linux-zen-desktop/drivers/gpu/drm/amd/amdgpu/amdgpu_amdkfd_gfx_v9.c

1175 lines
37 KiB
C

/*
* Copyright 2014-2018 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include "amdgpu.h"
#include "amdgpu_amdkfd.h"
#include "gc/gc_9_0_offset.h"
#include "gc/gc_9_0_sh_mask.h"
#include "vega10_enum.h"
#include "sdma0/sdma0_4_0_offset.h"
#include "sdma0/sdma0_4_0_sh_mask.h"
#include "sdma1/sdma1_4_0_offset.h"
#include "sdma1/sdma1_4_0_sh_mask.h"
#include "athub/athub_1_0_offset.h"
#include "athub/athub_1_0_sh_mask.h"
#include "oss/osssys_4_0_offset.h"
#include "oss/osssys_4_0_sh_mask.h"
#include "soc15_common.h"
#include "v9_structs.h"
#include "soc15.h"
#include "soc15d.h"
#include "gfx_v9_0.h"
#include "amdgpu_amdkfd_gfx_v9.h"
#include <uapi/linux/kfd_ioctl.h>
enum hqd_dequeue_request_type {
NO_ACTION = 0,
DRAIN_PIPE,
RESET_WAVES,
SAVE_WAVES
};
static void kgd_gfx_v9_lock_srbm(struct amdgpu_device *adev, uint32_t mec, uint32_t pipe,
uint32_t queue, uint32_t vmid, uint32_t inst)
{
mutex_lock(&adev->srbm_mutex);
soc15_grbm_select(adev, mec, pipe, queue, vmid, GET_INST(GC, inst));
}
static void kgd_gfx_v9_unlock_srbm(struct amdgpu_device *adev, uint32_t inst)
{
soc15_grbm_select(adev, 0, 0, 0, 0, GET_INST(GC, inst));
mutex_unlock(&adev->srbm_mutex);
}
void kgd_gfx_v9_acquire_queue(struct amdgpu_device *adev, uint32_t pipe_id,
uint32_t queue_id, uint32_t inst)
{
uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
kgd_gfx_v9_lock_srbm(adev, mec, pipe, queue_id, 0, inst);
}
uint64_t kgd_gfx_v9_get_queue_mask(struct amdgpu_device *adev,
uint32_t pipe_id, uint32_t queue_id)
{
unsigned int bit = pipe_id * adev->gfx.mec.num_queue_per_pipe +
queue_id;
return 1ull << bit;
}
void kgd_gfx_v9_release_queue(struct amdgpu_device *adev, uint32_t inst)
{
kgd_gfx_v9_unlock_srbm(adev, inst);
}
void kgd_gfx_v9_program_sh_mem_settings(struct amdgpu_device *adev, uint32_t vmid,
uint32_t sh_mem_config,
uint32_t sh_mem_ape1_base,
uint32_t sh_mem_ape1_limit,
uint32_t sh_mem_bases, uint32_t inst)
{
kgd_gfx_v9_lock_srbm(adev, 0, 0, 0, vmid, inst);
WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmSH_MEM_CONFIG), sh_mem_config);
WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmSH_MEM_BASES), sh_mem_bases);
/* APE1 no longer exists on GFX9 */
kgd_gfx_v9_unlock_srbm(adev, inst);
}
int kgd_gfx_v9_set_pasid_vmid_mapping(struct amdgpu_device *adev, u32 pasid,
unsigned int vmid, uint32_t inst)
{
/*
* We have to assume that there is no outstanding mapping.
* The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
* a mapping is in progress or because a mapping finished
* and the SW cleared it.
* So the protocol is to always wait & clear.
*/
uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
ATC_VMID0_PASID_MAPPING__VALID_MASK;
/*
* need to do this twice, once for gfx and once for mmhub
* for ATC add 16 to VMID for mmhub, for IH different registers.
* ATC_VMID0..15 registers are separate from ATC_VMID16..31.
*/
WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid,
pasid_mapping);
while (!(RREG32(SOC15_REG_OFFSET(
ATHUB, 0,
mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
(1U << vmid)))
cpu_relax();
WREG32(SOC15_REG_OFFSET(ATHUB, 0,
mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
1U << vmid);
/* Mapping vmid to pasid also for IH block */
WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid,
pasid_mapping);
WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID16_PASID_MAPPING) + vmid,
pasid_mapping);
while (!(RREG32(SOC15_REG_OFFSET(
ATHUB, 0,
mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
(1U << (vmid + 16))))
cpu_relax();
WREG32(SOC15_REG_OFFSET(ATHUB, 0,
mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
1U << (vmid + 16));
/* Mapping vmid to pasid also for IH block */
WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT_MM) + vmid,
pasid_mapping);
return 0;
}
/* TODO - RING0 form of field is obsolete, seems to date back to SI
* but still works
*/
int kgd_gfx_v9_init_interrupts(struct amdgpu_device *adev, uint32_t pipe_id,
uint32_t inst)
{
uint32_t mec;
uint32_t pipe;
mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
kgd_gfx_v9_lock_srbm(adev, mec, pipe, 0, 0, inst);
WREG32_SOC15(GC, GET_INST(GC, inst), mmCPC_INT_CNTL,
CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
kgd_gfx_v9_unlock_srbm(adev, inst);
return 0;
}
static uint32_t get_sdma_rlc_reg_offset(struct amdgpu_device *adev,
unsigned int engine_id,
unsigned int queue_id)
{
uint32_t sdma_engine_reg_base = 0;
uint32_t sdma_rlc_reg_offset;
switch (engine_id) {
default:
dev_warn(adev->dev,
"Invalid sdma engine id (%d), using engine id 0\n",
engine_id);
fallthrough;
case 0:
sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA0, 0,
mmSDMA0_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL;
break;
case 1:
sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA1, 0,
mmSDMA1_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL;
break;
}
sdma_rlc_reg_offset = sdma_engine_reg_base
+ queue_id * (mmSDMA0_RLC1_RB_CNTL - mmSDMA0_RLC0_RB_CNTL);
pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n", engine_id,
queue_id, sdma_rlc_reg_offset);
return sdma_rlc_reg_offset;
}
static inline struct v9_mqd *get_mqd(void *mqd)
{
return (struct v9_mqd *)mqd;
}
static inline struct v9_sdma_mqd *get_sdma_mqd(void *mqd)
{
return (struct v9_sdma_mqd *)mqd;
}
int kgd_gfx_v9_hqd_load(struct amdgpu_device *adev, void *mqd,
uint32_t pipe_id, uint32_t queue_id,
uint32_t __user *wptr, uint32_t wptr_shift,
uint32_t wptr_mask, struct mm_struct *mm,
uint32_t inst)
{
struct v9_mqd *m;
uint32_t *mqd_hqd;
uint32_t reg, hqd_base, data;
m = get_mqd(mqd);
kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
/* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
mqd_hqd = &m->cp_mqd_base_addr_lo;
hqd_base = SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_MQD_BASE_ADDR);
for (reg = hqd_base;
reg <= SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_HI); reg++)
WREG32_RLC(reg, mqd_hqd[reg - hqd_base]);
/* Activate doorbell logic before triggering WPTR poll. */
data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_DOORBELL_CONTROL),
data);
if (wptr) {
/* Don't read wptr with get_user because the user
* context may not be accessible (if this function
* runs in a work queue). Instead trigger a one-shot
* polling read from memory in the CP. This assumes
* that wptr is GPU-accessible in the queue's VMID via
* ATC or SVM. WPTR==RPTR before starting the poll so
* the CP starts fetching new commands from the right
* place.
*
* Guessing a 64-bit WPTR from a 32-bit RPTR is a bit
* tricky. Assume that the queue didn't overflow. The
* number of valid bits in the 32-bit RPTR depends on
* the queue size. The remaining bits are taken from
* the saved 64-bit WPTR. If the WPTR wrapped, add the
* queue size.
*/
uint32_t queue_size =
2 << REG_GET_FIELD(m->cp_hqd_pq_control,
CP_HQD_PQ_CONTROL, QUEUE_SIZE);
uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1);
if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr)
guessed_wptr += queue_size;
guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1);
guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32;
WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_LO),
lower_32_bits(guessed_wptr));
WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_HI),
upper_32_bits(guessed_wptr));
WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_POLL_ADDR),
lower_32_bits((uintptr_t)wptr));
WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_POLL_ADDR_HI),
upper_32_bits((uintptr_t)wptr));
WREG32_SOC15(GC, GET_INST(GC, inst), mmCP_PQ_WPTR_POLL_CNTL1,
(uint32_t)kgd_gfx_v9_get_queue_mask(adev, pipe_id, queue_id));
}
/* Start the EOP fetcher */
WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_EOP_RPTR),
REG_SET_FIELD(m->cp_hqd_eop_rptr,
CP_HQD_EOP_RPTR, INIT_FETCHER, 1));
data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_ACTIVE), data);
kgd_gfx_v9_release_queue(adev, inst);
return 0;
}
int kgd_gfx_v9_hiq_mqd_load(struct amdgpu_device *adev, void *mqd,
uint32_t pipe_id, uint32_t queue_id,
uint32_t doorbell_off, uint32_t inst)
{
struct amdgpu_ring *kiq_ring = &adev->gfx.kiq[inst].ring;
struct v9_mqd *m;
uint32_t mec, pipe;
int r;
m = get_mqd(mqd);
kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
mec, pipe, queue_id);
spin_lock(&adev->gfx.kiq[inst].ring_lock);
r = amdgpu_ring_alloc(kiq_ring, 7);
if (r) {
pr_err("Failed to alloc KIQ (%d).\n", r);
goto out_unlock;
}
amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5));
amdgpu_ring_write(kiq_ring,
PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */
PACKET3_MAP_QUEUES_VMID(m->cp_hqd_vmid) | /* VMID */
PACKET3_MAP_QUEUES_QUEUE(queue_id) |
PACKET3_MAP_QUEUES_PIPE(pipe) |
PACKET3_MAP_QUEUES_ME((mec - 1)) |
PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */
PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */
PACKET3_MAP_QUEUES_ENGINE_SEL(1) | /* engine_sel: hiq */
PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */
amdgpu_ring_write(kiq_ring,
PACKET3_MAP_QUEUES_DOORBELL_OFFSET(doorbell_off));
amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_lo);
amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_hi);
amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_lo);
amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_hi);
amdgpu_ring_commit(kiq_ring);
out_unlock:
spin_unlock(&adev->gfx.kiq[inst].ring_lock);
kgd_gfx_v9_release_queue(adev, inst);
return r;
}
int kgd_gfx_v9_hqd_dump(struct amdgpu_device *adev,
uint32_t pipe_id, uint32_t queue_id,
uint32_t (**dump)[2], uint32_t *n_regs, uint32_t inst)
{
uint32_t i = 0, reg;
#define HQD_N_REGS 56
#define DUMP_REG(addr) do { \
if (WARN_ON_ONCE(i >= HQD_N_REGS)) \
break; \
(*dump)[i][0] = (addr) << 2; \
(*dump)[i++][1] = RREG32(addr); \
} while (0)
*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
if (*dump == NULL)
return -ENOMEM;
kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
for (reg = SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_MQD_BASE_ADDR);
reg <= SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_HI); reg++)
DUMP_REG(reg);
kgd_gfx_v9_release_queue(adev, inst);
WARN_ON_ONCE(i != HQD_N_REGS);
*n_regs = i;
return 0;
}
static int kgd_hqd_sdma_load(struct amdgpu_device *adev, void *mqd,
uint32_t __user *wptr, struct mm_struct *mm)
{
struct v9_sdma_mqd *m;
uint32_t sdma_rlc_reg_offset;
unsigned long end_jiffies;
uint32_t data;
uint64_t data64;
uint64_t __user *wptr64 = (uint64_t __user *)wptr;
m = get_sdma_mqd(mqd);
sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
m->sdma_queue_id);
WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
end_jiffies = msecs_to_jiffies(2000) + jiffies;
while (true) {
data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
break;
if (time_after(jiffies, end_jiffies)) {
pr_err("SDMA RLC not idle in %s\n", __func__);
return -ETIME;
}
usleep_range(500, 1000);
}
WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL_OFFSET,
m->sdmax_rlcx_doorbell_offset);
data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
ENABLE, 1);
WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
m->sdmax_rlcx_rb_rptr);
WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI,
m->sdmax_rlcx_rb_rptr_hi);
WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 1);
if (read_user_wptr(mm, wptr64, data64)) {
WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
lower_32_bits(data64));
WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
upper_32_bits(data64));
} else {
WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
m->sdmax_rlcx_rb_rptr);
WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
m->sdmax_rlcx_rb_rptr_hi);
}
WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 0);
WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
m->sdmax_rlcx_rb_base_hi);
WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
m->sdmax_rlcx_rb_rptr_addr_lo);
WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
m->sdmax_rlcx_rb_rptr_addr_hi);
data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
RB_ENABLE, 1);
WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
return 0;
}
static int kgd_hqd_sdma_dump(struct amdgpu_device *adev,
uint32_t engine_id, uint32_t queue_id,
uint32_t (**dump)[2], uint32_t *n_regs)
{
uint32_t sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev,
engine_id, queue_id);
uint32_t i = 0, reg;
#undef HQD_N_REGS
#define HQD_N_REGS (19+6+7+10)
*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
if (*dump == NULL)
return -ENOMEM;
for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
DUMP_REG(sdma_rlc_reg_offset + reg);
for (reg = mmSDMA0_RLC0_STATUS; reg <= mmSDMA0_RLC0_CSA_ADDR_HI; reg++)
DUMP_REG(sdma_rlc_reg_offset + reg);
for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN;
reg <= mmSDMA0_RLC0_MINOR_PTR_UPDATE; reg++)
DUMP_REG(sdma_rlc_reg_offset + reg);
for (reg = mmSDMA0_RLC0_MIDCMD_DATA0;
reg <= mmSDMA0_RLC0_MIDCMD_CNTL; reg++)
DUMP_REG(sdma_rlc_reg_offset + reg);
WARN_ON_ONCE(i != HQD_N_REGS);
*n_regs = i;
return 0;
}
bool kgd_gfx_v9_hqd_is_occupied(struct amdgpu_device *adev,
uint64_t queue_address, uint32_t pipe_id,
uint32_t queue_id, uint32_t inst)
{
uint32_t act;
bool retval = false;
uint32_t low, high;
kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
act = RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_ACTIVE);
if (act) {
low = lower_32_bits(queue_address >> 8);
high = upper_32_bits(queue_address >> 8);
if (low == RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_PQ_BASE) &&
high == RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_PQ_BASE_HI))
retval = true;
}
kgd_gfx_v9_release_queue(adev, inst);
return retval;
}
static bool kgd_hqd_sdma_is_occupied(struct amdgpu_device *adev, void *mqd)
{
struct v9_sdma_mqd *m;
uint32_t sdma_rlc_reg_offset;
uint32_t sdma_rlc_rb_cntl;
m = get_sdma_mqd(mqd);
sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
m->sdma_queue_id);
sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
return true;
return false;
}
int kgd_gfx_v9_hqd_destroy(struct amdgpu_device *adev, void *mqd,
enum kfd_preempt_type reset_type,
unsigned int utimeout, uint32_t pipe_id,
uint32_t queue_id, uint32_t inst)
{
enum hqd_dequeue_request_type type;
unsigned long end_jiffies;
uint32_t temp;
struct v9_mqd *m = get_mqd(mqd);
if (amdgpu_in_reset(adev))
return -EIO;
kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
if (m->cp_hqd_vmid == 0)
WREG32_FIELD15_RLC(GC, GET_INST(GC, inst), RLC_CP_SCHEDULERS, scheduler1, 0);
switch (reset_type) {
case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
type = DRAIN_PIPE;
break;
case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
type = RESET_WAVES;
break;
case KFD_PREEMPT_TYPE_WAVEFRONT_SAVE:
type = SAVE_WAVES;
break;
default:
type = DRAIN_PIPE;
break;
}
WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_DEQUEUE_REQUEST), type);
end_jiffies = (utimeout * HZ / 1000) + jiffies;
while (true) {
temp = RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_ACTIVE);
if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
break;
if (time_after(jiffies, end_jiffies)) {
pr_err("cp queue preemption time out.\n");
kgd_gfx_v9_release_queue(adev, inst);
return -ETIME;
}
usleep_range(500, 1000);
}
kgd_gfx_v9_release_queue(adev, inst);
return 0;
}
static int kgd_hqd_sdma_destroy(struct amdgpu_device *adev, void *mqd,
unsigned int utimeout)
{
struct v9_sdma_mqd *m;
uint32_t sdma_rlc_reg_offset;
uint32_t temp;
unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
m = get_sdma_mqd(mqd);
sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
m->sdma_queue_id);
temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
while (true) {
temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
break;
if (time_after(jiffies, end_jiffies)) {
pr_err("SDMA RLC not idle in %s\n", __func__);
return -ETIME;
}
usleep_range(500, 1000);
}
WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
m->sdmax_rlcx_rb_rptr_hi =
RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI);
return 0;
}
bool kgd_gfx_v9_get_atc_vmid_pasid_mapping_info(struct amdgpu_device *adev,
uint8_t vmid, uint16_t *p_pasid)
{
uint32_t value;
value = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING)
+ vmid);
*p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
}
int kgd_gfx_v9_wave_control_execute(struct amdgpu_device *adev,
uint32_t gfx_index_val,
uint32_t sq_cmd, uint32_t inst)
{
uint32_t data = 0;
mutex_lock(&adev->grbm_idx_mutex);
WREG32_SOC15_RLC_SHADOW(GC, GET_INST(GC, inst), mmGRBM_GFX_INDEX, gfx_index_val);
WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_CMD, sq_cmd);
data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
INSTANCE_BROADCAST_WRITES, 1);
data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
SH_BROADCAST_WRITES, 1);
data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
SE_BROADCAST_WRITES, 1);
WREG32_SOC15_RLC_SHADOW(GC, GET_INST(GC, inst), mmGRBM_GFX_INDEX, data);
mutex_unlock(&adev->grbm_idx_mutex);
return 0;
}
/*
* GFX9 helper for wave launch stall requirements on debug trap setting.
*
* vmid:
* Target VMID to stall/unstall.
*
* stall:
* 0-unstall wave launch (enable), 1-stall wave launch (disable).
* After wavefront launch has been stalled, allocated waves must drain from
* SPI in order for debug trap settings to take effect on those waves.
* This is roughly a ~96 clock cycle wait on SPI where a read on
* SPI_GDBG_WAVE_CNTL translates to ~32 clock cycles.
* KGD_GFX_V9_WAVE_LAUNCH_SPI_DRAIN_LATENCY indicates the number of reads required.
*
* NOTE: We can afford to clear the entire STALL_VMID field on unstall
* because GFX9.4.1 cannot support multi-process debugging due to trap
* configuration and masking being limited to global scope. Always assume
* single process conditions.
*/
#define KGD_GFX_V9_WAVE_LAUNCH_SPI_DRAIN_LATENCY 3
void kgd_gfx_v9_set_wave_launch_stall(struct amdgpu_device *adev,
uint32_t vmid,
bool stall)
{
int i;
uint32_t data = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
if (adev->ip_versions[GC_HWIP][0] == IP_VERSION(9, 4, 1))
data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL, STALL_VMID,
stall ? 1 << vmid : 0);
else
data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL, STALL_RA,
stall ? 1 : 0);
WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), data);
if (!stall)
return;
for (i = 0; i < KGD_GFX_V9_WAVE_LAUNCH_SPI_DRAIN_LATENCY; i++)
RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
}
/*
* restore_dbg_registers is ignored here but is a general interface requirement
* for devices that support GFXOFF and where the RLC save/restore list
* does not support hw registers for debugging i.e. the driver has to manually
* initialize the debug mode registers after it has disabled GFX off during the
* debug session.
*/
uint32_t kgd_gfx_v9_enable_debug_trap(struct amdgpu_device *adev,
bool restore_dbg_registers,
uint32_t vmid)
{
mutex_lock(&adev->grbm_idx_mutex);
kgd_gfx_v9_set_wave_launch_stall(adev, vmid, true);
WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), 0);
kgd_gfx_v9_set_wave_launch_stall(adev, vmid, false);
mutex_unlock(&adev->grbm_idx_mutex);
return 0;
}
/*
* keep_trap_enabled is ignored here but is a general interface requirement
* for devices that support multi-process debugging where the performance
* overhead from trap temporary setup needs to be bypassed when the debug
* session has ended.
*/
uint32_t kgd_gfx_v9_disable_debug_trap(struct amdgpu_device *adev,
bool keep_trap_enabled,
uint32_t vmid)
{
mutex_lock(&adev->grbm_idx_mutex);
kgd_gfx_v9_set_wave_launch_stall(adev, vmid, true);
WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), 0);
kgd_gfx_v9_set_wave_launch_stall(adev, vmid, false);
mutex_unlock(&adev->grbm_idx_mutex);
return 0;
}
int kgd_gfx_v9_validate_trap_override_request(struct amdgpu_device *adev,
uint32_t trap_override,
uint32_t *trap_mask_supported)
{
*trap_mask_supported &= KFD_DBG_TRAP_MASK_DBG_ADDRESS_WATCH;
/* The SPI_GDBG_TRAP_MASK register is global and affects all
* processes. Only allow OR-ing the address-watch bit, since
* this only affects processes under the debugger. Other bits
* should stay 0 to avoid the debugger interfering with other
* processes.
*/
if (trap_override != KFD_DBG_TRAP_OVERRIDE_OR)
return -EINVAL;
return 0;
}
uint32_t kgd_gfx_v9_set_wave_launch_trap_override(struct amdgpu_device *adev,
uint32_t vmid,
uint32_t trap_override,
uint32_t trap_mask_bits,
uint32_t trap_mask_request,
uint32_t *trap_mask_prev,
uint32_t kfd_dbg_cntl_prev)
{
uint32_t data, wave_cntl_prev;
mutex_lock(&adev->grbm_idx_mutex);
wave_cntl_prev = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
kgd_gfx_v9_set_wave_launch_stall(adev, vmid, true);
data = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK));
*trap_mask_prev = REG_GET_FIELD(data, SPI_GDBG_TRAP_MASK, EXCP_EN);
trap_mask_bits = (trap_mask_bits & trap_mask_request) |
(*trap_mask_prev & ~trap_mask_request);
data = REG_SET_FIELD(data, SPI_GDBG_TRAP_MASK, EXCP_EN, trap_mask_bits);
data = REG_SET_FIELD(data, SPI_GDBG_TRAP_MASK, REPLACE, trap_override);
WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), data);
/* We need to preserve wave launch mode stall settings. */
WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), wave_cntl_prev);
mutex_unlock(&adev->grbm_idx_mutex);
return 0;
}
uint32_t kgd_gfx_v9_set_wave_launch_mode(struct amdgpu_device *adev,
uint8_t wave_launch_mode,
uint32_t vmid)
{
uint32_t data = 0;
bool is_mode_set = !!wave_launch_mode;
mutex_lock(&adev->grbm_idx_mutex);
kgd_gfx_v9_set_wave_launch_stall(adev, vmid, true);
data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL2,
VMID_MASK, is_mode_set ? 1 << vmid : 0);
data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL2,
MODE, is_mode_set ? wave_launch_mode : 0);
WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL2), data);
kgd_gfx_v9_set_wave_launch_stall(adev, vmid, false);
mutex_unlock(&adev->grbm_idx_mutex);
return 0;
}
#define TCP_WATCH_STRIDE (mmTCP_WATCH1_ADDR_H - mmTCP_WATCH0_ADDR_H)
uint32_t kgd_gfx_v9_set_address_watch(struct amdgpu_device *adev,
uint64_t watch_address,
uint32_t watch_address_mask,
uint32_t watch_id,
uint32_t watch_mode,
uint32_t debug_vmid)
{
uint32_t watch_address_high;
uint32_t watch_address_low;
uint32_t watch_address_cntl;
watch_address_cntl = 0;
watch_address_low = lower_32_bits(watch_address);
watch_address_high = upper_32_bits(watch_address) & 0xffff;
watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
TCP_WATCH0_CNTL,
VMID,
debug_vmid);
watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
TCP_WATCH0_CNTL,
MODE,
watch_mode);
watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
TCP_WATCH0_CNTL,
MASK,
watch_address_mask >> 6);
/* Turning off this watch point until we set all the registers */
watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
TCP_WATCH0_CNTL,
VALID,
0);
WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) +
(watch_id * TCP_WATCH_STRIDE)),
watch_address_cntl);
WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_H) +
(watch_id * TCP_WATCH_STRIDE)),
watch_address_high);
WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_L) +
(watch_id * TCP_WATCH_STRIDE)),
watch_address_low);
/* Enable the watch point */
watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
TCP_WATCH0_CNTL,
VALID,
1);
WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) +
(watch_id * TCP_WATCH_STRIDE)),
watch_address_cntl);
return 0;
}
uint32_t kgd_gfx_v9_clear_address_watch(struct amdgpu_device *adev,
uint32_t watch_id)
{
uint32_t watch_address_cntl;
watch_address_cntl = 0;
WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) +
(watch_id * TCP_WATCH_STRIDE)),
watch_address_cntl);
return 0;
}
/* kgd_gfx_v9_get_iq_wait_times: Returns the mmCP_IQ_WAIT_TIME1/2 values
* The values read are:
* ib_offload_wait_time -- Wait Count for Indirect Buffer Offloads.
* atomic_offload_wait_time -- Wait Count for L2 and GDS Atomics Offloads.
* wrm_offload_wait_time -- Wait Count for WAIT_REG_MEM Offloads.
* gws_wait_time -- Wait Count for Global Wave Syncs.
* que_sleep_wait_time -- Wait Count for Dequeue Retry.
* sch_wave_wait_time -- Wait Count for Scheduling Wave Message.
* sem_rearm_wait_time -- Wait Count for Semaphore re-arm.
* deq_retry_wait_time -- Wait Count for Global Wave Syncs.
*/
void kgd_gfx_v9_get_iq_wait_times(struct amdgpu_device *adev,
uint32_t *wait_times)
{
*wait_times = RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_IQ_WAIT_TIME2));
}
void kgd_gfx_v9_set_vm_context_page_table_base(struct amdgpu_device *adev,
uint32_t vmid, uint64_t page_table_base)
{
if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
pr_err("trying to set page table base for wrong VMID %u\n",
vmid);
return;
}
adev->mmhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
adev->gfxhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
}
static void lock_spi_csq_mutexes(struct amdgpu_device *adev)
{
mutex_lock(&adev->srbm_mutex);
mutex_lock(&adev->grbm_idx_mutex);
}
static void unlock_spi_csq_mutexes(struct amdgpu_device *adev)
{
mutex_unlock(&adev->grbm_idx_mutex);
mutex_unlock(&adev->srbm_mutex);
}
/**
* get_wave_count: Read device registers to get number of waves in flight for
* a particular queue. The method also returns the VMID associated with the
* queue.
*
* @adev: Handle of device whose registers are to be read
* @queue_idx: Index of queue in the queue-map bit-field
* @wave_cnt: Output parameter updated with number of waves in flight
* @vmid: Output parameter updated with VMID of queue whose wave count
* is being collected
* @inst: xcc's instance number on a multi-XCC setup
*/
static void get_wave_count(struct amdgpu_device *adev, int queue_idx,
int *wave_cnt, int *vmid, uint32_t inst)
{
int pipe_idx;
int queue_slot;
unsigned int reg_val;
/*
* Program GRBM with appropriate MEID, PIPEID, QUEUEID and VMID
* parameters to read out waves in flight. Get VMID if there are
* non-zero waves in flight.
*/
*vmid = 0xFF;
*wave_cnt = 0;
pipe_idx = queue_idx / adev->gfx.mec.num_queue_per_pipe;
queue_slot = queue_idx % adev->gfx.mec.num_queue_per_pipe;
soc15_grbm_select(adev, 1, pipe_idx, queue_slot, 0, inst);
reg_val = RREG32_SOC15_IP(GC, SOC15_REG_OFFSET(GC, inst, mmSPI_CSQ_WF_ACTIVE_COUNT_0) +
queue_slot);
*wave_cnt = reg_val & SPI_CSQ_WF_ACTIVE_COUNT_0__COUNT_MASK;
if (*wave_cnt != 0)
*vmid = (RREG32_SOC15(GC, inst, mmCP_HQD_VMID) &
CP_HQD_VMID__VMID_MASK) >> CP_HQD_VMID__VMID__SHIFT;
}
/**
* kgd_gfx_v9_get_cu_occupancy: Reads relevant registers associated with each
* shader engine and aggregates the number of waves that are in flight for the
* process whose pasid is provided as a parameter. The process could have ZERO
* or more queues running and submitting waves to compute units.
*
* @adev: Handle of device from which to get number of waves in flight
* @pasid: Identifies the process for which this query call is invoked
* @pasid_wave_cnt: Output parameter updated with number of waves in flight that
* belong to process with given pasid
* @max_waves_per_cu: Output parameter updated with maximum number of waves
* possible per Compute Unit
* @inst: xcc's instance number on a multi-XCC setup
*
* Note: It's possible that the device has too many queues (oversubscription)
* in which case a VMID could be remapped to a different PASID. This could lead
* to an inaccurate wave count. Following is a high-level sequence:
* Time T1: vmid = getVmid(); vmid is associated with Pasid P1
* Time T2: passId = getPasId(vmid); vmid is associated with Pasid P2
* In the sequence above wave count obtained from time T1 will be incorrectly
* lost or added to total wave count.
*
* The registers that provide the waves in flight are:
*
* SPI_CSQ_WF_ACTIVE_STATUS - bit-map of queues per pipe. The bit is ON if a
* queue is slotted, OFF if there is no queue. A process could have ZERO or
* more queues slotted and submitting waves to be run on compute units. Even
* when there is a queue it is possible there could be zero wave fronts, this
* can happen when queue is waiting on top-of-pipe events - e.g. waitRegMem
* command
*
* For each bit that is ON from above:
*
* Read (SPI_CSQ_WF_ACTIVE_COUNT_0 + queue_idx) register. It provides the
* number of waves that are in flight for the queue at specified index. The
* index ranges from 0 to 7.
*
* If non-zero waves are in flight, read CP_HQD_VMID register to obtain VMID
* of the wave(s).
*
* Determine if VMID from above step maps to pasid provided as parameter. If
* it matches agrregate the wave count. That the VMID will not match pasid is
* a normal condition i.e. a device is expected to support multiple queues
* from multiple proceses.
*
* Reading registers referenced above involves programming GRBM appropriately
*/
void kgd_gfx_v9_get_cu_occupancy(struct amdgpu_device *adev, int pasid,
int *pasid_wave_cnt, int *max_waves_per_cu, uint32_t inst)
{
int qidx;
int vmid;
int se_idx;
int sh_idx;
int se_cnt;
int sh_cnt;
int wave_cnt;
int queue_map;
int pasid_tmp;
int max_queue_cnt;
int vmid_wave_cnt = 0;
DECLARE_BITMAP(cp_queue_bitmap, KGD_MAX_QUEUES);
lock_spi_csq_mutexes(adev);
soc15_grbm_select(adev, 1, 0, 0, 0, inst);
/*
* Iterate through the shader engines and arrays of the device
* to get number of waves in flight
*/
bitmap_complement(cp_queue_bitmap, adev->gfx.mec_bitmap[0].queue_bitmap,
KGD_MAX_QUEUES);
max_queue_cnt = adev->gfx.mec.num_pipe_per_mec *
adev->gfx.mec.num_queue_per_pipe;
sh_cnt = adev->gfx.config.max_sh_per_se;
se_cnt = adev->gfx.config.max_shader_engines;
for (se_idx = 0; se_idx < se_cnt; se_idx++) {
for (sh_idx = 0; sh_idx < sh_cnt; sh_idx++) {
amdgpu_gfx_select_se_sh(adev, se_idx, sh_idx, 0xffffffff, inst);
queue_map = RREG32_SOC15(GC, inst, mmSPI_CSQ_WF_ACTIVE_STATUS);
/*
* Assumption: queue map encodes following schema: four
* pipes per each micro-engine, with each pipe mapping
* eight queues. This schema is true for GFX9 devices
* and must be verified for newer device families
*/
for (qidx = 0; qidx < max_queue_cnt; qidx++) {
/* Skip qeueus that are not associated with
* compute functions
*/
if (!test_bit(qidx, cp_queue_bitmap))
continue;
if (!(queue_map & (1 << qidx)))
continue;
/* Get number of waves in flight and aggregate them */
get_wave_count(adev, qidx, &wave_cnt, &vmid,
inst);
if (wave_cnt != 0) {
pasid_tmp =
RREG32(SOC15_REG_OFFSET(OSSSYS, inst,
mmIH_VMID_0_LUT) + vmid);
if (pasid_tmp == pasid)
vmid_wave_cnt += wave_cnt;
}
}
}
}
amdgpu_gfx_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff, inst);
soc15_grbm_select(adev, 0, 0, 0, 0, inst);
unlock_spi_csq_mutexes(adev);
/* Update the output parameters and return */
*pasid_wave_cnt = vmid_wave_cnt;
*max_waves_per_cu = adev->gfx.cu_info.simd_per_cu *
adev->gfx.cu_info.max_waves_per_simd;
}
void kgd_gfx_v9_build_grace_period_packet_info(struct amdgpu_device *adev,
uint32_t wait_times,
uint32_t grace_period,
uint32_t *reg_offset,
uint32_t *reg_data)
{
*reg_data = wait_times;
/*
* The CP cannont handle a 0 grace period input and will result in
* an infinite grace period being set so set to 1 to prevent this.
*/
if (grace_period == 0)
grace_period = 1;
*reg_data = REG_SET_FIELD(*reg_data,
CP_IQ_WAIT_TIME2,
SCH_WAVE,
grace_period);
*reg_offset = SOC15_REG_OFFSET(GC, 0, mmCP_IQ_WAIT_TIME2);
}
void kgd_gfx_v9_program_trap_handler_settings(struct amdgpu_device *adev,
uint32_t vmid, uint64_t tba_addr, uint64_t tma_addr, uint32_t inst)
{
kgd_gfx_v9_lock_srbm(adev, 0, 0, 0, vmid, inst);
/*
* Program TBA registers
*/
WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TBA_LO,
lower_32_bits(tba_addr >> 8));
WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TBA_HI,
upper_32_bits(tba_addr >> 8));
/*
* Program TMA registers
*/
WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TMA_LO,
lower_32_bits(tma_addr >> 8));
WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TMA_HI,
upper_32_bits(tma_addr >> 8));
kgd_gfx_v9_unlock_srbm(adev, inst);
}
const struct kfd2kgd_calls gfx_v9_kfd2kgd = {
.program_sh_mem_settings = kgd_gfx_v9_program_sh_mem_settings,
.set_pasid_vmid_mapping = kgd_gfx_v9_set_pasid_vmid_mapping,
.init_interrupts = kgd_gfx_v9_init_interrupts,
.hqd_load = kgd_gfx_v9_hqd_load,
.hiq_mqd_load = kgd_gfx_v9_hiq_mqd_load,
.hqd_sdma_load = kgd_hqd_sdma_load,
.hqd_dump = kgd_gfx_v9_hqd_dump,
.hqd_sdma_dump = kgd_hqd_sdma_dump,
.hqd_is_occupied = kgd_gfx_v9_hqd_is_occupied,
.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
.hqd_destroy = kgd_gfx_v9_hqd_destroy,
.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
.wave_control_execute = kgd_gfx_v9_wave_control_execute,
.get_atc_vmid_pasid_mapping_info =
kgd_gfx_v9_get_atc_vmid_pasid_mapping_info,
.set_vm_context_page_table_base = kgd_gfx_v9_set_vm_context_page_table_base,
.enable_debug_trap = kgd_gfx_v9_enable_debug_trap,
.disable_debug_trap = kgd_gfx_v9_disable_debug_trap,
.validate_trap_override_request = kgd_gfx_v9_validate_trap_override_request,
.set_wave_launch_trap_override = kgd_gfx_v9_set_wave_launch_trap_override,
.set_wave_launch_mode = kgd_gfx_v9_set_wave_launch_mode,
.set_address_watch = kgd_gfx_v9_set_address_watch,
.clear_address_watch = kgd_gfx_v9_clear_address_watch,
.get_iq_wait_times = kgd_gfx_v9_get_iq_wait_times,
.build_grace_period_packet_info = kgd_gfx_v9_build_grace_period_packet_info,
.get_cu_occupancy = kgd_gfx_v9_get_cu_occupancy,
.program_trap_handler_settings = kgd_gfx_v9_program_trap_handler_settings,
};