linux-zen-desktop/arch/arm/mach-at91/pm.c

1669 lines
42 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* arch/arm/mach-at91/pm.c
* AT91 Power Management
*
* Copyright (C) 2005 David Brownell
*/
#include <linux/genalloc.h>
#include <linux/io.h>
#include <linux/of_address.h>
#include <linux/of.h>
#include <linux/of_fdt.h>
#include <linux/of_platform.h>
#include <linux/parser.h>
#include <linux/suspend.h>
#include <linux/clk.h>
#include <linux/clk/at91_pmc.h>
#include <linux/platform_data/atmel.h>
#include <asm/cacheflush.h>
#include <asm/fncpy.h>
#include <asm/system_misc.h>
#include <asm/suspend.h>
#include "generic.h"
#include "pm.h"
#include "sam_secure.h"
#define BACKUP_DDR_PHY_CALIBRATION (9)
/**
* struct at91_pm_bu - AT91 power management backup unit data structure
* @suspended: true if suspended to backup mode
* @reserved: reserved
* @canary: canary data for memory checking after exit from backup mode
* @resume: resume API
* @ddr_phy_calibration: DDR PHY calibration data: ZQ0CR0, first 8 words
* of the memory
*/
struct at91_pm_bu {
int suspended;
unsigned long reserved;
phys_addr_t canary;
phys_addr_t resume;
unsigned long ddr_phy_calibration[BACKUP_DDR_PHY_CALIBRATION];
};
/**
* struct at91_pm_sfrbu_regs - registers mapping for SFRBU
* @pswbu: power switch BU control registers
*/
struct at91_pm_sfrbu_regs {
struct {
u32 key;
u32 ctrl;
u32 state;
u32 softsw;
} pswbu;
};
/**
* enum at91_pm_eth_clk - Ethernet clock indexes
* @AT91_PM_ETH_PCLK: pclk index
* @AT91_PM_ETH_HCLK: hclk index
* @AT91_PM_ETH_MAX_CLK: max index
*/
enum at91_pm_eth_clk {
AT91_PM_ETH_PCLK,
AT91_PM_ETH_HCLK,
AT91_PM_ETH_MAX_CLK,
};
/**
* enum at91_pm_eth - Ethernet controller indexes
* @AT91_PM_G_ETH: gigabit Ethernet controller index
* @AT91_PM_E_ETH: megabit Ethernet controller index
* @AT91_PM_MAX_ETH: max index
*/
enum at91_pm_eth {
AT91_PM_G_ETH,
AT91_PM_E_ETH,
AT91_PM_MAX_ETH,
};
/**
* struct at91_pm_quirk_eth - AT91 PM Ethernet quirks
* @dev: Ethernet device
* @np: Ethernet device node
* @clks: Ethernet clocks
* @modes: power management mode that this quirk applies to
* @dns_modes: do not suspend modes: stop suspending if Ethernet is configured
* as wakeup source but buggy and no other wakeup source is
* available
*/
struct at91_pm_quirk_eth {
struct device *dev;
struct device_node *np;
struct clk_bulk_data clks[AT91_PM_ETH_MAX_CLK];
u32 modes;
u32 dns_modes;
};
/**
* struct at91_pm_quirks - AT91 PM quirks
* @eth: Ethernet quirks
*/
struct at91_pm_quirks {
struct at91_pm_quirk_eth eth[AT91_PM_MAX_ETH];
};
/**
* struct at91_soc_pm - AT91 SoC power management data structure
* @config_shdwc_ws: wakeup sources configuration function for SHDWC
* @config_pmc_ws: wakeup srouces configuration function for PMC
* @ws_ids: wakup sources of_device_id array
* @bu: backup unit mapped data (for backup mode)
* @quirks: PM quirks
* @data: PM data to be used on last phase of suspend
* @sfrbu_regs: SFRBU registers mapping
* @memcs: memory chip select
*/
struct at91_soc_pm {
int (*config_shdwc_ws)(void __iomem *shdwc, u32 *mode, u32 *polarity);
int (*config_pmc_ws)(void __iomem *pmc, u32 mode, u32 polarity);
const struct of_device_id *ws_ids;
struct at91_pm_bu *bu;
struct at91_pm_quirks quirks;
struct at91_pm_data data;
struct at91_pm_sfrbu_regs sfrbu_regs;
void *memcs;
};
/**
* enum at91_pm_iomaps - IOs that needs to be mapped for different PM modes
* @AT91_PM_IOMAP_SHDWC: SHDWC controller
* @AT91_PM_IOMAP_SFRBU: SFRBU controller
* @AT91_PM_IOMAP_ETHC: Ethernet controller
*/
enum at91_pm_iomaps {
AT91_PM_IOMAP_SHDWC,
AT91_PM_IOMAP_SFRBU,
AT91_PM_IOMAP_ETHC,
};
#define AT91_PM_IOMAP(name) BIT(AT91_PM_IOMAP_##name)
static struct at91_soc_pm soc_pm = {
.data = {
.standby_mode = AT91_PM_STANDBY,
.suspend_mode = AT91_PM_ULP0,
},
};
static const match_table_t pm_modes __initconst = {
{ AT91_PM_STANDBY, "standby" },
{ AT91_PM_ULP0, "ulp0" },
{ AT91_PM_ULP0_FAST, "ulp0-fast" },
{ AT91_PM_ULP1, "ulp1" },
{ AT91_PM_BACKUP, "backup" },
{ -1, NULL },
};
#define at91_ramc_read(id, field) \
__raw_readl(soc_pm.data.ramc[id] + field)
#define at91_ramc_write(id, field, value) \
__raw_writel(value, soc_pm.data.ramc[id] + field)
static int at91_pm_valid_state(suspend_state_t state)
{
switch (state) {
case PM_SUSPEND_ON:
case PM_SUSPEND_STANDBY:
case PM_SUSPEND_MEM:
return 1;
default:
return 0;
}
}
static int canary = 0xA5A5A5A5;
struct wakeup_source_info {
unsigned int pmc_fsmr_bit;
unsigned int shdwc_mr_bit;
bool set_polarity;
};
static const struct wakeup_source_info ws_info[] = {
{ .pmc_fsmr_bit = AT91_PMC_FSTT(10), .set_polarity = true },
{ .pmc_fsmr_bit = AT91_PMC_RTCAL, .shdwc_mr_bit = BIT(17) },
{ .pmc_fsmr_bit = AT91_PMC_USBAL },
{ .pmc_fsmr_bit = AT91_PMC_SDMMC_CD },
{ .pmc_fsmr_bit = AT91_PMC_RTTAL },
{ .pmc_fsmr_bit = AT91_PMC_RXLP_MCE },
};
static const struct of_device_id sama5d2_ws_ids[] = {
{ .compatible = "atmel,sama5d2-gem", .data = &ws_info[0] },
{ .compatible = "atmel,sama5d2-rtc", .data = &ws_info[1] },
{ .compatible = "atmel,sama5d3-udc", .data = &ws_info[2] },
{ .compatible = "atmel,at91rm9200-ohci", .data = &ws_info[2] },
{ .compatible = "usb-ohci", .data = &ws_info[2] },
{ .compatible = "atmel,at91sam9g45-ehci", .data = &ws_info[2] },
{ .compatible = "usb-ehci", .data = &ws_info[2] },
{ .compatible = "atmel,sama5d2-sdhci", .data = &ws_info[3] },
{ /* sentinel */ }
};
static const struct of_device_id sam9x60_ws_ids[] = {
{ .compatible = "microchip,sam9x60-rtc", .data = &ws_info[1] },
{ .compatible = "atmel,at91rm9200-ohci", .data = &ws_info[2] },
{ .compatible = "usb-ohci", .data = &ws_info[2] },
{ .compatible = "atmel,at91sam9g45-ehci", .data = &ws_info[2] },
{ .compatible = "usb-ehci", .data = &ws_info[2] },
{ .compatible = "microchip,sam9x60-rtt", .data = &ws_info[4] },
{ .compatible = "cdns,sam9x60-macb", .data = &ws_info[5] },
{ /* sentinel */ }
};
static const struct of_device_id sama7g5_ws_ids[] = {
{ .compatible = "microchip,sama7g5-rtc", .data = &ws_info[1] },
{ .compatible = "microchip,sama7g5-ohci", .data = &ws_info[2] },
{ .compatible = "usb-ohci", .data = &ws_info[2] },
{ .compatible = "atmel,at91sam9g45-ehci", .data = &ws_info[2] },
{ .compatible = "usb-ehci", .data = &ws_info[2] },
{ .compatible = "microchip,sama7g5-sdhci", .data = &ws_info[3] },
{ .compatible = "microchip,sama7g5-rtt", .data = &ws_info[4] },
{ /* sentinel */ }
};
static int at91_pm_config_ws(unsigned int pm_mode, bool set)
{
const struct wakeup_source_info *wsi;
const struct of_device_id *match;
struct platform_device *pdev;
struct device_node *np;
unsigned int mode = 0, polarity = 0, val = 0;
if (pm_mode != AT91_PM_ULP1)
return 0;
if (!soc_pm.data.pmc || !soc_pm.data.shdwc || !soc_pm.ws_ids)
return -EPERM;
if (!set) {
writel(mode, soc_pm.data.pmc + AT91_PMC_FSMR);
return 0;
}
if (soc_pm.config_shdwc_ws)
soc_pm.config_shdwc_ws(soc_pm.data.shdwc, &mode, &polarity);
/* SHDWC.MR */
val = readl(soc_pm.data.shdwc + 0x04);
/* Loop through defined wakeup sources. */
for_each_matching_node_and_match(np, soc_pm.ws_ids, &match) {
pdev = of_find_device_by_node(np);
if (!pdev)
continue;
if (device_may_wakeup(&pdev->dev)) {
wsi = match->data;
/* Check if enabled on SHDWC. */
if (wsi->shdwc_mr_bit && !(val & wsi->shdwc_mr_bit))
goto put_device;
mode |= wsi->pmc_fsmr_bit;
if (wsi->set_polarity)
polarity |= wsi->pmc_fsmr_bit;
}
put_device:
put_device(&pdev->dev);
}
if (mode) {
if (soc_pm.config_pmc_ws)
soc_pm.config_pmc_ws(soc_pm.data.pmc, mode, polarity);
} else {
pr_err("AT91: PM: no ULP1 wakeup sources found!");
}
return mode ? 0 : -EPERM;
}
static int at91_sama5d2_config_shdwc_ws(void __iomem *shdwc, u32 *mode,
u32 *polarity)
{
u32 val;
/* SHDWC.WUIR */
val = readl(shdwc + 0x0c);
*mode |= (val & 0x3ff);
*polarity |= ((val >> 16) & 0x3ff);
return 0;
}
static int at91_sama5d2_config_pmc_ws(void __iomem *pmc, u32 mode, u32 polarity)
{
writel(mode, pmc + AT91_PMC_FSMR);
writel(polarity, pmc + AT91_PMC_FSPR);
return 0;
}
static int at91_sam9x60_config_pmc_ws(void __iomem *pmc, u32 mode, u32 polarity)
{
writel(mode, pmc + AT91_PMC_FSMR);
return 0;
}
static bool at91_pm_eth_quirk_is_valid(struct at91_pm_quirk_eth *eth)
{
struct platform_device *pdev;
/* Interface NA in DT. */
if (!eth->np)
return false;
/* No quirks for this interface and current suspend mode. */
if (!(eth->modes & BIT(soc_pm.data.mode)))
return false;
if (!eth->dev) {
/* Driver not probed. */
pdev = of_find_device_by_node(eth->np);
if (!pdev)
return false;
/* put_device(eth->dev) is called at the end of suspend. */
eth->dev = &pdev->dev;
}
/* No quirks if device isn't a wakeup source. */
if (!device_may_wakeup(eth->dev))
return false;
return true;
}
static int at91_pm_config_quirks(bool suspend)
{
struct at91_pm_quirk_eth *eth;
int i, j, ret, tmp;
/*
* Ethernet IPs who's device_node pointers are stored into
* soc_pm.quirks.eth[].np cannot handle WoL packets while in ULP0, ULP1
* or both due to a hardware bug. If they receive WoL packets while in
* ULP0 or ULP1 IPs could stop working or the whole system could stop
* working. We cannot handle this scenario in the ethernet driver itself
* as the driver is common to multiple vendors and also we only know
* here, in this file, if we suspend to ULP0 or ULP1 mode. Thus handle
* these scenarios here, as quirks.
*/
for (i = 0; i < AT91_PM_MAX_ETH; i++) {
eth = &soc_pm.quirks.eth[i];
if (!at91_pm_eth_quirk_is_valid(eth))
continue;
/*
* For modes in dns_modes mask the system blocks if quirk is not
* applied but if applied the interface doesn't act at WoL
* events. Thus take care to avoid suspending if this interface
* is the only configured wakeup source.
*/
if (suspend && eth->dns_modes & BIT(soc_pm.data.mode)) {
int ws_count = 0;
#ifdef CONFIG_PM_SLEEP
struct wakeup_source *ws;
for_each_wakeup_source(ws) {
if (ws->dev == eth->dev)
continue;
ws_count++;
break;
}
#endif
/*
* Checking !ws is good for all platforms with issues
* even when both G_ETH and E_ETH are available as dns_modes
* is populated only on G_ETH interface.
*/
if (!ws_count) {
pr_err("AT91: PM: Ethernet cannot resume from WoL!");
ret = -EPERM;
put_device(eth->dev);
eth->dev = NULL;
/* No need to revert clock settings for this eth. */
i--;
goto clk_unconfigure;
}
}
if (suspend) {
clk_bulk_disable_unprepare(AT91_PM_ETH_MAX_CLK, eth->clks);
} else {
ret = clk_bulk_prepare_enable(AT91_PM_ETH_MAX_CLK,
eth->clks);
if (ret)
goto clk_unconfigure;
/*
* Release the reference to eth->dev taken in
* at91_pm_eth_quirk_is_valid().
*/
put_device(eth->dev);
eth->dev = NULL;
}
}
return 0;
clk_unconfigure:
/*
* In case of resume we reach this point if clk_prepare_enable() failed.
* we don't want to revert the previous clk_prepare_enable() for the
* other IP.
*/
for (j = i; j >= 0; j--) {
eth = &soc_pm.quirks.eth[j];
if (suspend) {
if (!at91_pm_eth_quirk_is_valid(eth))
continue;
tmp = clk_bulk_prepare_enable(AT91_PM_ETH_MAX_CLK, eth->clks);
if (tmp) {
pr_err("AT91: PM: failed to enable %s clocks\n",
j == AT91_PM_G_ETH ? "geth" : "eth");
}
}
/*
* Release the reference to eth->dev taken in
* at91_pm_eth_quirk_is_valid().
*/
put_device(eth->dev);
eth->dev = NULL;
}
return ret;
}
/*
* Called after processes are frozen, but before we shutdown devices.
*/
static int at91_pm_begin(suspend_state_t state)
{
int ret;
switch (state) {
case PM_SUSPEND_MEM:
soc_pm.data.mode = soc_pm.data.suspend_mode;
break;
case PM_SUSPEND_STANDBY:
soc_pm.data.mode = soc_pm.data.standby_mode;
break;
default:
soc_pm.data.mode = -1;
}
ret = at91_pm_config_ws(soc_pm.data.mode, true);
if (ret)
return ret;
if (soc_pm.data.mode == AT91_PM_BACKUP)
soc_pm.bu->suspended = 1;
else if (soc_pm.bu)
soc_pm.bu->suspended = 0;
return 0;
}
/*
* Verify that all the clocks are correct before entering
* slow-clock mode.
*/
static int at91_pm_verify_clocks(void)
{
unsigned long scsr;
int i;
scsr = readl(soc_pm.data.pmc + AT91_PMC_SCSR);
/* USB must not be using PLLB */
if ((scsr & soc_pm.data.uhp_udp_mask) != 0) {
pr_err("AT91: PM - Suspend-to-RAM with USB still active\n");
return 0;
}
/* PCK0..PCK3 must be disabled, or configured to use clk32k */
for (i = 0; i < 4; i++) {
u32 css;
if ((scsr & (AT91_PMC_PCK0 << i)) == 0)
continue;
css = readl(soc_pm.data.pmc + AT91_PMC_PCKR(i)) & AT91_PMC_CSS;
if (css != AT91_PMC_CSS_SLOW) {
pr_err("AT91: PM - Suspend-to-RAM with PCK%d src %d\n", i, css);
return 0;
}
}
return 1;
}
/*
* Call this from platform driver suspend() to see how deeply to suspend.
* For example, some controllers (like OHCI) need one of the PLL clocks
* in order to act as a wakeup source, and those are not available when
* going into slow clock mode.
*
* REVISIT: generalize as clk_will_be_available(clk)? Other platforms have
* the very same problem (but not using at91 main_clk), and it'd be better
* to add one generic API rather than lots of platform-specific ones.
*/
int at91_suspend_entering_slow_clock(void)
{
return (soc_pm.data.mode >= AT91_PM_ULP0);
}
EXPORT_SYMBOL(at91_suspend_entering_slow_clock);
static void (*at91_suspend_sram_fn)(struct at91_pm_data *);
extern void at91_pm_suspend_in_sram(struct at91_pm_data *pm_data);
extern u32 at91_pm_suspend_in_sram_sz;
static int at91_suspend_finish(unsigned long val)
{
unsigned char modified_gray_code[] = {
0x00, 0x01, 0x02, 0x03, 0x06, 0x07, 0x04, 0x05, 0x0c, 0x0d,
0x0e, 0x0f, 0x0a, 0x0b, 0x08, 0x09, 0x18, 0x19, 0x1a, 0x1b,
0x1e, 0x1f, 0x1c, 0x1d, 0x14, 0x15, 0x16, 0x17, 0x12, 0x13,
0x10, 0x11,
};
unsigned int tmp, index;
int i;
if (soc_pm.data.mode == AT91_PM_BACKUP && soc_pm.data.ramc_phy) {
/*
* Bootloader will perform DDR recalibration and will try to
* restore the ZQ0SR0 with the value saved here. But the
* calibration is buggy and restoring some values from ZQ0SR0
* is forbidden and risky thus we need to provide processed
* values for these (modified gray code values).
*/
tmp = readl(soc_pm.data.ramc_phy + DDR3PHY_ZQ0SR0);
/* Store pull-down output impedance select. */
index = (tmp >> DDR3PHY_ZQ0SR0_PDO_OFF) & 0x1f;
soc_pm.bu->ddr_phy_calibration[0] = modified_gray_code[index];
/* Store pull-up output impedance select. */
index = (tmp >> DDR3PHY_ZQ0SR0_PUO_OFF) & 0x1f;
soc_pm.bu->ddr_phy_calibration[0] |= modified_gray_code[index];
/* Store pull-down on-die termination impedance select. */
index = (tmp >> DDR3PHY_ZQ0SR0_PDODT_OFF) & 0x1f;
soc_pm.bu->ddr_phy_calibration[0] |= modified_gray_code[index];
/* Store pull-up on-die termination impedance select. */
index = (tmp >> DDR3PHY_ZQ0SRO_PUODT_OFF) & 0x1f;
soc_pm.bu->ddr_phy_calibration[0] |= modified_gray_code[index];
/*
* The 1st 8 words of memory might get corrupted in the process
* of DDR PHY recalibration; it is saved here in securam and it
* will be restored later, after recalibration, by bootloader
*/
for (i = 1; i < BACKUP_DDR_PHY_CALIBRATION; i++)
soc_pm.bu->ddr_phy_calibration[i] =
*((unsigned int *)soc_pm.memcs + (i - 1));
}
flush_cache_all();
outer_disable();
at91_suspend_sram_fn(&soc_pm.data);
return 0;
}
static void at91_pm_switch_ba_to_vbat(void)
{
unsigned int offset = offsetof(struct at91_pm_sfrbu_regs, pswbu);
unsigned int val;
/* Just for safety. */
if (!soc_pm.data.sfrbu)
return;
val = readl(soc_pm.data.sfrbu + offset);
/* Already on VBAT. */
if (!(val & soc_pm.sfrbu_regs.pswbu.state))
return;
val &= ~soc_pm.sfrbu_regs.pswbu.softsw;
val |= soc_pm.sfrbu_regs.pswbu.key | soc_pm.sfrbu_regs.pswbu.ctrl;
writel(val, soc_pm.data.sfrbu + offset);
/* Wait for update. */
val = readl(soc_pm.data.sfrbu + offset);
while (val & soc_pm.sfrbu_regs.pswbu.state)
val = readl(soc_pm.data.sfrbu + offset);
}
static void at91_pm_suspend(suspend_state_t state)
{
if (soc_pm.data.mode == AT91_PM_BACKUP) {
at91_pm_switch_ba_to_vbat();
cpu_suspend(0, at91_suspend_finish);
/* The SRAM is lost between suspend cycles */
at91_suspend_sram_fn = fncpy(at91_suspend_sram_fn,
&at91_pm_suspend_in_sram,
at91_pm_suspend_in_sram_sz);
} else {
at91_suspend_finish(0);
}
outer_resume();
}
/*
* STANDBY mode has *all* drivers suspended; ignores irqs not marked as 'wakeup'
* event sources; and reduces DRAM power. But otherwise it's identical to
* PM_SUSPEND_ON: cpu idle, and nothing fancy done with main or cpu clocks.
*
* AT91_PM_ULP0 is like STANDBY plus slow clock mode, so drivers must
* suspend more deeply, the master clock switches to the clk32k and turns off
* the main oscillator
*
* AT91_PM_BACKUP turns off the whole SoC after placing the DDR in self refresh
*/
static int at91_pm_enter(suspend_state_t state)
{
int ret;
ret = at91_pm_config_quirks(true);
if (ret)
return ret;
switch (state) {
case PM_SUSPEND_MEM:
case PM_SUSPEND_STANDBY:
/*
* Ensure that clocks are in a valid state.
*/
if (soc_pm.data.mode >= AT91_PM_ULP0 &&
!at91_pm_verify_clocks())
goto error;
at91_pm_suspend(state);
break;
case PM_SUSPEND_ON:
cpu_do_idle();
break;
default:
pr_debug("AT91: PM - bogus suspend state %d\n", state);
goto error;
}
error:
at91_pm_config_quirks(false);
return 0;
}
/*
* Called right prior to thawing processes.
*/
static void at91_pm_end(void)
{
at91_pm_config_ws(soc_pm.data.mode, false);
}
static const struct platform_suspend_ops at91_pm_ops = {
.valid = at91_pm_valid_state,
.begin = at91_pm_begin,
.enter = at91_pm_enter,
.end = at91_pm_end,
};
static struct platform_device at91_cpuidle_device = {
.name = "cpuidle-at91",
};
/*
* The AT91RM9200 goes into self-refresh mode with this command, and will
* terminate self-refresh automatically on the next SDRAM access.
*
* Self-refresh mode is exited as soon as a memory access is made, but we don't
* know for sure when that happens. However, we need to restore the low-power
* mode if it was enabled before going idle. Restoring low-power mode while
* still in self-refresh is "not recommended", but seems to work.
*/
static void at91rm9200_standby(void)
{
asm volatile(
"b 1f\n\t"
".align 5\n\t"
"1: mcr p15, 0, %0, c7, c10, 4\n\t"
" str %2, [%1, %3]\n\t"
" mcr p15, 0, %0, c7, c0, 4\n\t"
:
: "r" (0), "r" (soc_pm.data.ramc[0]),
"r" (1), "r" (AT91_MC_SDRAMC_SRR));
}
/* We manage both DDRAM/SDRAM controllers, we need more than one value to
* remember.
*/
static void at91_ddr_standby(void)
{
/* Those two values allow us to delay self-refresh activation
* to the maximum. */
u32 lpr0, lpr1 = 0;
u32 mdr, saved_mdr0, saved_mdr1 = 0;
u32 saved_lpr0, saved_lpr1 = 0;
/* LPDDR1 --> force DDR2 mode during self-refresh */
saved_mdr0 = at91_ramc_read(0, AT91_DDRSDRC_MDR);
if ((saved_mdr0 & AT91_DDRSDRC_MD) == AT91_DDRSDRC_MD_LOW_POWER_DDR) {
mdr = saved_mdr0 & ~AT91_DDRSDRC_MD;
mdr |= AT91_DDRSDRC_MD_DDR2;
at91_ramc_write(0, AT91_DDRSDRC_MDR, mdr);
}
if (soc_pm.data.ramc[1]) {
saved_lpr1 = at91_ramc_read(1, AT91_DDRSDRC_LPR);
lpr1 = saved_lpr1 & ~AT91_DDRSDRC_LPCB;
lpr1 |= AT91_DDRSDRC_LPCB_SELF_REFRESH;
saved_mdr1 = at91_ramc_read(1, AT91_DDRSDRC_MDR);
if ((saved_mdr1 & AT91_DDRSDRC_MD) == AT91_DDRSDRC_MD_LOW_POWER_DDR) {
mdr = saved_mdr1 & ~AT91_DDRSDRC_MD;
mdr |= AT91_DDRSDRC_MD_DDR2;
at91_ramc_write(1, AT91_DDRSDRC_MDR, mdr);
}
}
saved_lpr0 = at91_ramc_read(0, AT91_DDRSDRC_LPR);
lpr0 = saved_lpr0 & ~AT91_DDRSDRC_LPCB;
lpr0 |= AT91_DDRSDRC_LPCB_SELF_REFRESH;
/* self-refresh mode now */
at91_ramc_write(0, AT91_DDRSDRC_LPR, lpr0);
if (soc_pm.data.ramc[1])
at91_ramc_write(1, AT91_DDRSDRC_LPR, lpr1);
cpu_do_idle();
at91_ramc_write(0, AT91_DDRSDRC_MDR, saved_mdr0);
at91_ramc_write(0, AT91_DDRSDRC_LPR, saved_lpr0);
if (soc_pm.data.ramc[1]) {
at91_ramc_write(0, AT91_DDRSDRC_MDR, saved_mdr1);
at91_ramc_write(1, AT91_DDRSDRC_LPR, saved_lpr1);
}
}
static void sama5d3_ddr_standby(void)
{
u32 lpr0;
u32 saved_lpr0;
saved_lpr0 = at91_ramc_read(0, AT91_DDRSDRC_LPR);
lpr0 = saved_lpr0 & ~AT91_DDRSDRC_LPCB;
lpr0 |= AT91_DDRSDRC_LPCB_POWER_DOWN;
at91_ramc_write(0, AT91_DDRSDRC_LPR, lpr0);
cpu_do_idle();
at91_ramc_write(0, AT91_DDRSDRC_LPR, saved_lpr0);
}
/* We manage both DDRAM/SDRAM controllers, we need more than one value to
* remember.
*/
static void at91sam9_sdram_standby(void)
{
u32 lpr0, lpr1 = 0;
u32 saved_lpr0, saved_lpr1 = 0;
if (soc_pm.data.ramc[1]) {
saved_lpr1 = at91_ramc_read(1, AT91_SDRAMC_LPR);
lpr1 = saved_lpr1 & ~AT91_SDRAMC_LPCB;
lpr1 |= AT91_SDRAMC_LPCB_SELF_REFRESH;
}
saved_lpr0 = at91_ramc_read(0, AT91_SDRAMC_LPR);
lpr0 = saved_lpr0 & ~AT91_SDRAMC_LPCB;
lpr0 |= AT91_SDRAMC_LPCB_SELF_REFRESH;
/* self-refresh mode now */
at91_ramc_write(0, AT91_SDRAMC_LPR, lpr0);
if (soc_pm.data.ramc[1])
at91_ramc_write(1, AT91_SDRAMC_LPR, lpr1);
cpu_do_idle();
at91_ramc_write(0, AT91_SDRAMC_LPR, saved_lpr0);
if (soc_pm.data.ramc[1])
at91_ramc_write(1, AT91_SDRAMC_LPR, saved_lpr1);
}
static void sama7g5_standby(void)
{
int pwrtmg, ratio;
pwrtmg = readl(soc_pm.data.ramc[0] + UDDRC_PWRCTL);
ratio = readl(soc_pm.data.pmc + AT91_PMC_RATIO);
/*
* Place RAM into self-refresh after a maximum idle clocks. The maximum
* idle clocks is configured by bootloader in
* UDDRC_PWRMGT.SELFREF_TO_X32.
*/
writel(pwrtmg | UDDRC_PWRCTL_SELFREF_EN,
soc_pm.data.ramc[0] + UDDRC_PWRCTL);
/* Divide CPU clock by 16. */
writel(ratio & ~AT91_PMC_RATIO_RATIO, soc_pm.data.pmc + AT91_PMC_RATIO);
cpu_do_idle();
/* Restore previous configuration. */
writel(ratio, soc_pm.data.pmc + AT91_PMC_RATIO);
writel(pwrtmg, soc_pm.data.ramc[0] + UDDRC_PWRCTL);
}
struct ramc_info {
void (*idle)(void);
unsigned int memctrl;
};
static const struct ramc_info ramc_infos[] __initconst = {
{ .idle = at91rm9200_standby, .memctrl = AT91_MEMCTRL_MC},
{ .idle = at91sam9_sdram_standby, .memctrl = AT91_MEMCTRL_SDRAMC},
{ .idle = at91_ddr_standby, .memctrl = AT91_MEMCTRL_DDRSDR},
{ .idle = sama5d3_ddr_standby, .memctrl = AT91_MEMCTRL_DDRSDR},
{ .idle = sama7g5_standby, },
};
static const struct of_device_id ramc_ids[] __initconst = {
{ .compatible = "atmel,at91rm9200-sdramc", .data = &ramc_infos[0] },
{ .compatible = "atmel,at91sam9260-sdramc", .data = &ramc_infos[1] },
{ .compatible = "atmel,at91sam9g45-ddramc", .data = &ramc_infos[2] },
{ .compatible = "atmel,sama5d3-ddramc", .data = &ramc_infos[3] },
{ .compatible = "microchip,sama7g5-uddrc", .data = &ramc_infos[4], },
{ /*sentinel*/ }
};
static const struct of_device_id ramc_phy_ids[] __initconst = {
{ .compatible = "microchip,sama7g5-ddr3phy", },
{ /* Sentinel. */ },
};
static __init int at91_dt_ramc(bool phy_mandatory)
{
struct device_node *np;
const struct of_device_id *of_id;
int idx = 0;
void *standby = NULL;
const struct ramc_info *ramc;
int ret;
for_each_matching_node_and_match(np, ramc_ids, &of_id) {
soc_pm.data.ramc[idx] = of_iomap(np, 0);
if (!soc_pm.data.ramc[idx]) {
pr_err("unable to map ramc[%d] cpu registers\n", idx);
ret = -ENOMEM;
of_node_put(np);
goto unmap_ramc;
}
ramc = of_id->data;
if (ramc) {
if (!standby)
standby = ramc->idle;
soc_pm.data.memctrl = ramc->memctrl;
}
idx++;
}
if (!idx) {
pr_err("unable to find compatible ram controller node in dtb\n");
ret = -ENODEV;
goto unmap_ramc;
}
/* Lookup for DDR PHY node, if any. */
for_each_matching_node_and_match(np, ramc_phy_ids, &of_id) {
soc_pm.data.ramc_phy = of_iomap(np, 0);
if (!soc_pm.data.ramc_phy) {
pr_err("unable to map ramc phy cpu registers\n");
ret = -ENOMEM;
of_node_put(np);
goto unmap_ramc;
}
}
if (phy_mandatory && !soc_pm.data.ramc_phy) {
pr_err("DDR PHY is mandatory!\n");
ret = -ENODEV;
goto unmap_ramc;
}
if (!standby) {
pr_warn("ramc no standby function available\n");
return 0;
}
at91_cpuidle_device.dev.platform_data = standby;
return 0;
unmap_ramc:
while (idx)
iounmap(soc_pm.data.ramc[--idx]);
return ret;
}
static void at91rm9200_idle(void)
{
/*
* Disable the processor clock. The processor will be automatically
* re-enabled by an interrupt or by a reset.
*/
writel(AT91_PMC_PCK, soc_pm.data.pmc + AT91_PMC_SCDR);
}
static void at91sam9_idle(void)
{
writel(AT91_PMC_PCK, soc_pm.data.pmc + AT91_PMC_SCDR);
cpu_do_idle();
}
static void __init at91_pm_sram_init(void)
{
struct gen_pool *sram_pool;
phys_addr_t sram_pbase;
unsigned long sram_base;
struct device_node *node;
struct platform_device *pdev = NULL;
for_each_compatible_node(node, NULL, "mmio-sram") {
pdev = of_find_device_by_node(node);
if (pdev) {
of_node_put(node);
break;
}
}
if (!pdev) {
pr_warn("%s: failed to find sram device!\n", __func__);
return;
}
sram_pool = gen_pool_get(&pdev->dev, NULL);
if (!sram_pool) {
pr_warn("%s: sram pool unavailable!\n", __func__);
goto out_put_device;
}
sram_base = gen_pool_alloc(sram_pool, at91_pm_suspend_in_sram_sz);
if (!sram_base) {
pr_warn("%s: unable to alloc sram!\n", __func__);
goto out_put_device;
}
sram_pbase = gen_pool_virt_to_phys(sram_pool, sram_base);
at91_suspend_sram_fn = __arm_ioremap_exec(sram_pbase,
at91_pm_suspend_in_sram_sz, false);
if (!at91_suspend_sram_fn) {
pr_warn("SRAM: Could not map\n");
goto out_put_device;
}
/* Copy the pm suspend handler to SRAM */
at91_suspend_sram_fn = fncpy(at91_suspend_sram_fn,
&at91_pm_suspend_in_sram, at91_pm_suspend_in_sram_sz);
return;
out_put_device:
put_device(&pdev->dev);
return;
}
static bool __init at91_is_pm_mode_active(int pm_mode)
{
return (soc_pm.data.standby_mode == pm_mode ||
soc_pm.data.suspend_mode == pm_mode);
}
static int __init at91_pm_backup_scan_memcs(unsigned long node,
const char *uname, int depth,
void *data)
{
const char *type;
const __be32 *reg;
int *located = data;
int size;
/* Memory node already located. */
if (*located)
return 0;
type = of_get_flat_dt_prop(node, "device_type", NULL);
/* We are scanning "memory" nodes only. */
if (!type || strcmp(type, "memory"))
return 0;
reg = of_get_flat_dt_prop(node, "reg", &size);
if (reg) {
soc_pm.memcs = __va((phys_addr_t)be32_to_cpu(*reg));
*located = 1;
}
return 0;
}
static int __init at91_pm_backup_init(void)
{
struct gen_pool *sram_pool;
struct device_node *np;
struct platform_device *pdev;
int ret = -ENODEV, located = 0;
if (!IS_ENABLED(CONFIG_SOC_SAMA5D2) &&
!IS_ENABLED(CONFIG_SOC_SAMA7G5))
return -EPERM;
if (!at91_is_pm_mode_active(AT91_PM_BACKUP))
return 0;
np = of_find_compatible_node(NULL, NULL, "atmel,sama5d2-securam");
if (!np)
return ret;
pdev = of_find_device_by_node(np);
of_node_put(np);
if (!pdev) {
pr_warn("%s: failed to find securam device!\n", __func__);
return ret;
}
sram_pool = gen_pool_get(&pdev->dev, NULL);
if (!sram_pool) {
pr_warn("%s: securam pool unavailable!\n", __func__);
goto securam_fail;
}
soc_pm.bu = (void *)gen_pool_alloc(sram_pool, sizeof(struct at91_pm_bu));
if (!soc_pm.bu) {
pr_warn("%s: unable to alloc securam!\n", __func__);
ret = -ENOMEM;
goto securam_fail;
}
soc_pm.bu->suspended = 0;
soc_pm.bu->canary = __pa_symbol(&canary);
soc_pm.bu->resume = __pa_symbol(cpu_resume);
if (soc_pm.data.ramc_phy) {
of_scan_flat_dt(at91_pm_backup_scan_memcs, &located);
if (!located)
goto securam_fail;
}
return 0;
securam_fail:
put_device(&pdev->dev);
return ret;
}
static void __init at91_pm_secure_init(void)
{
int suspend_mode;
struct arm_smccc_res res;
suspend_mode = soc_pm.data.suspend_mode;
res = sam_smccc_call(SAMA5_SMC_SIP_SET_SUSPEND_MODE,
suspend_mode, 0);
if (res.a0 == 0) {
pr_info("AT91: Secure PM: suspend mode set to %s\n",
pm_modes[suspend_mode].pattern);
return;
}
pr_warn("AT91: Secure PM: %s mode not supported !\n",
pm_modes[suspend_mode].pattern);
res = sam_smccc_call(SAMA5_SMC_SIP_GET_SUSPEND_MODE, 0, 0);
if (res.a0 == 0) {
pr_warn("AT91: Secure PM: failed to get default mode\n");
return;
}
pr_info("AT91: Secure PM: using default suspend mode %s\n",
pm_modes[suspend_mode].pattern);
soc_pm.data.suspend_mode = res.a1;
}
static const struct of_device_id atmel_shdwc_ids[] = {
{ .compatible = "atmel,sama5d2-shdwc" },
{ .compatible = "microchip,sam9x60-shdwc" },
{ .compatible = "microchip,sama7g5-shdwc" },
{ /* sentinel. */ }
};
static const struct of_device_id gmac_ids[] __initconst = {
{ .compatible = "atmel,sama5d3-gem" },
{ .compatible = "atmel,sama5d2-gem" },
{ .compatible = "atmel,sama5d29-gem" },
{ .compatible = "microchip,sama7g5-gem" },
{ },
};
static const struct of_device_id emac_ids[] __initconst = {
{ .compatible = "atmel,sama5d3-macb" },
{ .compatible = "microchip,sama7g5-emac" },
{ },
};
/*
* Replaces _mode_to_replace with a supported mode that doesn't depend
* on controller pointed by _map_bitmask
* @_maps: u32 array containing AT91_PM_IOMAP() flags and indexed by AT91
* PM mode
* @_map_bitmask: AT91_PM_IOMAP() bitmask; if _mode_to_replace depends on
* controller represented by _map_bitmask, _mode_to_replace needs to be
* updated
* @_mode_to_replace: standby_mode or suspend_mode that need to be
* updated
* @_mode_to_check: standby_mode or suspend_mode; this is needed here
* to avoid having standby_mode and suspend_mode set with the same AT91
* PM mode
*/
#define AT91_PM_REPLACE_MODE(_maps, _map_bitmask, _mode_to_replace, \
_mode_to_check) \
do { \
if (((_maps)[(_mode_to_replace)]) & (_map_bitmask)) { \
int _mode_to_use, _mode_complementary; \
/* Use ULP0 if it doesn't need _map_bitmask. */ \
if (!((_maps)[AT91_PM_ULP0] & (_map_bitmask))) {\
_mode_to_use = AT91_PM_ULP0; \
_mode_complementary = AT91_PM_STANDBY; \
} else { \
_mode_to_use = AT91_PM_STANDBY; \
_mode_complementary = AT91_PM_STANDBY; \
} \
\
if ((_mode_to_check) != _mode_to_use) \
(_mode_to_replace) = _mode_to_use; \
else \
(_mode_to_replace) = _mode_complementary;\
} \
} while (0)
/*
* Replaces standby and suspend modes with default supported modes:
* ULP0 and STANDBY.
* @_maps: u32 array indexed by AT91 PM mode containing AT91_PM_IOMAP()
* flags
* @_map: controller specific name; standby and suspend mode need to be
* replaced in order to not depend on this controller
*/
#define AT91_PM_REPLACE_MODES(_maps, _map) \
do { \
AT91_PM_REPLACE_MODE((_maps), BIT(AT91_PM_IOMAP_##_map),\
(soc_pm.data.standby_mode), \
(soc_pm.data.suspend_mode)); \
AT91_PM_REPLACE_MODE((_maps), BIT(AT91_PM_IOMAP_##_map),\
(soc_pm.data.suspend_mode), \
(soc_pm.data.standby_mode)); \
} while (0)
static int __init at91_pm_get_eth_clks(struct device_node *np,
struct clk_bulk_data *clks)
{
clks[AT91_PM_ETH_PCLK].clk = of_clk_get_by_name(np, "pclk");
if (IS_ERR(clks[AT91_PM_ETH_PCLK].clk))
return PTR_ERR(clks[AT91_PM_ETH_PCLK].clk);
clks[AT91_PM_ETH_HCLK].clk = of_clk_get_by_name(np, "hclk");
if (IS_ERR(clks[AT91_PM_ETH_HCLK].clk))
return PTR_ERR(clks[AT91_PM_ETH_HCLK].clk);
return 0;
}
static int __init at91_pm_eth_clks_empty(struct clk_bulk_data *clks)
{
return IS_ERR(clks[AT91_PM_ETH_PCLK].clk) ||
IS_ERR(clks[AT91_PM_ETH_HCLK].clk);
}
static void __init at91_pm_modes_init(const u32 *maps, int len)
{
struct at91_pm_quirk_eth *gmac = &soc_pm.quirks.eth[AT91_PM_G_ETH];
struct at91_pm_quirk_eth *emac = &soc_pm.quirks.eth[AT91_PM_E_ETH];
struct device_node *np;
int ret;
ret = at91_pm_backup_init();
if (ret) {
if (soc_pm.data.standby_mode == AT91_PM_BACKUP)
soc_pm.data.standby_mode = AT91_PM_ULP0;
if (soc_pm.data.suspend_mode == AT91_PM_BACKUP)
soc_pm.data.suspend_mode = AT91_PM_ULP0;
}
if (maps[soc_pm.data.standby_mode] & AT91_PM_IOMAP(SHDWC) ||
maps[soc_pm.data.suspend_mode] & AT91_PM_IOMAP(SHDWC)) {
np = of_find_matching_node(NULL, atmel_shdwc_ids);
if (!np) {
pr_warn("%s: failed to find shdwc!\n", __func__);
AT91_PM_REPLACE_MODES(maps, SHDWC);
} else {
soc_pm.data.shdwc = of_iomap(np, 0);
of_node_put(np);
}
}
if (maps[soc_pm.data.standby_mode] & AT91_PM_IOMAP(SFRBU) ||
maps[soc_pm.data.suspend_mode] & AT91_PM_IOMAP(SFRBU)) {
np = of_find_compatible_node(NULL, NULL, "atmel,sama5d2-sfrbu");
if (!np) {
pr_warn("%s: failed to find sfrbu!\n", __func__);
AT91_PM_REPLACE_MODES(maps, SFRBU);
} else {
soc_pm.data.sfrbu = of_iomap(np, 0);
of_node_put(np);
}
}
if ((at91_is_pm_mode_active(AT91_PM_ULP1) ||
at91_is_pm_mode_active(AT91_PM_ULP0) ||
at91_is_pm_mode_active(AT91_PM_ULP0_FAST)) &&
(maps[soc_pm.data.standby_mode] & AT91_PM_IOMAP(ETHC) ||
maps[soc_pm.data.suspend_mode] & AT91_PM_IOMAP(ETHC))) {
np = of_find_matching_node(NULL, gmac_ids);
if (!np) {
np = of_find_matching_node(NULL, emac_ids);
if (np)
goto get_emac_clks;
AT91_PM_REPLACE_MODES(maps, ETHC);
goto unmap_unused_nodes;
} else {
gmac->np = np;
at91_pm_get_eth_clks(np, gmac->clks);
}
np = of_find_matching_node(NULL, emac_ids);
if (!np) {
if (at91_pm_eth_clks_empty(gmac->clks))
AT91_PM_REPLACE_MODES(maps, ETHC);
} else {
get_emac_clks:
emac->np = np;
ret = at91_pm_get_eth_clks(np, emac->clks);
if (ret && at91_pm_eth_clks_empty(gmac->clks)) {
of_node_put(gmac->np);
of_node_put(emac->np);
gmac->np = NULL;
emac->np = NULL;
}
}
}
unmap_unused_nodes:
/* Unmap all unnecessary. */
if (soc_pm.data.shdwc &&
!(maps[soc_pm.data.standby_mode] & AT91_PM_IOMAP(SHDWC) ||
maps[soc_pm.data.suspend_mode] & AT91_PM_IOMAP(SHDWC))) {
iounmap(soc_pm.data.shdwc);
soc_pm.data.shdwc = NULL;
}
if (soc_pm.data.sfrbu &&
!(maps[soc_pm.data.standby_mode] & AT91_PM_IOMAP(SFRBU) ||
maps[soc_pm.data.suspend_mode] & AT91_PM_IOMAP(SFRBU))) {
iounmap(soc_pm.data.sfrbu);
soc_pm.data.sfrbu = NULL;
}
return;
}
struct pmc_info {
unsigned long uhp_udp_mask;
unsigned long mckr;
unsigned long version;
};
static const struct pmc_info pmc_infos[] __initconst = {
{
.uhp_udp_mask = AT91RM9200_PMC_UHP | AT91RM9200_PMC_UDP,
.mckr = 0x30,
.version = AT91_PMC_V1,
},
{
.uhp_udp_mask = AT91SAM926x_PMC_UHP | AT91SAM926x_PMC_UDP,
.mckr = 0x30,
.version = AT91_PMC_V1,
},
{
.uhp_udp_mask = AT91SAM926x_PMC_UHP,
.mckr = 0x30,
.version = AT91_PMC_V1,
},
{ .uhp_udp_mask = 0,
.mckr = 0x30,
.version = AT91_PMC_V1,
},
{
.uhp_udp_mask = AT91SAM926x_PMC_UHP | AT91SAM926x_PMC_UDP,
.mckr = 0x28,
.version = AT91_PMC_V2,
},
{
.mckr = 0x28,
.version = AT91_PMC_V2,
},
};
static const struct of_device_id atmel_pmc_ids[] __initconst = {
{ .compatible = "atmel,at91rm9200-pmc", .data = &pmc_infos[0] },
{ .compatible = "atmel,at91sam9260-pmc", .data = &pmc_infos[1] },
{ .compatible = "atmel,at91sam9261-pmc", .data = &pmc_infos[1] },
{ .compatible = "atmel,at91sam9263-pmc", .data = &pmc_infos[1] },
{ .compatible = "atmel,at91sam9g45-pmc", .data = &pmc_infos[2] },
{ .compatible = "atmel,at91sam9n12-pmc", .data = &pmc_infos[1] },
{ .compatible = "atmel,at91sam9rl-pmc", .data = &pmc_infos[3] },
{ .compatible = "atmel,at91sam9x5-pmc", .data = &pmc_infos[1] },
{ .compatible = "atmel,sama5d3-pmc", .data = &pmc_infos[1] },
{ .compatible = "atmel,sama5d4-pmc", .data = &pmc_infos[1] },
{ .compatible = "atmel,sama5d2-pmc", .data = &pmc_infos[1] },
{ .compatible = "microchip,sam9x60-pmc", .data = &pmc_infos[4] },
{ .compatible = "microchip,sama7g5-pmc", .data = &pmc_infos[5] },
{ /* sentinel */ },
};
static void __init at91_pm_modes_validate(const int *modes, int len)
{
u8 i, standby = 0, suspend = 0;
int mode;
for (i = 0; i < len; i++) {
if (standby && suspend)
break;
if (modes[i] == soc_pm.data.standby_mode && !standby) {
standby = 1;
continue;
}
if (modes[i] == soc_pm.data.suspend_mode && !suspend) {
suspend = 1;
continue;
}
}
if (!standby) {
if (soc_pm.data.suspend_mode == AT91_PM_STANDBY)
mode = AT91_PM_ULP0;
else
mode = AT91_PM_STANDBY;
pr_warn("AT91: PM: %s mode not supported! Using %s.\n",
pm_modes[soc_pm.data.standby_mode].pattern,
pm_modes[mode].pattern);
soc_pm.data.standby_mode = mode;
}
if (!suspend) {
if (soc_pm.data.standby_mode == AT91_PM_ULP0)
mode = AT91_PM_STANDBY;
else
mode = AT91_PM_ULP0;
pr_warn("AT91: PM: %s mode not supported! Using %s.\n",
pm_modes[soc_pm.data.suspend_mode].pattern,
pm_modes[mode].pattern);
soc_pm.data.suspend_mode = mode;
}
}
static void __init at91_pm_init(void (*pm_idle)(void))
{
struct device_node *pmc_np;
const struct of_device_id *of_id;
const struct pmc_info *pmc;
if (at91_cpuidle_device.dev.platform_data)
platform_device_register(&at91_cpuidle_device);
pmc_np = of_find_matching_node_and_match(NULL, atmel_pmc_ids, &of_id);
soc_pm.data.pmc = of_iomap(pmc_np, 0);
of_node_put(pmc_np);
if (!soc_pm.data.pmc) {
pr_err("AT91: PM not supported, PMC not found\n");
return;
}
pmc = of_id->data;
soc_pm.data.uhp_udp_mask = pmc->uhp_udp_mask;
soc_pm.data.pmc_mckr_offset = pmc->mckr;
soc_pm.data.pmc_version = pmc->version;
if (pm_idle)
arm_pm_idle = pm_idle;
at91_pm_sram_init();
if (at91_suspend_sram_fn) {
suspend_set_ops(&at91_pm_ops);
pr_info("AT91: PM: standby: %s, suspend: %s\n",
pm_modes[soc_pm.data.standby_mode].pattern,
pm_modes[soc_pm.data.suspend_mode].pattern);
} else {
pr_info("AT91: PM not supported, due to no SRAM allocated\n");
}
}
void __init at91rm9200_pm_init(void)
{
int ret;
if (!IS_ENABLED(CONFIG_SOC_AT91RM9200))
return;
/*
* Force STANDBY and ULP0 mode to avoid calling
* at91_pm_modes_validate() which may increase booting time.
* Platform supports anyway only STANDBY and ULP0 modes.
*/
soc_pm.data.standby_mode = AT91_PM_STANDBY;
soc_pm.data.suspend_mode = AT91_PM_ULP0;
ret = at91_dt_ramc(false);
if (ret)
return;
/*
* AT91RM9200 SDRAM low-power mode cannot be used with self-refresh.
*/
at91_ramc_write(0, AT91_MC_SDRAMC_LPR, 0);
at91_pm_init(at91rm9200_idle);
}
void __init sam9x60_pm_init(void)
{
static const int modes[] __initconst = {
AT91_PM_STANDBY, AT91_PM_ULP0, AT91_PM_ULP0_FAST, AT91_PM_ULP1,
};
static const int iomaps[] __initconst = {
[AT91_PM_ULP1] = AT91_PM_IOMAP(SHDWC),
};
int ret;
if (!IS_ENABLED(CONFIG_SOC_SAM9X60))
return;
at91_pm_modes_validate(modes, ARRAY_SIZE(modes));
at91_pm_modes_init(iomaps, ARRAY_SIZE(iomaps));
ret = at91_dt_ramc(false);
if (ret)
return;
at91_pm_init(NULL);
soc_pm.ws_ids = sam9x60_ws_ids;
soc_pm.config_pmc_ws = at91_sam9x60_config_pmc_ws;
}
void __init at91sam9_pm_init(void)
{
int ret;
if (!IS_ENABLED(CONFIG_SOC_AT91SAM9))
return;
/*
* Force STANDBY and ULP0 mode to avoid calling
* at91_pm_modes_validate() which may increase booting time.
* Platform supports anyway only STANDBY and ULP0 modes.
*/
soc_pm.data.standby_mode = AT91_PM_STANDBY;
soc_pm.data.suspend_mode = AT91_PM_ULP0;
ret = at91_dt_ramc(false);
if (ret)
return;
at91_pm_init(at91sam9_idle);
}
void __init sama5_pm_init(void)
{
static const int modes[] __initconst = {
AT91_PM_STANDBY, AT91_PM_ULP0, AT91_PM_ULP0_FAST,
};
static const u32 iomaps[] __initconst = {
[AT91_PM_ULP0] = AT91_PM_IOMAP(ETHC),
[AT91_PM_ULP0_FAST] = AT91_PM_IOMAP(ETHC),
};
int ret;
if (!IS_ENABLED(CONFIG_SOC_SAMA5))
return;
at91_pm_modes_validate(modes, ARRAY_SIZE(modes));
at91_pm_modes_init(iomaps, ARRAY_SIZE(iomaps));
ret = at91_dt_ramc(false);
if (ret)
return;
at91_pm_init(NULL);
/* Quirks applies to ULP0, ULP0 fast and ULP1 modes. */
soc_pm.quirks.eth[AT91_PM_G_ETH].modes = BIT(AT91_PM_ULP0) |
BIT(AT91_PM_ULP0_FAST) |
BIT(AT91_PM_ULP1);
/* Do not suspend in ULP0, ULP0 fast if GETH is the only wakeup source. */
soc_pm.quirks.eth[AT91_PM_G_ETH].dns_modes = BIT(AT91_PM_ULP0) |
BIT(AT91_PM_ULP0_FAST);
}
void __init sama5d2_pm_init(void)
{
static const int modes[] __initconst = {
AT91_PM_STANDBY, AT91_PM_ULP0, AT91_PM_ULP0_FAST, AT91_PM_ULP1,
AT91_PM_BACKUP,
};
static const u32 iomaps[] __initconst = {
[AT91_PM_ULP0] = AT91_PM_IOMAP(ETHC),
[AT91_PM_ULP0_FAST] = AT91_PM_IOMAP(ETHC),
[AT91_PM_ULP1] = AT91_PM_IOMAP(SHDWC) |
AT91_PM_IOMAP(ETHC),
[AT91_PM_BACKUP] = AT91_PM_IOMAP(SHDWC) |
AT91_PM_IOMAP(SFRBU),
};
int ret;
if (!IS_ENABLED(CONFIG_SOC_SAMA5D2))
return;
if (IS_ENABLED(CONFIG_ATMEL_SECURE_PM)) {
pr_warn("AT91: Secure PM: ignoring standby mode\n");
at91_pm_secure_init();
return;
}
at91_pm_modes_validate(modes, ARRAY_SIZE(modes));
at91_pm_modes_init(iomaps, ARRAY_SIZE(iomaps));
ret = at91_dt_ramc(false);
if (ret)
return;
at91_pm_init(NULL);
soc_pm.ws_ids = sama5d2_ws_ids;
soc_pm.config_shdwc_ws = at91_sama5d2_config_shdwc_ws;
soc_pm.config_pmc_ws = at91_sama5d2_config_pmc_ws;
soc_pm.sfrbu_regs.pswbu.key = (0x4BD20C << 8);
soc_pm.sfrbu_regs.pswbu.ctrl = BIT(0);
soc_pm.sfrbu_regs.pswbu.softsw = BIT(1);
soc_pm.sfrbu_regs.pswbu.state = BIT(3);
/* Quirk applies to ULP0, ULP0 fast and ULP1 modes. */
soc_pm.quirks.eth[AT91_PM_G_ETH].modes = BIT(AT91_PM_ULP0) |
BIT(AT91_PM_ULP0_FAST) |
BIT(AT91_PM_ULP1);
/*
* Do not suspend in ULP0, ULP0 fast if GETH is the only wakeup
* source.
*/
soc_pm.quirks.eth[AT91_PM_G_ETH].dns_modes = BIT(AT91_PM_ULP0) |
BIT(AT91_PM_ULP0_FAST);
}
void __init sama7_pm_init(void)
{
static const int modes[] __initconst = {
AT91_PM_STANDBY, AT91_PM_ULP0, AT91_PM_ULP1, AT91_PM_BACKUP,
};
static const u32 iomaps[] __initconst = {
[AT91_PM_ULP0] = AT91_PM_IOMAP(SFRBU),
[AT91_PM_ULP1] = AT91_PM_IOMAP(SFRBU) |
AT91_PM_IOMAP(SHDWC) |
AT91_PM_IOMAP(ETHC),
[AT91_PM_BACKUP] = AT91_PM_IOMAP(SFRBU) |
AT91_PM_IOMAP(SHDWC),
};
int ret;
if (!IS_ENABLED(CONFIG_SOC_SAMA7))
return;
at91_pm_modes_validate(modes, ARRAY_SIZE(modes));
ret = at91_dt_ramc(true);
if (ret)
return;
at91_pm_modes_init(iomaps, ARRAY_SIZE(iomaps));
at91_pm_init(NULL);
soc_pm.ws_ids = sama7g5_ws_ids;
soc_pm.config_pmc_ws = at91_sam9x60_config_pmc_ws;
soc_pm.sfrbu_regs.pswbu.key = (0x4BD20C << 8);
soc_pm.sfrbu_regs.pswbu.ctrl = BIT(0);
soc_pm.sfrbu_regs.pswbu.softsw = BIT(1);
soc_pm.sfrbu_regs.pswbu.state = BIT(2);
/* Quirks applies to ULP1 for both Ethernet interfaces. */
soc_pm.quirks.eth[AT91_PM_E_ETH].modes = BIT(AT91_PM_ULP1);
soc_pm.quirks.eth[AT91_PM_G_ETH].modes = BIT(AT91_PM_ULP1);
}
static int __init at91_pm_modes_select(char *str)
{
char *s;
substring_t args[MAX_OPT_ARGS];
int standby, suspend;
if (!str)
return 0;
s = strsep(&str, ",");
standby = match_token(s, pm_modes, args);
if (standby < 0)
return 0;
suspend = match_token(str, pm_modes, args);
if (suspend < 0)
return 0;
soc_pm.data.standby_mode = standby;
soc_pm.data.suspend_mode = suspend;
return 0;
}
early_param("atmel.pm_modes", at91_pm_modes_select);