @event_data_size: event data size to copy * * If log data event caching is enabled by the applicatiobns, * then this function saves the log data in the circular queue * and Sends async signal SIGIO to indicate there is an async * event from the firmware to the event monitoring applications. * * Return:Nothing */ void mpi3mr_app_save_logdata(struct mpi3mr_ioc *mrioc, char *event_data, u16 event_data_size) { u32 index = mrioc->logdata_buf_idx, sz; struct mpi3mr_logdata_entry *entry; if (!(mrioc->logdata_buf)) return; entry = (struct mpi3mr_logdata_entry *) (mrioc->logdata_buf + (index * mrioc->logdata_entry_sz)); entry->valid_entry = 1; sz = min(mrioc->logdata_entry_sz, event_data_size); memcpy(entry->data, event_data, sz); mrioc->logdata_buf_idx = ((++index) % MPI3MR_BSG_LOGDATA_MAX_ENTRIES); atomic64_inc(&event_counter); } /** * mpi3mr_bsg_request - bsg request entry point * @job: BSG job reference * * This is driver's entry point for bsg requests * * Return: 0 on success and proper error codes on failure */ static int mpi3mr_bsg_request(struct bsg_job *job) { long rval = -EINVAL; unsigned int reply_payload_rcv_len = 0; struct mpi3mr_bsg_packet *bsg_req = job->request; switch (bsg_req->cmd_type) { case MPI3MR_DRV_CMD: rval = mpi3mr_bsg_process_drv_cmds(job); break; case MPI3MR_MPT_CMD: rval = mpi3mr_bsg_process_mpt_cmds(job, &reply_payload_rcv_len); break; default: pr_err("%s: unsupported BSG command(0x%08x)\n", MPI3MR_DRIVER_NAME, bsg_req->cmd_type); break; } bsg_job_done(job, rval, reply_payload_rcv_len); return 0; } /** * mpi3mr_bsg_exit - de-registration from bsg layer * * This will be called during driver unload and all * bsg resources allocated during load will be freed. * * Return:Nothing */ void mpi3mr_bsg_exit(struct mpi3mr_ioc *mrioc) { struct device *bsg_dev = &mrioc->bsg_dev; if (!mrioc->bsg_queue) return; bsg_remove_queue(mrioc->bsg_queue); mrioc->bsg_queue = NULL; device_del(bsg_dev); put_device(bsg_dev); } /** * mpi3mr_bsg_node_release -release bsg device node * @dev: bsg device node * * decrements bsg dev parent reference count * * Return:Nothing */ static void mpi3mr_bsg_node_release(struct device *dev) { put_device(dev->parent); } /** * mpi3mr_bsg_init - registration with bsg layer * * This will be called during driver load and it will * register driver with bsg layer * * Return:Nothing */ void mpi3mr_bsg_init(struct mpi3mr_ioc *mrioc) { struct device *bsg_dev = &mrioc->bsg_dev; struct device *parent = &mrioc->shost->shost_gendev; device_initialize(bsg_dev); bsg_dev->parent = get_device(parent); bsg_dev->release = mpi3mr_bsg_node_release; dev_set_name(bsg_dev, "mpi3mrctl%u", mrioc->id); if (device_add(bsg_dev)) { ioc_err(mrioc, "%s: bsg device add failed\n", dev_name(bsg_dev)); put_device(bsg_dev); return; } mrioc->bsg_queue = bsg_setup_queue(bsg_dev, dev_name(bsg_dev), mpi3mr_bsg_request, NULL, 0); if (IS_ERR(mrioc->bsg_queue)) { ioc_err(mrioc, "%s: bsg registration failed\n", dev_name(bsg_dev)); device_del(bsg_dev); put_device(bsg_dev); return; } blk_queue_max_segments(mrioc->bsg_queue, MPI3MR_MAX_APP_XFER_SEGMENTS); blk_queue_max_hw_sectors(mrioc->bsg_queue, MPI3MR_MAX_APP_XFER_SECTORS); return; } /** * version_fw_show - SysFS callback for firmware version read * @dev: class device * @attr: Device attributes * @buf: Buffer to copy * * Return: sysfs_emit() return after copying firmware version */ static ssize_t version_fw_show(struct device *dev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(dev); struct mpi3mr_ioc *mrioc = shost_priv(shost); struct mpi3mr_compimg_ver *fwver = &mrioc->facts.fw_ver; return sysfs_emit(buf, "%d.%d.%d.%d.%05d-%05d\n", fwver->gen_major, fwver->gen_minor, fwver->ph_major, fwver->ph_minor, fwver->cust_id, fwver->build_num); } static DEVICE_ATTR_RO(version_fw); /** * fw_queue_depth_show - SysFS callback for firmware max cmds * @dev: class device * @attr: Device attributes * @buf: Buffer to copy * * Return: sysfs_emit() return after copying firmware max commands */ static ssize_t fw_queue_depth_show(struct device *dev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(dev); struct mpi3mr_ioc *mrioc = shost_priv(shost); return sysfs_emit(buf, "%d\n", mrioc->facts.max_reqs); } static DEVICE_ATTR_RO(fw_queue_depth); /** * op_req_q_count_show - SysFS callback for request queue count * @dev: class device * @attr: Device attributes * @buf: Buffer to copy * * Return: sysfs_emit() return after copying request queue count */ static ssize_t op_req_q_count_show(struct device *dev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(dev); struct mpi3mr_ioc *mrioc = shost_priv(shost); return sysfs_emit(buf, "%d\n", mrioc->num_op_req_q); } static DEVICE_ATTR_RO(op_req_q_count); /** * reply_queue_count_show - SysFS callback for reply queue count * @dev: class device * @attr: Device attributes * @buf: Buffer to copy * * Return: sysfs_emit() return after copying reply queue count */ static ssize_t reply_queue_count_show(struct device *dev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(dev); struct mpi3mr_ioc *mrioc = shost_priv(shost); return sysfs_emit(buf, "%d\n", mrioc->num_op_reply_q); } static DEVICE_ATTR_RO(reply_queue_count); /** * logging_level_show - Show controller debug level * @dev: class device * @attr: Device attributes * @buf: Buffer to copy * * A sysfs 'read/write' shost attribute, to show the current * debug log level used by the driver for the specific * controller. * * Return: sysfs_emit() return */ static ssize_t logging_level_show(struct device *dev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(dev); struct mpi3mr_ioc *mrioc = shost_priv(shost); return sysfs_emit(buf, "%08xh\n", mrioc->logging_level); } /** * logging_level_store- Change controller debug level * @dev: class device * @attr: Device attributes * @buf: Buffer to copy * @count: size of the buffer * * A sysfs 'read/write' shost attribute, to change the current * debug log level used by the driver for the specific * controller. * * Return: strlen() return */ static ssize_t logging_level_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct Scsi_Host *shost = class_to_shost(dev); struct mpi3mr_ioc *mrioc = shost_priv(shost); int val = 0; if (kstrtoint(buf, 0, &val) != 0) return -EINVAL; mrioc->logging_level = val; ioc_info(mrioc, "logging_level=%08xh\n", mrioc->logging_level); return strlen(buf); } static DEVICE_ATTR_RW(logging_level); /** * adp_state_show() - SysFS callback for adapter state show * @dev: class device * @attr: Device attributes * @buf: Buffer to copy * * Return: sysfs_emit() return after copying adapter state */ static ssize_t adp_state_show(struct device *dev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(dev); struct mpi3mr_ioc *mrioc = shost_priv(shost); enum mpi3mr_iocstate ioc_state; uint8_t adp_state; ioc_state = mpi3mr_get_iocstate(mrioc); if (ioc_state == MRIOC_STATE_UNRECOVERABLE) adp_state = MPI3MR_BSG_ADPSTATE_UNRECOVERABLE; else if ((mrioc->reset_in_progress) || (mrioc->stop_bsgs)) adp_state = MPI3MR_BSG_ADPSTATE_IN_RESET; else if (ioc_state == MRIOC_STATE_FAULT) adp_state = MPI3MR_BSG_ADPSTATE_FAULT; else adp_state = MPI3MR_BSG_ADPSTATE_OPERATIONAL; return sysfs_emit(buf, "%u\n", adp_state); } static DEVICE_ATTR_RO(adp_state); static struct attribute *mpi3mr_host_attrs[] = { &dev_attr_version_fw.attr, &dev_attr_fw_queue_depth.attr, &dev_attr_op_req_q_count.attr, &dev_attr_reply_queue_count.attr, &dev_attr_logging_level.attr, &dev_attr_adp_state.attr, NULL, }; static const struct attribute_group mpi3mr_host_attr_group = { .attrs = mpi3mr_host_attrs }; const struct attribute_group *mpi3mr_host_groups[] = { &mpi3mr_host_attr_group, NULL, }; /* * SCSI Device attributes under sysfs */ /** * sas_address_show - SysFS callback for dev SASaddress display * @dev: class device * @attr: Device attributes * @buf: Buffer to copy * * Return: sysfs_emit() return after copying SAS address of the * specific SAS/SATA end device. */ static ssize_t sas_address_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_device *sdev = to_scsi_device(dev); struct mpi3mr_sdev_priv_data *sdev_priv_data; struct mpi3mr_stgt_priv_data *tgt_priv_data; struct mpi3mr_tgt_dev *tgtdev; sdev_priv_data = sdev->hostdata; if (!sdev_priv_data) return 0; tgt_priv_data = sdev_priv_data->tgt_priv_data; if (!tgt_priv_data) return 0; tgtdev = tgt_priv_data->tgt_dev; if (!tgtdev || tgtdev->dev_type != MPI3_DEVICE_DEVFORM_SAS_SATA) return 0; return sysfs_emit(buf, "0x%016llx\n", (unsigned long long)tgtdev->dev_spec.sas_sata_inf.sas_address); } static DEVICE_ATTR_RO(sas_address); /** * device_handle_show - SysFS callback for device handle display * @dev: class device * @attr: Device attributes * @buf: Buffer to copy * * Return: sysfs_emit() return after copying firmware internal * device handle of the specific device. */ static ssize_t device_handle_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_device *sdev = to_scsi_device(dev); struct mpi3mr_sdev_priv_data *sdev_priv_data; struct mpi3mr_stgt_priv_data *tgt_priv_data; struct mpi3mr_tgt_dev *tgtdev; sdev_priv_data = sdev->hostdata; if (!sdev_priv_data) return 0; tgt_priv_data = sdev_priv_data->tgt_priv_data; if (!tgt_priv_data) return 0; tgtdev = tgt_priv_data->tgt_dev; if (!tgtdev) return 0; return sysfs_emit(buf, "0x%04x\n", tgtdev->dev_handle); } static DEVICE_ATTR_RO(device_handle); /** * persistent_id_show - SysFS callback for persisten ID display * @dev: class device * @attr: Device attributes * @buf: Buffer to copy * * Return: sysfs_emit() return after copying persistent ID of the * of the specific device. */ static ssize_t persistent_id_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_device *sdev = to_scsi_device(dev); struct mpi3mr_sdev_priv_data *sdev_priv_data; struct mpi3mr_stgt_priv_data *tgt_priv_data; struct mpi3mr_tgt_dev *tgtdev; sdev_priv_data = sdev->hostdata; if (!sdev_priv_data) return 0; tgt_priv_data = sdev_priv_data->tgt_priv_data; if (!tgt_priv_data) return 0; tgtdev = tgt_priv_data->tgt_dev; if (!tgtdev) return 0; return sysfs_emit(buf, "%d\n", tgtdev->perst_id); } static DEVICE_ATTR_RO(persistent_id); static struct attribute *mpi3mr_dev_attrs[] = { &dev_attr_sas_address.attr, &dev_attr_device_handle.attr, &dev_attr_persistent_id.attr, NULL, }; static const struct attribute_group mpi3mr_dev_attr_group = { .attrs = mpi3mr_dev_attrs }; const struct attribute_group *mpi3mr_dev_groups[] = { &mpi3mr_dev_attr_group, NULL, };