linux-zen-desktop/drivers/gpu/drm/amd/amdkfd/kfd_device_queue_manager.c

3243 lines
84 KiB
C

// SPDX-License-Identifier: GPL-2.0 OR MIT
/*
* Copyright 2014-2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/ratelimit.h>
#include <linux/printk.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/types.h>
#include <linux/bitops.h>
#include <linux/sched.h>
#include "kfd_priv.h"
#include "kfd_device_queue_manager.h"
#include "kfd_mqd_manager.h"
#include "cik_regs.h"
#include "kfd_kernel_queue.h"
#include "amdgpu_amdkfd.h"
#include "mes_api_def.h"
#include "kfd_debug.h"
/* Size of the per-pipe EOP queue */
#define CIK_HPD_EOP_BYTES_LOG2 11
#define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
u32 pasid, unsigned int vmid);
static int execute_queues_cpsch(struct device_queue_manager *dqm,
enum kfd_unmap_queues_filter filter,
uint32_t filter_param,
uint32_t grace_period);
static int unmap_queues_cpsch(struct device_queue_manager *dqm,
enum kfd_unmap_queues_filter filter,
uint32_t filter_param,
uint32_t grace_period,
bool reset);
static int map_queues_cpsch(struct device_queue_manager *dqm);
static void deallocate_sdma_queue(struct device_queue_manager *dqm,
struct queue *q);
static inline void deallocate_hqd(struct device_queue_manager *dqm,
struct queue *q);
static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q);
static int allocate_sdma_queue(struct device_queue_manager *dqm,
struct queue *q, const uint32_t *restore_sdma_id);
static void kfd_process_hw_exception(struct work_struct *work);
static inline
enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
{
if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI)
return KFD_MQD_TYPE_SDMA;
return KFD_MQD_TYPE_CP;
}
static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
{
int i;
int pipe_offset = (mec * dqm->dev->kfd->shared_resources.num_pipe_per_mec
+ pipe) * dqm->dev->kfd->shared_resources.num_queue_per_pipe;
/* queue is available for KFD usage if bit is 1 */
for (i = 0; i < dqm->dev->kfd->shared_resources.num_queue_per_pipe; ++i)
if (test_bit(pipe_offset + i,
dqm->dev->kfd->shared_resources.cp_queue_bitmap))
return true;
return false;
}
unsigned int get_cp_queues_num(struct device_queue_manager *dqm)
{
return bitmap_weight(dqm->dev->kfd->shared_resources.cp_queue_bitmap,
KGD_MAX_QUEUES);
}
unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
{
return dqm->dev->kfd->shared_resources.num_queue_per_pipe;
}
unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
{
return dqm->dev->kfd->shared_resources.num_pipe_per_mec;
}
static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm)
{
return kfd_get_num_sdma_engines(dqm->dev) +
kfd_get_num_xgmi_sdma_engines(dqm->dev);
}
unsigned int get_num_sdma_queues(struct device_queue_manager *dqm)
{
return kfd_get_num_sdma_engines(dqm->dev) *
dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
}
unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm)
{
return kfd_get_num_xgmi_sdma_engines(dqm->dev) *
dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
}
static void init_sdma_bitmaps(struct device_queue_manager *dqm)
{
bitmap_zero(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES);
bitmap_set(dqm->sdma_bitmap, 0, get_num_sdma_queues(dqm));
bitmap_zero(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES);
bitmap_set(dqm->xgmi_sdma_bitmap, 0, get_num_xgmi_sdma_queues(dqm));
/* Mask out the reserved queues */
bitmap_andnot(dqm->sdma_bitmap, dqm->sdma_bitmap,
dqm->dev->kfd->device_info.reserved_sdma_queues_bitmap,
KFD_MAX_SDMA_QUEUES);
}
void program_sh_mem_settings(struct device_queue_manager *dqm,
struct qcm_process_device *qpd)
{
uint32_t xcc_mask = dqm->dev->xcc_mask;
int xcc_id;
for_each_inst(xcc_id, xcc_mask)
dqm->dev->kfd2kgd->program_sh_mem_settings(
dqm->dev->adev, qpd->vmid, qpd->sh_mem_config,
qpd->sh_mem_ape1_base, qpd->sh_mem_ape1_limit,
qpd->sh_mem_bases, xcc_id);
}
static void kfd_hws_hang(struct device_queue_manager *dqm)
{
/*
* Issue a GPU reset if HWS is unresponsive
*/
dqm->is_hws_hang = true;
/* It's possible we're detecting a HWS hang in the
* middle of a GPU reset. No need to schedule another
* reset in this case.
*/
if (!dqm->is_resetting)
schedule_work(&dqm->hw_exception_work);
}
static int convert_to_mes_queue_type(int queue_type)
{
int mes_queue_type;
switch (queue_type) {
case KFD_QUEUE_TYPE_COMPUTE:
mes_queue_type = MES_QUEUE_TYPE_COMPUTE;
break;
case KFD_QUEUE_TYPE_SDMA:
mes_queue_type = MES_QUEUE_TYPE_SDMA;
break;
default:
WARN(1, "Invalid queue type %d", queue_type);
mes_queue_type = -EINVAL;
break;
}
return mes_queue_type;
}
static int add_queue_mes(struct device_queue_manager *dqm, struct queue *q,
struct qcm_process_device *qpd)
{
struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
struct kfd_process_device *pdd = qpd_to_pdd(qpd);
struct mes_add_queue_input queue_input;
int r, queue_type;
uint64_t wptr_addr_off;
if (dqm->is_hws_hang)
return -EIO;
memset(&queue_input, 0x0, sizeof(struct mes_add_queue_input));
queue_input.process_id = qpd->pqm->process->pasid;
queue_input.page_table_base_addr = qpd->page_table_base;
queue_input.process_va_start = 0;
queue_input.process_va_end = adev->vm_manager.max_pfn - 1;
/* MES unit for quantum is 100ns */
queue_input.process_quantum = KFD_MES_PROCESS_QUANTUM; /* Equivalent to 10ms. */
queue_input.process_context_addr = pdd->proc_ctx_gpu_addr;
queue_input.gang_quantum = KFD_MES_GANG_QUANTUM; /* Equivalent to 1ms */
queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
queue_input.inprocess_gang_priority = q->properties.priority;
queue_input.gang_global_priority_level =
AMDGPU_MES_PRIORITY_LEVEL_NORMAL;
queue_input.doorbell_offset = q->properties.doorbell_off;
queue_input.mqd_addr = q->gart_mqd_addr;
queue_input.wptr_addr = (uint64_t)q->properties.write_ptr;
if (q->wptr_bo) {
wptr_addr_off = (uint64_t)q->properties.write_ptr & (PAGE_SIZE - 1);
queue_input.wptr_mc_addr = ((uint64_t)q->wptr_bo->tbo.resource->start << PAGE_SHIFT) + wptr_addr_off;
}
queue_input.is_kfd_process = 1;
queue_input.is_aql_queue = (q->properties.format == KFD_QUEUE_FORMAT_AQL);
queue_input.queue_size = q->properties.queue_size >> 2;
queue_input.paging = false;
queue_input.tba_addr = qpd->tba_addr;
queue_input.tma_addr = qpd->tma_addr;
queue_input.trap_en = !kfd_dbg_has_cwsr_workaround(q->device);
queue_input.skip_process_ctx_clear = qpd->pqm->process->debug_trap_enabled;
queue_type = convert_to_mes_queue_type(q->properties.type);
if (queue_type < 0) {
pr_err("Queue type not supported with MES, queue:%d\n",
q->properties.type);
return -EINVAL;
}
queue_input.queue_type = (uint32_t)queue_type;
if (q->gws) {
queue_input.gws_base = 0;
queue_input.gws_size = qpd->num_gws;
}
amdgpu_mes_lock(&adev->mes);
r = adev->mes.funcs->add_hw_queue(&adev->mes, &queue_input);
amdgpu_mes_unlock(&adev->mes);
if (r) {
pr_err("failed to add hardware queue to MES, doorbell=0x%x\n",
q->properties.doorbell_off);
pr_err("MES might be in unrecoverable state, issue a GPU reset\n");
kfd_hws_hang(dqm);
}
return r;
}
static int remove_queue_mes(struct device_queue_manager *dqm, struct queue *q,
struct qcm_process_device *qpd)
{
struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
int r;
struct mes_remove_queue_input queue_input;
if (dqm->is_hws_hang)
return -EIO;
memset(&queue_input, 0x0, sizeof(struct mes_remove_queue_input));
queue_input.doorbell_offset = q->properties.doorbell_off;
queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
amdgpu_mes_lock(&adev->mes);
r = adev->mes.funcs->remove_hw_queue(&adev->mes, &queue_input);
amdgpu_mes_unlock(&adev->mes);
if (r) {
pr_err("failed to remove hardware queue from MES, doorbell=0x%x\n",
q->properties.doorbell_off);
pr_err("MES might be in unrecoverable state, issue a GPU reset\n");
kfd_hws_hang(dqm);
}
return r;
}
static int remove_all_queues_mes(struct device_queue_manager *dqm)
{
struct device_process_node *cur;
struct qcm_process_device *qpd;
struct queue *q;
int retval = 0;
list_for_each_entry(cur, &dqm->queues, list) {
qpd = cur->qpd;
list_for_each_entry(q, &qpd->queues_list, list) {
if (q->properties.is_active) {
retval = remove_queue_mes(dqm, q, qpd);
if (retval) {
pr_err("%s: Failed to remove queue %d for dev %d",
__func__,
q->properties.queue_id,
dqm->dev->id);
return retval;
}
}
}
}
return retval;
}
static void increment_queue_count(struct device_queue_manager *dqm,
struct qcm_process_device *qpd,
struct queue *q)
{
dqm->active_queue_count++;
if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
q->properties.type == KFD_QUEUE_TYPE_DIQ)
dqm->active_cp_queue_count++;
if (q->properties.is_gws) {
dqm->gws_queue_count++;
qpd->mapped_gws_queue = true;
}
}
static void decrement_queue_count(struct device_queue_manager *dqm,
struct qcm_process_device *qpd,
struct queue *q)
{
dqm->active_queue_count--;
if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
q->properties.type == KFD_QUEUE_TYPE_DIQ)
dqm->active_cp_queue_count--;
if (q->properties.is_gws) {
dqm->gws_queue_count--;
qpd->mapped_gws_queue = false;
}
}
/*
* Allocate a doorbell ID to this queue.
* If doorbell_id is passed in, make sure requested ID is valid then allocate it.
*/
static int allocate_doorbell(struct qcm_process_device *qpd,
struct queue *q,
uint32_t const *restore_id)
{
struct kfd_node *dev = qpd->dqm->dev;
if (!KFD_IS_SOC15(dev)) {
/* On pre-SOC15 chips we need to use the queue ID to
* preserve the user mode ABI.
*/
if (restore_id && *restore_id != q->properties.queue_id)
return -EINVAL;
q->doorbell_id = q->properties.queue_id;
} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
/* For SDMA queues on SOC15 with 8-byte doorbell, use static
* doorbell assignments based on the engine and queue id.
* The doobell index distance between RLC (2*i) and (2*i+1)
* for a SDMA engine is 512.
*/
uint32_t *idx_offset = dev->kfd->shared_resources.sdma_doorbell_idx;
/*
* q->properties.sdma_engine_id corresponds to the virtual
* sdma engine number. However, for doorbell allocation,
* we need the physical sdma engine id in order to get the
* correct doorbell offset.
*/
uint32_t valid_id = idx_offset[qpd->dqm->dev->node_id *
get_num_all_sdma_engines(qpd->dqm) +
q->properties.sdma_engine_id]
+ (q->properties.sdma_queue_id & 1)
* KFD_QUEUE_DOORBELL_MIRROR_OFFSET
+ (q->properties.sdma_queue_id >> 1);
if (restore_id && *restore_id != valid_id)
return -EINVAL;
q->doorbell_id = valid_id;
} else {
/* For CP queues on SOC15 */
if (restore_id) {
/* make sure that ID is free */
if (__test_and_set_bit(*restore_id, qpd->doorbell_bitmap))
return -EINVAL;
q->doorbell_id = *restore_id;
} else {
/* or reserve a free doorbell ID */
unsigned int found;
found = find_first_zero_bit(qpd->doorbell_bitmap,
KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
pr_debug("No doorbells available");
return -EBUSY;
}
set_bit(found, qpd->doorbell_bitmap);
q->doorbell_id = found;
}
}
q->properties.doorbell_off =
kfd_get_doorbell_dw_offset_in_bar(dev->kfd, qpd_to_pdd(qpd),
q->doorbell_id);
return 0;
}
static void deallocate_doorbell(struct qcm_process_device *qpd,
struct queue *q)
{
unsigned int old;
struct kfd_node *dev = qpd->dqm->dev;
if (!KFD_IS_SOC15(dev) ||
q->properties.type == KFD_QUEUE_TYPE_SDMA ||
q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
return;
old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap);
WARN_ON(!old);
}
static void program_trap_handler_settings(struct device_queue_manager *dqm,
struct qcm_process_device *qpd)
{
uint32_t xcc_mask = dqm->dev->xcc_mask;
int xcc_id;
if (dqm->dev->kfd2kgd->program_trap_handler_settings)
for_each_inst(xcc_id, xcc_mask)
dqm->dev->kfd2kgd->program_trap_handler_settings(
dqm->dev->adev, qpd->vmid, qpd->tba_addr,
qpd->tma_addr, xcc_id);
}
static int allocate_vmid(struct device_queue_manager *dqm,
struct qcm_process_device *qpd,
struct queue *q)
{
int allocated_vmid = -1, i;
for (i = dqm->dev->vm_info.first_vmid_kfd;
i <= dqm->dev->vm_info.last_vmid_kfd; i++) {
if (!dqm->vmid_pasid[i]) {
allocated_vmid = i;
break;
}
}
if (allocated_vmid < 0) {
pr_err("no more vmid to allocate\n");
return -ENOSPC;
}
pr_debug("vmid allocated: %d\n", allocated_vmid);
dqm->vmid_pasid[allocated_vmid] = q->process->pasid;
set_pasid_vmid_mapping(dqm, q->process->pasid, allocated_vmid);
qpd->vmid = allocated_vmid;
q->properties.vmid = allocated_vmid;
program_sh_mem_settings(dqm, qpd);
if (KFD_IS_SOC15(dqm->dev) && dqm->dev->kfd->cwsr_enabled)
program_trap_handler_settings(dqm, qpd);
/* qpd->page_table_base is set earlier when register_process()
* is called, i.e. when the first queue is created.
*/
dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->adev,
qpd->vmid,
qpd->page_table_base);
/* invalidate the VM context after pasid and vmid mapping is set up */
kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
if (dqm->dev->kfd2kgd->set_scratch_backing_va)
dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->adev,
qpd->sh_hidden_private_base, qpd->vmid);
return 0;
}
static int flush_texture_cache_nocpsch(struct kfd_node *kdev,
struct qcm_process_device *qpd)
{
const struct packet_manager_funcs *pmf = qpd->dqm->packet_mgr.pmf;
int ret;
if (!qpd->ib_kaddr)
return -ENOMEM;
ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
if (ret)
return ret;
return amdgpu_amdkfd_submit_ib(kdev->adev, KGD_ENGINE_MEC1, qpd->vmid,
qpd->ib_base, (uint32_t *)qpd->ib_kaddr,
pmf->release_mem_size / sizeof(uint32_t));
}
static void deallocate_vmid(struct device_queue_manager *dqm,
struct qcm_process_device *qpd,
struct queue *q)
{
/* On GFX v7, CP doesn't flush TC at dequeue */
if (q->device->adev->asic_type == CHIP_HAWAII)
if (flush_texture_cache_nocpsch(q->device, qpd))
pr_err("Failed to flush TC\n");
kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
/* Release the vmid mapping */
set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
dqm->vmid_pasid[qpd->vmid] = 0;
qpd->vmid = 0;
q->properties.vmid = 0;
}
static int create_queue_nocpsch(struct device_queue_manager *dqm,
struct queue *q,
struct qcm_process_device *qpd,
const struct kfd_criu_queue_priv_data *qd,
const void *restore_mqd, const void *restore_ctl_stack)
{
struct mqd_manager *mqd_mgr;
int retval;
dqm_lock(dqm);
if (dqm->total_queue_count >= max_num_of_queues_per_device) {
pr_warn("Can't create new usermode queue because %d queues were already created\n",
dqm->total_queue_count);
retval = -EPERM;
goto out_unlock;
}
if (list_empty(&qpd->queues_list)) {
retval = allocate_vmid(dqm, qpd, q);
if (retval)
goto out_unlock;
}
q->properties.vmid = qpd->vmid;
/*
* Eviction state logic: mark all queues as evicted, even ones
* not currently active. Restoring inactive queues later only
* updates the is_evicted flag but is a no-op otherwise.
*/
q->properties.is_evicted = !!qpd->evicted;
q->properties.tba_addr = qpd->tba_addr;
q->properties.tma_addr = qpd->tma_addr;
mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
q->properties.type)];
if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
retval = allocate_hqd(dqm, q);
if (retval)
goto deallocate_vmid;
pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
q->pipe, q->queue);
} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
if (retval)
goto deallocate_vmid;
dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
}
retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
if (retval)
goto out_deallocate_hqd;
/* Temporarily release dqm lock to avoid a circular lock dependency */
dqm_unlock(dqm);
q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
dqm_lock(dqm);
if (!q->mqd_mem_obj) {
retval = -ENOMEM;
goto out_deallocate_doorbell;
}
if (qd)
mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
&q->properties, restore_mqd, restore_ctl_stack,
qd->ctl_stack_size);
else
mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
&q->gart_mqd_addr, &q->properties);
if (q->properties.is_active) {
if (!dqm->sched_running) {
WARN_ONCE(1, "Load non-HWS mqd while stopped\n");
goto add_queue_to_list;
}
if (WARN(q->process->mm != current->mm,
"should only run in user thread"))
retval = -EFAULT;
else
retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
q->queue, &q->properties, current->mm);
if (retval)
goto out_free_mqd;
}
add_queue_to_list:
list_add(&q->list, &qpd->queues_list);
qpd->queue_count++;
if (q->properties.is_active)
increment_queue_count(dqm, qpd, q);
/*
* Unconditionally increment this counter, regardless of the queue's
* type or whether the queue is active.
*/
dqm->total_queue_count++;
pr_debug("Total of %d queues are accountable so far\n",
dqm->total_queue_count);
goto out_unlock;
out_free_mqd:
mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
out_deallocate_doorbell:
deallocate_doorbell(qpd, q);
out_deallocate_hqd:
if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
deallocate_hqd(dqm, q);
else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
deallocate_sdma_queue(dqm, q);
deallocate_vmid:
if (list_empty(&qpd->queues_list))
deallocate_vmid(dqm, qpd, q);
out_unlock:
dqm_unlock(dqm);
return retval;
}
static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
{
bool set;
int pipe, bit, i;
set = false;
for (pipe = dqm->next_pipe_to_allocate, i = 0;
i < get_pipes_per_mec(dqm);
pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
if (!is_pipe_enabled(dqm, 0, pipe))
continue;
if (dqm->allocated_queues[pipe] != 0) {
bit = ffs(dqm->allocated_queues[pipe]) - 1;
dqm->allocated_queues[pipe] &= ~(1 << bit);
q->pipe = pipe;
q->queue = bit;
set = true;
break;
}
}
if (!set)
return -EBUSY;
pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
/* horizontal hqd allocation */
dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
return 0;
}
static inline void deallocate_hqd(struct device_queue_manager *dqm,
struct queue *q)
{
dqm->allocated_queues[q->pipe] |= (1 << q->queue);
}
#define SQ_IND_CMD_CMD_KILL 0x00000003
#define SQ_IND_CMD_MODE_BROADCAST 0x00000001
static int dbgdev_wave_reset_wavefronts(struct kfd_node *dev, struct kfd_process *p)
{
int status = 0;
unsigned int vmid;
uint16_t queried_pasid;
union SQ_CMD_BITS reg_sq_cmd;
union GRBM_GFX_INDEX_BITS reg_gfx_index;
struct kfd_process_device *pdd;
int first_vmid_to_scan = dev->vm_info.first_vmid_kfd;
int last_vmid_to_scan = dev->vm_info.last_vmid_kfd;
uint32_t xcc_mask = dev->xcc_mask;
int xcc_id;
reg_sq_cmd.u32All = 0;
reg_gfx_index.u32All = 0;
pr_debug("Killing all process wavefronts\n");
if (!dev->kfd2kgd->get_atc_vmid_pasid_mapping_info) {
pr_err("no vmid pasid mapping supported \n");
return -EOPNOTSUPP;
}
/* Scan all registers in the range ATC_VMID8_PASID_MAPPING ..
* ATC_VMID15_PASID_MAPPING
* to check which VMID the current process is mapped to.
*/
for (vmid = first_vmid_to_scan; vmid <= last_vmid_to_scan; vmid++) {
status = dev->kfd2kgd->get_atc_vmid_pasid_mapping_info
(dev->adev, vmid, &queried_pasid);
if (status && queried_pasid == p->pasid) {
pr_debug("Killing wave fronts of vmid %d and pasid 0x%x\n",
vmid, p->pasid);
break;
}
}
if (vmid > last_vmid_to_scan) {
pr_err("Didn't find vmid for pasid 0x%x\n", p->pasid);
return -EFAULT;
}
/* taking the VMID for that process on the safe way using PDD */
pdd = kfd_get_process_device_data(dev, p);
if (!pdd)
return -EFAULT;
reg_gfx_index.bits.sh_broadcast_writes = 1;
reg_gfx_index.bits.se_broadcast_writes = 1;
reg_gfx_index.bits.instance_broadcast_writes = 1;
reg_sq_cmd.bits.mode = SQ_IND_CMD_MODE_BROADCAST;
reg_sq_cmd.bits.cmd = SQ_IND_CMD_CMD_KILL;
reg_sq_cmd.bits.vm_id = vmid;
for_each_inst(xcc_id, xcc_mask)
dev->kfd2kgd->wave_control_execute(
dev->adev, reg_gfx_index.u32All,
reg_sq_cmd.u32All, xcc_id);
return 0;
}
/* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked
* to avoid asynchronized access
*/
static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm,
struct qcm_process_device *qpd,
struct queue *q)
{
int retval;
struct mqd_manager *mqd_mgr;
mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
q->properties.type)];
if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
deallocate_hqd(dqm, q);
else if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
deallocate_sdma_queue(dqm, q);
else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
deallocate_sdma_queue(dqm, q);
else {
pr_debug("q->properties.type %d is invalid\n",
q->properties.type);
return -EINVAL;
}
dqm->total_queue_count--;
deallocate_doorbell(qpd, q);
if (!dqm->sched_running) {
WARN_ONCE(1, "Destroy non-HWS queue while stopped\n");
return 0;
}
retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
KFD_UNMAP_LATENCY_MS,
q->pipe, q->queue);
if (retval == -ETIME)
qpd->reset_wavefronts = true;
list_del(&q->list);
if (list_empty(&qpd->queues_list)) {
if (qpd->reset_wavefronts) {
pr_warn("Resetting wave fronts (nocpsch) on dev %p\n",
dqm->dev);
/* dbgdev_wave_reset_wavefronts has to be called before
* deallocate_vmid(), i.e. when vmid is still in use.
*/
dbgdev_wave_reset_wavefronts(dqm->dev,
qpd->pqm->process);
qpd->reset_wavefronts = false;
}
deallocate_vmid(dqm, qpd, q);
}
qpd->queue_count--;
if (q->properties.is_active)
decrement_queue_count(dqm, qpd, q);
return retval;
}
static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
struct qcm_process_device *qpd,
struct queue *q)
{
int retval;
uint64_t sdma_val = 0;
struct kfd_process_device *pdd = qpd_to_pdd(qpd);
struct mqd_manager *mqd_mgr =
dqm->mqd_mgrs[get_mqd_type_from_queue_type(q->properties.type)];
/* Get the SDMA queue stats */
if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
(q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
&sdma_val);
if (retval)
pr_err("Failed to read SDMA queue counter for queue: %d\n",
q->properties.queue_id);
}
dqm_lock(dqm);
retval = destroy_queue_nocpsch_locked(dqm, qpd, q);
if (!retval)
pdd->sdma_past_activity_counter += sdma_val;
dqm_unlock(dqm);
mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
return retval;
}
static int update_queue(struct device_queue_manager *dqm, struct queue *q,
struct mqd_update_info *minfo)
{
int retval = 0;
struct mqd_manager *mqd_mgr;
struct kfd_process_device *pdd;
bool prev_active = false;
dqm_lock(dqm);
pdd = kfd_get_process_device_data(q->device, q->process);
if (!pdd) {
retval = -ENODEV;
goto out_unlock;
}
mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
q->properties.type)];
/* Save previous activity state for counters */
prev_active = q->properties.is_active;
/* Make sure the queue is unmapped before updating the MQD */
if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
if (!dqm->dev->kfd->shared_resources.enable_mes)
retval = unmap_queues_cpsch(dqm,
KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false);
else if (prev_active)
retval = remove_queue_mes(dqm, q, &pdd->qpd);
if (retval) {
pr_err("unmap queue failed\n");
goto out_unlock;
}
} else if (prev_active &&
(q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
q->properties.type == KFD_QUEUE_TYPE_SDMA ||
q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
if (!dqm->sched_running) {
WARN_ONCE(1, "Update non-HWS queue while stopped\n");
goto out_unlock;
}
retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
(dqm->dev->kfd->cwsr_enabled ?
KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
if (retval) {
pr_err("destroy mqd failed\n");
goto out_unlock;
}
}
mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties, minfo);
/*
* check active state vs. the previous state and modify
* counter accordingly. map_queues_cpsch uses the
* dqm->active_queue_count to determine whether a new runlist must be
* uploaded.
*/
if (q->properties.is_active && !prev_active) {
increment_queue_count(dqm, &pdd->qpd, q);
} else if (!q->properties.is_active && prev_active) {
decrement_queue_count(dqm, &pdd->qpd, q);
} else if (q->gws && !q->properties.is_gws) {
if (q->properties.is_active) {
dqm->gws_queue_count++;
pdd->qpd.mapped_gws_queue = true;
}
q->properties.is_gws = true;
} else if (!q->gws && q->properties.is_gws) {
if (q->properties.is_active) {
dqm->gws_queue_count--;
pdd->qpd.mapped_gws_queue = false;
}
q->properties.is_gws = false;
}
if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
if (!dqm->dev->kfd->shared_resources.enable_mes)
retval = map_queues_cpsch(dqm);
else if (q->properties.is_active)
retval = add_queue_mes(dqm, q, &pdd->qpd);
} else if (q->properties.is_active &&
(q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
q->properties.type == KFD_QUEUE_TYPE_SDMA ||
q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
if (WARN(q->process->mm != current->mm,
"should only run in user thread"))
retval = -EFAULT;
else
retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd,
q->pipe, q->queue,
&q->properties, current->mm);
}
out_unlock:
dqm_unlock(dqm);
return retval;
}
/* suspend_single_queue does not lock the dqm like the
* evict_process_queues_cpsch or evict_process_queues_nocpsch. You should
* lock the dqm before calling, and unlock after calling.
*
* The reason we don't lock the dqm is because this function may be
* called on multiple queues in a loop, so rather than locking/unlocking
* multiple times, we will just keep the dqm locked for all of the calls.
*/
static int suspend_single_queue(struct device_queue_manager *dqm,
struct kfd_process_device *pdd,
struct queue *q)
{
bool is_new;
if (q->properties.is_suspended)
return 0;
pr_debug("Suspending PASID %u queue [%i]\n",
pdd->process->pasid,
q->properties.queue_id);
is_new = q->properties.exception_status & KFD_EC_MASK(EC_QUEUE_NEW);
if (is_new || q->properties.is_being_destroyed) {
pr_debug("Suspend: skip %s queue id %i\n",
is_new ? "new" : "destroyed",
q->properties.queue_id);
return -EBUSY;
}
q->properties.is_suspended = true;
if (q->properties.is_active) {
if (dqm->dev->kfd->shared_resources.enable_mes) {
int r = remove_queue_mes(dqm, q, &pdd->qpd);
if (r)
return r;
}
decrement_queue_count(dqm, &pdd->qpd, q);
q->properties.is_active = false;
}
return 0;
}
/* resume_single_queue does not lock the dqm like the functions
* restore_process_queues_cpsch or restore_process_queues_nocpsch. You should
* lock the dqm before calling, and unlock after calling.
*
* The reason we don't lock the dqm is because this function may be
* called on multiple queues in a loop, so rather than locking/unlocking
* multiple times, we will just keep the dqm locked for all of the calls.
*/
static int resume_single_queue(struct device_queue_manager *dqm,
struct qcm_process_device *qpd,
struct queue *q)
{
struct kfd_process_device *pdd;
if (!q->properties.is_suspended)
return 0;
pdd = qpd_to_pdd(qpd);
pr_debug("Restoring from suspend PASID %u queue [%i]\n",
pdd->process->pasid,
q->properties.queue_id);
q->properties.is_suspended = false;
if (QUEUE_IS_ACTIVE(q->properties)) {
if (dqm->dev->kfd->shared_resources.enable_mes) {
int r = add_queue_mes(dqm, q, &pdd->qpd);
if (r)
return r;
}
q->properties.is_active = true;
increment_queue_count(dqm, qpd, q);
}
return 0;
}
static int evict_process_queues_nocpsch(struct device_queue_manager *dqm,
struct qcm_process_device *qpd)
{
struct queue *q;
struct mqd_manager *mqd_mgr;
struct kfd_process_device *pdd;
int retval, ret = 0;
dqm_lock(dqm);
if (qpd->evicted++ > 0) /* already evicted, do nothing */
goto out;
pdd = qpd_to_pdd(qpd);
pr_debug_ratelimited("Evicting PASID 0x%x queues\n",
pdd->process->pasid);
pdd->last_evict_timestamp = get_jiffies_64();
/* Mark all queues as evicted. Deactivate all active queues on
* the qpd.
*/
list_for_each_entry(q, &qpd->queues_list, list) {
q->properties.is_evicted = true;
if (!q->properties.is_active)
continue;
mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
q->properties.type)];
q->properties.is_active = false;
decrement_queue_count(dqm, qpd, q);
if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n"))
continue;
retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
(dqm->dev->kfd->cwsr_enabled ?
KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
if (retval && !ret)
/* Return the first error, but keep going to
* maintain a consistent eviction state
*/
ret = retval;
}
out:
dqm_unlock(dqm);
return ret;
}
static int evict_process_queues_cpsch(struct device_queue_manager *dqm,
struct qcm_process_device *qpd)
{
struct queue *q;
struct kfd_process_device *pdd;
int retval = 0;
dqm_lock(dqm);
if (qpd->evicted++ > 0) /* already evicted, do nothing */
goto out;
pdd = qpd_to_pdd(qpd);
/* The debugger creates processes that temporarily have not acquired
* all VMs for all devices and has no VMs itself.
* Skip queue eviction on process eviction.
*/
if (!pdd->drm_priv)
goto out;
pr_debug_ratelimited("Evicting PASID 0x%x queues\n",
pdd->process->pasid);
/* Mark all queues as evicted. Deactivate all active queues on
* the qpd.
*/
list_for_each_entry(q, &qpd->queues_list, list) {
q->properties.is_evicted = true;
if (!q->properties.is_active)
continue;
q->properties.is_active = false;
decrement_queue_count(dqm, qpd, q);
if (dqm->dev->kfd->shared_resources.enable_mes) {
retval = remove_queue_mes(dqm, q, qpd);
if (retval) {
pr_err("Failed to evict queue %d\n",
q->properties.queue_id);
goto out;
}
}
}
pdd->last_evict_timestamp = get_jiffies_64();
if (!dqm->dev->kfd->shared_resources.enable_mes)
retval = execute_queues_cpsch(dqm,
qpd->is_debug ?
KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES :
KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
USE_DEFAULT_GRACE_PERIOD);
out:
dqm_unlock(dqm);
return retval;
}
static int restore_process_queues_nocpsch(struct device_queue_manager *dqm,
struct qcm_process_device *qpd)
{
struct mm_struct *mm = NULL;
struct queue *q;
struct mqd_manager *mqd_mgr;
struct kfd_process_device *pdd;
uint64_t pd_base;
uint64_t eviction_duration;
int retval, ret = 0;
pdd = qpd_to_pdd(qpd);
/* Retrieve PD base */
pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
dqm_lock(dqm);
if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
goto out;
if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
qpd->evicted--;
goto out;
}
pr_debug_ratelimited("Restoring PASID 0x%x queues\n",
pdd->process->pasid);
/* Update PD Base in QPD */
qpd->page_table_base = pd_base;
pr_debug("Updated PD address to 0x%llx\n", pd_base);
if (!list_empty(&qpd->queues_list)) {
dqm->dev->kfd2kgd->set_vm_context_page_table_base(
dqm->dev->adev,
qpd->vmid,
qpd->page_table_base);
kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
}
/* Take a safe reference to the mm_struct, which may otherwise
* disappear even while the kfd_process is still referenced.
*/
mm = get_task_mm(pdd->process->lead_thread);
if (!mm) {
ret = -EFAULT;
goto out;
}
/* Remove the eviction flags. Activate queues that are not
* inactive for other reasons.
*/
list_for_each_entry(q, &qpd->queues_list, list) {
q->properties.is_evicted = false;
if (!QUEUE_IS_ACTIVE(q->properties))
continue;
mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
q->properties.type)];
q->properties.is_active = true;
increment_queue_count(dqm, qpd, q);
if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n"))
continue;
retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
q->queue, &q->properties, mm);
if (retval && !ret)
/* Return the first error, but keep going to
* maintain a consistent eviction state
*/
ret = retval;
}
qpd->evicted = 0;
eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
atomic64_add(eviction_duration, &pdd->evict_duration_counter);
out:
if (mm)
mmput(mm);
dqm_unlock(dqm);
return ret;
}
static int restore_process_queues_cpsch(struct device_queue_manager *dqm,
struct qcm_process_device *qpd)
{
struct queue *q;
struct kfd_process_device *pdd;
uint64_t eviction_duration;
int retval = 0;
pdd = qpd_to_pdd(qpd);
dqm_lock(dqm);
if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
goto out;
if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
qpd->evicted--;
goto out;
}
/* The debugger creates processes that temporarily have not acquired
* all VMs for all devices and has no VMs itself.
* Skip queue restore on process restore.
*/
if (!pdd->drm_priv)
goto vm_not_acquired;
pr_debug_ratelimited("Restoring PASID 0x%x queues\n",
pdd->process->pasid);
/* Update PD Base in QPD */
qpd->page_table_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
pr_debug("Updated PD address to 0x%llx\n", qpd->page_table_base);
/* activate all active queues on the qpd */
list_for_each_entry(q, &qpd->queues_list, list) {
q->properties.is_evicted = false;
if (!QUEUE_IS_ACTIVE(q->properties))
continue;
q->properties.is_active = true;
increment_queue_count(dqm, &pdd->qpd, q);
if (dqm->dev->kfd->shared_resources.enable_mes) {
retval = add_queue_mes(dqm, q, qpd);
if (retval) {
pr_err("Failed to restore queue %d\n",
q->properties.queue_id);
goto out;
}
}
}
if (!dqm->dev->kfd->shared_resources.enable_mes)
retval = execute_queues_cpsch(dqm,
KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
atomic64_add(eviction_duration, &pdd->evict_duration_counter);
vm_not_acquired:
qpd->evicted = 0;
out:
dqm_unlock(dqm);
return retval;
}
static int register_process(struct device_queue_manager *dqm,
struct qcm_process_device *qpd)
{
struct device_process_node *n;
struct kfd_process_device *pdd;
uint64_t pd_base;
int retval;
n = kzalloc(sizeof(*n), GFP_KERNEL);
if (!n)
return -ENOMEM;
n->qpd = qpd;
pdd = qpd_to_pdd(qpd);
/* Retrieve PD base */
pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
dqm_lock(dqm);
list_add(&n->list, &dqm->queues);
/* Update PD Base in QPD */
qpd->page_table_base = pd_base;
pr_debug("Updated PD address to 0x%llx\n", pd_base);
retval = dqm->asic_ops.update_qpd(dqm, qpd);
dqm->processes_count++;
dqm_unlock(dqm);
/* Outside the DQM lock because under the DQM lock we can't do
* reclaim or take other locks that others hold while reclaiming.
*/
kfd_inc_compute_active(dqm->dev);
return retval;
}
static int unregister_process(struct device_queue_manager *dqm,
struct qcm_process_device *qpd)
{
int retval;
struct device_process_node *cur, *next;
pr_debug("qpd->queues_list is %s\n",
list_empty(&qpd->queues_list) ? "empty" : "not empty");
retval = 0;
dqm_lock(dqm);
list_for_each_entry_safe(cur, next, &dqm->queues, list) {
if (qpd == cur->qpd) {
list_del(&cur->list);
kfree(cur);
dqm->processes_count--;
goto out;
}
}
/* qpd not found in dqm list */
retval = 1;
out:
dqm_unlock(dqm);
/* Outside the DQM lock because under the DQM lock we can't do
* reclaim or take other locks that others hold while reclaiming.
*/
if (!retval)
kfd_dec_compute_active(dqm->dev);
return retval;
}
static int
set_pasid_vmid_mapping(struct device_queue_manager *dqm, u32 pasid,
unsigned int vmid)
{
uint32_t xcc_mask = dqm->dev->xcc_mask;
int xcc_id, ret;
for_each_inst(xcc_id, xcc_mask) {
ret = dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
dqm->dev->adev, pasid, vmid, xcc_id);
if (ret)
break;
}
return ret;
}
static void init_interrupts(struct device_queue_manager *dqm)
{
uint32_t xcc_mask = dqm->dev->xcc_mask;
unsigned int i, xcc_id;
for_each_inst(xcc_id, xcc_mask) {
for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++) {
if (is_pipe_enabled(dqm, 0, i)) {
dqm->dev->kfd2kgd->init_interrupts(
dqm->dev->adev, i, xcc_id);
}
}
}
}
static int initialize_nocpsch(struct device_queue_manager *dqm)
{
int pipe, queue;
pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
sizeof(unsigned int), GFP_KERNEL);
if (!dqm->allocated_queues)
return -ENOMEM;
mutex_init(&dqm->lock_hidden);
INIT_LIST_HEAD(&dqm->queues);
dqm->active_queue_count = dqm->next_pipe_to_allocate = 0;
dqm->active_cp_queue_count = 0;
dqm->gws_queue_count = 0;
for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
int pipe_offset = pipe * get_queues_per_pipe(dqm);
for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
if (test_bit(pipe_offset + queue,
dqm->dev->kfd->shared_resources.cp_queue_bitmap))
dqm->allocated_queues[pipe] |= 1 << queue;
}
memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid));
init_sdma_bitmaps(dqm);
return 0;
}
static void uninitialize(struct device_queue_manager *dqm)
{
int i;
WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0);
kfree(dqm->allocated_queues);
for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
kfree(dqm->mqd_mgrs[i]);
mutex_destroy(&dqm->lock_hidden);
}
static int start_nocpsch(struct device_queue_manager *dqm)
{
int r = 0;
pr_info("SW scheduler is used");
init_interrupts(dqm);
if (dqm->dev->adev->asic_type == CHIP_HAWAII)
r = pm_init(&dqm->packet_mgr, dqm);
if (!r)
dqm->sched_running = true;
return r;
}
static int stop_nocpsch(struct device_queue_manager *dqm)
{
dqm_lock(dqm);
if (!dqm->sched_running) {
dqm_unlock(dqm);
return 0;
}
if (dqm->dev->adev->asic_type == CHIP_HAWAII)
pm_uninit(&dqm->packet_mgr, false);
dqm->sched_running = false;
dqm_unlock(dqm);
return 0;
}
static void pre_reset(struct device_queue_manager *dqm)
{
dqm_lock(dqm);
dqm->is_resetting = true;
dqm_unlock(dqm);
}
static int allocate_sdma_queue(struct device_queue_manager *dqm,
struct queue *q, const uint32_t *restore_sdma_id)
{
int bit;
if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
if (bitmap_empty(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES)) {
pr_err("No more SDMA queue to allocate\n");
return -ENOMEM;
}
if (restore_sdma_id) {
/* Re-use existing sdma_id */
if (!test_bit(*restore_sdma_id, dqm->sdma_bitmap)) {
pr_err("SDMA queue already in use\n");
return -EBUSY;
}
clear_bit(*restore_sdma_id, dqm->sdma_bitmap);
q->sdma_id = *restore_sdma_id;
} else {
/* Find first available sdma_id */
bit = find_first_bit(dqm->sdma_bitmap,
get_num_sdma_queues(dqm));
clear_bit(bit, dqm->sdma_bitmap);
q->sdma_id = bit;
}
q->properties.sdma_engine_id =
q->sdma_id % kfd_get_num_sdma_engines(dqm->dev);
q->properties.sdma_queue_id = q->sdma_id /
kfd_get_num_sdma_engines(dqm->dev);
} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
if (bitmap_empty(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES)) {
pr_err("No more XGMI SDMA queue to allocate\n");
return -ENOMEM;
}
if (restore_sdma_id) {
/* Re-use existing sdma_id */
if (!test_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap)) {
pr_err("SDMA queue already in use\n");
return -EBUSY;
}
clear_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap);
q->sdma_id = *restore_sdma_id;
} else {
bit = find_first_bit(dqm->xgmi_sdma_bitmap,
get_num_xgmi_sdma_queues(dqm));
clear_bit(bit, dqm->xgmi_sdma_bitmap);
q->sdma_id = bit;
}
/* sdma_engine_id is sdma id including
* both PCIe-optimized SDMAs and XGMI-
* optimized SDMAs. The calculation below
* assumes the first N engines are always
* PCIe-optimized ones
*/
q->properties.sdma_engine_id =
kfd_get_num_sdma_engines(dqm->dev) +
q->sdma_id % kfd_get_num_xgmi_sdma_engines(dqm->dev);
q->properties.sdma_queue_id = q->sdma_id /
kfd_get_num_xgmi_sdma_engines(dqm->dev);
}
pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
return 0;
}
static void deallocate_sdma_queue(struct device_queue_manager *dqm,
struct queue *q)
{
if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
if (q->sdma_id >= get_num_sdma_queues(dqm))
return;
set_bit(q->sdma_id, dqm->sdma_bitmap);
} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm))
return;
set_bit(q->sdma_id, dqm->xgmi_sdma_bitmap);
}
}
/*
* Device Queue Manager implementation for cp scheduler
*/
static int set_sched_resources(struct device_queue_manager *dqm)
{
int i, mec;
struct scheduling_resources res;
res.vmid_mask = dqm->dev->compute_vmid_bitmap;
res.queue_mask = 0;
for (i = 0; i < KGD_MAX_QUEUES; ++i) {
mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe)
/ dqm->dev->kfd->shared_resources.num_pipe_per_mec;
if (!test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap))
continue;
/* only acquire queues from the first MEC */
if (mec > 0)
continue;
/* This situation may be hit in the future if a new HW
* generation exposes more than 64 queues. If so, the
* definition of res.queue_mask needs updating
*/
if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
pr_err("Invalid queue enabled by amdgpu: %d\n", i);
break;
}
res.queue_mask |= 1ull
<< amdgpu_queue_mask_bit_to_set_resource_bit(
dqm->dev->adev, i);
}
res.gws_mask = ~0ull;
res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0;
pr_debug("Scheduling resources:\n"
"vmid mask: 0x%8X\n"
"queue mask: 0x%8llX\n",
res.vmid_mask, res.queue_mask);
return pm_send_set_resources(&dqm->packet_mgr, &res);
}
static int initialize_cpsch(struct device_queue_manager *dqm)
{
pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
mutex_init(&dqm->lock_hidden);
INIT_LIST_HEAD(&dqm->queues);
dqm->active_queue_count = dqm->processes_count = 0;
dqm->active_cp_queue_count = 0;
dqm->gws_queue_count = 0;
dqm->active_runlist = false;
INIT_WORK(&dqm->hw_exception_work, kfd_process_hw_exception);
dqm->trap_debug_vmid = 0;
init_sdma_bitmaps(dqm);
if (dqm->dev->kfd2kgd->get_iq_wait_times)
dqm->dev->kfd2kgd->get_iq_wait_times(dqm->dev->adev,
&dqm->wait_times);
return 0;
}
static int start_cpsch(struct device_queue_manager *dqm)
{
int retval;
retval = 0;
dqm_lock(dqm);
if (!dqm->dev->kfd->shared_resources.enable_mes) {
retval = pm_init(&dqm->packet_mgr, dqm);
if (retval)
goto fail_packet_manager_init;
retval = set_sched_resources(dqm);
if (retval)
goto fail_set_sched_resources;
}
pr_debug("Allocating fence memory\n");
/* allocate fence memory on the gart */
retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
&dqm->fence_mem);
if (retval)
goto fail_allocate_vidmem;
dqm->fence_addr = (uint64_t *)dqm->fence_mem->cpu_ptr;
dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
init_interrupts(dqm);
/* clear hang status when driver try to start the hw scheduler */
dqm->is_hws_hang = false;
dqm->is_resetting = false;
dqm->sched_running = true;
if (!dqm->dev->kfd->shared_resources.enable_mes)
execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
dqm_unlock(dqm);
return 0;
fail_allocate_vidmem:
fail_set_sched_resources:
if (!dqm->dev->kfd->shared_resources.enable_mes)
pm_uninit(&dqm->packet_mgr, false);
fail_packet_manager_init:
dqm_unlock(dqm);
return retval;
}
static int stop_cpsch(struct device_queue_manager *dqm)
{
bool hanging;
dqm_lock(dqm);
if (!dqm->sched_running) {
dqm_unlock(dqm);
return 0;
}
if (!dqm->is_hws_hang) {
if (!dqm->dev->kfd->shared_resources.enable_mes)
unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false);
else
remove_all_queues_mes(dqm);
}
hanging = dqm->is_hws_hang || dqm->is_resetting;
dqm->sched_running = false;
if (!dqm->dev->kfd->shared_resources.enable_mes)
pm_release_ib(&dqm->packet_mgr);
kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
if (!dqm->dev->kfd->shared_resources.enable_mes)
pm_uninit(&dqm->packet_mgr, hanging);
dqm_unlock(dqm);
return 0;
}
static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
struct kernel_queue *kq,
struct qcm_process_device *qpd)
{
dqm_lock(dqm);
if (dqm->total_queue_count >= max_num_of_queues_per_device) {
pr_warn("Can't create new kernel queue because %d queues were already created\n",
dqm->total_queue_count);
dqm_unlock(dqm);
return -EPERM;
}
/*
* Unconditionally increment this counter, regardless of the queue's
* type or whether the queue is active.
*/
dqm->total_queue_count++;
pr_debug("Total of %d queues are accountable so far\n",
dqm->total_queue_count);
list_add(&kq->list, &qpd->priv_queue_list);
increment_queue_count(dqm, qpd, kq->queue);
qpd->is_debug = true;
execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
USE_DEFAULT_GRACE_PERIOD);
dqm_unlock(dqm);
return 0;
}
static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
struct kernel_queue *kq,
struct qcm_process_device *qpd)
{
dqm_lock(dqm);
list_del(&kq->list);
decrement_queue_count(dqm, qpd, kq->queue);
qpd->is_debug = false;
execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
USE_DEFAULT_GRACE_PERIOD);
/*
* Unconditionally decrement this counter, regardless of the queue's
* type.
*/
dqm->total_queue_count--;
pr_debug("Total of %d queues are accountable so far\n",
dqm->total_queue_count);
dqm_unlock(dqm);
}
static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
struct qcm_process_device *qpd,
const struct kfd_criu_queue_priv_data *qd,
const void *restore_mqd, const void *restore_ctl_stack)
{
int retval;
struct mqd_manager *mqd_mgr;
if (dqm->total_queue_count >= max_num_of_queues_per_device) {
pr_warn("Can't create new usermode queue because %d queues were already created\n",
dqm->total_queue_count);
retval = -EPERM;
goto out;
}
if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
dqm_lock(dqm);
retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
dqm_unlock(dqm);
if (retval)
goto out;
}
retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
if (retval)
goto out_deallocate_sdma_queue;
mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
q->properties.type)];
if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
q->properties.tba_addr = qpd->tba_addr;
q->properties.tma_addr = qpd->tma_addr;
q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
if (!q->mqd_mem_obj) {
retval = -ENOMEM;
goto out_deallocate_doorbell;
}
dqm_lock(dqm);
/*
* Eviction state logic: mark all queues as evicted, even ones
* not currently active. Restoring inactive queues later only
* updates the is_evicted flag but is a no-op otherwise.
*/
q->properties.is_evicted = !!qpd->evicted;
q->properties.is_dbg_wa = qpd->pqm->process->debug_trap_enabled &&
kfd_dbg_has_cwsr_workaround(q->device);
if (qd)
mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
&q->properties, restore_mqd, restore_ctl_stack,
qd->ctl_stack_size);
else
mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
&q->gart_mqd_addr, &q->properties);
list_add(&q->list, &qpd->queues_list);
qpd->queue_count++;
if (q->properties.is_active) {
increment_queue_count(dqm, qpd, q);
if (!dqm->dev->kfd->shared_resources.enable_mes)
retval = execute_queues_cpsch(dqm,
KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
else
retval = add_queue_mes(dqm, q, qpd);
if (retval)
goto cleanup_queue;
}
/*
* Unconditionally increment this counter, regardless of the queue's
* type or whether the queue is active.
*/
dqm->total_queue_count++;
pr_debug("Total of %d queues are accountable so far\n",
dqm->total_queue_count);
dqm_unlock(dqm);
return retval;
cleanup_queue:
qpd->queue_count--;
list_del(&q->list);
if (q->properties.is_active)
decrement_queue_count(dqm, qpd, q);
mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
dqm_unlock(dqm);
out_deallocate_doorbell:
deallocate_doorbell(qpd, q);
out_deallocate_sdma_queue:
if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
dqm_lock(dqm);
deallocate_sdma_queue(dqm, q);
dqm_unlock(dqm);
}
out:
return retval;
}
int amdkfd_fence_wait_timeout(uint64_t *fence_addr,
uint64_t fence_value,
unsigned int timeout_ms)
{
unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies;
while (*fence_addr != fence_value) {
if (time_after(jiffies, end_jiffies)) {
pr_err("qcm fence wait loop timeout expired\n");
/* In HWS case, this is used to halt the driver thread
* in order not to mess up CP states before doing
* scandumps for FW debugging.
*/
while (halt_if_hws_hang)
schedule();
return -ETIME;
}
schedule();
}
return 0;
}
/* dqm->lock mutex has to be locked before calling this function */
static int map_queues_cpsch(struct device_queue_manager *dqm)
{
int retval;
if (!dqm->sched_running)
return 0;
if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0)
return 0;
if (dqm->active_runlist)
return 0;
retval = pm_send_runlist(&dqm->packet_mgr, &dqm->queues);
pr_debug("%s sent runlist\n", __func__);
if (retval) {
pr_err("failed to execute runlist\n");
return retval;
}
dqm->active_runlist = true;
return retval;
}
/* dqm->lock mutex has to be locked before calling this function */
static int unmap_queues_cpsch(struct device_queue_manager *dqm,
enum kfd_unmap_queues_filter filter,
uint32_t filter_param,
uint32_t grace_period,
bool reset)
{
int retval = 0;
struct mqd_manager *mqd_mgr;
if (!dqm->sched_running)
return 0;
if (dqm->is_hws_hang || dqm->is_resetting)
return -EIO;
if (!dqm->active_runlist)
return retval;
if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
retval = pm_update_grace_period(&dqm->packet_mgr, grace_period);
if (retval)
return retval;
}
retval = pm_send_unmap_queue(&dqm->packet_mgr, filter, filter_param, reset);
if (retval)
return retval;
*dqm->fence_addr = KFD_FENCE_INIT;
pm_send_query_status(&dqm->packet_mgr, dqm->fence_gpu_addr,
KFD_FENCE_COMPLETED);
/* should be timed out */
retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
queue_preemption_timeout_ms);
if (retval) {
pr_err("The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n");
kfd_hws_hang(dqm);
return retval;
}
/* In the current MEC firmware implementation, if compute queue
* doesn't response to the preemption request in time, HIQ will
* abandon the unmap request without returning any timeout error
* to driver. Instead, MEC firmware will log the doorbell of the
* unresponding compute queue to HIQ.MQD.queue_doorbell_id fields.
* To make sure the queue unmap was successful, driver need to
* check those fields
*/
mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ];
if (mqd_mgr->read_doorbell_id(dqm->packet_mgr.priv_queue->queue->mqd)) {
pr_err("HIQ MQD's queue_doorbell_id0 is not 0, Queue preemption time out\n");
while (halt_if_hws_hang)
schedule();
return -ETIME;
}
/* We need to reset the grace period value for this device */
if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
if (pm_update_grace_period(&dqm->packet_mgr,
USE_DEFAULT_GRACE_PERIOD))
pr_err("Failed to reset grace period\n");
}
pm_release_ib(&dqm->packet_mgr);
dqm->active_runlist = false;
return retval;
}
/* only for compute queue */
static int reset_queues_cpsch(struct device_queue_manager *dqm,
uint16_t pasid)
{
int retval;
dqm_lock(dqm);
retval = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_BY_PASID,
pasid, USE_DEFAULT_GRACE_PERIOD, true);
dqm_unlock(dqm);
return retval;
}
/* dqm->lock mutex has to be locked before calling this function */
static int execute_queues_cpsch(struct device_queue_manager *dqm,
enum kfd_unmap_queues_filter filter,
uint32_t filter_param,
uint32_t grace_period)
{
int retval;
if (dqm->is_hws_hang)
return -EIO;
retval = unmap_queues_cpsch(dqm, filter, filter_param, grace_period, false);
if (retval)
return retval;
return map_queues_cpsch(dqm);
}
static int wait_on_destroy_queue(struct device_queue_manager *dqm,
struct queue *q)
{
struct kfd_process_device *pdd = kfd_get_process_device_data(q->device,
q->process);
int ret = 0;
if (pdd->qpd.is_debug)
return ret;
q->properties.is_being_destroyed = true;
if (pdd->process->debug_trap_enabled && q->properties.is_suspended) {
dqm_unlock(dqm);
mutex_unlock(&q->process->mutex);
ret = wait_event_interruptible(dqm->destroy_wait,
!q->properties.is_suspended);
mutex_lock(&q->process->mutex);
dqm_lock(dqm);
}
return ret;
}
static int destroy_queue_cpsch(struct device_queue_manager *dqm,
struct qcm_process_device *qpd,
struct queue *q)
{
int retval;
struct mqd_manager *mqd_mgr;
uint64_t sdma_val = 0;
struct kfd_process_device *pdd = qpd_to_pdd(qpd);
/* Get the SDMA queue stats */
if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
(q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
&sdma_val);
if (retval)
pr_err("Failed to read SDMA queue counter for queue: %d\n",
q->properties.queue_id);
}
/* remove queue from list to prevent rescheduling after preemption */
dqm_lock(dqm);
retval = wait_on_destroy_queue(dqm, q);
if (retval) {
dqm_unlock(dqm);
return retval;
}
if (qpd->is_debug) {
/*
* error, currently we do not allow to destroy a queue
* of a currently debugged process
*/
retval = -EBUSY;
goto failed_try_destroy_debugged_queue;
}
mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
q->properties.type)];
deallocate_doorbell(qpd, q);
if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
(q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
deallocate_sdma_queue(dqm, q);
pdd->sdma_past_activity_counter += sdma_val;
}
list_del(&q->list);
qpd->queue_count--;
if (q->properties.is_active) {
decrement_queue_count(dqm, qpd, q);
if (!dqm->dev->kfd->shared_resources.enable_mes) {
retval = execute_queues_cpsch(dqm,
KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
USE_DEFAULT_GRACE_PERIOD);
if (retval == -ETIME)
qpd->reset_wavefronts = true;
} else {
retval = remove_queue_mes(dqm, q, qpd);
}
}
/*
* Unconditionally decrement this counter, regardless of the queue's
* type
*/
dqm->total_queue_count--;
pr_debug("Total of %d queues are accountable so far\n",
dqm->total_queue_count);
dqm_unlock(dqm);
/*
* Do free_mqd and raise delete event after dqm_unlock(dqm) to avoid
* circular locking
*/
kfd_dbg_ev_raise(KFD_EC_MASK(EC_DEVICE_QUEUE_DELETE),
qpd->pqm->process, q->device,
-1, false, NULL, 0);
mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
return retval;
failed_try_destroy_debugged_queue:
dqm_unlock(dqm);
return retval;
}
/*
* Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
* stay in user mode.
*/
#define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
/* APE1 limit is inclusive and 64K aligned. */
#define APE1_LIMIT_ALIGNMENT 0xFFFF
static bool set_cache_memory_policy(struct device_queue_manager *dqm,
struct qcm_process_device *qpd,
enum cache_policy default_policy,
enum cache_policy alternate_policy,
void __user *alternate_aperture_base,
uint64_t alternate_aperture_size)
{
bool retval = true;
if (!dqm->asic_ops.set_cache_memory_policy)
return retval;
dqm_lock(dqm);
if (alternate_aperture_size == 0) {
/* base > limit disables APE1 */
qpd->sh_mem_ape1_base = 1;
qpd->sh_mem_ape1_limit = 0;
} else {
/*
* In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
* SH_MEM_APE1_BASE[31:0], 0x0000 }
* APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
* SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
* Verify that the base and size parameters can be
* represented in this format and convert them.
* Additionally restrict APE1 to user-mode addresses.
*/
uint64_t base = (uintptr_t)alternate_aperture_base;
uint64_t limit = base + alternate_aperture_size - 1;
if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 ||
(limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) {
retval = false;
goto out;
}
qpd->sh_mem_ape1_base = base >> 16;
qpd->sh_mem_ape1_limit = limit >> 16;
}
retval = dqm->asic_ops.set_cache_memory_policy(
dqm,
qpd,
default_policy,
alternate_policy,
alternate_aperture_base,
alternate_aperture_size);
if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
program_sh_mem_settings(dqm, qpd);
pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
qpd->sh_mem_config, qpd->sh_mem_ape1_base,
qpd->sh_mem_ape1_limit);
out:
dqm_unlock(dqm);
return retval;
}
static int process_termination_nocpsch(struct device_queue_manager *dqm,
struct qcm_process_device *qpd)
{
struct queue *q;
struct device_process_node *cur, *next_dpn;
int retval = 0;
bool found = false;
dqm_lock(dqm);
/* Clear all user mode queues */
while (!list_empty(&qpd->queues_list)) {
struct mqd_manager *mqd_mgr;
int ret;
q = list_first_entry(&qpd->queues_list, struct queue, list);
mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
q->properties.type)];
ret = destroy_queue_nocpsch_locked(dqm, qpd, q);
if (ret)
retval = ret;
dqm_unlock(dqm);
mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
dqm_lock(dqm);
}
/* Unregister process */
list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
if (qpd == cur->qpd) {
list_del(&cur->list);
kfree(cur);
dqm->processes_count--;
found = true;
break;
}
}
dqm_unlock(dqm);
/* Outside the DQM lock because under the DQM lock we can't do
* reclaim or take other locks that others hold while reclaiming.
*/
if (found)
kfd_dec_compute_active(dqm->dev);
return retval;
}
static int get_wave_state(struct device_queue_manager *dqm,
struct queue *q,
void __user *ctl_stack,
u32 *ctl_stack_used_size,
u32 *save_area_used_size)
{
struct mqd_manager *mqd_mgr;
dqm_lock(dqm);
mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE ||
q->properties.is_active || !q->device->kfd->cwsr_enabled ||
!mqd_mgr->get_wave_state) {
dqm_unlock(dqm);
return -EINVAL;
}
dqm_unlock(dqm);
/*
* get_wave_state is outside the dqm lock to prevent circular locking
* and the queue should be protected against destruction by the process
* lock.
*/
return mqd_mgr->get_wave_state(mqd_mgr, q->mqd, &q->properties,
ctl_stack, ctl_stack_used_size, save_area_used_size);
}
static void get_queue_checkpoint_info(struct device_queue_manager *dqm,
const struct queue *q,
u32 *mqd_size,
u32 *ctl_stack_size)
{
struct mqd_manager *mqd_mgr;
enum KFD_MQD_TYPE mqd_type =
get_mqd_type_from_queue_type(q->properties.type);
dqm_lock(dqm);
mqd_mgr = dqm->mqd_mgrs[mqd_type];
*mqd_size = mqd_mgr->mqd_size;
*ctl_stack_size = 0;
if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE && mqd_mgr->get_checkpoint_info)
mqd_mgr->get_checkpoint_info(mqd_mgr, q->mqd, ctl_stack_size);
dqm_unlock(dqm);
}
static int checkpoint_mqd(struct device_queue_manager *dqm,
const struct queue *q,
void *mqd,
void *ctl_stack)
{
struct mqd_manager *mqd_mgr;
int r = 0;
enum KFD_MQD_TYPE mqd_type =
get_mqd_type_from_queue_type(q->properties.type);
dqm_lock(dqm);
if (q->properties.is_active || !q->device->kfd->cwsr_enabled) {
r = -EINVAL;
goto dqm_unlock;
}
mqd_mgr = dqm->mqd_mgrs[mqd_type];
if (!mqd_mgr->checkpoint_mqd) {
r = -EOPNOTSUPP;
goto dqm_unlock;
}
mqd_mgr->checkpoint_mqd(mqd_mgr, q->mqd, mqd, ctl_stack);
dqm_unlock:
dqm_unlock(dqm);
return r;
}
static int process_termination_cpsch(struct device_queue_manager *dqm,
struct qcm_process_device *qpd)
{
int retval;
struct queue *q;
struct kernel_queue *kq, *kq_next;
struct mqd_manager *mqd_mgr;
struct device_process_node *cur, *next_dpn;
enum kfd_unmap_queues_filter filter =
KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES;
bool found = false;
retval = 0;
dqm_lock(dqm);
/* Clean all kernel queues */
list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) {
list_del(&kq->list);
decrement_queue_count(dqm, qpd, kq->queue);
qpd->is_debug = false;
dqm->total_queue_count--;
filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES;
}
/* Clear all user mode queues */
list_for_each_entry(q, &qpd->queues_list, list) {
if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
deallocate_sdma_queue(dqm, q);
else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
deallocate_sdma_queue(dqm, q);
if (q->properties.is_active) {
decrement_queue_count(dqm, qpd, q);
if (dqm->dev->kfd->shared_resources.enable_mes) {
retval = remove_queue_mes(dqm, q, qpd);
if (retval)
pr_err("Failed to remove queue %d\n",
q->properties.queue_id);
}
}
dqm->total_queue_count--;
}
/* Unregister process */
list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
if (qpd == cur->qpd) {
list_del(&cur->list);
kfree(cur);
dqm->processes_count--;
found = true;
break;
}
}
if (!dqm->dev->kfd->shared_resources.enable_mes)
retval = execute_queues_cpsch(dqm, filter, 0, USE_DEFAULT_GRACE_PERIOD);
if ((!dqm->is_hws_hang) && (retval || qpd->reset_wavefronts)) {
pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev);
dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process);
qpd->reset_wavefronts = false;
}
/* Lastly, free mqd resources.
* Do free_mqd() after dqm_unlock to avoid circular locking.
*/
while (!list_empty(&qpd->queues_list)) {
q = list_first_entry(&qpd->queues_list, struct queue, list);
mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
q->properties.type)];
list_del(&q->list);
qpd->queue_count--;
dqm_unlock(dqm);
mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
dqm_lock(dqm);
}
dqm_unlock(dqm);
/* Outside the DQM lock because under the DQM lock we can't do
* reclaim or take other locks that others hold while reclaiming.
*/
if (found)
kfd_dec_compute_active(dqm->dev);
return retval;
}
static int init_mqd_managers(struct device_queue_manager *dqm)
{
int i, j;
struct mqd_manager *mqd_mgr;
for (i = 0; i < KFD_MQD_TYPE_MAX; i++) {
mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev);
if (!mqd_mgr) {
pr_err("mqd manager [%d] initialization failed\n", i);
goto out_free;
}
dqm->mqd_mgrs[i] = mqd_mgr;
}
return 0;
out_free:
for (j = 0; j < i; j++) {
kfree(dqm->mqd_mgrs[j]);
dqm->mqd_mgrs[j] = NULL;
}
return -ENOMEM;
}
/* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/
static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm)
{
int retval;
struct kfd_node *dev = dqm->dev;
struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd;
uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size *
get_num_all_sdma_engines(dqm) *
dev->kfd->device_info.num_sdma_queues_per_engine +
(dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size *
NUM_XCC(dqm->dev->xcc_mask));
retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev, size,
&(mem_obj->gtt_mem), &(mem_obj->gpu_addr),
(void *)&(mem_obj->cpu_ptr), false);
return retval;
}
struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev)
{
struct device_queue_manager *dqm;
pr_debug("Loading device queue manager\n");
dqm = kzalloc(sizeof(*dqm), GFP_KERNEL);
if (!dqm)
return NULL;
switch (dev->adev->asic_type) {
/* HWS is not available on Hawaii. */
case CHIP_HAWAII:
/* HWS depends on CWSR for timely dequeue. CWSR is not
* available on Tonga.
*
* FIXME: This argument also applies to Kaveri.
*/
case CHIP_TONGA:
dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS;
break;
default:
dqm->sched_policy = sched_policy;
break;
}
dqm->dev = dev;
switch (dqm->sched_policy) {
case KFD_SCHED_POLICY_HWS:
case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
/* initialize dqm for cp scheduling */
dqm->ops.create_queue = create_queue_cpsch;
dqm->ops.initialize = initialize_cpsch;
dqm->ops.start = start_cpsch;
dqm->ops.stop = stop_cpsch;
dqm->ops.pre_reset = pre_reset;
dqm->ops.destroy_queue = destroy_queue_cpsch;
dqm->ops.update_queue = update_queue;
dqm->ops.register_process = register_process;
dqm->ops.unregister_process = unregister_process;
dqm->ops.uninitialize = uninitialize;
dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
dqm->ops.process_termination = process_termination_cpsch;
dqm->ops.evict_process_queues = evict_process_queues_cpsch;
dqm->ops.restore_process_queues = restore_process_queues_cpsch;
dqm->ops.get_wave_state = get_wave_state;
dqm->ops.reset_queues = reset_queues_cpsch;
dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
dqm->ops.checkpoint_mqd = checkpoint_mqd;
break;
case KFD_SCHED_POLICY_NO_HWS:
/* initialize dqm for no cp scheduling */
dqm->ops.start = start_nocpsch;
dqm->ops.stop = stop_nocpsch;
dqm->ops.pre_reset = pre_reset;
dqm->ops.create_queue = create_queue_nocpsch;
dqm->ops.destroy_queue = destroy_queue_nocpsch;
dqm->ops.update_queue = update_queue;
dqm->ops.register_process = register_process;
dqm->ops.unregister_process = unregister_process;
dqm->ops.initialize = initialize_nocpsch;
dqm->ops.uninitialize = uninitialize;
dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
dqm->ops.process_termination = process_termination_nocpsch;
dqm->ops.evict_process_queues = evict_process_queues_nocpsch;
dqm->ops.restore_process_queues =
restore_process_queues_nocpsch;
dqm->ops.get_wave_state = get_wave_state;
dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
dqm->ops.checkpoint_mqd = checkpoint_mqd;
break;
default:
pr_err("Invalid scheduling policy %d\n", dqm->sched_policy);
goto out_free;
}
switch (dev->adev->asic_type) {
case CHIP_KAVERI:
case CHIP_HAWAII:
device_queue_manager_init_cik_hawaii(&dqm->asic_ops);
break;
case CHIP_CARRIZO:
case CHIP_TONGA:
case CHIP_FIJI:
case CHIP_POLARIS10:
case CHIP_POLARIS11:
case CHIP_POLARIS12:
case CHIP_VEGAM:
device_queue_manager_init_vi_tonga(&dqm->asic_ops);
break;
default:
if (KFD_GC_VERSION(dev) >= IP_VERSION(11, 0, 0))
device_queue_manager_init_v11(&dqm->asic_ops);
else if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
device_queue_manager_init_v10_navi10(&dqm->asic_ops);
else if (KFD_GC_VERSION(dev) >= IP_VERSION(9, 0, 1))
device_queue_manager_init_v9(&dqm->asic_ops);
else {
WARN(1, "Unexpected ASIC family %u",
dev->adev->asic_type);
goto out_free;
}
}
if (init_mqd_managers(dqm))
goto out_free;
if (!dev->kfd->shared_resources.enable_mes && allocate_hiq_sdma_mqd(dqm)) {
pr_err("Failed to allocate hiq sdma mqd trunk buffer\n");
goto out_free;
}
if (!dqm->ops.initialize(dqm)) {
init_waitqueue_head(&dqm->destroy_wait);
return dqm;
}
out_free:
kfree(dqm);
return NULL;
}
static void deallocate_hiq_sdma_mqd(struct kfd_node *dev,
struct kfd_mem_obj *mqd)
{
WARN(!mqd, "No hiq sdma mqd trunk to free");
amdgpu_amdkfd_free_gtt_mem(dev->adev, mqd->gtt_mem);
}
void device_queue_manager_uninit(struct device_queue_manager *dqm)
{
dqm->ops.stop(dqm);
dqm->ops.uninitialize(dqm);
if (!dqm->dev->kfd->shared_resources.enable_mes)
deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd);
kfree(dqm);
}
int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid)
{
struct kfd_process_device *pdd;
struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
int ret = 0;
if (!p)
return -EINVAL;
WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
pdd = kfd_get_process_device_data(dqm->dev, p);
if (pdd)
ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd);
kfd_unref_process(p);
return ret;
}
static void kfd_process_hw_exception(struct work_struct *work)
{
struct device_queue_manager *dqm = container_of(work,
struct device_queue_manager, hw_exception_work);
amdgpu_amdkfd_gpu_reset(dqm->dev->adev);
}
int reserve_debug_trap_vmid(struct device_queue_manager *dqm,
struct qcm_process_device *qpd)
{
int r;
int updated_vmid_mask;
if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
pr_err("Unsupported on sched_policy: %i\n", dqm->sched_policy);
return -EINVAL;
}
dqm_lock(dqm);
if (dqm->trap_debug_vmid != 0) {
pr_err("Trap debug id already reserved\n");
r = -EBUSY;
goto out_unlock;
}
r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
USE_DEFAULT_GRACE_PERIOD, false);
if (r)
goto out_unlock;
updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
updated_vmid_mask &= ~(1 << dqm->dev->vm_info.last_vmid_kfd);
dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
dqm->trap_debug_vmid = dqm->dev->vm_info.last_vmid_kfd;
r = set_sched_resources(dqm);
if (r)
goto out_unlock;
r = map_queues_cpsch(dqm);
if (r)
goto out_unlock;
pr_debug("Reserved VMID for trap debug: %i\n", dqm->trap_debug_vmid);
out_unlock:
dqm_unlock(dqm);
return r;
}
/*
* Releases vmid for the trap debugger
*/
int release_debug_trap_vmid(struct device_queue_manager *dqm,
struct qcm_process_device *qpd)
{
int r;
int updated_vmid_mask;
uint32_t trap_debug_vmid;
if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
pr_err("Unsupported on sched_policy: %i\n", dqm->sched_policy);
return -EINVAL;
}
dqm_lock(dqm);
trap_debug_vmid = dqm->trap_debug_vmid;
if (dqm->trap_debug_vmid == 0) {
pr_err("Trap debug id is not reserved\n");
r = -EINVAL;
goto out_unlock;
}
r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
USE_DEFAULT_GRACE_PERIOD, false);
if (r)
goto out_unlock;
updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
updated_vmid_mask |= (1 << dqm->dev->vm_info.last_vmid_kfd);
dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
dqm->trap_debug_vmid = 0;
r = set_sched_resources(dqm);
if (r)
goto out_unlock;
r = map_queues_cpsch(dqm);
if (r)
goto out_unlock;
pr_debug("Released VMID for trap debug: %i\n", trap_debug_vmid);
out_unlock:
dqm_unlock(dqm);
return r;
}
#define QUEUE_NOT_FOUND -1
/* invalidate queue operation in array */
static void q_array_invalidate(uint32_t num_queues, uint32_t *queue_ids)
{
int i;
for (i = 0; i < num_queues; i++)
queue_ids[i] |= KFD_DBG_QUEUE_INVALID_MASK;
}
/* find queue index in array */
static int q_array_get_index(unsigned int queue_id,
uint32_t num_queues,
uint32_t *queue_ids)
{
int i;
for (i = 0; i < num_queues; i++)
if (queue_id == (queue_ids[i] & ~KFD_DBG_QUEUE_INVALID_MASK))
return i;
return QUEUE_NOT_FOUND;
}
struct copy_context_work_handler_workarea {
struct work_struct copy_context_work;
struct kfd_process *p;
};
static void copy_context_work_handler (struct work_struct *work)
{
struct copy_context_work_handler_workarea *workarea;
struct mqd_manager *mqd_mgr;
struct queue *q;
struct mm_struct *mm;
struct kfd_process *p;
uint32_t tmp_ctl_stack_used_size, tmp_save_area_used_size;
int i;
workarea = container_of(work,
struct copy_context_work_handler_workarea,
copy_context_work);
p = workarea->p;
mm = get_task_mm(p->lead_thread);
if (!mm)
return;
kthread_use_mm(mm);
for (i = 0; i < p->n_pdds; i++) {
struct kfd_process_device *pdd = p->pdds[i];
struct device_queue_manager *dqm = pdd->dev->dqm;
struct qcm_process_device *qpd = &pdd->qpd;
list_for_each_entry(q, &qpd->queues_list, list) {
mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
/* We ignore the return value from get_wave_state
* because
* i) right now, it always returns 0, and
* ii) if we hit an error, we would continue to the
* next queue anyway.
*/
mqd_mgr->get_wave_state(mqd_mgr,
q->mqd,
&q->properties,
(void __user *) q->properties.ctx_save_restore_area_address,
&tmp_ctl_stack_used_size,
&tmp_save_area_used_size);
}
}
kthread_unuse_mm(mm);
mmput(mm);
}
static uint32_t *get_queue_ids(uint32_t num_queues, uint32_t *usr_queue_id_array)
{
size_t array_size = num_queues * sizeof(uint32_t);
uint32_t *queue_ids = NULL;
if (!usr_queue_id_array)
return NULL;
queue_ids = kzalloc(array_size, GFP_KERNEL);
if (!queue_ids)
return ERR_PTR(-ENOMEM);
if (copy_from_user(queue_ids, usr_queue_id_array, array_size))
return ERR_PTR(-EFAULT);
return queue_ids;
}
int resume_queues(struct kfd_process *p,
uint32_t num_queues,
uint32_t *usr_queue_id_array)
{
uint32_t *queue_ids = NULL;
int total_resumed = 0;
int i;
if (usr_queue_id_array) {
queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
if (IS_ERR(queue_ids))
return PTR_ERR(queue_ids);
/* mask all queues as invalid. unmask per successful request */
q_array_invalidate(num_queues, queue_ids);
}
for (i = 0; i < p->n_pdds; i++) {
struct kfd_process_device *pdd = p->pdds[i];
struct device_queue_manager *dqm = pdd->dev->dqm;
struct qcm_process_device *qpd = &pdd->qpd;
struct queue *q;
int r, per_device_resumed = 0;
dqm_lock(dqm);
/* unmask queues that resume or already resumed as valid */
list_for_each_entry(q, &qpd->queues_list, list) {
int q_idx = QUEUE_NOT_FOUND;
if (queue_ids)
q_idx = q_array_get_index(
q->properties.queue_id,
num_queues,
queue_ids);
if (!queue_ids || q_idx != QUEUE_NOT_FOUND) {
int err = resume_single_queue(dqm, &pdd->qpd, q);
if (queue_ids) {
if (!err) {
queue_ids[q_idx] &=
~KFD_DBG_QUEUE_INVALID_MASK;
} else {
queue_ids[q_idx] |=
KFD_DBG_QUEUE_ERROR_MASK;
break;
}
}
if (dqm->dev->kfd->shared_resources.enable_mes) {
wake_up_all(&dqm->destroy_wait);
if (!err)
total_resumed++;
} else {
per_device_resumed++;
}
}
}
if (!per_device_resumed) {
dqm_unlock(dqm);
continue;
}
r = execute_queues_cpsch(dqm,
KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
0,
USE_DEFAULT_GRACE_PERIOD);
if (r) {
pr_err("Failed to resume process queues\n");
if (queue_ids) {
list_for_each_entry(q, &qpd->queues_list, list) {
int q_idx = q_array_get_index(
q->properties.queue_id,
num_queues,
queue_ids);
/* mask queue as error on resume fail */
if (q_idx != QUEUE_NOT_FOUND)
queue_ids[q_idx] |=
KFD_DBG_QUEUE_ERROR_MASK;
}
}
} else {
wake_up_all(&dqm->destroy_wait);
total_resumed += per_device_resumed;
}
dqm_unlock(dqm);
}
if (queue_ids) {
if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
num_queues * sizeof(uint32_t)))
pr_err("copy_to_user failed on queue resume\n");
kfree(queue_ids);
}
return total_resumed;
}
int suspend_queues(struct kfd_process *p,
uint32_t num_queues,
uint32_t grace_period,
uint64_t exception_clear_mask,
uint32_t *usr_queue_id_array)
{
uint32_t *queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
int total_suspended = 0;
int i;
if (IS_ERR(queue_ids))
return PTR_ERR(queue_ids);
/* mask all queues as invalid. umask on successful request */
q_array_invalidate(num_queues, queue_ids);
for (i = 0; i < p->n_pdds; i++) {
struct kfd_process_device *pdd = p->pdds[i];
struct device_queue_manager *dqm = pdd->dev->dqm;
struct qcm_process_device *qpd = &pdd->qpd;
struct queue *q;
int r, per_device_suspended = 0;
mutex_lock(&p->event_mutex);
dqm_lock(dqm);
/* unmask queues that suspend or already suspended */
list_for_each_entry(q, &qpd->queues_list, list) {
int q_idx = q_array_get_index(q->properties.queue_id,
num_queues,
queue_ids);
if (q_idx != QUEUE_NOT_FOUND) {
int err = suspend_single_queue(dqm, pdd, q);
bool is_mes = dqm->dev->kfd->shared_resources.enable_mes;
if (!err) {
queue_ids[q_idx] &= ~KFD_DBG_QUEUE_INVALID_MASK;
if (exception_clear_mask && is_mes)
q->properties.exception_status &=
~exception_clear_mask;
if (is_mes)
total_suspended++;
else
per_device_suspended++;
} else if (err != -EBUSY) {
r = err;
queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
break;
}
}
}
if (!per_device_suspended) {
dqm_unlock(dqm);
mutex_unlock(&p->event_mutex);
if (total_suspended)
amdgpu_amdkfd_debug_mem_fence(dqm->dev->adev);
continue;
}
r = execute_queues_cpsch(dqm,
KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
grace_period);
if (r)
pr_err("Failed to suspend process queues.\n");
else
total_suspended += per_device_suspended;
list_for_each_entry(q, &qpd->queues_list, list) {
int q_idx = q_array_get_index(q->properties.queue_id,
num_queues, queue_ids);
if (q_idx == QUEUE_NOT_FOUND)
continue;
/* mask queue as error on suspend fail */
if (r)
queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
else if (exception_clear_mask)
q->properties.exception_status &=
~exception_clear_mask;
}
dqm_unlock(dqm);
mutex_unlock(&p->event_mutex);
amdgpu_device_flush_hdp(dqm->dev->adev, NULL);
}
if (total_suspended) {
struct copy_context_work_handler_workarea copy_context_worker;
INIT_WORK_ONSTACK(
&copy_context_worker.copy_context_work,
copy_context_work_handler);
copy_context_worker.p = p;
schedule_work(&copy_context_worker.copy_context_work);
flush_work(&copy_context_worker.copy_context_work);
destroy_work_on_stack(&copy_context_worker.copy_context_work);
}
if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
num_queues * sizeof(uint32_t)))
pr_err("copy_to_user failed on queue suspend\n");
kfree(queue_ids);
return total_suspended;
}
static uint32_t set_queue_type_for_user(struct queue_properties *q_props)
{
switch (q_props->type) {
case KFD_QUEUE_TYPE_COMPUTE:
return q_props->format == KFD_QUEUE_FORMAT_PM4
? KFD_IOC_QUEUE_TYPE_COMPUTE
: KFD_IOC_QUEUE_TYPE_COMPUTE_AQL;
case KFD_QUEUE_TYPE_SDMA:
return KFD_IOC_QUEUE_TYPE_SDMA;
case KFD_QUEUE_TYPE_SDMA_XGMI:
return KFD_IOC_QUEUE_TYPE_SDMA_XGMI;
default:
WARN_ONCE(true, "queue type not recognized!");
return 0xffffffff;
};
}
void set_queue_snapshot_entry(struct queue *q,
uint64_t exception_clear_mask,
struct kfd_queue_snapshot_entry *qss_entry)
{
qss_entry->ring_base_address = q->properties.queue_address;
qss_entry->write_pointer_address = (uint64_t)q->properties.write_ptr;
qss_entry->read_pointer_address = (uint64_t)q->properties.read_ptr;
qss_entry->ctx_save_restore_address =
q->properties.ctx_save_restore_area_address;
qss_entry->ctx_save_restore_area_size =
q->properties.ctx_save_restore_area_size;
qss_entry->exception_status = q->properties.exception_status;
qss_entry->queue_id = q->properties.queue_id;
qss_entry->gpu_id = q->device->id;
qss_entry->ring_size = (uint32_t)q->properties.queue_size;
qss_entry->queue_type = set_queue_type_for_user(&q->properties);
q->properties.exception_status &= ~exception_clear_mask;
}
int debug_lock_and_unmap(struct device_queue_manager *dqm)
{
int r;
if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
pr_err("Unsupported on sched_policy: %i\n", dqm->sched_policy);
return -EINVAL;
}
if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
return 0;
dqm_lock(dqm);
r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 0, false);
if (r)
dqm_unlock(dqm);
return r;
}
int debug_map_and_unlock(struct device_queue_manager *dqm)
{
int r;
if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
pr_err("Unsupported on sched_policy: %i\n", dqm->sched_policy);
return -EINVAL;
}
if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
return 0;
r = map_queues_cpsch(dqm);
dqm_unlock(dqm);
return r;
}
int debug_refresh_runlist(struct device_queue_manager *dqm)
{
int r = debug_lock_and_unmap(dqm);
if (r)
return r;
return debug_map_and_unlock(dqm);
}
#if defined(CONFIG_DEBUG_FS)
static void seq_reg_dump(struct seq_file *m,
uint32_t (*dump)[2], uint32_t n_regs)
{
uint32_t i, count;
for (i = 0, count = 0; i < n_regs; i++) {
if (count == 0 ||
dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
seq_printf(m, "%s %08x: %08x",
i ? "\n" : "",
dump[i][0], dump[i][1]);
count = 7;
} else {
seq_printf(m, " %08x", dump[i][1]);
count--;
}
}
seq_puts(m, "\n");
}
int dqm_debugfs_hqds(struct seq_file *m, void *data)
{
struct device_queue_manager *dqm = data;
uint32_t xcc_mask = dqm->dev->xcc_mask;
uint32_t (*dump)[2], n_regs;
int pipe, queue;
int r = 0, xcc_id;
uint32_t sdma_engine_start;
if (!dqm->sched_running) {
seq_puts(m, " Device is stopped\n");
return 0;
}
for_each_inst(xcc_id, xcc_mask) {
r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
KFD_CIK_HIQ_PIPE,
KFD_CIK_HIQ_QUEUE, &dump,
&n_regs, xcc_id);
if (!r) {
seq_printf(
m,
" Inst %d, HIQ on MEC %d Pipe %d Queue %d\n",
xcc_id,
KFD_CIK_HIQ_PIPE / get_pipes_per_mec(dqm) + 1,
KFD_CIK_HIQ_PIPE % get_pipes_per_mec(dqm),
KFD_CIK_HIQ_QUEUE);
seq_reg_dump(m, dump, n_regs);
kfree(dump);
}
for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
int pipe_offset = pipe * get_queues_per_pipe(dqm);
for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
if (!test_bit(pipe_offset + queue,
dqm->dev->kfd->shared_resources.cp_queue_bitmap))
continue;
r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
pipe, queue,
&dump, &n_regs,
xcc_id);
if (r)
break;
seq_printf(m,
" Inst %d, CP Pipe %d, Queue %d\n",
xcc_id, pipe, queue);
seq_reg_dump(m, dump, n_regs);
kfree(dump);
}
}
}
sdma_engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
for (pipe = sdma_engine_start;
pipe < (sdma_engine_start + get_num_all_sdma_engines(dqm));
pipe++) {
for (queue = 0;
queue < dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
queue++) {
r = dqm->dev->kfd2kgd->hqd_sdma_dump(
dqm->dev->adev, pipe, queue, &dump, &n_regs);
if (r)
break;
seq_printf(m, " SDMA Engine %d, RLC %d\n",
pipe, queue);
seq_reg_dump(m, dump, n_regs);
kfree(dump);
}
}
return r;
}
int dqm_debugfs_hang_hws(struct device_queue_manager *dqm)
{
int r = 0;
dqm_lock(dqm);
r = pm_debugfs_hang_hws(&dqm->packet_mgr);
if (r) {
dqm_unlock(dqm);
return r;
}
dqm->active_runlist = true;
r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
0, USE_DEFAULT_GRACE_PERIOD);
dqm_unlock(dqm);
return r;
}
#endif