1302 lines
36 KiB
C
1302 lines
36 KiB
C
/*
|
|
* Copyright 2014 Advanced Micro Devices, Inc.
|
|
* Copyright 2008 Red Hat Inc.
|
|
* Copyright 2009 Jerome Glisse.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include <linux/firmware.h>
|
|
#include "amdgpu.h"
|
|
#include "amdgpu_gfx.h"
|
|
#include "amdgpu_rlc.h"
|
|
#include "amdgpu_ras.h"
|
|
#include "amdgpu_xcp.h"
|
|
|
|
/* delay 0.1 second to enable gfx off feature */
|
|
#define GFX_OFF_DELAY_ENABLE msecs_to_jiffies(100)
|
|
|
|
#define GFX_OFF_NO_DELAY 0
|
|
|
|
/*
|
|
* GPU GFX IP block helpers function.
|
|
*/
|
|
|
|
int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec,
|
|
int pipe, int queue)
|
|
{
|
|
int bit = 0;
|
|
|
|
bit += mec * adev->gfx.mec.num_pipe_per_mec
|
|
* adev->gfx.mec.num_queue_per_pipe;
|
|
bit += pipe * adev->gfx.mec.num_queue_per_pipe;
|
|
bit += queue;
|
|
|
|
return bit;
|
|
}
|
|
|
|
void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit,
|
|
int *mec, int *pipe, int *queue)
|
|
{
|
|
*queue = bit % adev->gfx.mec.num_queue_per_pipe;
|
|
*pipe = (bit / adev->gfx.mec.num_queue_per_pipe)
|
|
% adev->gfx.mec.num_pipe_per_mec;
|
|
*mec = (bit / adev->gfx.mec.num_queue_per_pipe)
|
|
/ adev->gfx.mec.num_pipe_per_mec;
|
|
|
|
}
|
|
|
|
bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev,
|
|
int xcc_id, int mec, int pipe, int queue)
|
|
{
|
|
return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue),
|
|
adev->gfx.mec_bitmap[xcc_id].queue_bitmap);
|
|
}
|
|
|
|
int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev,
|
|
int me, int pipe, int queue)
|
|
{
|
|
int bit = 0;
|
|
|
|
bit += me * adev->gfx.me.num_pipe_per_me
|
|
* adev->gfx.me.num_queue_per_pipe;
|
|
bit += pipe * adev->gfx.me.num_queue_per_pipe;
|
|
bit += queue;
|
|
|
|
return bit;
|
|
}
|
|
|
|
void amdgpu_gfx_bit_to_me_queue(struct amdgpu_device *adev, int bit,
|
|
int *me, int *pipe, int *queue)
|
|
{
|
|
*queue = bit % adev->gfx.me.num_queue_per_pipe;
|
|
*pipe = (bit / adev->gfx.me.num_queue_per_pipe)
|
|
% adev->gfx.me.num_pipe_per_me;
|
|
*me = (bit / adev->gfx.me.num_queue_per_pipe)
|
|
/ adev->gfx.me.num_pipe_per_me;
|
|
}
|
|
|
|
bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev,
|
|
int me, int pipe, int queue)
|
|
{
|
|
return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue),
|
|
adev->gfx.me.queue_bitmap);
|
|
}
|
|
|
|
/**
|
|
* amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter
|
|
*
|
|
* @mask: array in which the per-shader array disable masks will be stored
|
|
* @max_se: number of SEs
|
|
* @max_sh: number of SHs
|
|
*
|
|
* The bitmask of CUs to be disabled in the shader array determined by se and
|
|
* sh is stored in mask[se * max_sh + sh].
|
|
*/
|
|
void amdgpu_gfx_parse_disable_cu(unsigned *mask, unsigned max_se, unsigned max_sh)
|
|
{
|
|
unsigned se, sh, cu;
|
|
const char *p;
|
|
|
|
memset(mask, 0, sizeof(*mask) * max_se * max_sh);
|
|
|
|
if (!amdgpu_disable_cu || !*amdgpu_disable_cu)
|
|
return;
|
|
|
|
p = amdgpu_disable_cu;
|
|
for (;;) {
|
|
char *next;
|
|
int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu);
|
|
if (ret < 3) {
|
|
DRM_ERROR("amdgpu: could not parse disable_cu\n");
|
|
return;
|
|
}
|
|
|
|
if (se < max_se && sh < max_sh && cu < 16) {
|
|
DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu);
|
|
mask[se * max_sh + sh] |= 1u << cu;
|
|
} else {
|
|
DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n",
|
|
se, sh, cu);
|
|
}
|
|
|
|
next = strchr(p, ',');
|
|
if (!next)
|
|
break;
|
|
p = next + 1;
|
|
}
|
|
}
|
|
|
|
static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev)
|
|
{
|
|
return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1;
|
|
}
|
|
|
|
static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev)
|
|
{
|
|
if (amdgpu_compute_multipipe != -1) {
|
|
DRM_INFO("amdgpu: forcing compute pipe policy %d\n",
|
|
amdgpu_compute_multipipe);
|
|
return amdgpu_compute_multipipe == 1;
|
|
}
|
|
|
|
if (adev->ip_versions[GC_HWIP][0] > IP_VERSION(9, 0, 0))
|
|
return true;
|
|
|
|
/* FIXME: spreading the queues across pipes causes perf regressions
|
|
* on POLARIS11 compute workloads */
|
|
if (adev->asic_type == CHIP_POLARIS11)
|
|
return false;
|
|
|
|
return adev->gfx.mec.num_mec > 1;
|
|
}
|
|
|
|
bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev,
|
|
struct amdgpu_ring *ring)
|
|
{
|
|
int queue = ring->queue;
|
|
int pipe = ring->pipe;
|
|
|
|
/* Policy: use pipe1 queue0 as high priority graphics queue if we
|
|
* have more than one gfx pipe.
|
|
*/
|
|
if (amdgpu_gfx_is_graphics_multipipe_capable(adev) &&
|
|
adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) {
|
|
int me = ring->me;
|
|
int bit;
|
|
|
|
bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue);
|
|
if (ring == &adev->gfx.gfx_ring[bit])
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev,
|
|
struct amdgpu_ring *ring)
|
|
{
|
|
/* Policy: use 1st queue as high priority compute queue if we
|
|
* have more than one compute queue.
|
|
*/
|
|
if (adev->gfx.num_compute_rings > 1 &&
|
|
ring == &adev->gfx.compute_ring[0])
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev)
|
|
{
|
|
int i, j, queue, pipe;
|
|
bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev);
|
|
int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec *
|
|
adev->gfx.mec.num_queue_per_pipe,
|
|
adev->gfx.num_compute_rings);
|
|
int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
|
|
|
|
if (multipipe_policy) {
|
|
/* policy: make queues evenly cross all pipes on MEC1 only
|
|
* for multiple xcc, just use the original policy for simplicity */
|
|
for (j = 0; j < num_xcc; j++) {
|
|
for (i = 0; i < max_queues_per_mec; i++) {
|
|
pipe = i % adev->gfx.mec.num_pipe_per_mec;
|
|
queue = (i / adev->gfx.mec.num_pipe_per_mec) %
|
|
adev->gfx.mec.num_queue_per_pipe;
|
|
|
|
set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue,
|
|
adev->gfx.mec_bitmap[j].queue_bitmap);
|
|
}
|
|
}
|
|
} else {
|
|
/* policy: amdgpu owns all queues in the given pipe */
|
|
for (j = 0; j < num_xcc; j++) {
|
|
for (i = 0; i < max_queues_per_mec; ++i)
|
|
set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap);
|
|
}
|
|
}
|
|
|
|
for (j = 0; j < num_xcc; j++) {
|
|
dev_dbg(adev->dev, "mec queue bitmap weight=%d\n",
|
|
bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES));
|
|
}
|
|
}
|
|
|
|
void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev)
|
|
{
|
|
int i, queue, pipe;
|
|
bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev);
|
|
int max_queues_per_me = adev->gfx.me.num_pipe_per_me *
|
|
adev->gfx.me.num_queue_per_pipe;
|
|
|
|
if (multipipe_policy) {
|
|
/* policy: amdgpu owns the first queue per pipe at this stage
|
|
* will extend to mulitple queues per pipe later */
|
|
for (i = 0; i < max_queues_per_me; i++) {
|
|
pipe = i % adev->gfx.me.num_pipe_per_me;
|
|
queue = (i / adev->gfx.me.num_pipe_per_me) %
|
|
adev->gfx.me.num_queue_per_pipe;
|
|
|
|
set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue,
|
|
adev->gfx.me.queue_bitmap);
|
|
}
|
|
} else {
|
|
for (i = 0; i < max_queues_per_me; ++i)
|
|
set_bit(i, adev->gfx.me.queue_bitmap);
|
|
}
|
|
|
|
/* update the number of active graphics rings */
|
|
adev->gfx.num_gfx_rings =
|
|
bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES);
|
|
}
|
|
|
|
static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev,
|
|
struct amdgpu_ring *ring, int xcc_id)
|
|
{
|
|
int queue_bit;
|
|
int mec, pipe, queue;
|
|
|
|
queue_bit = adev->gfx.mec.num_mec
|
|
* adev->gfx.mec.num_pipe_per_mec
|
|
* adev->gfx.mec.num_queue_per_pipe;
|
|
|
|
while (--queue_bit >= 0) {
|
|
if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
|
|
continue;
|
|
|
|
amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
|
|
|
|
/*
|
|
* 1. Using pipes 2/3 from MEC 2 seems cause problems.
|
|
* 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN
|
|
* only can be issued on queue 0.
|
|
*/
|
|
if ((mec == 1 && pipe > 1) || queue != 0)
|
|
continue;
|
|
|
|
ring->me = mec + 1;
|
|
ring->pipe = pipe;
|
|
ring->queue = queue;
|
|
|
|
return 0;
|
|
}
|
|
|
|
dev_err(adev->dev, "Failed to find a queue for KIQ\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev,
|
|
struct amdgpu_ring *ring,
|
|
struct amdgpu_irq_src *irq, int xcc_id)
|
|
{
|
|
struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
|
|
int r = 0;
|
|
|
|
spin_lock_init(&kiq->ring_lock);
|
|
|
|
ring->adev = NULL;
|
|
ring->ring_obj = NULL;
|
|
ring->use_doorbell = true;
|
|
ring->xcc_id = xcc_id;
|
|
ring->vm_hub = AMDGPU_GFXHUB(xcc_id);
|
|
ring->doorbell_index =
|
|
(adev->doorbell_index.kiq +
|
|
xcc_id * adev->doorbell_index.xcc_doorbell_range)
|
|
<< 1;
|
|
|
|
r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id);
|
|
if (r)
|
|
return r;
|
|
|
|
ring->eop_gpu_addr = kiq->eop_gpu_addr;
|
|
ring->no_scheduler = true;
|
|
sprintf(ring->name, "kiq_%d.%d.%d.%d", xcc_id, ring->me, ring->pipe, ring->queue);
|
|
r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0,
|
|
AMDGPU_RING_PRIO_DEFAULT, NULL);
|
|
if (r)
|
|
dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r);
|
|
|
|
return r;
|
|
}
|
|
|
|
void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring)
|
|
{
|
|
amdgpu_ring_fini(ring);
|
|
}
|
|
|
|
void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id)
|
|
{
|
|
struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
|
|
|
|
amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL);
|
|
}
|
|
|
|
int amdgpu_gfx_kiq_init(struct amdgpu_device *adev,
|
|
unsigned hpd_size, int xcc_id)
|
|
{
|
|
int r;
|
|
u32 *hpd;
|
|
struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
|
|
|
|
r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE,
|
|
AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj,
|
|
&kiq->eop_gpu_addr, (void **)&hpd);
|
|
if (r) {
|
|
dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r);
|
|
return r;
|
|
}
|
|
|
|
memset(hpd, 0, hpd_size);
|
|
|
|
r = amdgpu_bo_reserve(kiq->eop_obj, true);
|
|
if (unlikely(r != 0))
|
|
dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r);
|
|
amdgpu_bo_kunmap(kiq->eop_obj);
|
|
amdgpu_bo_unreserve(kiq->eop_obj);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* create MQD for each compute/gfx queue */
|
|
int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev,
|
|
unsigned mqd_size, int xcc_id)
|
|
{
|
|
int r, i, j;
|
|
struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
|
|
struct amdgpu_ring *ring = &kiq->ring;
|
|
u32 domain = AMDGPU_GEM_DOMAIN_GTT;
|
|
|
|
/* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */
|
|
if (adev->ip_versions[GC_HWIP][0] >= IP_VERSION(10, 0, 0))
|
|
domain |= AMDGPU_GEM_DOMAIN_VRAM;
|
|
|
|
/* create MQD for KIQ */
|
|
if (!adev->enable_mes_kiq && !ring->mqd_obj) {
|
|
/* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must
|
|
* otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD
|
|
* deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for
|
|
* KIQ MQD no matter SRIOV or Bare-metal
|
|
*/
|
|
r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
|
|
AMDGPU_GEM_DOMAIN_VRAM |
|
|
AMDGPU_GEM_DOMAIN_GTT,
|
|
&ring->mqd_obj,
|
|
&ring->mqd_gpu_addr,
|
|
&ring->mqd_ptr);
|
|
if (r) {
|
|
dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r);
|
|
return r;
|
|
}
|
|
|
|
/* prepare MQD backup */
|
|
kiq->mqd_backup = kmalloc(mqd_size, GFP_KERNEL);
|
|
if (!kiq->mqd_backup)
|
|
dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
|
|
}
|
|
|
|
if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
|
|
/* create MQD for each KGQ */
|
|
for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
|
|
ring = &adev->gfx.gfx_ring[i];
|
|
if (!ring->mqd_obj) {
|
|
r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
|
|
domain, &ring->mqd_obj,
|
|
&ring->mqd_gpu_addr, &ring->mqd_ptr);
|
|
if (r) {
|
|
dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
|
|
return r;
|
|
}
|
|
|
|
ring->mqd_size = mqd_size;
|
|
/* prepare MQD backup */
|
|
adev->gfx.me.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL);
|
|
if (!adev->gfx.me.mqd_backup[i])
|
|
dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* create MQD for each KCQ */
|
|
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
|
|
j = i + xcc_id * adev->gfx.num_compute_rings;
|
|
ring = &adev->gfx.compute_ring[j];
|
|
if (!ring->mqd_obj) {
|
|
r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
|
|
domain, &ring->mqd_obj,
|
|
&ring->mqd_gpu_addr, &ring->mqd_ptr);
|
|
if (r) {
|
|
dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
|
|
return r;
|
|
}
|
|
|
|
ring->mqd_size = mqd_size;
|
|
/* prepare MQD backup */
|
|
adev->gfx.mec.mqd_backup[j] = kmalloc(mqd_size, GFP_KERNEL);
|
|
if (!adev->gfx.mec.mqd_backup[j])
|
|
dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id)
|
|
{
|
|
struct amdgpu_ring *ring = NULL;
|
|
int i, j;
|
|
struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
|
|
|
|
if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
|
|
for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
|
|
ring = &adev->gfx.gfx_ring[i];
|
|
kfree(adev->gfx.me.mqd_backup[i]);
|
|
amdgpu_bo_free_kernel(&ring->mqd_obj,
|
|
&ring->mqd_gpu_addr,
|
|
&ring->mqd_ptr);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
|
|
j = i + xcc_id * adev->gfx.num_compute_rings;
|
|
ring = &adev->gfx.compute_ring[j];
|
|
kfree(adev->gfx.mec.mqd_backup[j]);
|
|
amdgpu_bo_free_kernel(&ring->mqd_obj,
|
|
&ring->mqd_gpu_addr,
|
|
&ring->mqd_ptr);
|
|
}
|
|
|
|
ring = &kiq->ring;
|
|
kfree(kiq->mqd_backup);
|
|
amdgpu_bo_free_kernel(&ring->mqd_obj,
|
|
&ring->mqd_gpu_addr,
|
|
&ring->mqd_ptr);
|
|
}
|
|
|
|
int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id)
|
|
{
|
|
struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
|
|
struct amdgpu_ring *kiq_ring = &kiq->ring;
|
|
int i, r = 0;
|
|
int j;
|
|
|
|
if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
|
|
return -EINVAL;
|
|
|
|
spin_lock(&kiq->ring_lock);
|
|
if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
|
|
adev->gfx.num_compute_rings)) {
|
|
spin_unlock(&kiq->ring_lock);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
|
|
j = i + xcc_id * adev->gfx.num_compute_rings;
|
|
kiq->pmf->kiq_unmap_queues(kiq_ring,
|
|
&adev->gfx.compute_ring[j],
|
|
RESET_QUEUES, 0, 0);
|
|
}
|
|
|
|
if (kiq_ring->sched.ready && !adev->job_hang)
|
|
r = amdgpu_ring_test_helper(kiq_ring);
|
|
spin_unlock(&kiq->ring_lock);
|
|
|
|
return r;
|
|
}
|
|
|
|
int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id)
|
|
{
|
|
struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
|
|
struct amdgpu_ring *kiq_ring = &kiq->ring;
|
|
int i, r = 0;
|
|
int j;
|
|
|
|
if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
|
|
return -EINVAL;
|
|
|
|
spin_lock(&kiq->ring_lock);
|
|
if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
|
|
if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
|
|
adev->gfx.num_gfx_rings)) {
|
|
spin_unlock(&kiq->ring_lock);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
|
|
j = i + xcc_id * adev->gfx.num_gfx_rings;
|
|
kiq->pmf->kiq_unmap_queues(kiq_ring,
|
|
&adev->gfx.gfx_ring[j],
|
|
PREEMPT_QUEUES, 0, 0);
|
|
}
|
|
}
|
|
|
|
if (adev->gfx.kiq[0].ring.sched.ready && !adev->job_hang)
|
|
r = amdgpu_ring_test_helper(kiq_ring);
|
|
spin_unlock(&kiq->ring_lock);
|
|
|
|
return r;
|
|
}
|
|
|
|
int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev,
|
|
int queue_bit)
|
|
{
|
|
int mec, pipe, queue;
|
|
int set_resource_bit = 0;
|
|
|
|
amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
|
|
|
|
set_resource_bit = mec * 4 * 8 + pipe * 8 + queue;
|
|
|
|
return set_resource_bit;
|
|
}
|
|
|
|
int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id)
|
|
{
|
|
struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
|
|
struct amdgpu_ring *kiq_ring = &kiq->ring;
|
|
uint64_t queue_mask = 0;
|
|
int r, i, j;
|
|
|
|
if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources)
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) {
|
|
if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
|
|
continue;
|
|
|
|
/* This situation may be hit in the future if a new HW
|
|
* generation exposes more than 64 queues. If so, the
|
|
* definition of queue_mask needs updating */
|
|
if (WARN_ON(i > (sizeof(queue_mask)*8))) {
|
|
DRM_ERROR("Invalid KCQ enabled: %d\n", i);
|
|
break;
|
|
}
|
|
|
|
queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i));
|
|
}
|
|
|
|
DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe,
|
|
kiq_ring->queue);
|
|
amdgpu_device_flush_hdp(adev, NULL);
|
|
|
|
spin_lock(&kiq->ring_lock);
|
|
r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
|
|
adev->gfx.num_compute_rings +
|
|
kiq->pmf->set_resources_size);
|
|
if (r) {
|
|
DRM_ERROR("Failed to lock KIQ (%d).\n", r);
|
|
spin_unlock(&kiq->ring_lock);
|
|
return r;
|
|
}
|
|
|
|
if (adev->enable_mes)
|
|
queue_mask = ~0ULL;
|
|
|
|
kiq->pmf->kiq_set_resources(kiq_ring, queue_mask);
|
|
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
|
|
j = i + xcc_id * adev->gfx.num_compute_rings;
|
|
kiq->pmf->kiq_map_queues(kiq_ring,
|
|
&adev->gfx.compute_ring[j]);
|
|
}
|
|
|
|
r = amdgpu_ring_test_helper(kiq_ring);
|
|
spin_unlock(&kiq->ring_lock);
|
|
if (r)
|
|
DRM_ERROR("KCQ enable failed\n");
|
|
|
|
return r;
|
|
}
|
|
|
|
int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id)
|
|
{
|
|
struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
|
|
struct amdgpu_ring *kiq_ring = &kiq->ring;
|
|
int r, i, j;
|
|
|
|
if (!kiq->pmf || !kiq->pmf->kiq_map_queues)
|
|
return -EINVAL;
|
|
|
|
amdgpu_device_flush_hdp(adev, NULL);
|
|
|
|
spin_lock(&kiq->ring_lock);
|
|
/* No need to map kcq on the slave */
|
|
if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
|
|
r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
|
|
adev->gfx.num_gfx_rings);
|
|
if (r) {
|
|
DRM_ERROR("Failed to lock KIQ (%d).\n", r);
|
|
spin_unlock(&kiq->ring_lock);
|
|
return r;
|
|
}
|
|
|
|
for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
|
|
j = i + xcc_id * adev->gfx.num_gfx_rings;
|
|
kiq->pmf->kiq_map_queues(kiq_ring,
|
|
&adev->gfx.gfx_ring[j]);
|
|
}
|
|
}
|
|
|
|
r = amdgpu_ring_test_helper(kiq_ring);
|
|
spin_unlock(&kiq->ring_lock);
|
|
if (r)
|
|
DRM_ERROR("KCQ enable failed\n");
|
|
|
|
return r;
|
|
}
|
|
|
|
/* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable
|
|
*
|
|
* @adev: amdgpu_device pointer
|
|
* @bool enable true: enable gfx off feature, false: disable gfx off feature
|
|
*
|
|
* 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled.
|
|
* 2. other client can send request to disable gfx off feature, the request should be honored.
|
|
* 3. other client can cancel their request of disable gfx off feature
|
|
* 4. other client should not send request to enable gfx off feature before disable gfx off feature.
|
|
*/
|
|
|
|
void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable)
|
|
{
|
|
unsigned long delay = GFX_OFF_DELAY_ENABLE;
|
|
|
|
if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
|
|
return;
|
|
|
|
mutex_lock(&adev->gfx.gfx_off_mutex);
|
|
|
|
if (enable) {
|
|
/* If the count is already 0, it means there's an imbalance bug somewhere.
|
|
* Note that the bug may be in a different caller than the one which triggers the
|
|
* WARN_ON_ONCE.
|
|
*/
|
|
if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0))
|
|
goto unlock;
|
|
|
|
adev->gfx.gfx_off_req_count--;
|
|
|
|
if (adev->gfx.gfx_off_req_count == 0 &&
|
|
!adev->gfx.gfx_off_state) {
|
|
schedule_delayed_work(&adev->gfx.gfx_off_delay_work,
|
|
delay);
|
|
}
|
|
} else {
|
|
if (adev->gfx.gfx_off_req_count == 0) {
|
|
cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work);
|
|
|
|
if (adev->gfx.gfx_off_state &&
|
|
!amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false)) {
|
|
adev->gfx.gfx_off_state = false;
|
|
|
|
if (adev->gfx.funcs->init_spm_golden) {
|
|
dev_dbg(adev->dev,
|
|
"GFXOFF is disabled, re-init SPM golden settings\n");
|
|
amdgpu_gfx_init_spm_golden(adev);
|
|
}
|
|
}
|
|
}
|
|
|
|
adev->gfx.gfx_off_req_count++;
|
|
}
|
|
|
|
unlock:
|
|
mutex_unlock(&adev->gfx.gfx_off_mutex);
|
|
}
|
|
|
|
int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value)
|
|
{
|
|
int r = 0;
|
|
|
|
mutex_lock(&adev->gfx.gfx_off_mutex);
|
|
|
|
r = amdgpu_dpm_set_residency_gfxoff(adev, value);
|
|
|
|
mutex_unlock(&adev->gfx.gfx_off_mutex);
|
|
|
|
return r;
|
|
}
|
|
|
|
int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value)
|
|
{
|
|
int r = 0;
|
|
|
|
mutex_lock(&adev->gfx.gfx_off_mutex);
|
|
|
|
r = amdgpu_dpm_get_residency_gfxoff(adev, value);
|
|
|
|
mutex_unlock(&adev->gfx.gfx_off_mutex);
|
|
|
|
return r;
|
|
}
|
|
|
|
int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value)
|
|
{
|
|
int r = 0;
|
|
|
|
mutex_lock(&adev->gfx.gfx_off_mutex);
|
|
|
|
r = amdgpu_dpm_get_entrycount_gfxoff(adev, value);
|
|
|
|
mutex_unlock(&adev->gfx.gfx_off_mutex);
|
|
|
|
return r;
|
|
}
|
|
|
|
int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value)
|
|
{
|
|
|
|
int r = 0;
|
|
|
|
mutex_lock(&adev->gfx.gfx_off_mutex);
|
|
|
|
r = amdgpu_dpm_get_status_gfxoff(adev, value);
|
|
|
|
mutex_unlock(&adev->gfx.gfx_off_mutex);
|
|
|
|
return r;
|
|
}
|
|
|
|
int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block)
|
|
{
|
|
int r;
|
|
|
|
if (amdgpu_ras_is_supported(adev, ras_block->block)) {
|
|
if (!amdgpu_persistent_edc_harvesting_supported(adev))
|
|
amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX);
|
|
|
|
r = amdgpu_ras_block_late_init(adev, ras_block);
|
|
if (r)
|
|
return r;
|
|
|
|
if (adev->gfx.cp_ecc_error_irq.funcs) {
|
|
r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0);
|
|
if (r)
|
|
goto late_fini;
|
|
}
|
|
} else {
|
|
amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0);
|
|
}
|
|
|
|
return 0;
|
|
late_fini:
|
|
amdgpu_ras_block_late_fini(adev, ras_block);
|
|
return r;
|
|
}
|
|
|
|
int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev)
|
|
{
|
|
int err = 0;
|
|
struct amdgpu_gfx_ras *ras = NULL;
|
|
|
|
/* adev->gfx.ras is NULL, which means gfx does not
|
|
* support ras function, then do nothing here.
|
|
*/
|
|
if (!adev->gfx.ras)
|
|
return 0;
|
|
|
|
ras = adev->gfx.ras;
|
|
|
|
err = amdgpu_ras_register_ras_block(adev, &ras->ras_block);
|
|
if (err) {
|
|
dev_err(adev->dev, "Failed to register gfx ras block!\n");
|
|
return err;
|
|
}
|
|
|
|
strcpy(ras->ras_block.ras_comm.name, "gfx");
|
|
ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX;
|
|
ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE;
|
|
adev->gfx.ras_if = &ras->ras_block.ras_comm;
|
|
|
|
/* If not define special ras_late_init function, use gfx default ras_late_init */
|
|
if (!ras->ras_block.ras_late_init)
|
|
ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init;
|
|
|
|
/* If not defined special ras_cb function, use default ras_cb */
|
|
if (!ras->ras_block.ras_cb)
|
|
ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev,
|
|
struct amdgpu_iv_entry *entry)
|
|
{
|
|
if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler)
|
|
return adev->gfx.ras->poison_consumption_handler(adev, entry);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev,
|
|
void *err_data,
|
|
struct amdgpu_iv_entry *entry)
|
|
{
|
|
/* TODO ue will trigger an interrupt.
|
|
*
|
|
* When “Full RAS” is enabled, the per-IP interrupt sources should
|
|
* be disabled and the driver should only look for the aggregated
|
|
* interrupt via sync flood
|
|
*/
|
|
if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) {
|
|
kgd2kfd_set_sram_ecc_flag(adev->kfd.dev);
|
|
if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops &&
|
|
adev->gfx.ras->ras_block.hw_ops->query_ras_error_count)
|
|
adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data);
|
|
amdgpu_ras_reset_gpu(adev);
|
|
}
|
|
return AMDGPU_RAS_SUCCESS;
|
|
}
|
|
|
|
int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev,
|
|
struct amdgpu_irq_src *source,
|
|
struct amdgpu_iv_entry *entry)
|
|
{
|
|
struct ras_common_if *ras_if = adev->gfx.ras_if;
|
|
struct ras_dispatch_if ih_data = {
|
|
.entry = entry,
|
|
};
|
|
|
|
if (!ras_if)
|
|
return 0;
|
|
|
|
ih_data.head = *ras_if;
|
|
|
|
DRM_ERROR("CP ECC ERROR IRQ\n");
|
|
amdgpu_ras_interrupt_dispatch(adev, &ih_data);
|
|
return 0;
|
|
}
|
|
|
|
void amdgpu_gfx_ras_error_func(struct amdgpu_device *adev,
|
|
void *ras_error_status,
|
|
void (*func)(struct amdgpu_device *adev, void *ras_error_status,
|
|
int xcc_id))
|
|
{
|
|
int i;
|
|
int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
|
|
uint32_t xcc_mask = GENMASK(num_xcc - 1, 0);
|
|
struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
|
|
|
|
if (err_data) {
|
|
err_data->ue_count = 0;
|
|
err_data->ce_count = 0;
|
|
}
|
|
|
|
for_each_inst(i, xcc_mask)
|
|
func(adev, ras_error_status, i);
|
|
}
|
|
|
|
uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg)
|
|
{
|
|
signed long r, cnt = 0;
|
|
unsigned long flags;
|
|
uint32_t seq, reg_val_offs = 0, value = 0;
|
|
struct amdgpu_kiq *kiq = &adev->gfx.kiq[0];
|
|
struct amdgpu_ring *ring = &kiq->ring;
|
|
|
|
if (amdgpu_device_skip_hw_access(adev))
|
|
return 0;
|
|
|
|
if (adev->mes.ring.sched.ready)
|
|
return amdgpu_mes_rreg(adev, reg);
|
|
|
|
BUG_ON(!ring->funcs->emit_rreg);
|
|
|
|
spin_lock_irqsave(&kiq->ring_lock, flags);
|
|
if (amdgpu_device_wb_get(adev, ®_val_offs)) {
|
|
pr_err("critical bug! too many kiq readers\n");
|
|
goto failed_unlock;
|
|
}
|
|
amdgpu_ring_alloc(ring, 32);
|
|
amdgpu_ring_emit_rreg(ring, reg, reg_val_offs);
|
|
r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
|
|
if (r)
|
|
goto failed_undo;
|
|
|
|
amdgpu_ring_commit(ring);
|
|
spin_unlock_irqrestore(&kiq->ring_lock, flags);
|
|
|
|
r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
|
|
|
|
/* don't wait anymore for gpu reset case because this way may
|
|
* block gpu_recover() routine forever, e.g. this virt_kiq_rreg
|
|
* is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
|
|
* never return if we keep waiting in virt_kiq_rreg, which cause
|
|
* gpu_recover() hang there.
|
|
*
|
|
* also don't wait anymore for IRQ context
|
|
* */
|
|
if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
|
|
goto failed_kiq_read;
|
|
|
|
might_sleep();
|
|
while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
|
|
msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
|
|
r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
|
|
}
|
|
|
|
if (cnt > MAX_KIQ_REG_TRY)
|
|
goto failed_kiq_read;
|
|
|
|
mb();
|
|
value = adev->wb.wb[reg_val_offs];
|
|
amdgpu_device_wb_free(adev, reg_val_offs);
|
|
return value;
|
|
|
|
failed_undo:
|
|
amdgpu_ring_undo(ring);
|
|
failed_unlock:
|
|
spin_unlock_irqrestore(&kiq->ring_lock, flags);
|
|
failed_kiq_read:
|
|
if (reg_val_offs)
|
|
amdgpu_device_wb_free(adev, reg_val_offs);
|
|
dev_err(adev->dev, "failed to read reg:%x\n", reg);
|
|
return ~0;
|
|
}
|
|
|
|
void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v)
|
|
{
|
|
signed long r, cnt = 0;
|
|
unsigned long flags;
|
|
uint32_t seq;
|
|
struct amdgpu_kiq *kiq = &adev->gfx.kiq[0];
|
|
struct amdgpu_ring *ring = &kiq->ring;
|
|
|
|
BUG_ON(!ring->funcs->emit_wreg);
|
|
|
|
if (amdgpu_device_skip_hw_access(adev))
|
|
return;
|
|
|
|
if (adev->mes.ring.sched.ready) {
|
|
amdgpu_mes_wreg(adev, reg, v);
|
|
return;
|
|
}
|
|
|
|
spin_lock_irqsave(&kiq->ring_lock, flags);
|
|
amdgpu_ring_alloc(ring, 32);
|
|
amdgpu_ring_emit_wreg(ring, reg, v);
|
|
r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
|
|
if (r)
|
|
goto failed_undo;
|
|
|
|
amdgpu_ring_commit(ring);
|
|
spin_unlock_irqrestore(&kiq->ring_lock, flags);
|
|
|
|
r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
|
|
|
|
/* don't wait anymore for gpu reset case because this way may
|
|
* block gpu_recover() routine forever, e.g. this virt_kiq_rreg
|
|
* is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
|
|
* never return if we keep waiting in virt_kiq_rreg, which cause
|
|
* gpu_recover() hang there.
|
|
*
|
|
* also don't wait anymore for IRQ context
|
|
* */
|
|
if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
|
|
goto failed_kiq_write;
|
|
|
|
might_sleep();
|
|
while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
|
|
|
|
msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
|
|
r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
|
|
}
|
|
|
|
if (cnt > MAX_KIQ_REG_TRY)
|
|
goto failed_kiq_write;
|
|
|
|
return;
|
|
|
|
failed_undo:
|
|
amdgpu_ring_undo(ring);
|
|
spin_unlock_irqrestore(&kiq->ring_lock, flags);
|
|
failed_kiq_write:
|
|
dev_err(adev->dev, "failed to write reg:%x\n", reg);
|
|
}
|
|
|
|
int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev)
|
|
{
|
|
if (amdgpu_num_kcq == -1) {
|
|
return 8;
|
|
} else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) {
|
|
dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n");
|
|
return 8;
|
|
}
|
|
return amdgpu_num_kcq;
|
|
}
|
|
|
|
void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev,
|
|
uint32_t ucode_id)
|
|
{
|
|
const struct gfx_firmware_header_v1_0 *cp_hdr;
|
|
const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0;
|
|
struct amdgpu_firmware_info *info = NULL;
|
|
const struct firmware *ucode_fw;
|
|
unsigned int fw_size;
|
|
|
|
switch (ucode_id) {
|
|
case AMDGPU_UCODE_ID_CP_PFP:
|
|
cp_hdr = (const struct gfx_firmware_header_v1_0 *)
|
|
adev->gfx.pfp_fw->data;
|
|
adev->gfx.pfp_fw_version =
|
|
le32_to_cpu(cp_hdr->header.ucode_version);
|
|
adev->gfx.pfp_feature_version =
|
|
le32_to_cpu(cp_hdr->ucode_feature_version);
|
|
ucode_fw = adev->gfx.pfp_fw;
|
|
fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
|
|
break;
|
|
case AMDGPU_UCODE_ID_CP_RS64_PFP:
|
|
cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
|
|
adev->gfx.pfp_fw->data;
|
|
adev->gfx.pfp_fw_version =
|
|
le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
|
|
adev->gfx.pfp_feature_version =
|
|
le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
|
|
ucode_fw = adev->gfx.pfp_fw;
|
|
fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
|
|
break;
|
|
case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK:
|
|
case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK:
|
|
cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
|
|
adev->gfx.pfp_fw->data;
|
|
ucode_fw = adev->gfx.pfp_fw;
|
|
fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
|
|
break;
|
|
case AMDGPU_UCODE_ID_CP_ME:
|
|
cp_hdr = (const struct gfx_firmware_header_v1_0 *)
|
|
adev->gfx.me_fw->data;
|
|
adev->gfx.me_fw_version =
|
|
le32_to_cpu(cp_hdr->header.ucode_version);
|
|
adev->gfx.me_feature_version =
|
|
le32_to_cpu(cp_hdr->ucode_feature_version);
|
|
ucode_fw = adev->gfx.me_fw;
|
|
fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
|
|
break;
|
|
case AMDGPU_UCODE_ID_CP_RS64_ME:
|
|
cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
|
|
adev->gfx.me_fw->data;
|
|
adev->gfx.me_fw_version =
|
|
le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
|
|
adev->gfx.me_feature_version =
|
|
le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
|
|
ucode_fw = adev->gfx.me_fw;
|
|
fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
|
|
break;
|
|
case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK:
|
|
case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK:
|
|
cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
|
|
adev->gfx.me_fw->data;
|
|
ucode_fw = adev->gfx.me_fw;
|
|
fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
|
|
break;
|
|
case AMDGPU_UCODE_ID_CP_CE:
|
|
cp_hdr = (const struct gfx_firmware_header_v1_0 *)
|
|
adev->gfx.ce_fw->data;
|
|
adev->gfx.ce_fw_version =
|
|
le32_to_cpu(cp_hdr->header.ucode_version);
|
|
adev->gfx.ce_feature_version =
|
|
le32_to_cpu(cp_hdr->ucode_feature_version);
|
|
ucode_fw = adev->gfx.ce_fw;
|
|
fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
|
|
break;
|
|
case AMDGPU_UCODE_ID_CP_MEC1:
|
|
cp_hdr = (const struct gfx_firmware_header_v1_0 *)
|
|
adev->gfx.mec_fw->data;
|
|
adev->gfx.mec_fw_version =
|
|
le32_to_cpu(cp_hdr->header.ucode_version);
|
|
adev->gfx.mec_feature_version =
|
|
le32_to_cpu(cp_hdr->ucode_feature_version);
|
|
ucode_fw = adev->gfx.mec_fw;
|
|
fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
|
|
le32_to_cpu(cp_hdr->jt_size) * 4;
|
|
break;
|
|
case AMDGPU_UCODE_ID_CP_MEC1_JT:
|
|
cp_hdr = (const struct gfx_firmware_header_v1_0 *)
|
|
adev->gfx.mec_fw->data;
|
|
ucode_fw = adev->gfx.mec_fw;
|
|
fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
|
|
break;
|
|
case AMDGPU_UCODE_ID_CP_MEC2:
|
|
cp_hdr = (const struct gfx_firmware_header_v1_0 *)
|
|
adev->gfx.mec2_fw->data;
|
|
adev->gfx.mec2_fw_version =
|
|
le32_to_cpu(cp_hdr->header.ucode_version);
|
|
adev->gfx.mec2_feature_version =
|
|
le32_to_cpu(cp_hdr->ucode_feature_version);
|
|
ucode_fw = adev->gfx.mec2_fw;
|
|
fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
|
|
le32_to_cpu(cp_hdr->jt_size) * 4;
|
|
break;
|
|
case AMDGPU_UCODE_ID_CP_MEC2_JT:
|
|
cp_hdr = (const struct gfx_firmware_header_v1_0 *)
|
|
adev->gfx.mec2_fw->data;
|
|
ucode_fw = adev->gfx.mec2_fw;
|
|
fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
|
|
break;
|
|
case AMDGPU_UCODE_ID_CP_RS64_MEC:
|
|
cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
|
|
adev->gfx.mec_fw->data;
|
|
adev->gfx.mec_fw_version =
|
|
le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
|
|
adev->gfx.mec_feature_version =
|
|
le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
|
|
ucode_fw = adev->gfx.mec_fw;
|
|
fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
|
|
break;
|
|
case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK:
|
|
case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK:
|
|
case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK:
|
|
case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK:
|
|
cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
|
|
adev->gfx.mec_fw->data;
|
|
ucode_fw = adev->gfx.mec_fw;
|
|
fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
|
|
info = &adev->firmware.ucode[ucode_id];
|
|
info->ucode_id = ucode_id;
|
|
info->fw = ucode_fw;
|
|
adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE);
|
|
}
|
|
}
|
|
|
|
bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id)
|
|
{
|
|
return !(xcc_id % (adev->gfx.num_xcc_per_xcp ?
|
|
adev->gfx.num_xcc_per_xcp : 1));
|
|
}
|
|
|
|
static ssize_t amdgpu_gfx_get_current_compute_partition(struct device *dev,
|
|
struct device_attribute *addr,
|
|
char *buf)
|
|
{
|
|
struct drm_device *ddev = dev_get_drvdata(dev);
|
|
struct amdgpu_device *adev = drm_to_adev(ddev);
|
|
int mode;
|
|
|
|
mode = amdgpu_xcp_query_partition_mode(adev->xcp_mgr,
|
|
AMDGPU_XCP_FL_NONE);
|
|
|
|
return sysfs_emit(buf, "%s\n", amdgpu_gfx_compute_mode_desc(mode));
|
|
}
|
|
|
|
static ssize_t amdgpu_gfx_set_compute_partition(struct device *dev,
|
|
struct device_attribute *addr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct drm_device *ddev = dev_get_drvdata(dev);
|
|
struct amdgpu_device *adev = drm_to_adev(ddev);
|
|
enum amdgpu_gfx_partition mode;
|
|
int ret = 0, num_xcc;
|
|
|
|
num_xcc = NUM_XCC(adev->gfx.xcc_mask);
|
|
if (num_xcc % 2 != 0)
|
|
return -EINVAL;
|
|
|
|
if (!strncasecmp("SPX", buf, strlen("SPX"))) {
|
|
mode = AMDGPU_SPX_PARTITION_MODE;
|
|
} else if (!strncasecmp("DPX", buf, strlen("DPX"))) {
|
|
/*
|
|
* DPX mode needs AIDs to be in multiple of 2.
|
|
* Each AID connects 2 XCCs.
|
|
*/
|
|
if (num_xcc%4)
|
|
return -EINVAL;
|
|
mode = AMDGPU_DPX_PARTITION_MODE;
|
|
} else if (!strncasecmp("TPX", buf, strlen("TPX"))) {
|
|
if (num_xcc != 6)
|
|
return -EINVAL;
|
|
mode = AMDGPU_TPX_PARTITION_MODE;
|
|
} else if (!strncasecmp("QPX", buf, strlen("QPX"))) {
|
|
if (num_xcc != 8)
|
|
return -EINVAL;
|
|
mode = AMDGPU_QPX_PARTITION_MODE;
|
|
} else if (!strncasecmp("CPX", buf, strlen("CPX"))) {
|
|
mode = AMDGPU_CPX_PARTITION_MODE;
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = amdgpu_xcp_switch_partition_mode(adev->xcp_mgr, mode);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t amdgpu_gfx_get_available_compute_partition(struct device *dev,
|
|
struct device_attribute *addr,
|
|
char *buf)
|
|
{
|
|
struct drm_device *ddev = dev_get_drvdata(dev);
|
|
struct amdgpu_device *adev = drm_to_adev(ddev);
|
|
char *supported_partition;
|
|
|
|
/* TBD */
|
|
switch (NUM_XCC(adev->gfx.xcc_mask)) {
|
|
case 8:
|
|
supported_partition = "SPX, DPX, QPX, CPX";
|
|
break;
|
|
case 6:
|
|
supported_partition = "SPX, TPX, CPX";
|
|
break;
|
|
case 4:
|
|
supported_partition = "SPX, DPX, CPX";
|
|
break;
|
|
/* this seems only existing in emulation phase */
|
|
case 2:
|
|
supported_partition = "SPX, CPX";
|
|
break;
|
|
default:
|
|
supported_partition = "Not supported";
|
|
break;
|
|
}
|
|
|
|
return sysfs_emit(buf, "%s\n", supported_partition);
|
|
}
|
|
|
|
static DEVICE_ATTR(current_compute_partition, S_IRUGO | S_IWUSR,
|
|
amdgpu_gfx_get_current_compute_partition,
|
|
amdgpu_gfx_set_compute_partition);
|
|
|
|
static DEVICE_ATTR(available_compute_partition, S_IRUGO,
|
|
amdgpu_gfx_get_available_compute_partition, NULL);
|
|
|
|
int amdgpu_gfx_sysfs_init(struct amdgpu_device *adev)
|
|
{
|
|
int r;
|
|
|
|
r = device_create_file(adev->dev, &dev_attr_current_compute_partition);
|
|
if (r)
|
|
return r;
|
|
|
|
r = device_create_file(adev->dev, &dev_attr_available_compute_partition);
|
|
|
|
return r;
|
|
}
|
|
|
|
void amdgpu_gfx_sysfs_fini(struct amdgpu_device *adev)
|
|
{
|
|
device_remove_file(adev->dev, &dev_attr_current_compute_partition);
|
|
device_remove_file(adev->dev, &dev_attr_available_compute_partition);
|
|
}
|