linux-zen-desktop/drivers/gpu/drm/i915/display/intel_bios.c

3732 lines
101 KiB
C

/*
* Copyright © 2006 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
#include <drm/display/drm_dp_helper.h>
#include <drm/display/drm_dsc_helper.h>
#include <drm/drm_edid.h>
#include "i915_drv.h"
#include "i915_reg.h"
#include "intel_display.h"
#include "intel_display_types.h"
#include "intel_gmbus.h"
#define _INTEL_BIOS_PRIVATE
#include "intel_vbt_defs.h"
/**
* DOC: Video BIOS Table (VBT)
*
* The Video BIOS Table, or VBT, provides platform and board specific
* configuration information to the driver that is not discoverable or available
* through other means. The configuration is mostly related to display
* hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
* the PCI ROM.
*
* The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
* Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
* contain the actual configuration information. The VBT Header, and thus the
* VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
* BDB Header. The data blocks are concatenated after the BDB Header. The data
* blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
* data. (Block 53, the MIPI Sequence Block is an exception.)
*
* The driver parses the VBT during load. The relevant information is stored in
* driver private data for ease of use, and the actual VBT is not read after
* that.
*/
/* Wrapper for VBT child device config */
struct intel_bios_encoder_data {
struct drm_i915_private *i915;
struct child_device_config child;
struct dsc_compression_parameters_entry *dsc;
struct list_head node;
};
#define SLAVE_ADDR1 0x70
#define SLAVE_ADDR2 0x72
/* Get BDB block size given a pointer to Block ID. */
static u32 _get_blocksize(const u8 *block_base)
{
/* The MIPI Sequence Block v3+ has a separate size field. */
if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
return *((const u32 *)(block_base + 4));
else
return *((const u16 *)(block_base + 1));
}
/* Get BDB block size give a pointer to data after Block ID and Block Size. */
static u32 get_blocksize(const void *block_data)
{
return _get_blocksize(block_data - 3);
}
static const void *
find_raw_section(const void *_bdb, enum bdb_block_id section_id)
{
const struct bdb_header *bdb = _bdb;
const u8 *base = _bdb;
int index = 0;
u32 total, current_size;
enum bdb_block_id current_id;
/* skip to first section */
index += bdb->header_size;
total = bdb->bdb_size;
/* walk the sections looking for section_id */
while (index + 3 < total) {
current_id = *(base + index);
current_size = _get_blocksize(base + index);
index += 3;
if (index + current_size > total)
return NULL;
if (current_id == section_id)
return base + index;
index += current_size;
}
return NULL;
}
/*
* Offset from the start of BDB to the start of the
* block data (just past the block header).
*/
static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id)
{
const void *block;
block = find_raw_section(bdb, section_id);
if (!block)
return 0;
return block - bdb;
}
struct bdb_block_entry {
struct list_head node;
enum bdb_block_id section_id;
u8 data[];
};
static const void *
bdb_find_section(struct drm_i915_private *i915,
enum bdb_block_id section_id)
{
struct bdb_block_entry *entry;
list_for_each_entry(entry, &i915->display.vbt.bdb_blocks, node) {
if (entry->section_id == section_id)
return entry->data + 3;
}
return NULL;
}
static const struct {
enum bdb_block_id section_id;
size_t min_size;
} bdb_blocks[] = {
{ .section_id = BDB_GENERAL_FEATURES,
.min_size = sizeof(struct bdb_general_features), },
{ .section_id = BDB_GENERAL_DEFINITIONS,
.min_size = sizeof(struct bdb_general_definitions), },
{ .section_id = BDB_PSR,
.min_size = sizeof(struct bdb_psr), },
{ .section_id = BDB_DRIVER_FEATURES,
.min_size = sizeof(struct bdb_driver_features), },
{ .section_id = BDB_SDVO_LVDS_OPTIONS,
.min_size = sizeof(struct bdb_sdvo_lvds_options), },
{ .section_id = BDB_SDVO_PANEL_DTDS,
.min_size = sizeof(struct bdb_sdvo_panel_dtds), },
{ .section_id = BDB_EDP,
.min_size = sizeof(struct bdb_edp), },
{ .section_id = BDB_LVDS_OPTIONS,
.min_size = sizeof(struct bdb_lvds_options), },
/*
* BDB_LVDS_LFP_DATA depends on BDB_LVDS_LFP_DATA_PTRS,
* so keep the two ordered.
*/
{ .section_id = BDB_LVDS_LFP_DATA_PTRS,
.min_size = sizeof(struct bdb_lvds_lfp_data_ptrs), },
{ .section_id = BDB_LVDS_LFP_DATA,
.min_size = 0, /* special case */ },
{ .section_id = BDB_LVDS_BACKLIGHT,
.min_size = sizeof(struct bdb_lfp_backlight_data), },
{ .section_id = BDB_LFP_POWER,
.min_size = sizeof(struct bdb_lfp_power), },
{ .section_id = BDB_MIPI_CONFIG,
.min_size = sizeof(struct bdb_mipi_config), },
{ .section_id = BDB_MIPI_SEQUENCE,
.min_size = sizeof(struct bdb_mipi_sequence) },
{ .section_id = BDB_COMPRESSION_PARAMETERS,
.min_size = sizeof(struct bdb_compression_parameters), },
{ .section_id = BDB_GENERIC_DTD,
.min_size = sizeof(struct bdb_generic_dtd), },
};
static size_t lfp_data_min_size(struct drm_i915_private *i915)
{
const struct bdb_lvds_lfp_data_ptrs *ptrs;
size_t size;
ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
if (!ptrs)
return 0;
size = sizeof(struct bdb_lvds_lfp_data);
if (ptrs->panel_name.table_size)
size = max(size, ptrs->panel_name.offset +
sizeof(struct bdb_lvds_lfp_data_tail));
return size;
}
static bool validate_lfp_data_ptrs(const void *bdb,
const struct bdb_lvds_lfp_data_ptrs *ptrs)
{
int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size;
int data_block_size, lfp_data_size;
const void *data_block;
int i;
data_block = find_raw_section(bdb, BDB_LVDS_LFP_DATA);
if (!data_block)
return false;
data_block_size = get_blocksize(data_block);
if (data_block_size == 0)
return false;
/* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */
if (ptrs->lvds_entries != 3)
return false;
fp_timing_size = ptrs->ptr[0].fp_timing.table_size;
dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size;
panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size;
panel_name_size = ptrs->panel_name.table_size;
/* fp_timing has variable size */
if (fp_timing_size < 32 ||
dvo_timing_size != sizeof(struct lvds_dvo_timing) ||
panel_pnp_id_size != sizeof(struct lvds_pnp_id))
return false;
/* panel_name is not present in old VBTs */
if (panel_name_size != 0 &&
panel_name_size != sizeof(struct lvds_lfp_panel_name))
return false;
lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset;
if (16 * lfp_data_size > data_block_size)
return false;
/* make sure the table entries have uniform size */
for (i = 1; i < 16; i++) {
if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size ||
ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size ||
ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size)
return false;
if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size ||
ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size ||
ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size)
return false;
}
/*
* Except for vlv/chv machines all real VBTs seem to have 6
* unaccounted bytes in the fp_timing table. And it doesn't
* appear to be a really intentional hole as the fp_timing
* 0xffff terminator is always within those 6 missing bytes.
*/
if (fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size == lfp_data_size)
fp_timing_size += 6;
if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size)
return false;
if (ptrs->ptr[0].fp_timing.offset + fp_timing_size != ptrs->ptr[0].dvo_timing.offset ||
ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset ||
ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size)
return false;
/* make sure the tables fit inside the data block */
for (i = 0; i < 16; i++) {
if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size ||
ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size ||
ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size)
return false;
}
if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size)
return false;
/* make sure fp_timing terminators are present at expected locations */
for (i = 0; i < 16; i++) {
const u16 *t = data_block + ptrs->ptr[i].fp_timing.offset +
fp_timing_size - 2;
if (*t != 0xffff)
return false;
}
return true;
}
/* make the data table offsets relative to the data block */
static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block)
{
struct bdb_lvds_lfp_data_ptrs *ptrs = ptrs_block;
u32 offset;
int i;
offset = raw_block_offset(bdb, BDB_LVDS_LFP_DATA);
for (i = 0; i < 16; i++) {
if (ptrs->ptr[i].fp_timing.offset < offset ||
ptrs->ptr[i].dvo_timing.offset < offset ||
ptrs->ptr[i].panel_pnp_id.offset < offset)
return false;
ptrs->ptr[i].fp_timing.offset -= offset;
ptrs->ptr[i].dvo_timing.offset -= offset;
ptrs->ptr[i].panel_pnp_id.offset -= offset;
}
if (ptrs->panel_name.table_size) {
if (ptrs->panel_name.offset < offset)
return false;
ptrs->panel_name.offset -= offset;
}
return validate_lfp_data_ptrs(bdb, ptrs);
}
static int make_lfp_data_ptr(struct lvds_lfp_data_ptr_table *table,
int table_size, int total_size)
{
if (total_size < table_size)
return total_size;
table->table_size = table_size;
table->offset = total_size - table_size;
return total_size - table_size;
}
static void next_lfp_data_ptr(struct lvds_lfp_data_ptr_table *next,
const struct lvds_lfp_data_ptr_table *prev,
int size)
{
next->table_size = prev->table_size;
next->offset = prev->offset + size;
}
static void *generate_lfp_data_ptrs(struct drm_i915_private *i915,
const void *bdb)
{
int i, size, table_size, block_size, offset, fp_timing_size;
struct bdb_lvds_lfp_data_ptrs *ptrs;
const void *block;
void *ptrs_block;
/*
* The hardcoded fp_timing_size is only valid for
* modernish VBTs. All older VBTs definitely should
* include block 41 and thus we don't need to
* generate one.
*/
if (i915->display.vbt.version < 155)
return NULL;
fp_timing_size = 38;
block = find_raw_section(bdb, BDB_LVDS_LFP_DATA);
if (!block)
return NULL;
drm_dbg_kms(&i915->drm, "Generating LFP data table pointers\n");
block_size = get_blocksize(block);
size = fp_timing_size + sizeof(struct lvds_dvo_timing) +
sizeof(struct lvds_pnp_id);
if (size * 16 > block_size)
return NULL;
ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL);
if (!ptrs_block)
return NULL;
*(u8 *)(ptrs_block + 0) = BDB_LVDS_LFP_DATA_PTRS;
*(u16 *)(ptrs_block + 1) = sizeof(*ptrs);
ptrs = ptrs_block + 3;
table_size = sizeof(struct lvds_pnp_id);
size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size);
table_size = sizeof(struct lvds_dvo_timing);
size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size);
table_size = fp_timing_size;
size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size);
if (ptrs->ptr[0].fp_timing.table_size)
ptrs->lvds_entries++;
if (ptrs->ptr[0].dvo_timing.table_size)
ptrs->lvds_entries++;
if (ptrs->ptr[0].panel_pnp_id.table_size)
ptrs->lvds_entries++;
if (size != 0 || ptrs->lvds_entries != 3) {
kfree(ptrs_block);
return NULL;
}
size = fp_timing_size + sizeof(struct lvds_dvo_timing) +
sizeof(struct lvds_pnp_id);
for (i = 1; i < 16; i++) {
next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size);
next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size);
next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size);
}
table_size = sizeof(struct lvds_lfp_panel_name);
if (16 * (size + table_size) <= block_size) {
ptrs->panel_name.table_size = table_size;
ptrs->panel_name.offset = size * 16;
}
offset = block - bdb;
for (i = 0; i < 16; i++) {
ptrs->ptr[i].fp_timing.offset += offset;
ptrs->ptr[i].dvo_timing.offset += offset;
ptrs->ptr[i].panel_pnp_id.offset += offset;
}
if (ptrs->panel_name.table_size)
ptrs->panel_name.offset += offset;
return ptrs_block;
}
static void
init_bdb_block(struct drm_i915_private *i915,
const void *bdb, enum bdb_block_id section_id,
size_t min_size)
{
struct bdb_block_entry *entry;
void *temp_block = NULL;
const void *block;
size_t block_size;
block = find_raw_section(bdb, section_id);
/* Modern VBTs lack the LFP data table pointers block, make one up */
if (!block && section_id == BDB_LVDS_LFP_DATA_PTRS) {
temp_block = generate_lfp_data_ptrs(i915, bdb);
if (temp_block)
block = temp_block + 3;
}
if (!block)
return;
drm_WARN(&i915->drm, min_size == 0,
"Block %d min_size is zero\n", section_id);
block_size = get_blocksize(block);
/*
* Version number and new block size are considered
* part of the header for MIPI sequenece block v3+.
*/
if (section_id == BDB_MIPI_SEQUENCE && *(const u8 *)block >= 3)
block_size += 5;
entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3),
GFP_KERNEL);
if (!entry) {
kfree(temp_block);
return;
}
entry->section_id = section_id;
memcpy(entry->data, block - 3, block_size + 3);
kfree(temp_block);
drm_dbg_kms(&i915->drm, "Found BDB block %d (size %zu, min size %zu)\n",
section_id, block_size, min_size);
if (section_id == BDB_LVDS_LFP_DATA_PTRS &&
!fixup_lfp_data_ptrs(bdb, entry->data + 3)) {
drm_err(&i915->drm, "VBT has malformed LFP data table pointers\n");
kfree(entry);
return;
}
list_add_tail(&entry->node, &i915->display.vbt.bdb_blocks);
}
static void init_bdb_blocks(struct drm_i915_private *i915,
const void *bdb)
{
int i;
for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) {
enum bdb_block_id section_id = bdb_blocks[i].section_id;
size_t min_size = bdb_blocks[i].min_size;
if (section_id == BDB_LVDS_LFP_DATA)
min_size = lfp_data_min_size(i915);
init_bdb_block(i915, bdb, section_id, min_size);
}
}
static void
fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode,
const struct lvds_dvo_timing *dvo_timing)
{
panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
dvo_timing->hactive_lo;
panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
((dvo_timing->hsync_pulse_width_hi << 8) |
dvo_timing->hsync_pulse_width_lo);
panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
dvo_timing->vactive_lo;
panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
((dvo_timing->vsync_pulse_width_hi << 4) |
dvo_timing->vsync_pulse_width_lo);
panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
panel_fixed_mode->clock = dvo_timing->clock * 10;
panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
if (dvo_timing->hsync_positive)
panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
else
panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
if (dvo_timing->vsync_positive)
panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
else
panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
dvo_timing->himage_lo;
panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
dvo_timing->vimage_lo;
/* Some VBTs have bogus h/vtotal values */
if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal)
panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1;
if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal)
panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1;
drm_mode_set_name(panel_fixed_mode);
}
static const struct lvds_dvo_timing *
get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *data,
const struct bdb_lvds_lfp_data_ptrs *ptrs,
int index)
{
return (const void *)data + ptrs->ptr[index].dvo_timing.offset;
}
static const struct lvds_fp_timing *
get_lvds_fp_timing(const struct bdb_lvds_lfp_data *data,
const struct bdb_lvds_lfp_data_ptrs *ptrs,
int index)
{
return (const void *)data + ptrs->ptr[index].fp_timing.offset;
}
static const struct lvds_pnp_id *
get_lvds_pnp_id(const struct bdb_lvds_lfp_data *data,
const struct bdb_lvds_lfp_data_ptrs *ptrs,
int index)
{
return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset;
}
static const struct bdb_lvds_lfp_data_tail *
get_lfp_data_tail(const struct bdb_lvds_lfp_data *data,
const struct bdb_lvds_lfp_data_ptrs *ptrs)
{
if (ptrs->panel_name.table_size)
return (const void *)data + ptrs->panel_name.offset;
else
return NULL;
}
static void dump_pnp_id(struct drm_i915_private *i915,
const struct lvds_pnp_id *pnp_id,
const char *name)
{
u16 mfg_name = be16_to_cpu((__force __be16)pnp_id->mfg_name);
char vend[4];
drm_dbg_kms(&i915->drm, "%s PNPID mfg: %s (0x%x), prod: %u, serial: %u, week: %d, year: %d\n",
name, drm_edid_decode_mfg_id(mfg_name, vend),
pnp_id->mfg_name, pnp_id->product_code, pnp_id->serial,
pnp_id->mfg_week, pnp_id->mfg_year + 1990);
}
static int opregion_get_panel_type(struct drm_i915_private *i915,
const struct intel_bios_encoder_data *devdata,
const struct drm_edid *drm_edid, bool use_fallback)
{
return intel_opregion_get_panel_type(i915);
}
static int vbt_get_panel_type(struct drm_i915_private *i915,
const struct intel_bios_encoder_data *devdata,
const struct drm_edid *drm_edid, bool use_fallback)
{
const struct bdb_lvds_options *lvds_options;
lvds_options = bdb_find_section(i915, BDB_LVDS_OPTIONS);
if (!lvds_options)
return -1;
if (lvds_options->panel_type > 0xf &&
lvds_options->panel_type != 0xff) {
drm_dbg_kms(&i915->drm, "Invalid VBT panel type 0x%x\n",
lvds_options->panel_type);
return -1;
}
if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2)
return lvds_options->panel_type2;
drm_WARN_ON(&i915->drm, devdata && devdata->child.handle != DEVICE_HANDLE_LFP1);
return lvds_options->panel_type;
}
static int pnpid_get_panel_type(struct drm_i915_private *i915,
const struct intel_bios_encoder_data *devdata,
const struct drm_edid *drm_edid, bool use_fallback)
{
const struct bdb_lvds_lfp_data *data;
const struct bdb_lvds_lfp_data_ptrs *ptrs;
const struct lvds_pnp_id *edid_id;
struct lvds_pnp_id edid_id_nodate;
const struct edid *edid = drm_edid_raw(drm_edid); /* FIXME */
int i, best = -1;
if (!edid)
return -1;
edid_id = (const void *)&edid->mfg_id[0];
edid_id_nodate = *edid_id;
edid_id_nodate.mfg_week = 0;
edid_id_nodate.mfg_year = 0;
dump_pnp_id(i915, edid_id, "EDID");
ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
if (!ptrs)
return -1;
data = bdb_find_section(i915, BDB_LVDS_LFP_DATA);
if (!data)
return -1;
for (i = 0; i < 16; i++) {
const struct lvds_pnp_id *vbt_id =
get_lvds_pnp_id(data, ptrs, i);
/* full match? */
if (!memcmp(vbt_id, edid_id, sizeof(*vbt_id)))
return i;
/*
* Accept a match w/o date if no full match is found,
* and the VBT entry does not specify a date.
*/
if (best < 0 &&
!memcmp(vbt_id, &edid_id_nodate, sizeof(*vbt_id)))
best = i;
}
return best;
}
static int fallback_get_panel_type(struct drm_i915_private *i915,
const struct intel_bios_encoder_data *devdata,
const struct drm_edid *drm_edid, bool use_fallback)
{
return use_fallback ? 0 : -1;
}
enum panel_type {
PANEL_TYPE_OPREGION,
PANEL_TYPE_VBT,
PANEL_TYPE_PNPID,
PANEL_TYPE_FALLBACK,
};
static int get_panel_type(struct drm_i915_private *i915,
const struct intel_bios_encoder_data *devdata,
const struct drm_edid *drm_edid, bool use_fallback)
{
struct {
const char *name;
int (*get_panel_type)(struct drm_i915_private *i915,
const struct intel_bios_encoder_data *devdata,
const struct drm_edid *drm_edid, bool use_fallback);
int panel_type;
} panel_types[] = {
[PANEL_TYPE_OPREGION] = {
.name = "OpRegion",
.get_panel_type = opregion_get_panel_type,
},
[PANEL_TYPE_VBT] = {
.name = "VBT",
.get_panel_type = vbt_get_panel_type,
},
[PANEL_TYPE_PNPID] = {
.name = "PNPID",
.get_panel_type = pnpid_get_panel_type,
},
[PANEL_TYPE_FALLBACK] = {
.name = "fallback",
.get_panel_type = fallback_get_panel_type,
},
};
int i;
for (i = 0; i < ARRAY_SIZE(panel_types); i++) {
panel_types[i].panel_type = panel_types[i].get_panel_type(i915, devdata,
drm_edid, use_fallback);
drm_WARN_ON(&i915->drm, panel_types[i].panel_type > 0xf &&
panel_types[i].panel_type != 0xff);
if (panel_types[i].panel_type >= 0)
drm_dbg_kms(&i915->drm, "Panel type (%s): %d\n",
panel_types[i].name, panel_types[i].panel_type);
}
if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0)
i = PANEL_TYPE_OPREGION;
else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff &&
panel_types[PANEL_TYPE_PNPID].panel_type >= 0)
i = PANEL_TYPE_PNPID;
else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff &&
panel_types[PANEL_TYPE_VBT].panel_type >= 0)
i = PANEL_TYPE_VBT;
else
i = PANEL_TYPE_FALLBACK;
drm_dbg_kms(&i915->drm, "Selected panel type (%s): %d\n",
panel_types[i].name, panel_types[i].panel_type);
return panel_types[i].panel_type;
}
static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits)
{
return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1);
}
static bool panel_bool(unsigned int value, int panel_type)
{
return panel_bits(value, panel_type, 1);
}
/* Parse general panel options */
static void
parse_panel_options(struct drm_i915_private *i915,
struct intel_panel *panel)
{
const struct bdb_lvds_options *lvds_options;
int panel_type = panel->vbt.panel_type;
int drrs_mode;
lvds_options = bdb_find_section(i915, BDB_LVDS_OPTIONS);
if (!lvds_options)
return;
panel->vbt.lvds_dither = lvds_options->pixel_dither;
/*
* Empirical evidence indicates the block size can be
* either 4,14,16,24+ bytes. For older VBTs no clear
* relationship between the block size vs. BDB version.
*/
if (get_blocksize(lvds_options) < 16)
return;
drrs_mode = panel_bits(lvds_options->dps_panel_type_bits,
panel_type, 2);
/*
* VBT has static DRRS = 0 and seamless DRRS = 2.
* The below piece of code is required to adjust vbt.drrs_type
* to match the enum drrs_support_type.
*/
switch (drrs_mode) {
case 0:
panel->vbt.drrs_type = DRRS_TYPE_STATIC;
drm_dbg_kms(&i915->drm, "DRRS supported mode is static\n");
break;
case 2:
panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS;
drm_dbg_kms(&i915->drm,
"DRRS supported mode is seamless\n");
break;
default:
panel->vbt.drrs_type = DRRS_TYPE_NONE;
drm_dbg_kms(&i915->drm,
"DRRS not supported (VBT input)\n");
break;
}
}
static void
parse_lfp_panel_dtd(struct drm_i915_private *i915,
struct intel_panel *panel,
const struct bdb_lvds_lfp_data *lvds_lfp_data,
const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs)
{
const struct lvds_dvo_timing *panel_dvo_timing;
const struct lvds_fp_timing *fp_timing;
struct drm_display_mode *panel_fixed_mode;
int panel_type = panel->vbt.panel_type;
panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
lvds_lfp_data_ptrs,
panel_type);
panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
if (!panel_fixed_mode)
return;
fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing);
panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
drm_dbg_kms(&i915->drm,
"Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n",
DRM_MODE_ARG(panel_fixed_mode));
fp_timing = get_lvds_fp_timing(lvds_lfp_data,
lvds_lfp_data_ptrs,
panel_type);
/* check the resolution, just to be sure */
if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
fp_timing->y_res == panel_fixed_mode->vdisplay) {
panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
drm_dbg_kms(&i915->drm,
"VBT initial LVDS value %x\n",
panel->vbt.bios_lvds_val);
}
}
static void
parse_lfp_data(struct drm_i915_private *i915,
struct intel_panel *panel)
{
const struct bdb_lvds_lfp_data *data;
const struct bdb_lvds_lfp_data_tail *tail;
const struct bdb_lvds_lfp_data_ptrs *ptrs;
const struct lvds_pnp_id *pnp_id;
int panel_type = panel->vbt.panel_type;
ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
if (!ptrs)
return;
data = bdb_find_section(i915, BDB_LVDS_LFP_DATA);
if (!data)
return;
if (!panel->vbt.lfp_lvds_vbt_mode)
parse_lfp_panel_dtd(i915, panel, data, ptrs);
pnp_id = get_lvds_pnp_id(data, ptrs, panel_type);
dump_pnp_id(i915, pnp_id, "Panel");
tail = get_lfp_data_tail(data, ptrs);
if (!tail)
return;
drm_dbg_kms(&i915->drm, "Panel name: %.*s\n",
(int)sizeof(tail->panel_name[0].name),
tail->panel_name[panel_type].name);
if (i915->display.vbt.version >= 188) {
panel->vbt.seamless_drrs_min_refresh_rate =
tail->seamless_drrs_min_refresh_rate[panel_type];
drm_dbg_kms(&i915->drm,
"Seamless DRRS min refresh rate: %d Hz\n",
panel->vbt.seamless_drrs_min_refresh_rate);
}
}
static void
parse_generic_dtd(struct drm_i915_private *i915,
struct intel_panel *panel)
{
const struct bdb_generic_dtd *generic_dtd;
const struct generic_dtd_entry *dtd;
struct drm_display_mode *panel_fixed_mode;
int num_dtd;
/*
* Older VBTs provided DTD information for internal displays through
* the "LFP panel tables" block (42). As of VBT revision 229 the
* DTD information should be provided via a newer "generic DTD"
* block (58). Just to be safe, we'll try the new generic DTD block
* first on VBT >= 229, but still fall back to trying the old LFP
* block if that fails.
*/
if (i915->display.vbt.version < 229)
return;
generic_dtd = bdb_find_section(i915, BDB_GENERIC_DTD);
if (!generic_dtd)
return;
if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) {
drm_err(&i915->drm, "GDTD size %u is too small.\n",
generic_dtd->gdtd_size);
return;
} else if (generic_dtd->gdtd_size !=
sizeof(struct generic_dtd_entry)) {
drm_err(&i915->drm, "Unexpected GDTD size %u\n",
generic_dtd->gdtd_size);
/* DTD has unknown fields, but keep going */
}
num_dtd = (get_blocksize(generic_dtd) -
sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size;
if (panel->vbt.panel_type >= num_dtd) {
drm_err(&i915->drm,
"Panel type %d not found in table of %d DTD's\n",
panel->vbt.panel_type, num_dtd);
return;
}
dtd = &generic_dtd->dtd[panel->vbt.panel_type];
panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
if (!panel_fixed_mode)
return;
panel_fixed_mode->hdisplay = dtd->hactive;
panel_fixed_mode->hsync_start =
panel_fixed_mode->hdisplay + dtd->hfront_porch;
panel_fixed_mode->hsync_end =
panel_fixed_mode->hsync_start + dtd->hsync;
panel_fixed_mode->htotal =
panel_fixed_mode->hdisplay + dtd->hblank;
panel_fixed_mode->vdisplay = dtd->vactive;
panel_fixed_mode->vsync_start =
panel_fixed_mode->vdisplay + dtd->vfront_porch;
panel_fixed_mode->vsync_end =
panel_fixed_mode->vsync_start + dtd->vsync;
panel_fixed_mode->vtotal =
panel_fixed_mode->vdisplay + dtd->vblank;
panel_fixed_mode->clock = dtd->pixel_clock;
panel_fixed_mode->width_mm = dtd->width_mm;
panel_fixed_mode->height_mm = dtd->height_mm;
panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
drm_mode_set_name(panel_fixed_mode);
if (dtd->hsync_positive_polarity)
panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
else
panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
if (dtd->vsync_positive_polarity)
panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
else
panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
drm_dbg_kms(&i915->drm,
"Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n",
DRM_MODE_ARG(panel_fixed_mode));
panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
}
static void
parse_lfp_backlight(struct drm_i915_private *i915,
struct intel_panel *panel)
{
const struct bdb_lfp_backlight_data *backlight_data;
const struct lfp_backlight_data_entry *entry;
int panel_type = panel->vbt.panel_type;
u16 level;
backlight_data = bdb_find_section(i915, BDB_LVDS_BACKLIGHT);
if (!backlight_data)
return;
if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
drm_dbg_kms(&i915->drm,
"Unsupported backlight data entry size %u\n",
backlight_data->entry_size);
return;
}
entry = &backlight_data->data[panel_type];
panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
if (!panel->vbt.backlight.present) {
drm_dbg_kms(&i915->drm,
"PWM backlight not present in VBT (type %u)\n",
entry->type);
return;
}
panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
panel->vbt.backlight.controller = 0;
if (i915->display.vbt.version >= 191) {
size_t exp_size;
if (i915->display.vbt.version >= 236)
exp_size = sizeof(struct bdb_lfp_backlight_data);
else if (i915->display.vbt.version >= 234)
exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_234;
else
exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_191;
if (get_blocksize(backlight_data) >= exp_size) {
const struct lfp_backlight_control_method *method;
method = &backlight_data->backlight_control[panel_type];
panel->vbt.backlight.type = method->type;
panel->vbt.backlight.controller = method->controller;
}
}
panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
panel->vbt.backlight.active_low_pwm = entry->active_low_pwm;
if (i915->display.vbt.version >= 234) {
u16 min_level;
bool scale;
level = backlight_data->brightness_level[panel_type].level;
min_level = backlight_data->brightness_min_level[panel_type].level;
if (i915->display.vbt.version >= 236)
scale = backlight_data->brightness_precision_bits[panel_type] == 16;
else
scale = level > 255;
if (scale)
min_level = min_level / 255;
if (min_level > 255) {
drm_warn(&i915->drm, "Brightness min level > 255\n");
level = 255;
}
panel->vbt.backlight.min_brightness = min_level;
panel->vbt.backlight.brightness_precision_bits =
backlight_data->brightness_precision_bits[panel_type];
} else {
level = backlight_data->level[panel_type];
panel->vbt.backlight.min_brightness = entry->min_brightness;
}
if (i915->display.vbt.version >= 239)
panel->vbt.backlight.hdr_dpcd_refresh_timeout =
DIV_ROUND_UP(backlight_data->hdr_dpcd_refresh_timeout[panel_type], 100);
else
panel->vbt.backlight.hdr_dpcd_refresh_timeout = 30;
drm_dbg_kms(&i915->drm,
"VBT backlight PWM modulation frequency %u Hz, "
"active %s, min brightness %u, level %u, controller %u\n",
panel->vbt.backlight.pwm_freq_hz,
panel->vbt.backlight.active_low_pwm ? "low" : "high",
panel->vbt.backlight.min_brightness,
level,
panel->vbt.backlight.controller);
}
/* Try to find sdvo panel data */
static void
parse_sdvo_panel_data(struct drm_i915_private *i915,
struct intel_panel *panel)
{
const struct bdb_sdvo_panel_dtds *dtds;
struct drm_display_mode *panel_fixed_mode;
int index;
index = i915->params.vbt_sdvo_panel_type;
if (index == -2) {
drm_dbg_kms(&i915->drm,
"Ignore SDVO panel mode from BIOS VBT tables.\n");
return;
}
if (index == -1) {
const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
sdvo_lvds_options = bdb_find_section(i915, BDB_SDVO_LVDS_OPTIONS);
if (!sdvo_lvds_options)
return;
index = sdvo_lvds_options->panel_type;
}
dtds = bdb_find_section(i915, BDB_SDVO_PANEL_DTDS);
if (!dtds)
return;
panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
if (!panel_fixed_mode)
return;
fill_detail_timing_data(panel_fixed_mode, &dtds->dtds[index]);
panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
drm_dbg_kms(&i915->drm,
"Found SDVO panel mode in BIOS VBT tables: " DRM_MODE_FMT "\n",
DRM_MODE_ARG(panel_fixed_mode));
}
static int intel_bios_ssc_frequency(struct drm_i915_private *i915,
bool alternate)
{
switch (DISPLAY_VER(i915)) {
case 2:
return alternate ? 66667 : 48000;
case 3:
case 4:
return alternate ? 100000 : 96000;
default:
return alternate ? 100000 : 120000;
}
}
static void
parse_general_features(struct drm_i915_private *i915)
{
const struct bdb_general_features *general;
general = bdb_find_section(i915, BDB_GENERAL_FEATURES);
if (!general)
return;
i915->display.vbt.int_tv_support = general->int_tv_support;
/* int_crt_support can't be trusted on earlier platforms */
if (i915->display.vbt.version >= 155 &&
(HAS_DDI(i915) || IS_VALLEYVIEW(i915)))
i915->display.vbt.int_crt_support = general->int_crt_support;
i915->display.vbt.lvds_use_ssc = general->enable_ssc;
i915->display.vbt.lvds_ssc_freq =
intel_bios_ssc_frequency(i915, general->ssc_freq);
i915->display.vbt.display_clock_mode = general->display_clock_mode;
i915->display.vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
if (i915->display.vbt.version >= 181) {
i915->display.vbt.orientation = general->rotate_180 ?
DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
DRM_MODE_PANEL_ORIENTATION_NORMAL;
} else {
i915->display.vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
}
if (i915->display.vbt.version >= 249 && general->afc_startup_config) {
i915->display.vbt.override_afc_startup = true;
i915->display.vbt.override_afc_startup_val = general->afc_startup_config == 0x1 ? 0x0 : 0x7;
}
drm_dbg_kms(&i915->drm,
"BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
i915->display.vbt.int_tv_support,
i915->display.vbt.int_crt_support,
i915->display.vbt.lvds_use_ssc,
i915->display.vbt.lvds_ssc_freq,
i915->display.vbt.display_clock_mode,
i915->display.vbt.fdi_rx_polarity_inverted);
}
static const struct child_device_config *
child_device_ptr(const struct bdb_general_definitions *defs, int i)
{
return (const void *) &defs->devices[i * defs->child_dev_size];
}
static void
parse_sdvo_device_mapping(struct drm_i915_private *i915)
{
const struct intel_bios_encoder_data *devdata;
int count = 0;
/*
* Only parse SDVO mappings on gens that could have SDVO. This isn't
* accurate and doesn't have to be, as long as it's not too strict.
*/
if (!IS_DISPLAY_VER(i915, 3, 7)) {
drm_dbg_kms(&i915->drm, "Skipping SDVO device mapping\n");
return;
}
list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
const struct child_device_config *child = &devdata->child;
struct sdvo_device_mapping *mapping;
if (child->slave_addr != SLAVE_ADDR1 &&
child->slave_addr != SLAVE_ADDR2) {
/*
* If the slave address is neither 0x70 nor 0x72,
* it is not a SDVO device. Skip it.
*/
continue;
}
if (child->dvo_port != DEVICE_PORT_DVOB &&
child->dvo_port != DEVICE_PORT_DVOC) {
/* skip the incorrect SDVO port */
drm_dbg_kms(&i915->drm,
"Incorrect SDVO port. Skip it\n");
continue;
}
drm_dbg_kms(&i915->drm,
"the SDVO device with slave addr %2x is found on"
" %s port\n",
child->slave_addr,
(child->dvo_port == DEVICE_PORT_DVOB) ?
"SDVOB" : "SDVOC");
mapping = &i915->display.vbt.sdvo_mappings[child->dvo_port - 1];
if (!mapping->initialized) {
mapping->dvo_port = child->dvo_port;
mapping->slave_addr = child->slave_addr;
mapping->dvo_wiring = child->dvo_wiring;
mapping->ddc_pin = child->ddc_pin;
mapping->i2c_pin = child->i2c_pin;
mapping->initialized = 1;
drm_dbg_kms(&i915->drm,
"SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
mapping->dvo_port, mapping->slave_addr,
mapping->dvo_wiring, mapping->ddc_pin,
mapping->i2c_pin);
} else {
drm_dbg_kms(&i915->drm,
"Maybe one SDVO port is shared by "
"two SDVO device.\n");
}
if (child->slave2_addr) {
/* Maybe this is a SDVO device with multiple inputs */
/* And the mapping info is not added */
drm_dbg_kms(&i915->drm,
"there exists the slave2_addr. Maybe this"
" is a SDVO device with multiple inputs.\n");
}
count++;
}
if (!count) {
/* No SDVO device info is found */
drm_dbg_kms(&i915->drm,
"No SDVO device info is found in VBT\n");
}
}
static void
parse_driver_features(struct drm_i915_private *i915)
{
const struct bdb_driver_features *driver;
driver = bdb_find_section(i915, BDB_DRIVER_FEATURES);
if (!driver)
return;
if (DISPLAY_VER(i915) >= 5) {
/*
* Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
* to mean "eDP". The VBT spec doesn't agree with that
* interpretation, but real world VBTs seem to.
*/
if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
i915->display.vbt.int_lvds_support = 0;
} else {
/*
* FIXME it's not clear which BDB version has the LVDS config
* bits defined. Revision history in the VBT spec says:
* "0.92 | Add two definitions for VBT value of LVDS Active
* Config (00b and 11b values defined) | 06/13/2005"
* but does not the specify the BDB version.
*
* So far version 134 (on i945gm) is the oldest VBT observed
* in the wild with the bits correctly populated. Version
* 108 (on i85x) does not have the bits correctly populated.
*/
if (i915->display.vbt.version >= 134 &&
driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
i915->display.vbt.int_lvds_support = 0;
}
}
static void
parse_panel_driver_features(struct drm_i915_private *i915,
struct intel_panel *panel)
{
const struct bdb_driver_features *driver;
driver = bdb_find_section(i915, BDB_DRIVER_FEATURES);
if (!driver)
return;
if (i915->display.vbt.version < 228) {
drm_dbg_kms(&i915->drm, "DRRS State Enabled:%d\n",
driver->drrs_enabled);
/*
* If DRRS is not supported, drrs_type has to be set to 0.
* This is because, VBT is configured in such a way that
* static DRRS is 0 and DRRS not supported is represented by
* driver->drrs_enabled=false
*/
if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
/*
* FIXME Should DMRRS perhaps be treated as seamless
* but without the automatic downclocking?
*/
if (driver->dmrrs_enabled)
panel->vbt.drrs_type = DRRS_TYPE_STATIC;
else
panel->vbt.drrs_type = DRRS_TYPE_NONE;
}
panel->vbt.psr.enable = driver->psr_enabled;
}
}
static void
parse_power_conservation_features(struct drm_i915_private *i915,
struct intel_panel *panel)
{
const struct bdb_lfp_power *power;
u8 panel_type = panel->vbt.panel_type;
panel->vbt.vrr = true; /* matches Windows behaviour */
if (i915->display.vbt.version < 228)
return;
power = bdb_find_section(i915, BDB_LFP_POWER);
if (!power)
return;
panel->vbt.psr.enable = panel_bool(power->psr, panel_type);
/*
* If DRRS is not supported, drrs_type has to be set to 0.
* This is because, VBT is configured in such a way that
* static DRRS is 0 and DRRS not supported is represented by
* power->drrs & BIT(panel_type)=false
*/
if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
/*
* FIXME Should DMRRS perhaps be treated as seamless
* but without the automatic downclocking?
*/
if (panel_bool(power->dmrrs, panel_type))
panel->vbt.drrs_type = DRRS_TYPE_STATIC;
else
panel->vbt.drrs_type = DRRS_TYPE_NONE;
}
if (i915->display.vbt.version >= 232)
panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type);
if (i915->display.vbt.version >= 233)
panel->vbt.vrr = panel_bool(power->vrr_feature_enabled,
panel_type);
}
static void
parse_edp(struct drm_i915_private *i915,
struct intel_panel *panel)
{
const struct bdb_edp *edp;
const struct edp_power_seq *edp_pps;
const struct edp_fast_link_params *edp_link_params;
int panel_type = panel->vbt.panel_type;
edp = bdb_find_section(i915, BDB_EDP);
if (!edp)
return;
switch (panel_bits(edp->color_depth, panel_type, 2)) {
case EDP_18BPP:
panel->vbt.edp.bpp = 18;
break;
case EDP_24BPP:
panel->vbt.edp.bpp = 24;
break;
case EDP_30BPP:
panel->vbt.edp.bpp = 30;
break;
}
/* Get the eDP sequencing and link info */
edp_pps = &edp->power_seqs[panel_type];
edp_link_params = &edp->fast_link_params[panel_type];
panel->vbt.edp.pps = *edp_pps;
if (i915->display.vbt.version >= 224) {
panel->vbt.edp.rate =
edp->edp_fast_link_training_rate[panel_type] * 20;
} else {
switch (edp_link_params->rate) {
case EDP_RATE_1_62:
panel->vbt.edp.rate = 162000;
break;
case EDP_RATE_2_7:
panel->vbt.edp.rate = 270000;
break;
case EDP_RATE_5_4:
panel->vbt.edp.rate = 540000;
break;
default:
drm_dbg_kms(&i915->drm,
"VBT has unknown eDP link rate value %u\n",
edp_link_params->rate);
break;
}
}
switch (edp_link_params->lanes) {
case EDP_LANE_1:
panel->vbt.edp.lanes = 1;
break;
case EDP_LANE_2:
panel->vbt.edp.lanes = 2;
break;
case EDP_LANE_4:
panel->vbt.edp.lanes = 4;
break;
default:
drm_dbg_kms(&i915->drm,
"VBT has unknown eDP lane count value %u\n",
edp_link_params->lanes);
break;
}
switch (edp_link_params->preemphasis) {
case EDP_PREEMPHASIS_NONE:
panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
break;
case EDP_PREEMPHASIS_3_5dB:
panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
break;
case EDP_PREEMPHASIS_6dB:
panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
break;
case EDP_PREEMPHASIS_9_5dB:
panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
break;
default:
drm_dbg_kms(&i915->drm,
"VBT has unknown eDP pre-emphasis value %u\n",
edp_link_params->preemphasis);
break;
}
switch (edp_link_params->vswing) {
case EDP_VSWING_0_4V:
panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
break;
case EDP_VSWING_0_6V:
panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
break;
case EDP_VSWING_0_8V:
panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
break;
case EDP_VSWING_1_2V:
panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
break;
default:
drm_dbg_kms(&i915->drm,
"VBT has unknown eDP voltage swing value %u\n",
edp_link_params->vswing);
break;
}
if (i915->display.vbt.version >= 173) {
u8 vswing;
/* Don't read from VBT if module parameter has valid value*/
if (i915->params.edp_vswing) {
panel->vbt.edp.low_vswing =
i915->params.edp_vswing == 1;
} else {
vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
panel->vbt.edp.low_vswing = vswing == 0;
}
}
panel->vbt.edp.drrs_msa_timing_delay =
panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2);
if (i915->display.vbt.version >= 244)
panel->vbt.edp.max_link_rate =
edp->edp_max_port_link_rate[panel_type] * 20;
}
static void
parse_psr(struct drm_i915_private *i915,
struct intel_panel *panel)
{
const struct bdb_psr *psr;
const struct psr_table *psr_table;
int panel_type = panel->vbt.panel_type;
psr = bdb_find_section(i915, BDB_PSR);
if (!psr) {
drm_dbg_kms(&i915->drm, "No PSR BDB found.\n");
return;
}
psr_table = &psr->psr_table[panel_type];
panel->vbt.psr.full_link = psr_table->full_link;
panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
/* Allowed VBT values goes from 0 to 15 */
panel->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
/*
* New psr options 0=500us, 1=100us, 2=2500us, 3=0us
* Old decimal value is wake up time in multiples of 100 us.
*/
if (i915->display.vbt.version >= 205 &&
(DISPLAY_VER(i915) >= 9 && !IS_BROXTON(i915))) {
switch (psr_table->tp1_wakeup_time) {
case 0:
panel->vbt.psr.tp1_wakeup_time_us = 500;
break;
case 1:
panel->vbt.psr.tp1_wakeup_time_us = 100;
break;
case 3:
panel->vbt.psr.tp1_wakeup_time_us = 0;
break;
default:
drm_dbg_kms(&i915->drm,
"VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
psr_table->tp1_wakeup_time);
fallthrough;
case 2:
panel->vbt.psr.tp1_wakeup_time_us = 2500;
break;
}
switch (psr_table->tp2_tp3_wakeup_time) {
case 0:
panel->vbt.psr.tp2_tp3_wakeup_time_us = 500;
break;
case 1:
panel->vbt.psr.tp2_tp3_wakeup_time_us = 100;
break;
case 3:
panel->vbt.psr.tp2_tp3_wakeup_time_us = 0;
break;
default:
drm_dbg_kms(&i915->drm,
"VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
psr_table->tp2_tp3_wakeup_time);
fallthrough;
case 2:
panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
break;
}
} else {
panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
}
if (i915->display.vbt.version >= 226) {
u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
wakeup_time = panel_bits(wakeup_time, panel_type, 2);
switch (wakeup_time) {
case 0:
wakeup_time = 500;
break;
case 1:
wakeup_time = 100;
break;
case 3:
wakeup_time = 50;
break;
default:
case 2:
wakeup_time = 2500;
break;
}
panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
} else {
/* Reusing PSR1 wakeup time for PSR2 in older VBTs */
panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us;
}
}
static void parse_dsi_backlight_ports(struct drm_i915_private *i915,
struct intel_panel *panel,
enum port port)
{
enum port port_bc = DISPLAY_VER(i915) >= 11 ? PORT_B : PORT_C;
if (!panel->vbt.dsi.config->dual_link || i915->display.vbt.version < 197) {
panel->vbt.dsi.bl_ports = BIT(port);
if (panel->vbt.dsi.config->cabc_supported)
panel->vbt.dsi.cabc_ports = BIT(port);
return;
}
switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) {
case DL_DCS_PORT_A:
panel->vbt.dsi.bl_ports = BIT(PORT_A);
break;
case DL_DCS_PORT_C:
panel->vbt.dsi.bl_ports = BIT(port_bc);
break;
default:
case DL_DCS_PORT_A_AND_C:
panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(port_bc);
break;
}
if (!panel->vbt.dsi.config->cabc_supported)
return;
switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) {
case DL_DCS_PORT_A:
panel->vbt.dsi.cabc_ports = BIT(PORT_A);
break;
case DL_DCS_PORT_C:
panel->vbt.dsi.cabc_ports = BIT(port_bc);
break;
default:
case DL_DCS_PORT_A_AND_C:
panel->vbt.dsi.cabc_ports =
BIT(PORT_A) | BIT(port_bc);
break;
}
}
static void
parse_mipi_config(struct drm_i915_private *i915,
struct intel_panel *panel)
{
const struct bdb_mipi_config *start;
const struct mipi_config *config;
const struct mipi_pps_data *pps;
int panel_type = panel->vbt.panel_type;
enum port port;
/* parse MIPI blocks only if LFP type is MIPI */
if (!intel_bios_is_dsi_present(i915, &port))
return;
/* Initialize this to undefined indicating no generic MIPI support */
panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
/* Block #40 is already parsed and panel_fixed_mode is
* stored in i915->lfp_lvds_vbt_mode
* resuse this when needed
*/
/* Parse #52 for panel index used from panel_type already
* parsed
*/
start = bdb_find_section(i915, BDB_MIPI_CONFIG);
if (!start) {
drm_dbg_kms(&i915->drm, "No MIPI config BDB found");
return;
}
drm_dbg(&i915->drm, "Found MIPI Config block, panel index = %d\n",
panel_type);
/*
* get hold of the correct configuration block and pps data as per
* the panel_type as index
*/
config = &start->config[panel_type];
pps = &start->pps[panel_type];
/* store as of now full data. Trim when we realise all is not needed */
panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
if (!panel->vbt.dsi.config)
return;
panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
if (!panel->vbt.dsi.pps) {
kfree(panel->vbt.dsi.config);
return;
}
parse_dsi_backlight_ports(i915, panel, port);
/* FIXME is the 90 vs. 270 correct? */
switch (config->rotation) {
case ENABLE_ROTATION_0:
/*
* Most (all?) VBTs claim 0 degrees despite having
* an upside down panel, thus we do not trust this.
*/
panel->vbt.dsi.orientation =
DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
break;
case ENABLE_ROTATION_90:
panel->vbt.dsi.orientation =
DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
break;
case ENABLE_ROTATION_180:
panel->vbt.dsi.orientation =
DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
break;
case ENABLE_ROTATION_270:
panel->vbt.dsi.orientation =
DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
break;
}
/* We have mandatory mipi config blocks. Initialize as generic panel */
panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
}
/* Find the sequence block and size for the given panel. */
static const u8 *
find_panel_sequence_block(const struct bdb_mipi_sequence *sequence,
u16 panel_id, u32 *seq_size)
{
u32 total = get_blocksize(sequence);
const u8 *data = &sequence->data[0];
u8 current_id;
u32 current_size;
int header_size = sequence->version >= 3 ? 5 : 3;
int index = 0;
int i;
/* skip new block size */
if (sequence->version >= 3)
data += 4;
for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
if (index + header_size > total) {
DRM_ERROR("Invalid sequence block (header)\n");
return NULL;
}
current_id = *(data + index);
if (sequence->version >= 3)
current_size = *((const u32 *)(data + index + 1));
else
current_size = *((const u16 *)(data + index + 1));
index += header_size;
if (index + current_size > total) {
DRM_ERROR("Invalid sequence block\n");
return NULL;
}
if (current_id == panel_id) {
*seq_size = current_size;
return data + index;
}
index += current_size;
}
DRM_ERROR("Sequence block detected but no valid configuration\n");
return NULL;
}
static int goto_next_sequence(const u8 *data, int index, int total)
{
u16 len;
/* Skip Sequence Byte. */
for (index = index + 1; index < total; index += len) {
u8 operation_byte = *(data + index);
index++;
switch (operation_byte) {
case MIPI_SEQ_ELEM_END:
return index;
case MIPI_SEQ_ELEM_SEND_PKT:
if (index + 4 > total)
return 0;
len = *((const u16 *)(data + index + 2)) + 4;
break;
case MIPI_SEQ_ELEM_DELAY:
len = 4;
break;
case MIPI_SEQ_ELEM_GPIO:
len = 2;
break;
case MIPI_SEQ_ELEM_I2C:
if (index + 7 > total)
return 0;
len = *(data + index + 6) + 7;
break;
default:
DRM_ERROR("Unknown operation byte\n");
return 0;
}
}
return 0;
}
static int goto_next_sequence_v3(const u8 *data, int index, int total)
{
int seq_end;
u16 len;
u32 size_of_sequence;
/*
* Could skip sequence based on Size of Sequence alone, but also do some
* checking on the structure.
*/
if (total < 5) {
DRM_ERROR("Too small sequence size\n");
return 0;
}
/* Skip Sequence Byte. */
index++;
/*
* Size of Sequence. Excludes the Sequence Byte and the size itself,
* includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
* byte.
*/
size_of_sequence = *((const u32 *)(data + index));
index += 4;
seq_end = index + size_of_sequence;
if (seq_end > total) {
DRM_ERROR("Invalid sequence size\n");
return 0;
}
for (; index < total; index += len) {
u8 operation_byte = *(data + index);
index++;
if (operation_byte == MIPI_SEQ_ELEM_END) {
if (index != seq_end) {
DRM_ERROR("Invalid element structure\n");
return 0;
}
return index;
}
len = *(data + index);
index++;
/*
* FIXME: Would be nice to check elements like for v1/v2 in
* goto_next_sequence() above.
*/
switch (operation_byte) {
case MIPI_SEQ_ELEM_SEND_PKT:
case MIPI_SEQ_ELEM_DELAY:
case MIPI_SEQ_ELEM_GPIO:
case MIPI_SEQ_ELEM_I2C:
case MIPI_SEQ_ELEM_SPI:
case MIPI_SEQ_ELEM_PMIC:
break;
default:
DRM_ERROR("Unknown operation byte %u\n",
operation_byte);
break;
}
}
return 0;
}
/*
* Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
* skip all delay + gpio operands and stop at the first DSI packet op.
*/
static int get_init_otp_deassert_fragment_len(struct drm_i915_private *i915,
struct intel_panel *panel)
{
const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
int index, len;
if (drm_WARN_ON(&i915->drm,
!data || panel->vbt.dsi.seq_version != 1))
return 0;
/* index = 1 to skip sequence byte */
for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
switch (data[index]) {
case MIPI_SEQ_ELEM_SEND_PKT:
return index == 1 ? 0 : index;
case MIPI_SEQ_ELEM_DELAY:
len = 5; /* 1 byte for operand + uint32 */
break;
case MIPI_SEQ_ELEM_GPIO:
len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
break;
default:
return 0;
}
}
return 0;
}
/*
* Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
* The deassert must be done before calling intel_dsi_device_ready, so for
* these devices we split the init OTP sequence into a deassert sequence and
* the actual init OTP part.
*/
static void fixup_mipi_sequences(struct drm_i915_private *i915,
struct intel_panel *panel)
{
u8 *init_otp;
int len;
/* Limit this to VLV for now. */
if (!IS_VALLEYVIEW(i915))
return;
/* Limit this to v1 vid-mode sequences */
if (panel->vbt.dsi.config->is_cmd_mode ||
panel->vbt.dsi.seq_version != 1)
return;
/* Only do this if there are otp and assert seqs and no deassert seq */
if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
!panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
return;
/* The deassert-sequence ends at the first DSI packet */
len = get_init_otp_deassert_fragment_len(i915, panel);
if (!len)
return;
drm_dbg_kms(&i915->drm,
"Using init OTP fragment to deassert reset\n");
/* Copy the fragment, update seq byte and terminate it */
init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
if (!panel->vbt.dsi.deassert_seq)
return;
panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
/* Use the copy for deassert */
panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
panel->vbt.dsi.deassert_seq;
/* Replace the last byte of the fragment with init OTP seq byte */
init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
/* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
}
static void
parse_mipi_sequence(struct drm_i915_private *i915,
struct intel_panel *panel)
{
int panel_type = panel->vbt.panel_type;
const struct bdb_mipi_sequence *sequence;
const u8 *seq_data;
u32 seq_size;
u8 *data;
int index = 0;
/* Only our generic panel driver uses the sequence block. */
if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
return;
sequence = bdb_find_section(i915, BDB_MIPI_SEQUENCE);
if (!sequence) {
drm_dbg_kms(&i915->drm,
"No MIPI Sequence found, parsing complete\n");
return;
}
/* Fail gracefully for forward incompatible sequence block. */
if (sequence->version >= 4) {
drm_err(&i915->drm,
"Unable to parse MIPI Sequence Block v%u\n",
sequence->version);
return;
}
drm_dbg(&i915->drm, "Found MIPI sequence block v%u\n",
sequence->version);
seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size);
if (!seq_data)
return;
data = kmemdup(seq_data, seq_size, GFP_KERNEL);
if (!data)
return;
/* Parse the sequences, store pointers to each sequence. */
for (;;) {
u8 seq_id = *(data + index);
if (seq_id == MIPI_SEQ_END)
break;
if (seq_id >= MIPI_SEQ_MAX) {
drm_err(&i915->drm, "Unknown sequence %u\n",
seq_id);
goto err;
}
/* Log about presence of sequences we won't run. */
if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
drm_dbg_kms(&i915->drm,
"Unsupported sequence %u\n", seq_id);
panel->vbt.dsi.sequence[seq_id] = data + index;
if (sequence->version >= 3)
index = goto_next_sequence_v3(data, index, seq_size);
else
index = goto_next_sequence(data, index, seq_size);
if (!index) {
drm_err(&i915->drm, "Invalid sequence %u\n",
seq_id);
goto err;
}
}
panel->vbt.dsi.data = data;
panel->vbt.dsi.size = seq_size;
panel->vbt.dsi.seq_version = sequence->version;
fixup_mipi_sequences(i915, panel);
drm_dbg(&i915->drm, "MIPI related VBT parsing complete\n");
return;
err:
kfree(data);
memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence));
}
static void
parse_compression_parameters(struct drm_i915_private *i915)
{
const struct bdb_compression_parameters *params;
struct intel_bios_encoder_data *devdata;
u16 block_size;
int index;
if (i915->display.vbt.version < 198)
return;
params = bdb_find_section(i915, BDB_COMPRESSION_PARAMETERS);
if (params) {
/* Sanity checks */
if (params->entry_size != sizeof(params->data[0])) {
drm_dbg_kms(&i915->drm,
"VBT: unsupported compression param entry size\n");
return;
}
block_size = get_blocksize(params);
if (block_size < sizeof(*params)) {
drm_dbg_kms(&i915->drm,
"VBT: expected 16 compression param entries\n");
return;
}
}
list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
const struct child_device_config *child = &devdata->child;
if (!child->compression_enable)
continue;
if (!params) {
drm_dbg_kms(&i915->drm,
"VBT: compression params not available\n");
continue;
}
if (child->compression_method_cps) {
drm_dbg_kms(&i915->drm,
"VBT: CPS compression not supported\n");
continue;
}
index = child->compression_structure_index;
devdata->dsc = kmemdup(&params->data[index],
sizeof(*devdata->dsc), GFP_KERNEL);
}
}
static u8 translate_iboost(u8 val)
{
static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
if (val >= ARRAY_SIZE(mapping)) {
DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
return 0;
}
return mapping[val];
}
static const u8 cnp_ddc_pin_map[] = {
[0] = 0, /* N/A */
[GMBUS_PIN_1_BXT] = DDC_BUS_DDI_B,
[GMBUS_PIN_2_BXT] = DDC_BUS_DDI_C,
[GMBUS_PIN_4_CNP] = DDC_BUS_DDI_D, /* sic */
[GMBUS_PIN_3_BXT] = DDC_BUS_DDI_F, /* sic */
};
static const u8 icp_ddc_pin_map[] = {
[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
[GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
[GMBUS_PIN_3_BXT] = TGL_DDC_BUS_DDI_C,
[GMBUS_PIN_9_TC1_ICP] = ICL_DDC_BUS_PORT_1,
[GMBUS_PIN_10_TC2_ICP] = ICL_DDC_BUS_PORT_2,
[GMBUS_PIN_11_TC3_ICP] = ICL_DDC_BUS_PORT_3,
[GMBUS_PIN_12_TC4_ICP] = ICL_DDC_BUS_PORT_4,
[GMBUS_PIN_13_TC5_TGP] = TGL_DDC_BUS_PORT_5,
[GMBUS_PIN_14_TC6_TGP] = TGL_DDC_BUS_PORT_6,
};
static const u8 rkl_pch_tgp_ddc_pin_map[] = {
[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
[GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
[GMBUS_PIN_9_TC1_ICP] = RKL_DDC_BUS_DDI_D,
[GMBUS_PIN_10_TC2_ICP] = RKL_DDC_BUS_DDI_E,
};
static const u8 adls_ddc_pin_map[] = {
[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
[GMBUS_PIN_9_TC1_ICP] = ADLS_DDC_BUS_PORT_TC1,
[GMBUS_PIN_10_TC2_ICP] = ADLS_DDC_BUS_PORT_TC2,
[GMBUS_PIN_11_TC3_ICP] = ADLS_DDC_BUS_PORT_TC3,
[GMBUS_PIN_12_TC4_ICP] = ADLS_DDC_BUS_PORT_TC4,
};
static const u8 gen9bc_tgp_ddc_pin_map[] = {
[GMBUS_PIN_2_BXT] = DDC_BUS_DDI_B,
[GMBUS_PIN_9_TC1_ICP] = DDC_BUS_DDI_C,
[GMBUS_PIN_10_TC2_ICP] = DDC_BUS_DDI_D,
};
static const u8 adlp_ddc_pin_map[] = {
[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
[GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
[GMBUS_PIN_9_TC1_ICP] = ADLP_DDC_BUS_PORT_TC1,
[GMBUS_PIN_10_TC2_ICP] = ADLP_DDC_BUS_PORT_TC2,
[GMBUS_PIN_11_TC3_ICP] = ADLP_DDC_BUS_PORT_TC3,
[GMBUS_PIN_12_TC4_ICP] = ADLP_DDC_BUS_PORT_TC4,
};
static u8 map_ddc_pin(struct drm_i915_private *i915, u8 vbt_pin)
{
const u8 *ddc_pin_map;
int i, n_entries;
if (HAS_PCH_MTP(i915) || IS_ALDERLAKE_P(i915)) {
ddc_pin_map = adlp_ddc_pin_map;
n_entries = ARRAY_SIZE(adlp_ddc_pin_map);
} else if (IS_ALDERLAKE_S(i915)) {
ddc_pin_map = adls_ddc_pin_map;
n_entries = ARRAY_SIZE(adls_ddc_pin_map);
} else if (INTEL_PCH_TYPE(i915) >= PCH_DG1) {
return vbt_pin;
} else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) {
ddc_pin_map = rkl_pch_tgp_ddc_pin_map;
n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map);
} else if (HAS_PCH_TGP(i915) && DISPLAY_VER(i915) == 9) {
ddc_pin_map = gen9bc_tgp_ddc_pin_map;
n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map);
} else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) {
ddc_pin_map = icp_ddc_pin_map;
n_entries = ARRAY_SIZE(icp_ddc_pin_map);
} else if (HAS_PCH_CNP(i915)) {
ddc_pin_map = cnp_ddc_pin_map;
n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
} else {
/* Assuming direct map */
return vbt_pin;
}
for (i = 0; i < n_entries; i++) {
if (ddc_pin_map[i] == vbt_pin)
return i;
}
drm_dbg_kms(&i915->drm,
"Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
vbt_pin);
return 0;
}
static enum port get_port_by_ddc_pin(struct drm_i915_private *i915, u8 ddc_pin)
{
enum port port;
if (!ddc_pin)
return PORT_NONE;
for_each_port(port) {
const struct intel_bios_encoder_data *devdata =
i915->display.vbt.ports[port];
if (devdata && ddc_pin == devdata->child.ddc_pin)
return port;
}
return PORT_NONE;
}
static void sanitize_ddc_pin(struct intel_bios_encoder_data *devdata,
enum port port)
{
struct drm_i915_private *i915 = devdata->i915;
struct child_device_config *child;
u8 mapped_ddc_pin;
enum port p;
if (!devdata->child.ddc_pin)
return;
mapped_ddc_pin = map_ddc_pin(i915, devdata->child.ddc_pin);
if (!intel_gmbus_is_valid_pin(i915, mapped_ddc_pin)) {
drm_dbg_kms(&i915->drm,
"Port %c has invalid DDC pin %d, "
"sticking to defaults\n",
port_name(port), mapped_ddc_pin);
devdata->child.ddc_pin = 0;
return;
}
p = get_port_by_ddc_pin(i915, devdata->child.ddc_pin);
if (p == PORT_NONE)
return;
drm_dbg_kms(&i915->drm,
"port %c trying to use the same DDC pin (0x%x) as port %c, "
"disabling port %c DVI/HDMI support\n",
port_name(port), mapped_ddc_pin,
port_name(p), port_name(p));
/*
* If we have multiple ports supposedly sharing the pin, then dvi/hdmi
* couldn't exist on the shared port. Otherwise they share the same ddc
* pin and system couldn't communicate with them separately.
*
* Give inverse child device order the priority, last one wins. Yes,
* there are real machines (eg. Asrock B250M-HDV) where VBT has both
* port A and port E with the same AUX ch and we must pick port E :(
*/
child = &i915->display.vbt.ports[p]->child;
child->device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
child->device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
child->ddc_pin = 0;
}
static enum port get_port_by_aux_ch(struct drm_i915_private *i915, u8 aux_ch)
{
enum port port;
if (!aux_ch)
return PORT_NONE;
for_each_port(port) {
const struct intel_bios_encoder_data *devdata =
i915->display.vbt.ports[port];
if (devdata && aux_ch == devdata->child.aux_channel)
return port;
}
return PORT_NONE;
}
static void sanitize_aux_ch(struct intel_bios_encoder_data *devdata,
enum port port)
{
struct drm_i915_private *i915 = devdata->i915;
struct child_device_config *child;
enum port p;
p = get_port_by_aux_ch(i915, devdata->child.aux_channel);
if (p == PORT_NONE)
return;
drm_dbg_kms(&i915->drm,
"port %c trying to use the same AUX CH (0x%x) as port %c, "
"disabling port %c DP support\n",
port_name(port), devdata->child.aux_channel,
port_name(p), port_name(p));
/*
* If we have multiple ports supposedly sharing the aux channel, then DP
* couldn't exist on the shared port. Otherwise they share the same aux
* channel and system couldn't communicate with them separately.
*
* Give inverse child device order the priority, last one wins. Yes,
* there are real machines (eg. Asrock B250M-HDV) where VBT has both
* port A and port E with the same AUX ch and we must pick port E :(
*/
child = &i915->display.vbt.ports[p]->child;
child->device_type &= ~DEVICE_TYPE_DISPLAYPORT_OUTPUT;
child->aux_channel = 0;
}
static u8 dvo_port_type(u8 dvo_port)
{
switch (dvo_port) {
case DVO_PORT_HDMIA:
case DVO_PORT_HDMIB:
case DVO_PORT_HDMIC:
case DVO_PORT_HDMID:
case DVO_PORT_HDMIE:
case DVO_PORT_HDMIF:
case DVO_PORT_HDMIG:
case DVO_PORT_HDMIH:
case DVO_PORT_HDMII:
return DVO_PORT_HDMIA;
case DVO_PORT_DPA:
case DVO_PORT_DPB:
case DVO_PORT_DPC:
case DVO_PORT_DPD:
case DVO_PORT_DPE:
case DVO_PORT_DPF:
case DVO_PORT_DPG:
case DVO_PORT_DPH:
case DVO_PORT_DPI:
return DVO_PORT_DPA;
case DVO_PORT_MIPIA:
case DVO_PORT_MIPIB:
case DVO_PORT_MIPIC:
case DVO_PORT_MIPID:
return DVO_PORT_MIPIA;
default:
return dvo_port;
}
}
static enum port __dvo_port_to_port(int n_ports, int n_dvo,
const int port_mapping[][3], u8 dvo_port)
{
enum port port;
int i;
for (port = PORT_A; port < n_ports; port++) {
for (i = 0; i < n_dvo; i++) {
if (port_mapping[port][i] == -1)
break;
if (dvo_port == port_mapping[port][i])
return port;
}
}
return PORT_NONE;
}
static enum port dvo_port_to_port(struct drm_i915_private *i915,
u8 dvo_port)
{
/*
* Each DDI port can have more than one value on the "DVO Port" field,
* so look for all the possible values for each port.
*/
static const int port_mapping[][3] = {
[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
[PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
[PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT },
[PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
[PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
[PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
[PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
};
/*
* RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D
* map to DDI A,B,TC1,TC2 respectively.
*/
static const int rkl_port_mapping[][3] = {
[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
[PORT_C] = { -1 },
[PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
[PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
};
/*
* Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E,
* PORT_F and PORT_G, we need to map that to correct VBT sections.
*/
static const int adls_port_mapping[][3] = {
[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
[PORT_B] = { -1 },
[PORT_C] = { -1 },
[PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
[PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
[PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
[PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
};
static const int xelpd_port_mapping[][3] = {
[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
[PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
[PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
[PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
[PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
[PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
[PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
};
if (DISPLAY_VER(i915) >= 13)
return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping),
ARRAY_SIZE(xelpd_port_mapping[0]),
xelpd_port_mapping,
dvo_port);
else if (IS_ALDERLAKE_S(i915))
return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping),
ARRAY_SIZE(adls_port_mapping[0]),
adls_port_mapping,
dvo_port);
else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping),
ARRAY_SIZE(rkl_port_mapping[0]),
rkl_port_mapping,
dvo_port);
else
return __dvo_port_to_port(ARRAY_SIZE(port_mapping),
ARRAY_SIZE(port_mapping[0]),
port_mapping,
dvo_port);
}
static enum port
dsi_dvo_port_to_port(struct drm_i915_private *i915, u8 dvo_port)
{
switch (dvo_port) {
case DVO_PORT_MIPIA:
return PORT_A;
case DVO_PORT_MIPIC:
if (DISPLAY_VER(i915) >= 11)
return PORT_B;
else
return PORT_C;
default:
return PORT_NONE;
}
}
static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)
{
switch (vbt_max_link_rate) {
default:
case BDB_230_VBT_DP_MAX_LINK_RATE_DEF:
return 0;
case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20:
return 2000000;
case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5:
return 1350000;
case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10:
return 1000000;
case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3:
return 810000;
case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2:
return 540000;
case BDB_230_VBT_DP_MAX_LINK_RATE_HBR:
return 270000;
case BDB_230_VBT_DP_MAX_LINK_RATE_LBR:
return 162000;
}
}
static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)
{
switch (vbt_max_link_rate) {
default:
case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3:
return 810000;
case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2:
return 540000;
case BDB_216_VBT_DP_MAX_LINK_RATE_HBR:
return 270000;
case BDB_216_VBT_DP_MAX_LINK_RATE_LBR:
return 162000;
}
}
int intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata)
{
if (!devdata || devdata->i915->display.vbt.version < 216)
return 0;
if (devdata->i915->display.vbt.version >= 230)
return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate);
else
return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate);
}
int intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data *devdata)
{
if (!devdata || devdata->i915->display.vbt.version < 244)
return 0;
return devdata->child.dp_max_lane_count + 1;
}
static void sanitize_device_type(struct intel_bios_encoder_data *devdata,
enum port port)
{
struct drm_i915_private *i915 = devdata->i915;
bool is_hdmi;
if (port != PORT_A || DISPLAY_VER(i915) >= 12)
return;
if (!intel_bios_encoder_supports_dvi(devdata))
return;
is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
drm_dbg_kms(&i915->drm, "VBT claims port A supports DVI%s, ignoring\n",
is_hdmi ? "/HDMI" : "");
devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
}
static bool
intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata)
{
return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT;
}
bool
intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata)
{
return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
}
bool
intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata)
{
return intel_bios_encoder_supports_dvi(devdata) &&
(devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
}
bool
intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata)
{
return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
}
bool
intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata)
{
return intel_bios_encoder_supports_dp(devdata) &&
devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR;
}
static bool
intel_bios_encoder_supports_dsi(const struct intel_bios_encoder_data *devdata)
{
return devdata->child.device_type & DEVICE_TYPE_MIPI_OUTPUT;
}
bool
intel_bios_encoder_is_lspcon(const struct intel_bios_encoder_data *devdata)
{
return devdata && HAS_LSPCON(devdata->i915) && devdata->child.lspcon;
}
/* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */
int intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata)
{
if (!devdata || devdata->i915->display.vbt.version < 158)
return -1;
return devdata->child.hdmi_level_shifter_value;
}
int intel_bios_hdmi_max_tmds_clock(const struct intel_bios_encoder_data *devdata)
{
if (!devdata || devdata->i915->display.vbt.version < 204)
return 0;
switch (devdata->child.hdmi_max_data_rate) {
default:
MISSING_CASE(devdata->child.hdmi_max_data_rate);
fallthrough;
case HDMI_MAX_DATA_RATE_PLATFORM:
return 0;
case HDMI_MAX_DATA_RATE_594:
return 594000;
case HDMI_MAX_DATA_RATE_340:
return 340000;
case HDMI_MAX_DATA_RATE_300:
return 300000;
case HDMI_MAX_DATA_RATE_297:
return 297000;
case HDMI_MAX_DATA_RATE_165:
return 165000;
}
}
static bool is_port_valid(struct drm_i915_private *i915, enum port port)
{
/*
* On some ICL SKUs port F is not present, but broken VBTs mark
* the port as present. Only try to initialize port F for the
* SKUs that may actually have it.
*/
if (port == PORT_F && IS_ICELAKE(i915))
return IS_ICL_WITH_PORT_F(i915);
return true;
}
static void print_ddi_port(const struct intel_bios_encoder_data *devdata,
enum port port)
{
struct drm_i915_private *i915 = devdata->i915;
const struct child_device_config *child = &devdata->child;
bool is_dvi, is_hdmi, is_dp, is_edp, is_dsi, is_crt, supports_typec_usb, supports_tbt;
int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock;
is_dvi = intel_bios_encoder_supports_dvi(devdata);
is_dp = intel_bios_encoder_supports_dp(devdata);
is_crt = intel_bios_encoder_supports_crt(devdata);
is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
is_edp = intel_bios_encoder_supports_edp(devdata);
is_dsi = intel_bios_encoder_supports_dsi(devdata);
supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata);
supports_tbt = intel_bios_encoder_supports_tbt(devdata);
drm_dbg_kms(&i915->drm,
"Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d DSI:%d DP++:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n",
port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp, is_dsi,
intel_bios_encoder_supports_dp_dual_mode(devdata),
intel_bios_encoder_is_lspcon(devdata),
supports_typec_usb, supports_tbt,
devdata->dsc != NULL);
hdmi_level_shift = intel_bios_hdmi_level_shift(devdata);
if (hdmi_level_shift >= 0) {
drm_dbg_kms(&i915->drm,
"Port %c VBT HDMI level shift: %d\n",
port_name(port), hdmi_level_shift);
}
max_tmds_clock = intel_bios_hdmi_max_tmds_clock(devdata);
if (max_tmds_clock)
drm_dbg_kms(&i915->drm,
"Port %c VBT HDMI max TMDS clock: %d kHz\n",
port_name(port), max_tmds_clock);
/* I_boost config for SKL and above */
dp_boost_level = intel_bios_dp_boost_level(devdata);
if (dp_boost_level)
drm_dbg_kms(&i915->drm,
"Port %c VBT (e)DP boost level: %d\n",
port_name(port), dp_boost_level);
hdmi_boost_level = intel_bios_hdmi_boost_level(devdata);
if (hdmi_boost_level)
drm_dbg_kms(&i915->drm,
"Port %c VBT HDMI boost level: %d\n",
port_name(port), hdmi_boost_level);
dp_max_link_rate = intel_bios_dp_max_link_rate(devdata);
if (dp_max_link_rate)
drm_dbg_kms(&i915->drm,
"Port %c VBT DP max link rate: %d\n",
port_name(port), dp_max_link_rate);
/*
* FIXME need to implement support for VBT
* vswing/preemph tables should this ever trigger.
*/
drm_WARN(&i915->drm, child->use_vbt_vswing,
"Port %c asks to use VBT vswing/preemph tables\n",
port_name(port));
}
static void parse_ddi_port(struct intel_bios_encoder_data *devdata)
{
struct drm_i915_private *i915 = devdata->i915;
const struct child_device_config *child = &devdata->child;
enum port port;
port = dvo_port_to_port(i915, child->dvo_port);
if (port == PORT_NONE && DISPLAY_VER(i915) >= 11)
port = dsi_dvo_port_to_port(i915, child->dvo_port);
if (port == PORT_NONE)
return;
if (!is_port_valid(i915, port)) {
drm_dbg_kms(&i915->drm,
"VBT reports port %c as supported, but that can't be true: skipping\n",
port_name(port));
return;
}
if (i915->display.vbt.ports[port]) {
drm_dbg_kms(&i915->drm,
"More than one child device for port %c in VBT, using the first.\n",
port_name(port));
return;
}
sanitize_device_type(devdata, port);
if (intel_bios_encoder_supports_dvi(devdata))
sanitize_ddc_pin(devdata, port);
if (intel_bios_encoder_supports_dp(devdata))
sanitize_aux_ch(devdata, port);
i915->display.vbt.ports[port] = devdata;
}
static bool has_ddi_port_info(struct drm_i915_private *i915)
{
return DISPLAY_VER(i915) >= 5 || IS_G4X(i915);
}
static void parse_ddi_ports(struct drm_i915_private *i915)
{
struct intel_bios_encoder_data *devdata;
enum port port;
if (!has_ddi_port_info(i915))
return;
list_for_each_entry(devdata, &i915->display.vbt.display_devices, node)
parse_ddi_port(devdata);
for_each_port(port) {
if (i915->display.vbt.ports[port])
print_ddi_port(i915->display.vbt.ports[port], port);
}
}
static void
parse_general_definitions(struct drm_i915_private *i915)
{
const struct bdb_general_definitions *defs;
struct intel_bios_encoder_data *devdata;
const struct child_device_config *child;
int i, child_device_num;
u8 expected_size;
u16 block_size;
int bus_pin;
defs = bdb_find_section(i915, BDB_GENERAL_DEFINITIONS);
if (!defs) {
drm_dbg_kms(&i915->drm,
"No general definition block is found, no devices defined.\n");
return;
}
block_size = get_blocksize(defs);
if (block_size < sizeof(*defs)) {
drm_dbg_kms(&i915->drm,
"General definitions block too small (%u)\n",
block_size);
return;
}
bus_pin = defs->crt_ddc_gmbus_pin;
drm_dbg_kms(&i915->drm, "crt_ddc_bus_pin: %d\n", bus_pin);
if (intel_gmbus_is_valid_pin(i915, bus_pin))
i915->display.vbt.crt_ddc_pin = bus_pin;
if (i915->display.vbt.version < 106) {
expected_size = 22;
} else if (i915->display.vbt.version < 111) {
expected_size = 27;
} else if (i915->display.vbt.version < 195) {
expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE;
} else if (i915->display.vbt.version == 195) {
expected_size = 37;
} else if (i915->display.vbt.version <= 215) {
expected_size = 38;
} else if (i915->display.vbt.version <= 250) {
expected_size = 39;
} else {
expected_size = sizeof(*child);
BUILD_BUG_ON(sizeof(*child) < 39);
drm_dbg(&i915->drm,
"Expected child device config size for VBT version %u not known; assuming %u\n",
i915->display.vbt.version, expected_size);
}
/* Flag an error for unexpected size, but continue anyway. */
if (defs->child_dev_size != expected_size)
drm_err(&i915->drm,
"Unexpected child device config size %u (expected %u for VBT version %u)\n",
defs->child_dev_size, expected_size, i915->display.vbt.version);
/* The legacy sized child device config is the minimum we need. */
if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
drm_dbg_kms(&i915->drm,
"Child device config size %u is too small.\n",
defs->child_dev_size);
return;
}
/* get the number of child device */
child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
for (i = 0; i < child_device_num; i++) {
child = child_device_ptr(defs, i);
if (!child->device_type)
continue;
drm_dbg_kms(&i915->drm,
"Found VBT child device with type 0x%x\n",
child->device_type);
devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
if (!devdata)
break;
devdata->i915 = i915;
/*
* Copy as much as we know (sizeof) and is available
* (child_dev_size) of the child device config. Accessing the
* data must depend on VBT version.
*/
memcpy(&devdata->child, child,
min_t(size_t, defs->child_dev_size, sizeof(*child)));
list_add_tail(&devdata->node, &i915->display.vbt.display_devices);
}
if (list_empty(&i915->display.vbt.display_devices))
drm_dbg_kms(&i915->drm,
"no child dev is parsed from VBT\n");
}
/* Common defaults which may be overridden by VBT. */
static void
init_vbt_defaults(struct drm_i915_private *i915)
{
i915->display.vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
/* general features */
i915->display.vbt.int_tv_support = 1;
i915->display.vbt.int_crt_support = 1;
/* driver features */
i915->display.vbt.int_lvds_support = 1;
/* Default to using SSC */
i915->display.vbt.lvds_use_ssc = 1;
/*
* Core/SandyBridge/IvyBridge use alternative (120MHz) reference
* clock for LVDS.
*/
i915->display.vbt.lvds_ssc_freq = intel_bios_ssc_frequency(i915,
!HAS_PCH_SPLIT(i915));
drm_dbg_kms(&i915->drm, "Set default to SSC at %d kHz\n",
i915->display.vbt.lvds_ssc_freq);
}
/* Common defaults which may be overridden by VBT. */
static void
init_vbt_panel_defaults(struct intel_panel *panel)
{
/* Default to having backlight */
panel->vbt.backlight.present = true;
/* LFP panel data */
panel->vbt.lvds_dither = true;
}
/* Defaults to initialize only if there is no VBT. */
static void
init_vbt_missing_defaults(struct drm_i915_private *i915)
{
enum port port;
int ports = BIT(PORT_A) | BIT(PORT_B) | BIT(PORT_C) |
BIT(PORT_D) | BIT(PORT_E) | BIT(PORT_F);
if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915))
return;
for_each_port_masked(port, ports) {
struct intel_bios_encoder_data *devdata;
struct child_device_config *child;
enum phy phy = intel_port_to_phy(i915, port);
/*
* VBT has the TypeC mode (native,TBT/USB) and we don't want
* to detect it.
*/
if (intel_phy_is_tc(i915, phy))
continue;
/* Create fake child device config */
devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
if (!devdata)
break;
devdata->i915 = i915;
child = &devdata->child;
if (port == PORT_F)
child->dvo_port = DVO_PORT_HDMIF;
else if (port == PORT_E)
child->dvo_port = DVO_PORT_HDMIE;
else
child->dvo_port = DVO_PORT_HDMIA + port;
if (port != PORT_A && port != PORT_E)
child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING;
if (port != PORT_E)
child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT;
if (port == PORT_A)
child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR;
list_add_tail(&devdata->node, &i915->display.vbt.display_devices);
drm_dbg_kms(&i915->drm,
"Generating default VBT child device with type 0x04%x on port %c\n",
child->device_type, port_name(port));
}
/* Bypass some minimum baseline VBT version checks */
i915->display.vbt.version = 155;
}
static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
{
const void *_vbt = vbt;
return _vbt + vbt->bdb_offset;
}
/**
* intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
* @buf: pointer to a buffer to validate
* @size: size of the buffer
*
* Returns true on valid VBT.
*/
bool intel_bios_is_valid_vbt(const void *buf, size_t size)
{
const struct vbt_header *vbt = buf;
const struct bdb_header *bdb;
if (!vbt)
return false;
if (sizeof(struct vbt_header) > size) {
DRM_DEBUG_DRIVER("VBT header incomplete\n");
return false;
}
if (memcmp(vbt->signature, "$VBT", 4)) {
DRM_DEBUG_DRIVER("VBT invalid signature\n");
return false;
}
if (vbt->vbt_size > size) {
DRM_DEBUG_DRIVER("VBT incomplete (vbt_size overflows)\n");
return false;
}
size = vbt->vbt_size;
if (range_overflows_t(size_t,
vbt->bdb_offset,
sizeof(struct bdb_header),
size)) {
DRM_DEBUG_DRIVER("BDB header incomplete\n");
return false;
}
bdb = get_bdb_header(vbt);
if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
DRM_DEBUG_DRIVER("BDB incomplete\n");
return false;
}
return vbt;
}
static u32 intel_spi_read(struct intel_uncore *uncore, u32 offset)
{
intel_uncore_write(uncore, PRIMARY_SPI_ADDRESS, offset);
return intel_uncore_read(uncore, PRIMARY_SPI_TRIGGER);
}
static struct vbt_header *spi_oprom_get_vbt(struct drm_i915_private *i915)
{
u32 count, data, found, store = 0;
u32 static_region, oprom_offset;
u32 oprom_size = 0x200000;
u16 vbt_size;
u32 *vbt;
static_region = intel_uncore_read(&i915->uncore, SPI_STATIC_REGIONS);
static_region &= OPTIONROM_SPI_REGIONID_MASK;
intel_uncore_write(&i915->uncore, PRIMARY_SPI_REGIONID, static_region);
oprom_offset = intel_uncore_read(&i915->uncore, OROM_OFFSET);
oprom_offset &= OROM_OFFSET_MASK;
for (count = 0; count < oprom_size; count += 4) {
data = intel_spi_read(&i915->uncore, oprom_offset + count);
if (data == *((const u32 *)"$VBT")) {
found = oprom_offset + count;
break;
}
}
if (count >= oprom_size)
goto err_not_found;
/* Get VBT size and allocate space for the VBT */
vbt_size = intel_spi_read(&i915->uncore,
found + offsetof(struct vbt_header, vbt_size));
vbt_size &= 0xffff;
vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL);
if (!vbt)
goto err_not_found;
for (count = 0; count < vbt_size; count += 4)
*(vbt + store++) = intel_spi_read(&i915->uncore, found + count);
if (!intel_bios_is_valid_vbt(vbt, vbt_size))
goto err_free_vbt;
drm_dbg_kms(&i915->drm, "Found valid VBT in SPI flash\n");
return (struct vbt_header *)vbt;
err_free_vbt:
kfree(vbt);
err_not_found:
return NULL;
}
static struct vbt_header *oprom_get_vbt(struct drm_i915_private *i915)
{
struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
void __iomem *p = NULL, *oprom;
struct vbt_header *vbt;
u16 vbt_size;
size_t i, size;
oprom = pci_map_rom(pdev, &size);
if (!oprom)
return NULL;
/* Scour memory looking for the VBT signature. */
for (i = 0; i + 4 < size; i += 4) {
if (ioread32(oprom + i) != *((const u32 *)"$VBT"))
continue;
p = oprom + i;
size -= i;
break;
}
if (!p)
goto err_unmap_oprom;
if (sizeof(struct vbt_header) > size) {
drm_dbg(&i915->drm, "VBT header incomplete\n");
goto err_unmap_oprom;
}
vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size));
if (vbt_size > size) {
drm_dbg(&i915->drm,
"VBT incomplete (vbt_size overflows)\n");
goto err_unmap_oprom;
}
/* The rest will be validated by intel_bios_is_valid_vbt() */
vbt = kmalloc(vbt_size, GFP_KERNEL);
if (!vbt)
goto err_unmap_oprom;
memcpy_fromio(vbt, p, vbt_size);
if (!intel_bios_is_valid_vbt(vbt, vbt_size))
goto err_free_vbt;
pci_unmap_rom(pdev, oprom);
drm_dbg_kms(&i915->drm, "Found valid VBT in PCI ROM\n");
return vbt;
err_free_vbt:
kfree(vbt);
err_unmap_oprom:
pci_unmap_rom(pdev, oprom);
return NULL;
}
/**
* intel_bios_init - find VBT and initialize settings from the BIOS
* @i915: i915 device instance
*
* Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
* was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
* initialize some defaults if the VBT is not present at all.
*/
void intel_bios_init(struct drm_i915_private *i915)
{
const struct vbt_header *vbt = i915->display.opregion.vbt;
struct vbt_header *oprom_vbt = NULL;
const struct bdb_header *bdb;
INIT_LIST_HEAD(&i915->display.vbt.display_devices);
INIT_LIST_HEAD(&i915->display.vbt.bdb_blocks);
if (!HAS_DISPLAY(i915)) {
drm_dbg_kms(&i915->drm,
"Skipping VBT init due to disabled display.\n");
return;
}
init_vbt_defaults(i915);
/*
* If the OpRegion does not have VBT, look in SPI flash through MMIO or
* PCI mapping
*/
if (!vbt && IS_DGFX(i915)) {
oprom_vbt = spi_oprom_get_vbt(i915);
vbt = oprom_vbt;
}
if (!vbt) {
oprom_vbt = oprom_get_vbt(i915);
vbt = oprom_vbt;
}
if (!vbt)
goto out;
bdb = get_bdb_header(vbt);
i915->display.vbt.version = bdb->version;
drm_dbg_kms(&i915->drm,
"VBT signature \"%.*s\", BDB version %d\n",
(int)sizeof(vbt->signature), vbt->signature, i915->display.vbt.version);
init_bdb_blocks(i915, bdb);
/* Grab useful general definitions */
parse_general_features(i915);
parse_general_definitions(i915);
parse_driver_features(i915);
/* Depends on child device list */
parse_compression_parameters(i915);
out:
if (!vbt) {
drm_info(&i915->drm,
"Failed to find VBIOS tables (VBT)\n");
init_vbt_missing_defaults(i915);
}
/* Further processing on pre-parsed or generated child device data */
parse_sdvo_device_mapping(i915);
parse_ddi_ports(i915);
kfree(oprom_vbt);
}
static void intel_bios_init_panel(struct drm_i915_private *i915,
struct intel_panel *panel,
const struct intel_bios_encoder_data *devdata,
const struct drm_edid *drm_edid,
bool use_fallback)
{
/* already have it? */
if (panel->vbt.panel_type >= 0) {
drm_WARN_ON(&i915->drm, !use_fallback);
return;
}
panel->vbt.panel_type = get_panel_type(i915, devdata,
drm_edid, use_fallback);
if (panel->vbt.panel_type < 0) {
drm_WARN_ON(&i915->drm, use_fallback);
return;
}
init_vbt_panel_defaults(panel);
parse_panel_options(i915, panel);
parse_generic_dtd(i915, panel);
parse_lfp_data(i915, panel);
parse_lfp_backlight(i915, panel);
parse_sdvo_panel_data(i915, panel);
parse_panel_driver_features(i915, panel);
parse_power_conservation_features(i915, panel);
parse_edp(i915, panel);
parse_psr(i915, panel);
parse_mipi_config(i915, panel);
parse_mipi_sequence(i915, panel);
}
void intel_bios_init_panel_early(struct drm_i915_private *i915,
struct intel_panel *panel,
const struct intel_bios_encoder_data *devdata)
{
intel_bios_init_panel(i915, panel, devdata, NULL, false);
}
void intel_bios_init_panel_late(struct drm_i915_private *i915,
struct intel_panel *panel,
const struct intel_bios_encoder_data *devdata,
const struct drm_edid *drm_edid)
{
intel_bios_init_panel(i915, panel, devdata, drm_edid, true);
}
/**
* intel_bios_driver_remove - Free any resources allocated by intel_bios_init()
* @i915: i915 device instance
*/
void intel_bios_driver_remove(struct drm_i915_private *i915)
{
struct intel_bios_encoder_data *devdata, *nd;
struct bdb_block_entry *entry, *ne;
list_for_each_entry_safe(devdata, nd, &i915->display.vbt.display_devices, node) {
list_del(&devdata->node);
kfree(devdata->dsc);
kfree(devdata);
}
list_for_each_entry_safe(entry, ne, &i915->display.vbt.bdb_blocks, node) {
list_del(&entry->node);
kfree(entry);
}
}
void intel_bios_fini_panel(struct intel_panel *panel)
{
kfree(panel->vbt.sdvo_lvds_vbt_mode);
panel->vbt.sdvo_lvds_vbt_mode = NULL;
kfree(panel->vbt.lfp_lvds_vbt_mode);
panel->vbt.lfp_lvds_vbt_mode = NULL;
kfree(panel->vbt.dsi.data);
panel->vbt.dsi.data = NULL;
kfree(panel->vbt.dsi.pps);
panel->vbt.dsi.pps = NULL;
kfree(panel->vbt.dsi.config);
panel->vbt.dsi.config = NULL;
kfree(panel->vbt.dsi.deassert_seq);
panel->vbt.dsi.deassert_seq = NULL;
}
/**
* intel_bios_is_tv_present - is integrated TV present in VBT
* @i915: i915 device instance
*
* Return true if TV is present. If no child devices were parsed from VBT,
* assume TV is present.
*/
bool intel_bios_is_tv_present(struct drm_i915_private *i915)
{
const struct intel_bios_encoder_data *devdata;
if (!i915->display.vbt.int_tv_support)
return false;
if (list_empty(&i915->display.vbt.display_devices))
return true;
list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
const struct child_device_config *child = &devdata->child;
/*
* If the device type is not TV, continue.
*/
switch (child->device_type) {
case DEVICE_TYPE_INT_TV:
case DEVICE_TYPE_TV:
case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
break;
default:
continue;
}
/* Only when the addin_offset is non-zero, it is regarded
* as present.
*/
if (child->addin_offset)
return true;
}
return false;
}
/**
* intel_bios_is_lvds_present - is LVDS present in VBT
* @i915: i915 device instance
* @i2c_pin: i2c pin for LVDS if present
*
* Return true if LVDS is present. If no child devices were parsed from VBT,
* assume LVDS is present.
*/
bool intel_bios_is_lvds_present(struct drm_i915_private *i915, u8 *i2c_pin)
{
const struct intel_bios_encoder_data *devdata;
if (list_empty(&i915->display.vbt.display_devices))
return true;
list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
const struct child_device_config *child = &devdata->child;
/* If the device type is not LFP, continue.
* We have to check both the new identifiers as well as the
* old for compatibility with some BIOSes.
*/
if (child->device_type != DEVICE_TYPE_INT_LFP &&
child->device_type != DEVICE_TYPE_LFP)
continue;
if (intel_gmbus_is_valid_pin(i915, child->i2c_pin))
*i2c_pin = child->i2c_pin;
/* However, we cannot trust the BIOS writers to populate
* the VBT correctly. Since LVDS requires additional
* information from AIM blocks, a non-zero addin offset is
* a good indicator that the LVDS is actually present.
*/
if (child->addin_offset)
return true;
/* But even then some BIOS writers perform some black magic
* and instantiate the device without reference to any
* additional data. Trust that if the VBT was written into
* the OpRegion then they have validated the LVDS's existence.
*/
if (i915->display.opregion.vbt)
return true;
}
return false;
}
/**
* intel_bios_is_port_present - is the specified digital port present
* @i915: i915 device instance
* @port: port to check
*
* Return true if the device in %port is present.
*/
bool intel_bios_is_port_present(struct drm_i915_private *i915, enum port port)
{
const struct intel_bios_encoder_data *devdata;
if (WARN_ON(!has_ddi_port_info(i915)))
return true;
if (!is_port_valid(i915, port))
return false;
list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
const struct child_device_config *child = &devdata->child;
if (dvo_port_to_port(i915, child->dvo_port) == port)
return true;
}
return false;
}
bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata)
{
const struct child_device_config *child = &devdata->child;
if (!intel_bios_encoder_supports_dp(devdata) ||
!intel_bios_encoder_supports_hdmi(devdata))
return false;
if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA)
return true;
/* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA &&
child->aux_channel != 0)
return true;
return false;
}
/**
* intel_bios_is_dsi_present - is DSI present in VBT
* @i915: i915 device instance
* @port: port for DSI if present
*
* Return true if DSI is present, and return the port in %port.
*/
bool intel_bios_is_dsi_present(struct drm_i915_private *i915,
enum port *port)
{
const struct intel_bios_encoder_data *devdata;
list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
const struct child_device_config *child = &devdata->child;
u8 dvo_port = child->dvo_port;
if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
continue;
if (dsi_dvo_port_to_port(i915, dvo_port) == PORT_NONE) {
drm_dbg_kms(&i915->drm,
"VBT has unsupported DSI port %c\n",
port_name(dvo_port - DVO_PORT_MIPIA));
continue;
}
if (port)
*port = dsi_dvo_port_to_port(i915, dvo_port);
return true;
}
return false;
}
static void fill_dsc(struct intel_crtc_state *crtc_state,
struct dsc_compression_parameters_entry *dsc,
int dsc_max_bpc)
{
struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
int bpc = 8;
vdsc_cfg->dsc_version_major = dsc->version_major;
vdsc_cfg->dsc_version_minor = dsc->version_minor;
if (dsc->support_12bpc && dsc_max_bpc >= 12)
bpc = 12;
else if (dsc->support_10bpc && dsc_max_bpc >= 10)
bpc = 10;
else if (dsc->support_8bpc && dsc_max_bpc >= 8)
bpc = 8;
else
DRM_DEBUG_KMS("VBT: Unsupported BPC %d for DCS\n",
dsc_max_bpc);
crtc_state->pipe_bpp = bpc * 3;
crtc_state->dsc.compressed_bpp = min(crtc_state->pipe_bpp,
VBT_DSC_MAX_BPP(dsc->max_bpp));
/*
* FIXME: This is ugly, and slice count should take DSC engine
* throughput etc. into account.
*
* Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices.
*/
if (dsc->slices_per_line & BIT(2)) {
crtc_state->dsc.slice_count = 4;
} else if (dsc->slices_per_line & BIT(1)) {
crtc_state->dsc.slice_count = 2;
} else {
/* FIXME */
if (!(dsc->slices_per_line & BIT(0)))
DRM_DEBUG_KMS("VBT: Unsupported DSC slice count for DSI\n");
crtc_state->dsc.slice_count = 1;
}
if (crtc_state->hw.adjusted_mode.crtc_hdisplay %
crtc_state->dsc.slice_count != 0)
DRM_DEBUG_KMS("VBT: DSC hdisplay %d not divisible by slice count %d\n",
crtc_state->hw.adjusted_mode.crtc_hdisplay,
crtc_state->dsc.slice_count);
/*
* The VBT rc_buffer_block_size and rc_buffer_size definitions
* correspond to DP 1.4 DPCD offsets 0x62 and 0x63.
*/
vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size,
dsc->rc_buffer_size);
/* FIXME: DSI spec says bpc + 1 for this one */
vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth);
vdsc_cfg->block_pred_enable = dsc->block_prediction_enable;
vdsc_cfg->slice_height = dsc->slice_height;
}
/* FIXME: initially DSI specific */
bool intel_bios_get_dsc_params(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state,
int dsc_max_bpc)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
const struct intel_bios_encoder_data *devdata;
list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
const struct child_device_config *child = &devdata->child;
if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
continue;
if (dsi_dvo_port_to_port(i915, child->dvo_port) == encoder->port) {
if (!devdata->dsc)
return false;
if (crtc_state)
fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc);
return true;
}
}
return false;
}
static const u8 adlp_aux_ch_map[] = {
[AUX_CH_A] = DP_AUX_A,
[AUX_CH_B] = DP_AUX_B,
[AUX_CH_C] = DP_AUX_C,
[AUX_CH_D_XELPD] = DP_AUX_D,
[AUX_CH_E_XELPD] = DP_AUX_E,
[AUX_CH_USBC1] = DP_AUX_F,
[AUX_CH_USBC2] = DP_AUX_G,
[AUX_CH_USBC3] = DP_AUX_H,
[AUX_CH_USBC4] = DP_AUX_I,
};
/*
* ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E
* map to DDI A,TC1,TC2,TC3,TC4 respectively.
*/
static const u8 adls_aux_ch_map[] = {
[AUX_CH_A] = DP_AUX_A,
[AUX_CH_USBC1] = DP_AUX_B,
[AUX_CH_USBC2] = DP_AUX_C,
[AUX_CH_USBC3] = DP_AUX_D,
[AUX_CH_USBC4] = DP_AUX_E,
};
/*
* RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D
* map to DDI A,B,TC1,TC2 respectively.
*/
static const u8 rkl_aux_ch_map[] = {
[AUX_CH_A] = DP_AUX_A,
[AUX_CH_B] = DP_AUX_B,
[AUX_CH_USBC1] = DP_AUX_C,
[AUX_CH_USBC2] = DP_AUX_D,
};
static const u8 direct_aux_ch_map[] = {
[AUX_CH_A] = DP_AUX_A,
[AUX_CH_B] = DP_AUX_B,
[AUX_CH_C] = DP_AUX_C,
[AUX_CH_D] = DP_AUX_D, /* aka AUX_CH_USBC1 */
[AUX_CH_E] = DP_AUX_E, /* aka AUX_CH_USBC2 */
[AUX_CH_F] = DP_AUX_F, /* aka AUX_CH_USBC3 */
[AUX_CH_G] = DP_AUX_G, /* aka AUX_CH_USBC4 */
[AUX_CH_H] = DP_AUX_H, /* aka AUX_CH_USBC5 */
[AUX_CH_I] = DP_AUX_I, /* aka AUX_CH_USBC6 */
};
static enum aux_ch map_aux_ch(struct drm_i915_private *i915, u8 aux_channel)
{
const u8 *aux_ch_map;
int i, n_entries;
if (DISPLAY_VER(i915) >= 13) {
aux_ch_map = adlp_aux_ch_map;
n_entries = ARRAY_SIZE(adlp_aux_ch_map);
} else if (IS_ALDERLAKE_S(i915)) {
aux_ch_map = adls_aux_ch_map;
n_entries = ARRAY_SIZE(adls_aux_ch_map);
} else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) {
aux_ch_map = rkl_aux_ch_map;
n_entries = ARRAY_SIZE(rkl_aux_ch_map);
} else {
aux_ch_map = direct_aux_ch_map;
n_entries = ARRAY_SIZE(direct_aux_ch_map);
}
for (i = 0; i < n_entries; i++) {
if (aux_ch_map[i] == aux_channel)
return i;
}
drm_dbg_kms(&i915->drm,
"Ignoring alternate AUX CH: VBT claims AUX 0x%x, which is not valid for this platform\n",
aux_channel);
return AUX_CH_NONE;
}
enum aux_ch intel_bios_dp_aux_ch(const struct intel_bios_encoder_data *devdata)
{
if (!devdata || !devdata->child.aux_channel)
return AUX_CH_NONE;
return map_aux_ch(devdata->i915, devdata->child.aux_channel);
}
bool intel_bios_dp_has_shared_aux_ch(const struct intel_bios_encoder_data *devdata)
{
struct drm_i915_private *i915;
u8 aux_channel;
int count = 0;
if (!devdata || !devdata->child.aux_channel)
return false;
i915 = devdata->i915;
aux_channel = devdata->child.aux_channel;
list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
if (intel_bios_encoder_supports_dp(devdata) &&
aux_channel == devdata->child.aux_channel)
count++;
}
return count > 1;
}
int intel_bios_dp_boost_level(const struct intel_bios_encoder_data *devdata)
{
if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost)
return 0;
return translate_iboost(devdata->child.dp_iboost_level);
}
int intel_bios_hdmi_boost_level(const struct intel_bios_encoder_data *devdata)
{
if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost)
return 0;
return translate_iboost(devdata->child.hdmi_iboost_level);
}
int intel_bios_hdmi_ddc_pin(const struct intel_bios_encoder_data *devdata)
{
if (!devdata || !devdata->child.ddc_pin)
return 0;
return map_ddc_pin(devdata->i915, devdata->child.ddc_pin);
}
bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata)
{
return devdata->i915->display.vbt.version >= 195 && devdata->child.dp_usb_type_c;
}
bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata)
{
return devdata->i915->display.vbt.version >= 209 && devdata->child.tbt;
}
bool intel_bios_encoder_lane_reversal(const struct intel_bios_encoder_data *devdata)
{
return devdata && devdata->child.lane_reversal;
}
bool intel_bios_encoder_hpd_invert(const struct intel_bios_encoder_data *devdata)
{
return devdata && devdata->child.hpd_invert;
}
const struct intel_bios_encoder_data *
intel_bios_encoder_data_lookup(struct drm_i915_private *i915, enum port port)
{
return i915->display.vbt.ports[port];
}