338 lines
8.3 KiB
C
338 lines
8.3 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2012 Regents of the University of California
|
|
* Copyright (C) 2014 Darius Rad <darius@bluespec.com>
|
|
* Copyright (C) 2017 SiFive
|
|
*/
|
|
|
|
#include <linux/syscalls.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/hwprobe.h>
|
|
#include <asm/sbi.h>
|
|
#include <asm/vector.h>
|
|
#include <asm/switch_to.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/unistd.h>
|
|
#include <asm-generic/mman-common.h>
|
|
#include <vdso/vsyscall.h>
|
|
|
|
static long riscv_sys_mmap(unsigned long addr, unsigned long len,
|
|
unsigned long prot, unsigned long flags,
|
|
unsigned long fd, off_t offset,
|
|
unsigned long page_shift_offset)
|
|
{
|
|
if (unlikely(offset & (~PAGE_MASK >> page_shift_offset)))
|
|
return -EINVAL;
|
|
|
|
return ksys_mmap_pgoff(addr, len, prot, flags, fd,
|
|
offset >> (PAGE_SHIFT - page_shift_offset));
|
|
}
|
|
|
|
#ifdef CONFIG_64BIT
|
|
SYSCALL_DEFINE6(mmap, unsigned long, addr, unsigned long, len,
|
|
unsigned long, prot, unsigned long, flags,
|
|
unsigned long, fd, off_t, offset)
|
|
{
|
|
return riscv_sys_mmap(addr, len, prot, flags, fd, offset, 0);
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_32BIT) || defined(CONFIG_COMPAT)
|
|
SYSCALL_DEFINE6(mmap2, unsigned long, addr, unsigned long, len,
|
|
unsigned long, prot, unsigned long, flags,
|
|
unsigned long, fd, off_t, offset)
|
|
{
|
|
/*
|
|
* Note that the shift for mmap2 is constant (12),
|
|
* regardless of PAGE_SIZE
|
|
*/
|
|
return riscv_sys_mmap(addr, len, prot, flags, fd, offset, 12);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Allows the instruction cache to be flushed from userspace. Despite RISC-V
|
|
* having a direct 'fence.i' instruction available to userspace (which we
|
|
* can't trap!), that's not actually viable when running on Linux because the
|
|
* kernel might schedule a process on another hart. There is no way for
|
|
* userspace to handle this without invoking the kernel (as it doesn't know the
|
|
* thread->hart mappings), so we've defined a RISC-V specific system call to
|
|
* flush the instruction cache.
|
|
*
|
|
* sys_riscv_flush_icache() is defined to flush the instruction cache over an
|
|
* address range, with the flush applying to either all threads or just the
|
|
* caller. We don't currently do anything with the address range, that's just
|
|
* in there for forwards compatibility.
|
|
*/
|
|
SYSCALL_DEFINE3(riscv_flush_icache, uintptr_t, start, uintptr_t, end,
|
|
uintptr_t, flags)
|
|
{
|
|
/* Check the reserved flags. */
|
|
if (unlikely(flags & ~SYS_RISCV_FLUSH_ICACHE_ALL))
|
|
return -EINVAL;
|
|
|
|
flush_icache_mm(current->mm, flags & SYS_RISCV_FLUSH_ICACHE_LOCAL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The hwprobe interface, for allowing userspace to probe to see which features
|
|
* are supported by the hardware. See Documentation/riscv/hwprobe.rst for more
|
|
* details.
|
|
*/
|
|
static void hwprobe_arch_id(struct riscv_hwprobe *pair,
|
|
const struct cpumask *cpus)
|
|
{
|
|
u64 id = -1ULL;
|
|
bool first = true;
|
|
int cpu;
|
|
|
|
for_each_cpu(cpu, cpus) {
|
|
u64 cpu_id;
|
|
|
|
switch (pair->key) {
|
|
case RISCV_HWPROBE_KEY_MVENDORID:
|
|
cpu_id = riscv_cached_mvendorid(cpu);
|
|
break;
|
|
case RISCV_HWPROBE_KEY_MIMPID:
|
|
cpu_id = riscv_cached_mimpid(cpu);
|
|
break;
|
|
case RISCV_HWPROBE_KEY_MARCHID:
|
|
cpu_id = riscv_cached_marchid(cpu);
|
|
break;
|
|
}
|
|
|
|
if (first) {
|
|
id = cpu_id;
|
|
first = false;
|
|
}
|
|
|
|
/*
|
|
* If there's a mismatch for the given set, return -1 in the
|
|
* value.
|
|
*/
|
|
if (id != cpu_id) {
|
|
id = -1ULL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
pair->value = id;
|
|
}
|
|
|
|
static void hwprobe_isa_ext0(struct riscv_hwprobe *pair,
|
|
const struct cpumask *cpus)
|
|
{
|
|
int cpu;
|
|
u64 missing = 0;
|
|
|
|
pair->value = 0;
|
|
if (has_fpu())
|
|
pair->value |= RISCV_HWPROBE_IMA_FD;
|
|
|
|
if (riscv_isa_extension_available(NULL, c))
|
|
pair->value |= RISCV_HWPROBE_IMA_C;
|
|
|
|
if (has_vector())
|
|
pair->value |= RISCV_HWPROBE_IMA_V;
|
|
|
|
/*
|
|
* Loop through and record extensions that 1) anyone has, and 2) anyone
|
|
* doesn't have.
|
|
*/
|
|
for_each_cpu(cpu, cpus) {
|
|
struct riscv_isainfo *isainfo = &hart_isa[cpu];
|
|
|
|
if (riscv_isa_extension_available(isainfo->isa, ZBA))
|
|
pair->value |= RISCV_HWPROBE_EXT_ZBA;
|
|
else
|
|
missing |= RISCV_HWPROBE_EXT_ZBA;
|
|
|
|
if (riscv_isa_extension_available(isainfo->isa, ZBB))
|
|
pair->value |= RISCV_HWPROBE_EXT_ZBB;
|
|
else
|
|
missing |= RISCV_HWPROBE_EXT_ZBB;
|
|
|
|
if (riscv_isa_extension_available(isainfo->isa, ZBS))
|
|
pair->value |= RISCV_HWPROBE_EXT_ZBS;
|
|
else
|
|
missing |= RISCV_HWPROBE_EXT_ZBS;
|
|
}
|
|
|
|
/* Now turn off reporting features if any CPU is missing it. */
|
|
pair->value &= ~missing;
|
|
}
|
|
|
|
static u64 hwprobe_misaligned(const struct cpumask *cpus)
|
|
{
|
|
int cpu;
|
|
u64 perf = -1ULL;
|
|
|
|
for_each_cpu(cpu, cpus) {
|
|
int this_perf = per_cpu(misaligned_access_speed, cpu);
|
|
|
|
if (perf == -1ULL)
|
|
perf = this_perf;
|
|
|
|
if (perf != this_perf) {
|
|
perf = RISCV_HWPROBE_MISALIGNED_UNKNOWN;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (perf == -1ULL)
|
|
return RISCV_HWPROBE_MISALIGNED_UNKNOWN;
|
|
|
|
return perf;
|
|
}
|
|
|
|
static void hwprobe_one_pair(struct riscv_hwprobe *pair,
|
|
const struct cpumask *cpus)
|
|
{
|
|
switch (pair->key) {
|
|
case RISCV_HWPROBE_KEY_MVENDORID:
|
|
case RISCV_HWPROBE_KEY_MARCHID:
|
|
case RISCV_HWPROBE_KEY_MIMPID:
|
|
hwprobe_arch_id(pair, cpus);
|
|
break;
|
|
/*
|
|
* The kernel already assumes that the base single-letter ISA
|
|
* extensions are supported on all harts, and only supports the
|
|
* IMA base, so just cheat a bit here and tell that to
|
|
* userspace.
|
|
*/
|
|
case RISCV_HWPROBE_KEY_BASE_BEHAVIOR:
|
|
pair->value = RISCV_HWPROBE_BASE_BEHAVIOR_IMA;
|
|
break;
|
|
|
|
case RISCV_HWPROBE_KEY_IMA_EXT_0:
|
|
hwprobe_isa_ext0(pair, cpus);
|
|
break;
|
|
|
|
case RISCV_HWPROBE_KEY_CPUPERF_0:
|
|
pair->value = hwprobe_misaligned(cpus);
|
|
break;
|
|
|
|
/*
|
|
* For forward compatibility, unknown keys don't fail the whole
|
|
* call, but get their element key set to -1 and value set to 0
|
|
* indicating they're unrecognized.
|
|
*/
|
|
default:
|
|
pair->key = -1;
|
|
pair->value = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int do_riscv_hwprobe(struct riscv_hwprobe __user *pairs,
|
|
size_t pair_count, size_t cpu_count,
|
|
unsigned long __user *cpus_user,
|
|
unsigned int flags)
|
|
{
|
|
size_t out;
|
|
int ret;
|
|
cpumask_t cpus;
|
|
|
|
/* Check the reserved flags. */
|
|
if (flags != 0)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* The interface supports taking in a CPU mask, and returns values that
|
|
* are consistent across that mask. Allow userspace to specify NULL and
|
|
* 0 as a shortcut to all online CPUs.
|
|
*/
|
|
cpumask_clear(&cpus);
|
|
if (!cpu_count && !cpus_user) {
|
|
cpumask_copy(&cpus, cpu_online_mask);
|
|
} else {
|
|
if (cpu_count > cpumask_size())
|
|
cpu_count = cpumask_size();
|
|
|
|
ret = copy_from_user(&cpus, cpus_user, cpu_count);
|
|
if (ret)
|
|
return -EFAULT;
|
|
|
|
/*
|
|
* Userspace must provide at least one online CPU, without that
|
|
* there's no way to define what is supported.
|
|
*/
|
|
cpumask_and(&cpus, &cpus, cpu_online_mask);
|
|
if (cpumask_empty(&cpus))
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (out = 0; out < pair_count; out++, pairs++) {
|
|
struct riscv_hwprobe pair;
|
|
|
|
if (get_user(pair.key, &pairs->key))
|
|
return -EFAULT;
|
|
|
|
pair.value = 0;
|
|
hwprobe_one_pair(&pair, &cpus);
|
|
ret = put_user(pair.key, &pairs->key);
|
|
if (ret == 0)
|
|
ret = put_user(pair.value, &pairs->value);
|
|
|
|
if (ret)
|
|
return -EFAULT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_MMU
|
|
|
|
static int __init init_hwprobe_vdso_data(void)
|
|
{
|
|
struct vdso_data *vd = __arch_get_k_vdso_data();
|
|
struct arch_vdso_data *avd = &vd->arch_data;
|
|
u64 id_bitsmash = 0;
|
|
struct riscv_hwprobe pair;
|
|
int key;
|
|
|
|
/*
|
|
* Initialize vDSO data with the answers for the "all CPUs" case, to
|
|
* save a syscall in the common case.
|
|
*/
|
|
for (key = 0; key <= RISCV_HWPROBE_MAX_KEY; key++) {
|
|
pair.key = key;
|
|
hwprobe_one_pair(&pair, cpu_online_mask);
|
|
|
|
WARN_ON_ONCE(pair.key < 0);
|
|
|
|
avd->all_cpu_hwprobe_values[key] = pair.value;
|
|
/*
|
|
* Smash together the vendor, arch, and impl IDs to see if
|
|
* they're all 0 or any negative.
|
|
*/
|
|
if (key <= RISCV_HWPROBE_KEY_MIMPID)
|
|
id_bitsmash |= pair.value;
|
|
}
|
|
|
|
/*
|
|
* If the arch, vendor, and implementation ID are all the same across
|
|
* all harts, then assume all CPUs are the same, and allow the vDSO to
|
|
* answer queries for arbitrary masks. However if all values are 0 (not
|
|
* populated) or any value returns -1 (varies across CPUs), then the
|
|
* vDSO should defer to the kernel for exotic cpu masks.
|
|
*/
|
|
avd->homogeneous_cpus = id_bitsmash != 0 && id_bitsmash != -1;
|
|
return 0;
|
|
}
|
|
|
|
arch_initcall_sync(init_hwprobe_vdso_data);
|
|
|
|
#endif /* CONFIG_MMU */
|
|
|
|
SYSCALL_DEFINE5(riscv_hwprobe, struct riscv_hwprobe __user *, pairs,
|
|
size_t, pair_count, size_t, cpu_count, unsigned long __user *,
|
|
cpus, unsigned int, flags)
|
|
{
|
|
return do_riscv_hwprobe(pairs, pair_count, cpu_count,
|
|
cpus, flags);
|
|
}
|