linux-zen-desktop/drivers/gpu/drm/nouveau/dispnv50/head.c

638 lines
19 KiB
C

/*
* Copyright 2018 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include "head.h"
#include "base.h"
#include "core.h"
#include "curs.h"
#include "ovly.h"
#include "crc.h"
#include <nvif/class.h>
#include <nvif/event.h>
#include <nvif/cl0046.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_vblank.h>
#include "nouveau_connector.h"
void
nv50_head_flush_clr(struct nv50_head *head,
struct nv50_head_atom *asyh, bool flush)
{
union nv50_head_atom_mask clr = {
.mask = asyh->clr.mask & ~(flush ? 0 : asyh->set.mask),
};
if (clr.crc) nv50_crc_atomic_clr(head);
if (clr.olut) head->func->olut_clr(head);
if (clr.core) head->func->core_clr(head);
if (clr.curs) head->func->curs_clr(head);
}
void
nv50_head_flush_set_wndw(struct nv50_head *head, struct nv50_head_atom *asyh)
{
if (asyh->set.curs ) head->func->curs_set(head, asyh);
if (asyh->set.olut ) {
asyh->olut.offset = nv50_lut_load(&head->olut,
asyh->olut.buffer,
asyh->state.gamma_lut,
asyh->olut.load);
head->func->olut_set(head, asyh);
}
}
void
nv50_head_flush_set(struct nv50_head *head, struct nv50_head_atom *asyh)
{
if (asyh->set.view ) head->func->view (head, asyh);
if (asyh->set.mode ) head->func->mode (head, asyh);
if (asyh->set.core ) head->func->core_set(head, asyh);
if (asyh->set.base ) head->func->base (head, asyh);
if (asyh->set.ovly ) head->func->ovly (head, asyh);
if (asyh->set.dither ) head->func->dither (head, asyh);
if (asyh->set.procamp) head->func->procamp (head, asyh);
if (asyh->set.crc ) nv50_crc_atomic_set (head, asyh);
if (asyh->set.or ) head->func->or (head, asyh);
}
static void
nv50_head_atomic_check_procamp(struct nv50_head_atom *armh,
struct nv50_head_atom *asyh,
struct nouveau_conn_atom *asyc)
{
const int vib = asyc->procamp.color_vibrance - 100;
const int hue = asyc->procamp.vibrant_hue - 90;
const int adj = (vib > 0) ? 50 : 0;
asyh->procamp.sat.cos = ((vib * 2047 + adj) / 100) & 0xfff;
asyh->procamp.sat.sin = ((hue * 2047) / 100) & 0xfff;
asyh->set.procamp = true;
}
static void
nv50_head_atomic_check_dither(struct nv50_head_atom *armh,
struct nv50_head_atom *asyh,
struct nouveau_conn_atom *asyc)
{
u32 mode = 0x00;
if (asyc->dither.mode) {
if (asyc->dither.mode == DITHERING_MODE_AUTO) {
if (asyh->base.depth > asyh->or.bpc * 3)
mode = DITHERING_MODE_DYNAMIC2X2;
} else {
mode = asyc->dither.mode;
}
if (asyc->dither.depth == DITHERING_DEPTH_AUTO) {
if (asyh->or.bpc >= 8)
mode |= DITHERING_DEPTH_8BPC;
} else {
mode |= asyc->dither.depth;
}
}
asyh->dither.enable = NVVAL_GET(mode, NV507D, HEAD_SET_DITHER_CONTROL, ENABLE);
asyh->dither.bits = NVVAL_GET(mode, NV507D, HEAD_SET_DITHER_CONTROL, BITS);
asyh->dither.mode = NVVAL_GET(mode, NV507D, HEAD_SET_DITHER_CONTROL, MODE);
asyh->set.dither = true;
}
static void
nv50_head_atomic_check_view(struct nv50_head_atom *armh,
struct nv50_head_atom *asyh,
struct nouveau_conn_atom *asyc)
{
struct drm_connector *connector = asyc->state.connector;
struct drm_display_mode *omode = &asyh->state.adjusted_mode;
struct drm_display_mode *umode = &asyh->state.mode;
int mode = asyc->scaler.mode;
struct edid *edid;
int umode_vdisplay, omode_hdisplay, omode_vdisplay;
if (connector->edid_blob_ptr)
edid = (struct edid *)connector->edid_blob_ptr->data;
else
edid = NULL;
if (!asyc->scaler.full) {
if (mode == DRM_MODE_SCALE_NONE)
omode = umode;
} else {
/* Non-EDID LVDS/eDP mode. */
mode = DRM_MODE_SCALE_FULLSCREEN;
}
/* For the user-specified mode, we must ignore doublescan and
* the like, but honor frame packing.
*/
umode_vdisplay = umode->vdisplay;
if ((umode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
umode_vdisplay += umode->vtotal;
asyh->view.iW = umode->hdisplay;
asyh->view.iH = umode_vdisplay;
/* For the output mode, we can just use the stock helper. */
drm_mode_get_hv_timing(omode, &omode_hdisplay, &omode_vdisplay);
asyh->view.oW = omode_hdisplay;
asyh->view.oH = omode_vdisplay;
/* Add overscan compensation if necessary, will keep the aspect
* ratio the same as the backend mode unless overridden by the
* user setting both hborder and vborder properties.
*/
if ((asyc->scaler.underscan.mode == UNDERSCAN_ON ||
(asyc->scaler.underscan.mode == UNDERSCAN_AUTO &&
drm_detect_hdmi_monitor(edid)))) {
u32 bX = asyc->scaler.underscan.hborder;
u32 bY = asyc->scaler.underscan.vborder;
u32 r = (asyh->view.oH << 19) / asyh->view.oW;
if (bX) {
asyh->view.oW -= (bX * 2);
if (bY) asyh->view.oH -= (bY * 2);
else asyh->view.oH = ((asyh->view.oW * r) + (r / 2)) >> 19;
} else {
asyh->view.oW -= (asyh->view.oW >> 4) + 32;
if (bY) asyh->view.oH -= (bY * 2);
else asyh->view.oH = ((asyh->view.oW * r) + (r / 2)) >> 19;
}
}
/* Handle CENTER/ASPECT scaling, taking into account the areas
* removed already for overscan compensation.
*/
switch (mode) {
case DRM_MODE_SCALE_CENTER:
/* NOTE: This will cause scaling when the input is
* larger than the output.
*/
asyh->view.oW = min(asyh->view.iW, asyh->view.oW);
asyh->view.oH = min(asyh->view.iH, asyh->view.oH);
break;
case DRM_MODE_SCALE_ASPECT:
/* Determine whether the scaling should be on width or on
* height. This is done by comparing the aspect ratios of the
* sizes. If the output AR is larger than input AR, that means
* we want to change the width (letterboxed on the
* left/right), otherwise on the height (letterboxed on the
* top/bottom).
*
* E.g. 4:3 (1.333) AR image displayed on a 16:10 (1.6) AR
* screen will have letterboxes on the left/right. However a
* 16:9 (1.777) AR image on that same screen will have
* letterboxes on the top/bottom.
*
* inputAR = iW / iH; outputAR = oW / oH
* outputAR > inputAR is equivalent to oW * iH > iW * oH
*/
if (asyh->view.oW * asyh->view.iH > asyh->view.iW * asyh->view.oH) {
/* Recompute output width, i.e. left/right letterbox */
u32 r = (asyh->view.iW << 19) / asyh->view.iH;
asyh->view.oW = ((asyh->view.oH * r) + (r / 2)) >> 19;
} else {
/* Recompute output height, i.e. top/bottom letterbox */
u32 r = (asyh->view.iH << 19) / asyh->view.iW;
asyh->view.oH = ((asyh->view.oW * r) + (r / 2)) >> 19;
}
break;
default:
break;
}
asyh->set.view = true;
}
static int
nv50_head_atomic_check_lut(struct nv50_head *head,
struct nv50_head_atom *asyh)
{
struct drm_device *dev = head->base.base.dev;
struct drm_crtc *crtc = &head->base.base;
struct nv50_disp *disp = nv50_disp(dev);
struct nouveau_drm *drm = nouveau_drm(dev);
struct drm_property_blob *olut = asyh->state.gamma_lut,
*ilut = asyh->state.degamma_lut;
int size;
/* Ensure that the ilut is valid */
if (ilut) {
size = drm_color_lut_size(ilut);
if (!head->func->ilut_check(size)) {
NV_ATOMIC(drm, "Invalid size %d for degamma on [CRTC:%d:%s]\n",
size, crtc->base.id, crtc->name);
return -EINVAL;
}
}
/* Determine whether core output LUT should be enabled. */
if (olut) {
/* Check if any window(s) have stolen the core output LUT
* to as an input LUT for legacy gamma + I8 colour format.
*/
if (asyh->wndw.olut) {
/* If any window has stolen the core output LUT,
* all of them must.
*/
if (asyh->wndw.olut != asyh->wndw.mask)
return -EINVAL;
olut = NULL;
}
}
if (!olut) {
if (!head->func->olut_identity) {
asyh->olut.handle = 0;
return 0;
}
size = 0;
} else {
size = drm_color_lut_size(olut);
}
if (!head->func->olut(head, asyh, size)) {
NV_ATOMIC(drm, "Invalid size %d for gamma on [CRTC:%d:%s]\n",
size, crtc->base.id, crtc->name);
return -EINVAL;
}
asyh->olut.handle = disp->core->chan.vram.handle;
asyh->olut.buffer = !asyh->olut.buffer;
return 0;
}
static void
nv50_head_atomic_check_mode(struct nv50_head *head, struct nv50_head_atom *asyh)
{
struct drm_display_mode *mode = &asyh->state.adjusted_mode;
struct nv50_head_mode *m = &asyh->mode;
u32 blankus;
drm_mode_set_crtcinfo(mode, CRTC_INTERLACE_HALVE_V | CRTC_STEREO_DOUBLE);
/*
* DRM modes are defined in terms of a repeating interval
* starting with the active display area. The hardware modes
* are defined in terms of a repeating interval starting one
* unit (pixel or line) into the sync pulse. So, add bias.
*/
m->h.active = mode->crtc_htotal;
m->h.synce = mode->crtc_hsync_end - mode->crtc_hsync_start - 1;
m->h.blanke = mode->crtc_hblank_end - mode->crtc_hsync_start - 1;
m->h.blanks = m->h.blanke + mode->crtc_hdisplay;
m->v.active = mode->crtc_vtotal;
m->v.synce = mode->crtc_vsync_end - mode->crtc_vsync_start - 1;
m->v.blanke = mode->crtc_vblank_end - mode->crtc_vsync_start - 1;
m->v.blanks = m->v.blanke + mode->crtc_vdisplay;
/*XXX: Safe underestimate, even "0" works */
blankus = (m->v.active - mode->crtc_vdisplay - 2) * m->h.active;
blankus *= 1000;
blankus /= mode->crtc_clock;
m->v.blankus = blankus;
if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
m->v.blank2e = m->v.active + m->v.blanke;
m->v.blank2s = m->v.blank2e + mode->crtc_vdisplay;
m->v.active = (m->v.active * 2) + 1;
m->interlace = true;
} else {
m->v.blank2e = 0;
m->v.blank2s = 1;
m->interlace = false;
}
m->clock = mode->crtc_clock;
asyh->or.nhsync = !!(mode->flags & DRM_MODE_FLAG_NHSYNC);
asyh->or.nvsync = !!(mode->flags & DRM_MODE_FLAG_NVSYNC);
asyh->set.or = head->func->or != NULL;
asyh->set.mode = true;
}
static int
nv50_head_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state)
{
struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
crtc);
struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
crtc);
struct nouveau_drm *drm = nouveau_drm(crtc->dev);
struct nv50_head *head = nv50_head(crtc);
struct nv50_head_atom *armh = nv50_head_atom(old_crtc_state);
struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
struct nouveau_conn_atom *asyc = NULL;
struct drm_connector_state *conns;
struct drm_connector *conn;
int i, ret;
bool check_lut = asyh->state.color_mgmt_changed ||
memcmp(&armh->wndw, &asyh->wndw, sizeof(asyh->wndw));
NV_ATOMIC(drm, "%s atomic_check %d\n", crtc->name, asyh->state.active);
if (check_lut) {
ret = nv50_head_atomic_check_lut(head, asyh);
if (ret)
return ret;
}
if (asyh->state.active) {
for_each_new_connector_in_state(asyh->state.state, conn, conns, i) {
if (conns->crtc == crtc) {
asyc = nouveau_conn_atom(conns);
break;
}
}
if (armh->state.active) {
if (asyc) {
if (asyh->state.mode_changed)
asyc->set.scaler = true;
if (armh->base.depth != asyh->base.depth)
asyc->set.dither = true;
}
} else {
if (asyc)
asyc->set.mask = ~0;
asyh->set.mask = ~0;
asyh->set.or = head->func->or != NULL;
}
if (asyh->state.mode_changed || asyh->state.connectors_changed)
nv50_head_atomic_check_mode(head, asyh);
if (check_lut)
asyh->olut.visible = asyh->olut.handle != 0;
if (asyc) {
if (asyc->set.scaler)
nv50_head_atomic_check_view(armh, asyh, asyc);
if (asyc->set.dither)
nv50_head_atomic_check_dither(armh, asyh, asyc);
if (asyc->set.procamp)
nv50_head_atomic_check_procamp(armh, asyh, asyc);
}
if (head->func->core_calc) {
head->func->core_calc(head, asyh);
if (!asyh->core.visible)
asyh->olut.visible = false;
}
asyh->set.base = armh->base.cpp != asyh->base.cpp;
asyh->set.ovly = armh->ovly.cpp != asyh->ovly.cpp;
} else {
asyh->olut.visible = false;
asyh->core.visible = false;
asyh->curs.visible = false;
asyh->base.cpp = 0;
asyh->ovly.cpp = 0;
}
if (!drm_atomic_crtc_needs_modeset(&asyh->state)) {
if (asyh->core.visible) {
if (memcmp(&armh->core, &asyh->core, sizeof(asyh->core)))
asyh->set.core = true;
} else
if (armh->core.visible) {
asyh->clr.core = true;
}
if (asyh->curs.visible) {
if (memcmp(&armh->curs, &asyh->curs, sizeof(asyh->curs)))
asyh->set.curs = true;
} else
if (armh->curs.visible) {
asyh->clr.curs = true;
}
if (asyh->olut.visible) {
if (memcmp(&armh->olut, &asyh->olut, sizeof(asyh->olut)))
asyh->set.olut = true;
} else
if (armh->olut.visible) {
asyh->clr.olut = true;
}
} else {
asyh->clr.olut = armh->olut.visible;
asyh->clr.core = armh->core.visible;
asyh->clr.curs = armh->curs.visible;
asyh->set.olut = asyh->olut.visible;
asyh->set.core = asyh->core.visible;
asyh->set.curs = asyh->curs.visible;
}
ret = nv50_crc_atomic_check_head(head, asyh, armh);
if (ret)
return ret;
if (asyh->clr.mask || asyh->set.mask)
nv50_atom(asyh->state.state)->lock_core = true;
return 0;
}
static const struct drm_crtc_helper_funcs
nv50_head_help = {
.atomic_check = nv50_head_atomic_check,
.get_scanout_position = nouveau_display_scanoutpos,
};
static void
nv50_head_atomic_destroy_state(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
struct nv50_head_atom *asyh = nv50_head_atom(state);
__drm_atomic_helper_crtc_destroy_state(&asyh->state);
kfree(asyh);
}
static struct drm_crtc_state *
nv50_head_atomic_duplicate_state(struct drm_crtc *crtc)
{
struct nv50_head_atom *armh = nv50_head_atom(crtc->state);
struct nv50_head_atom *asyh;
if (!(asyh = kmalloc(sizeof(*asyh), GFP_KERNEL)))
return NULL;
__drm_atomic_helper_crtc_duplicate_state(crtc, &asyh->state);
asyh->wndw = armh->wndw;
asyh->view = armh->view;
asyh->mode = armh->mode;
asyh->olut = armh->olut;
asyh->core = armh->core;
asyh->curs = armh->curs;
asyh->base = armh->base;
asyh->ovly = armh->ovly;
asyh->dither = armh->dither;
asyh->procamp = armh->procamp;
asyh->crc = armh->crc;
asyh->or = armh->or;
asyh->dp = armh->dp;
asyh->clr.mask = 0;
asyh->set.mask = 0;
return &asyh->state;
}
static void
nv50_head_reset(struct drm_crtc *crtc)
{
struct nv50_head_atom *asyh;
if (WARN_ON(!(asyh = kzalloc(sizeof(*asyh), GFP_KERNEL))))
return;
if (crtc->state)
nv50_head_atomic_destroy_state(crtc, crtc->state);
__drm_atomic_helper_crtc_reset(crtc, &asyh->state);
}
static int
nv50_head_late_register(struct drm_crtc *crtc)
{
return nv50_head_crc_late_register(nv50_head(crtc));
}
static void
nv50_head_destroy(struct drm_crtc *crtc)
{
struct nv50_head *head = nv50_head(crtc);
nvif_event_dtor(&head->base.vblank);
nvif_head_dtor(&head->base.head);
nv50_lut_fini(&head->olut);
drm_crtc_cleanup(crtc);
kfree(head);
}
static const struct drm_crtc_funcs
nv50_head_func = {
.reset = nv50_head_reset,
.destroy = nv50_head_destroy,
.set_config = drm_atomic_helper_set_config,
.page_flip = drm_atomic_helper_page_flip,
.atomic_duplicate_state = nv50_head_atomic_duplicate_state,
.atomic_destroy_state = nv50_head_atomic_destroy_state,
.enable_vblank = nouveau_display_vblank_enable,
.disable_vblank = nouveau_display_vblank_disable,
.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
.late_register = nv50_head_late_register,
};
static const struct drm_crtc_funcs
nvd9_head_func = {
.reset = nv50_head_reset,
.destroy = nv50_head_destroy,
.set_config = drm_atomic_helper_set_config,
.page_flip = drm_atomic_helper_page_flip,
.atomic_duplicate_state = nv50_head_atomic_duplicate_state,
.atomic_destroy_state = nv50_head_atomic_destroy_state,
.enable_vblank = nouveau_display_vblank_enable,
.disable_vblank = nouveau_display_vblank_disable,
.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
.verify_crc_source = nv50_crc_verify_source,
.get_crc_sources = nv50_crc_get_sources,
.set_crc_source = nv50_crc_set_source,
.late_register = nv50_head_late_register,
};
static int
nv50_head_vblank_handler(struct nvif_event *event, void *repv, u32 repc)
{
struct nouveau_crtc *nv_crtc = container_of(event, struct nouveau_crtc, vblank);
if (drm_crtc_handle_vblank(&nv_crtc->base))
nv50_crc_handle_vblank(nv50_head(&nv_crtc->base));
return NVIF_EVENT_KEEP;
}
struct nv50_head *
nv50_head_create(struct drm_device *dev, int index)
{
struct nouveau_drm *drm = nouveau_drm(dev);
struct nv50_disp *disp = nv50_disp(dev);
struct nv50_head *head;
struct nv50_wndw *base, *ovly, *curs;
struct nouveau_crtc *nv_crtc;
struct drm_crtc *crtc;
const struct drm_crtc_funcs *funcs;
int ret;
head = kzalloc(sizeof(*head), GFP_KERNEL);
if (!head)
return ERR_PTR(-ENOMEM);
head->func = disp->core->func->head;
head->base.index = index;
if (disp->disp->object.oclass < GF110_DISP)
funcs = &nv50_head_func;
else
funcs = &nvd9_head_func;
if (disp->disp->object.oclass < GV100_DISP) {
ret = nv50_base_new(drm, head->base.index, &base);
ret = nv50_ovly_new(drm, head->base.index, &ovly);
} else {
ret = nv50_wndw_new(drm, DRM_PLANE_TYPE_PRIMARY,
head->base.index * 2 + 0, &base);
ret = nv50_wndw_new(drm, DRM_PLANE_TYPE_OVERLAY,
head->base.index * 2 + 1, &ovly);
}
if (ret == 0)
ret = nv50_curs_new(drm, head->base.index, &curs);
if (ret) {
kfree(head);
return ERR_PTR(ret);
}
nv_crtc = &head->base;
crtc = &nv_crtc->base;
drm_crtc_init_with_planes(dev, crtc, &base->plane, &curs->plane,
funcs, "head-%d", head->base.index);
drm_crtc_helper_add(crtc, &nv50_head_help);
/* Keep the legacy gamma size at 256 to avoid compatibility issues */
drm_mode_crtc_set_gamma_size(crtc, 256);
drm_crtc_enable_color_mgmt(crtc, base->func->ilut_size,
disp->disp->object.oclass >= GF110_DISP,
head->func->olut_size);
if (head->func->olut_set) {
ret = nv50_lut_init(disp, &drm->client.mmu, &head->olut);
if (ret) {
nv50_head_destroy(crtc);
return ERR_PTR(ret);
}
}
ret = nvif_head_ctor(disp->disp, head->base.base.name, head->base.index, &head->base.head);
if (ret)
return ERR_PTR(ret);
ret = nvif_head_vblank_event_ctor(&head->base.head, "kmsVbl", nv50_head_vblank_handler,
false, &nv_crtc->vblank);
if (ret)
return ERR_PTR(ret);
return head;
}