linux-zen-desktop/drivers/gpu/drm/i915/display/intel_hdcp_gsc.c

832 lines
25 KiB
C

// SPDX-License-Identifier: MIT
/*
* Copyright 2023, Intel Corporation.
*/
#include <drm/i915_hdcp_interface.h>
#include "gem/i915_gem_region.h"
#include "gt/uc/intel_gsc_uc_heci_cmd_submit.h"
#include "i915_drv.h"
#include "i915_utils.h"
#include "intel_hdcp_gsc.h"
bool intel_hdcp_gsc_cs_required(struct drm_i915_private *i915)
{
return DISPLAY_VER(i915) >= 14;
}
static int
gsc_hdcp_initiate_session(struct device *dev, struct hdcp_port_data *data,
struct hdcp2_ake_init *ake_data)
{
struct wired_cmd_initiate_hdcp2_session_in session_init_in = { { 0 } };
struct wired_cmd_initiate_hdcp2_session_out
session_init_out = { { 0 } };
struct drm_i915_private *i915;
ssize_t byte;
if (!dev || !data || !ake_data)
return -EINVAL;
i915 = kdev_to_i915(dev);
if (!i915) {
dev_err(dev, "DRM not initialized, aborting HDCP.\n");
return -ENODEV;
}
session_init_in.header.api_version = HDCP_API_VERSION;
session_init_in.header.command_id = WIRED_INITIATE_HDCP2_SESSION;
session_init_in.header.status = FW_HDCP_STATUS_SUCCESS;
session_init_in.header.buffer_len =
WIRED_CMD_BUF_LEN_INITIATE_HDCP2_SESSION_IN;
session_init_in.port.integrated_port_type = data->port_type;
session_init_in.port.physical_port = (u8)data->hdcp_ddi;
session_init_in.port.attached_transcoder = (u8)data->hdcp_transcoder;
session_init_in.protocol = data->protocol;
byte = intel_hdcp_gsc_msg_send(i915, (u8 *)&session_init_in,
sizeof(session_init_in),
(u8 *)&session_init_out,
sizeof(session_init_out));
if (byte < 0) {
drm_dbg_kms(&i915->drm, "intel_hdcp_gsc_msg_send failed. %zd\n", byte);
return byte;
}
if (session_init_out.header.status != FW_HDCP_STATUS_SUCCESS) {
drm_dbg_kms(&i915->drm, "FW cmd 0x%08X Failed. Status: 0x%X\n",
WIRED_INITIATE_HDCP2_SESSION,
session_init_out.header.status);
return -EIO;
}
ake_data->msg_id = HDCP_2_2_AKE_INIT;
ake_data->tx_caps = session_init_out.tx_caps;
memcpy(ake_data->r_tx, session_init_out.r_tx, HDCP_2_2_RTX_LEN);
return 0;
}
static int
gsc_hdcp_verify_receiver_cert_prepare_km(struct device *dev,
struct hdcp_port_data *data,
struct hdcp2_ake_send_cert *rx_cert,
bool *km_stored,
struct hdcp2_ake_no_stored_km
*ek_pub_km,
size_t *msg_sz)
{
struct wired_cmd_verify_receiver_cert_in verify_rxcert_in = { { 0 } };
struct wired_cmd_verify_receiver_cert_out verify_rxcert_out = { { 0 } };
struct drm_i915_private *i915;
ssize_t byte;
if (!dev || !data || !rx_cert || !km_stored || !ek_pub_km || !msg_sz)
return -EINVAL;
i915 = kdev_to_i915(dev);
if (!i915) {
dev_err(dev, "DRM not initialized, aborting HDCP.\n");
return -ENODEV;
}
verify_rxcert_in.header.api_version = HDCP_API_VERSION;
verify_rxcert_in.header.command_id = WIRED_VERIFY_RECEIVER_CERT;
verify_rxcert_in.header.status = FW_HDCP_STATUS_SUCCESS;
verify_rxcert_in.header.buffer_len =
WIRED_CMD_BUF_LEN_VERIFY_RECEIVER_CERT_IN;
verify_rxcert_in.port.integrated_port_type = data->port_type;
verify_rxcert_in.port.physical_port = (u8)data->hdcp_ddi;
verify_rxcert_in.port.attached_transcoder = (u8)data->hdcp_transcoder;
verify_rxcert_in.cert_rx = rx_cert->cert_rx;
memcpy(verify_rxcert_in.r_rx, &rx_cert->r_rx, HDCP_2_2_RRX_LEN);
memcpy(verify_rxcert_in.rx_caps, rx_cert->rx_caps, HDCP_2_2_RXCAPS_LEN);
byte = intel_hdcp_gsc_msg_send(i915, (u8 *)&verify_rxcert_in,
sizeof(verify_rxcert_in),
(u8 *)&verify_rxcert_out,
sizeof(verify_rxcert_out));
if (byte < 0) {
drm_dbg_kms(&i915->drm, "intel_hdcp_gsc_msg_send failed: %zd\n", byte);
return byte;
}
if (verify_rxcert_out.header.status != FW_HDCP_STATUS_SUCCESS) {
drm_dbg_kms(&i915->drm, "FW cmd 0x%08X Failed. Status: 0x%X\n",
WIRED_VERIFY_RECEIVER_CERT,
verify_rxcert_out.header.status);
return -EIO;
}
*km_stored = !!verify_rxcert_out.km_stored;
if (verify_rxcert_out.km_stored) {
ek_pub_km->msg_id = HDCP_2_2_AKE_STORED_KM;
*msg_sz = sizeof(struct hdcp2_ake_stored_km);
} else {
ek_pub_km->msg_id = HDCP_2_2_AKE_NO_STORED_KM;
*msg_sz = sizeof(struct hdcp2_ake_no_stored_km);
}
memcpy(ek_pub_km->e_kpub_km, &verify_rxcert_out.ekm_buff,
sizeof(verify_rxcert_out.ekm_buff));
return 0;
}
static int
gsc_hdcp_verify_hprime(struct device *dev, struct hdcp_port_data *data,
struct hdcp2_ake_send_hprime *rx_hprime)
{
struct wired_cmd_ake_send_hprime_in send_hprime_in = { { 0 } };
struct wired_cmd_ake_send_hprime_out send_hprime_out = { { 0 } };
struct drm_i915_private *i915;
ssize_t byte;
if (!dev || !data || !rx_hprime)
return -EINVAL;
i915 = kdev_to_i915(dev);
if (!i915) {
dev_err(dev, "DRM not initialized, aborting HDCP.\n");
return -ENODEV;
}
send_hprime_in.header.api_version = HDCP_API_VERSION;
send_hprime_in.header.command_id = WIRED_AKE_SEND_HPRIME;
send_hprime_in.header.status = FW_HDCP_STATUS_SUCCESS;
send_hprime_in.header.buffer_len = WIRED_CMD_BUF_LEN_AKE_SEND_HPRIME_IN;
send_hprime_in.port.integrated_port_type = data->port_type;
send_hprime_in.port.physical_port = (u8)data->hdcp_ddi;
send_hprime_in.port.attached_transcoder = (u8)data->hdcp_transcoder;
memcpy(send_hprime_in.h_prime, rx_hprime->h_prime,
HDCP_2_2_H_PRIME_LEN);
byte = intel_hdcp_gsc_msg_send(i915, (u8 *)&send_hprime_in,
sizeof(send_hprime_in),
(u8 *)&send_hprime_out,
sizeof(send_hprime_out));
if (byte < 0) {
drm_dbg_kms(&i915->drm, "intel_hdcp_gsc_msg_send failed. %zd\n", byte);
return byte;
}
if (send_hprime_out.header.status != FW_HDCP_STATUS_SUCCESS) {
drm_dbg_kms(&i915->drm, "FW cmd 0x%08X Failed. Status: 0x%X\n",
WIRED_AKE_SEND_HPRIME, send_hprime_out.header.status);
return -EIO;
}
return 0;
}
static int
gsc_hdcp_store_pairing_info(struct device *dev, struct hdcp_port_data *data,
struct hdcp2_ake_send_pairing_info *pairing_info)
{
struct wired_cmd_ake_send_pairing_info_in pairing_info_in = { { 0 } };
struct wired_cmd_ake_send_pairing_info_out pairing_info_out = { { 0 } };
struct drm_i915_private *i915;
ssize_t byte;
if (!dev || !data || !pairing_info)
return -EINVAL;
i915 = kdev_to_i915(dev);
if (!i915) {
dev_err(dev, "DRM not initialized, aborting HDCP.\n");
return -ENODEV;
}
pairing_info_in.header.api_version = HDCP_API_VERSION;
pairing_info_in.header.command_id = WIRED_AKE_SEND_PAIRING_INFO;
pairing_info_in.header.status = FW_HDCP_STATUS_SUCCESS;
pairing_info_in.header.buffer_len =
WIRED_CMD_BUF_LEN_SEND_PAIRING_INFO_IN;
pairing_info_in.port.integrated_port_type = data->port_type;
pairing_info_in.port.physical_port = (u8)data->hdcp_ddi;
pairing_info_in.port.attached_transcoder = (u8)data->hdcp_transcoder;
memcpy(pairing_info_in.e_kh_km, pairing_info->e_kh_km,
HDCP_2_2_E_KH_KM_LEN);
byte = intel_hdcp_gsc_msg_send(i915, (u8 *)&pairing_info_in,
sizeof(pairing_info_in),
(u8 *)&pairing_info_out,
sizeof(pairing_info_out));
if (byte < 0) {
drm_dbg_kms(&i915->drm, "intel_hdcp_gsc_msg_send failed. %zd\n", byte);
return byte;
}
if (pairing_info_out.header.status != FW_HDCP_STATUS_SUCCESS) {
drm_dbg_kms(&i915->drm, "FW cmd 0x%08X failed. Status: 0x%X\n",
WIRED_AKE_SEND_PAIRING_INFO,
pairing_info_out.header.status);
return -EIO;
}
return 0;
}
static int
gsc_hdcp_initiate_locality_check(struct device *dev,
struct hdcp_port_data *data,
struct hdcp2_lc_init *lc_init_data)
{
struct wired_cmd_init_locality_check_in lc_init_in = { { 0 } };
struct wired_cmd_init_locality_check_out lc_init_out = { { 0 } };
struct drm_i915_private *i915;
ssize_t byte;
if (!dev || !data || !lc_init_data)
return -EINVAL;
i915 = kdev_to_i915(dev);
if (!i915) {
dev_err(dev, "DRM not initialized, aborting HDCP.\n");
return -ENODEV;
}
lc_init_in.header.api_version = HDCP_API_VERSION;
lc_init_in.header.command_id = WIRED_INIT_LOCALITY_CHECK;
lc_init_in.header.status = FW_HDCP_STATUS_SUCCESS;
lc_init_in.header.buffer_len = WIRED_CMD_BUF_LEN_INIT_LOCALITY_CHECK_IN;
lc_init_in.port.integrated_port_type = data->port_type;
lc_init_in.port.physical_port = (u8)data->hdcp_ddi;
lc_init_in.port.attached_transcoder = (u8)data->hdcp_transcoder;
byte = intel_hdcp_gsc_msg_send(i915, (u8 *)&lc_init_in, sizeof(lc_init_in),
(u8 *)&lc_init_out, sizeof(lc_init_out));
if (byte < 0) {
drm_dbg_kms(&i915->drm, "intel_hdcp_gsc_msg_send failed. %zd\n", byte);
return byte;
}
if (lc_init_out.header.status != FW_HDCP_STATUS_SUCCESS) {
drm_dbg_kms(&i915->drm, "FW cmd 0x%08X Failed. status: 0x%X\n",
WIRED_INIT_LOCALITY_CHECK, lc_init_out.header.status);
return -EIO;
}
lc_init_data->msg_id = HDCP_2_2_LC_INIT;
memcpy(lc_init_data->r_n, lc_init_out.r_n, HDCP_2_2_RN_LEN);
return 0;
}
static int
gsc_hdcp_verify_lprime(struct device *dev, struct hdcp_port_data *data,
struct hdcp2_lc_send_lprime *rx_lprime)
{
struct wired_cmd_validate_locality_in verify_lprime_in = { { 0 } };
struct wired_cmd_validate_locality_out verify_lprime_out = { { 0 } };
struct drm_i915_private *i915;
ssize_t byte;
if (!dev || !data || !rx_lprime)
return -EINVAL;
i915 = kdev_to_i915(dev);
if (!i915) {
dev_err(dev, "DRM not initialized, aborting HDCP.\n");
return -ENODEV;
}
verify_lprime_in.header.api_version = HDCP_API_VERSION;
verify_lprime_in.header.command_id = WIRED_VALIDATE_LOCALITY;
verify_lprime_in.header.status = FW_HDCP_STATUS_SUCCESS;
verify_lprime_in.header.buffer_len =
WIRED_CMD_BUF_LEN_VALIDATE_LOCALITY_IN;
verify_lprime_in.port.integrated_port_type = data->port_type;
verify_lprime_in.port.physical_port = (u8)data->hdcp_ddi;
verify_lprime_in.port.attached_transcoder = (u8)data->hdcp_transcoder;
memcpy(verify_lprime_in.l_prime, rx_lprime->l_prime,
HDCP_2_2_L_PRIME_LEN);
byte = intel_hdcp_gsc_msg_send(i915, (u8 *)&verify_lprime_in,
sizeof(verify_lprime_in),
(u8 *)&verify_lprime_out,
sizeof(verify_lprime_out));
if (byte < 0) {
drm_dbg_kms(&i915->drm, "intel_hdcp_gsc_msg_send failed. %zd\n", byte);
return byte;
}
if (verify_lprime_out.header.status != FW_HDCP_STATUS_SUCCESS) {
drm_dbg_kms(&i915->drm, "FW cmd 0x%08X failed. status: 0x%X\n",
WIRED_VALIDATE_LOCALITY,
verify_lprime_out.header.status);
return -EIO;
}
return 0;
}
static int gsc_hdcp_get_session_key(struct device *dev,
struct hdcp_port_data *data,
struct hdcp2_ske_send_eks *ske_data)
{
struct wired_cmd_get_session_key_in get_skey_in = { { 0 } };
struct wired_cmd_get_session_key_out get_skey_out = { { 0 } };
struct drm_i915_private *i915;
ssize_t byte;
if (!dev || !data || !ske_data)
return -EINVAL;
i915 = kdev_to_i915(dev);
if (!i915) {
dev_err(dev, "DRM not initialized, aborting HDCP.\n");
return -ENODEV;
}
get_skey_in.header.api_version = HDCP_API_VERSION;
get_skey_in.header.command_id = WIRED_GET_SESSION_KEY;
get_skey_in.header.status = FW_HDCP_STATUS_SUCCESS;
get_skey_in.header.buffer_len = WIRED_CMD_BUF_LEN_GET_SESSION_KEY_IN;
get_skey_in.port.integrated_port_type = data->port_type;
get_skey_in.port.physical_port = (u8)data->hdcp_ddi;
get_skey_in.port.attached_transcoder = (u8)data->hdcp_transcoder;
byte = intel_hdcp_gsc_msg_send(i915, (u8 *)&get_skey_in, sizeof(get_skey_in),
(u8 *)&get_skey_out, sizeof(get_skey_out));
if (byte < 0) {
drm_dbg_kms(&i915->drm, "intel_hdcp_gsc_msg_send failed. %zd\n", byte);
return byte;
}
if (get_skey_out.header.status != FW_HDCP_STATUS_SUCCESS) {
drm_dbg_kms(&i915->drm, "FW cmd 0x%08X failed. status: 0x%X\n",
WIRED_GET_SESSION_KEY, get_skey_out.header.status);
return -EIO;
}
ske_data->msg_id = HDCP_2_2_SKE_SEND_EKS;
memcpy(ske_data->e_dkey_ks, get_skey_out.e_dkey_ks,
HDCP_2_2_E_DKEY_KS_LEN);
memcpy(ske_data->riv, get_skey_out.r_iv, HDCP_2_2_RIV_LEN);
return 0;
}
static int
gsc_hdcp_repeater_check_flow_prepare_ack(struct device *dev,
struct hdcp_port_data *data,
struct hdcp2_rep_send_receiverid_list
*rep_topology,
struct hdcp2_rep_send_ack
*rep_send_ack)
{
struct wired_cmd_verify_repeater_in verify_repeater_in = { { 0 } };
struct wired_cmd_verify_repeater_out verify_repeater_out = { { 0 } };
struct drm_i915_private *i915;
ssize_t byte;
if (!dev || !rep_topology || !rep_send_ack || !data)
return -EINVAL;
i915 = kdev_to_i915(dev);
if (!i915) {
dev_err(dev, "DRM not initialized, aborting HDCP.\n");
return -ENODEV;
}
verify_repeater_in.header.api_version = HDCP_API_VERSION;
verify_repeater_in.header.command_id = WIRED_VERIFY_REPEATER;
verify_repeater_in.header.status = FW_HDCP_STATUS_SUCCESS;
verify_repeater_in.header.buffer_len =
WIRED_CMD_BUF_LEN_VERIFY_REPEATER_IN;
verify_repeater_in.port.integrated_port_type = data->port_type;
verify_repeater_in.port.physical_port = (u8)data->hdcp_ddi;
verify_repeater_in.port.attached_transcoder = (u8)data->hdcp_transcoder;
memcpy(verify_repeater_in.rx_info, rep_topology->rx_info,
HDCP_2_2_RXINFO_LEN);
memcpy(verify_repeater_in.seq_num_v, rep_topology->seq_num_v,
HDCP_2_2_SEQ_NUM_LEN);
memcpy(verify_repeater_in.v_prime, rep_topology->v_prime,
HDCP_2_2_V_PRIME_HALF_LEN);
memcpy(verify_repeater_in.receiver_ids, rep_topology->receiver_ids,
HDCP_2_2_RECEIVER_IDS_MAX_LEN);
byte = intel_hdcp_gsc_msg_send(i915, (u8 *)&verify_repeater_in,
sizeof(verify_repeater_in),
(u8 *)&verify_repeater_out,
sizeof(verify_repeater_out));
if (byte < 0) {
drm_dbg_kms(&i915->drm, "intel_hdcp_gsc_msg_send failed. %zd\n", byte);
return byte;
}
if (verify_repeater_out.header.status != FW_HDCP_STATUS_SUCCESS) {
drm_dbg_kms(&i915->drm, "FW cmd 0x%08X failed. status: 0x%X\n",
WIRED_VERIFY_REPEATER,
verify_repeater_out.header.status);
return -EIO;
}
memcpy(rep_send_ack->v, verify_repeater_out.v,
HDCP_2_2_V_PRIME_HALF_LEN);
rep_send_ack->msg_id = HDCP_2_2_REP_SEND_ACK;
return 0;
}
static int gsc_hdcp_verify_mprime(struct device *dev,
struct hdcp_port_data *data,
struct hdcp2_rep_stream_ready *stream_ready)
{
struct wired_cmd_repeater_auth_stream_req_in *verify_mprime_in;
struct wired_cmd_repeater_auth_stream_req_out
verify_mprime_out = { { 0 } };
struct drm_i915_private *i915;
ssize_t byte;
size_t cmd_size;
if (!dev || !stream_ready || !data)
return -EINVAL;
i915 = kdev_to_i915(dev);
if (!i915) {
dev_err(dev, "DRM not initialized, aborting HDCP.\n");
return -ENODEV;
}
cmd_size = struct_size(verify_mprime_in, streams, data->k);
if (cmd_size == SIZE_MAX)
return -EINVAL;
verify_mprime_in = kzalloc(cmd_size, GFP_KERNEL);
if (!verify_mprime_in)
return -ENOMEM;
verify_mprime_in->header.api_version = HDCP_API_VERSION;
verify_mprime_in->header.command_id = WIRED_REPEATER_AUTH_STREAM_REQ;
verify_mprime_in->header.status = FW_HDCP_STATUS_SUCCESS;
verify_mprime_in->header.buffer_len = cmd_size - sizeof(verify_mprime_in->header);
verify_mprime_in->port.integrated_port_type = data->port_type;
verify_mprime_in->port.physical_port = (u8)data->hdcp_ddi;
verify_mprime_in->port.attached_transcoder = (u8)data->hdcp_transcoder;
memcpy(verify_mprime_in->m_prime, stream_ready->m_prime, HDCP_2_2_MPRIME_LEN);
drm_hdcp_cpu_to_be24(verify_mprime_in->seq_num_m, data->seq_num_m);
memcpy(verify_mprime_in->streams, data->streams,
array_size(data->k, sizeof(*data->streams)));
verify_mprime_in->k = cpu_to_be16(data->k);
byte = intel_hdcp_gsc_msg_send(i915, (u8 *)verify_mprime_in, cmd_size,
(u8 *)&verify_mprime_out,
sizeof(verify_mprime_out));
kfree(verify_mprime_in);
if (byte < 0) {
drm_dbg_kms(&i915->drm, "intel_hdcp_gsc_msg_send failed. %zd\n", byte);
return byte;
}
if (verify_mprime_out.header.status != FW_HDCP_STATUS_SUCCESS) {
drm_dbg_kms(&i915->drm, "FW cmd 0x%08X failed. status: 0x%X\n",
WIRED_REPEATER_AUTH_STREAM_REQ,
verify_mprime_out.header.status);
return -EIO;
}
return 0;
}
static int gsc_hdcp_enable_authentication(struct device *dev,
struct hdcp_port_data *data)
{
struct wired_cmd_enable_auth_in enable_auth_in = { { 0 } };
struct wired_cmd_enable_auth_out enable_auth_out = { { 0 } };
struct drm_i915_private *i915;
ssize_t byte;
if (!dev || !data)
return -EINVAL;
i915 = kdev_to_i915(dev);
if (!i915) {
dev_err(dev, "DRM not initialized, aborting HDCP.\n");
return -ENODEV;
}
enable_auth_in.header.api_version = HDCP_API_VERSION;
enable_auth_in.header.command_id = WIRED_ENABLE_AUTH;
enable_auth_in.header.status = FW_HDCP_STATUS_SUCCESS;
enable_auth_in.header.buffer_len = WIRED_CMD_BUF_LEN_ENABLE_AUTH_IN;
enable_auth_in.port.integrated_port_type = data->port_type;
enable_auth_in.port.physical_port = (u8)data->hdcp_ddi;
enable_auth_in.port.attached_transcoder = (u8)data->hdcp_transcoder;
enable_auth_in.stream_type = data->streams[0].stream_type;
byte = intel_hdcp_gsc_msg_send(i915, (u8 *)&enable_auth_in,
sizeof(enable_auth_in),
(u8 *)&enable_auth_out,
sizeof(enable_auth_out));
if (byte < 0) {
drm_dbg_kms(&i915->drm, "intel_hdcp_gsc_msg_send failed. %zd\n", byte);
return byte;
}
if (enable_auth_out.header.status != FW_HDCP_STATUS_SUCCESS) {
drm_dbg_kms(&i915->drm, "FW cmd 0x%08X failed. status: 0x%X\n",
WIRED_ENABLE_AUTH, enable_auth_out.header.status);
return -EIO;
}
return 0;
}
static int
gsc_hdcp_close_session(struct device *dev, struct hdcp_port_data *data)
{
struct wired_cmd_close_session_in session_close_in = { { 0 } };
struct wired_cmd_close_session_out session_close_out = { { 0 } };
struct drm_i915_private *i915;
ssize_t byte;
if (!dev || !data)
return -EINVAL;
i915 = kdev_to_i915(dev);
if (!i915) {
dev_err(dev, "DRM not initialized, aborting HDCP.\n");
return -ENODEV;
}
session_close_in.header.api_version = HDCP_API_VERSION;
session_close_in.header.command_id = WIRED_CLOSE_SESSION;
session_close_in.header.status = FW_HDCP_STATUS_SUCCESS;
session_close_in.header.buffer_len =
WIRED_CMD_BUF_LEN_CLOSE_SESSION_IN;
session_close_in.port.integrated_port_type = data->port_type;
session_close_in.port.physical_port = (u8)data->hdcp_ddi;
session_close_in.port.attached_transcoder = (u8)data->hdcp_transcoder;
byte = intel_hdcp_gsc_msg_send(i915, (u8 *)&session_close_in,
sizeof(session_close_in),
(u8 *)&session_close_out,
sizeof(session_close_out));
if (byte < 0) {
drm_dbg_kms(&i915->drm, "intel_hdcp_gsc_msg_send failed. %zd\n", byte);
return byte;
}
if (session_close_out.header.status != FW_HDCP_STATUS_SUCCESS) {
drm_dbg_kms(&i915->drm, "Session Close Failed. status: 0x%X\n",
session_close_out.header.status);
return -EIO;
}
return 0;
}
static const struct i915_hdcp_ops gsc_hdcp_ops = {
.initiate_hdcp2_session = gsc_hdcp_initiate_session,
.verify_receiver_cert_prepare_km =
gsc_hdcp_verify_receiver_cert_prepare_km,
.verify_hprime = gsc_hdcp_verify_hprime,
.store_pairing_info = gsc_hdcp_store_pairing_info,
.initiate_locality_check = gsc_hdcp_initiate_locality_check,
.verify_lprime = gsc_hdcp_verify_lprime,
.get_session_key = gsc_hdcp_get_session_key,
.repeater_check_flow_prepare_ack =
gsc_hdcp_repeater_check_flow_prepare_ack,
.verify_mprime = gsc_hdcp_verify_mprime,
.enable_hdcp_authentication = gsc_hdcp_enable_authentication,
.close_hdcp_session = gsc_hdcp_close_session,
};
/*This function helps allocate memory for the command that we will send to gsc cs */
static int intel_hdcp_gsc_initialize_message(struct drm_i915_private *i915,
struct intel_hdcp_gsc_message *hdcp_message)
{
struct intel_gt *gt = i915->media_gt;
struct drm_i915_gem_object *obj = NULL;
struct i915_vma *vma = NULL;
void *cmd;
int err;
/* allocate object of one page for HDCP command memory and store it */
obj = i915_gem_object_create_shmem(i915, PAGE_SIZE);
if (IS_ERR(obj)) {
drm_err(&i915->drm, "Failed to allocate HDCP streaming command!\n");
return PTR_ERR(obj);
}
cmd = i915_gem_object_pin_map_unlocked(obj, i915_coherent_map_type(i915, obj, true));
if (IS_ERR(cmd)) {
drm_err(&i915->drm, "Failed to map gsc message page!\n");
err = PTR_ERR(cmd);
goto out_unpin;
}
vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
if (IS_ERR(vma)) {
err = PTR_ERR(vma);
goto out_unmap;
}
err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL);
if (err)
goto out_unmap;
memset(cmd, 0, obj->base.size);
hdcp_message->hdcp_cmd = cmd;
hdcp_message->vma = vma;
return 0;
out_unmap:
i915_gem_object_unpin_map(obj);
out_unpin:
i915_gem_object_put(obj);
return err;
}
static int intel_hdcp_gsc_hdcp2_init(struct drm_i915_private *i915)
{
struct intel_hdcp_gsc_message *hdcp_message;
int ret;
hdcp_message = kzalloc(sizeof(*hdcp_message), GFP_KERNEL);
if (!hdcp_message)
return -ENOMEM;
/*
* NOTE: No need to lock the comp mutex here as it is already
* going to be taken before this function called
*/
i915->display.hdcp.hdcp_message = hdcp_message;
ret = intel_hdcp_gsc_initialize_message(i915, hdcp_message);
if (ret)
drm_err(&i915->drm, "Could not initialize hdcp_message\n");
return ret;
}
static void intel_hdcp_gsc_free_message(struct drm_i915_private *i915)
{
struct intel_hdcp_gsc_message *hdcp_message =
i915->display.hdcp.hdcp_message;
i915_vma_unpin_and_release(&hdcp_message->vma, I915_VMA_RELEASE_MAP);
kfree(hdcp_message);
}
int intel_hdcp_gsc_init(struct drm_i915_private *i915)
{
struct i915_hdcp_arbiter *data;
int ret;
data = kzalloc(sizeof(struct i915_hdcp_arbiter), GFP_KERNEL);
if (!data)
return -ENOMEM;
mutex_lock(&i915->display.hdcp.hdcp_mutex);
i915->display.hdcp.arbiter = data;
i915->display.hdcp.arbiter->hdcp_dev = i915->drm.dev;
i915->display.hdcp.arbiter->ops = &gsc_hdcp_ops;
ret = intel_hdcp_gsc_hdcp2_init(i915);
mutex_unlock(&i915->display.hdcp.hdcp_mutex);
return ret;
}
void intel_hdcp_gsc_fini(struct drm_i915_private *i915)
{
intel_hdcp_gsc_free_message(i915);
kfree(i915->display.hdcp.arbiter);
}
static int intel_gsc_send_sync(struct drm_i915_private *i915,
struct intel_gsc_mtl_header *header, u64 addr,
size_t msg_out_len)
{
struct intel_gt *gt = i915->media_gt;
int ret;
header->flags = 0;
ret = intel_gsc_uc_heci_cmd_submit_packet(&gt->uc.gsc, addr,
header->message_size,
addr,
msg_out_len + sizeof(*header));
if (ret) {
drm_err(&i915->drm, "failed to send gsc HDCP msg (%d)\n", ret);
return ret;
}
/*
* Checking validity marker for memory sanity
*/
if (header->validity_marker != GSC_HECI_VALIDITY_MARKER) {
drm_err(&i915->drm, "invalid validity marker\n");
return -EINVAL;
}
if (header->status != 0) {
drm_err(&i915->drm, "header status indicates error %d\n",
header->status);
return -EINVAL;
}
if (header->flags & GSC_OUTFLAG_MSG_PENDING)
return -EAGAIN;
return 0;
}
/*
* This function can now be used for sending requests and will also handle
* receipt of reply messages hence no different function of message retrieval
* is required. We will initialize intel_hdcp_gsc_message structure then add
* gsc cs memory header as stated in specs after which the normal HDCP payload
* will follow
*/
ssize_t intel_hdcp_gsc_msg_send(struct drm_i915_private *i915, u8 *msg_in,
size_t msg_in_len, u8 *msg_out,
size_t msg_out_len)
{
struct intel_gt *gt = i915->media_gt;
struct intel_gsc_mtl_header *header;
const size_t max_msg_size = PAGE_SIZE - sizeof(*header);
struct intel_hdcp_gsc_message *hdcp_message;
u64 addr, host_session_id;
u32 reply_size, msg_size;
int ret, tries = 0;
if (!intel_uc_uses_gsc_uc(&gt->uc))
return -ENODEV;
if (msg_in_len > max_msg_size || msg_out_len > max_msg_size)
return -ENOSPC;
hdcp_message = i915->display.hdcp.hdcp_message;
header = hdcp_message->hdcp_cmd;
addr = i915_ggtt_offset(hdcp_message->vma);
msg_size = msg_in_len + sizeof(*header);
memset(header, 0, msg_size);
get_random_bytes(&host_session_id, sizeof(u64));
intel_gsc_uc_heci_cmd_emit_mtl_header(header, HECI_MEADDRESS_HDCP,
msg_size, host_session_id);
memcpy(hdcp_message->hdcp_cmd + sizeof(*header), msg_in, msg_in_len);
/*
* Keep sending request in case the pending bit is set no need to add
* message handle as we are using same address hence loc. of header is
* same and it will contain the message handle. we will send the message
* 20 times each message 50 ms apart
*/
do {
ret = intel_gsc_send_sync(i915, header, addr, msg_out_len);
/* Only try again if gsc says so */
if (ret != -EAGAIN)
break;
msleep(50);
} while (++tries < 20);
if (ret)
goto err;
/* we use the same mem for the reply, so header is in the same loc */
reply_size = header->message_size - sizeof(*header);
if (reply_size > msg_out_len) {
drm_warn(&i915->drm, "caller with insufficient HDCP reply size %u (%d)\n",
reply_size, (u32)msg_out_len);
reply_size = msg_out_len;
} else if (reply_size != msg_out_len) {
drm_dbg_kms(&i915->drm, "caller unexpected HCDP reply size %u (%d)\n",
reply_size, (u32)msg_out_len);
}
memcpy(msg_out, hdcp_message->hdcp_cmd + sizeof(*header), msg_out_len);
err:
return ret;
}