linux-zen-desktop/drivers/gpu/drm/radeon/radeon_ttm.c

917 lines
23 KiB
C

/*
* Copyright 2009 Jerome Glisse.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
*/
/*
* Authors:
* Jerome Glisse <glisse@freedesktop.org>
* Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
* Dave Airlie
*/
#include <linux/dma-mapping.h>
#include <linux/pagemap.h>
#include <linux/pci.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/swap.h>
#include <drm/drm_device.h>
#include <drm/drm_file.h>
#include <drm/drm_prime.h>
#include <drm/radeon_drm.h>
#include <drm/ttm/ttm_bo.h>
#include <drm/ttm/ttm_placement.h>
#include <drm/ttm/ttm_range_manager.h>
#include <drm/ttm/ttm_tt.h>
#include "radeon_reg.h"
#include "radeon.h"
#include "radeon_ttm.h"
static void radeon_ttm_debugfs_init(struct radeon_device *rdev);
static int radeon_ttm_tt_bind(struct ttm_device *bdev, struct ttm_tt *ttm,
struct ttm_resource *bo_mem);
static void radeon_ttm_tt_unbind(struct ttm_device *bdev, struct ttm_tt *ttm);
struct radeon_device *radeon_get_rdev(struct ttm_device *bdev)
{
struct radeon_mman *mman;
struct radeon_device *rdev;
mman = container_of(bdev, struct radeon_mman, bdev);
rdev = container_of(mman, struct radeon_device, mman);
return rdev;
}
static int radeon_ttm_init_vram(struct radeon_device *rdev)
{
return ttm_range_man_init(&rdev->mman.bdev, TTM_PL_VRAM,
false, rdev->mc.real_vram_size >> PAGE_SHIFT);
}
static int radeon_ttm_init_gtt(struct radeon_device *rdev)
{
return ttm_range_man_init(&rdev->mman.bdev, TTM_PL_TT,
true, rdev->mc.gtt_size >> PAGE_SHIFT);
}
static void radeon_evict_flags(struct ttm_buffer_object *bo,
struct ttm_placement *placement)
{
static const struct ttm_place placements = {
.fpfn = 0,
.lpfn = 0,
.mem_type = TTM_PL_SYSTEM,
.flags = 0
};
struct radeon_bo *rbo;
if (!radeon_ttm_bo_is_radeon_bo(bo)) {
placement->placement = &placements;
placement->busy_placement = &placements;
placement->num_placement = 1;
placement->num_busy_placement = 1;
return;
}
rbo = container_of(bo, struct radeon_bo, tbo);
switch (bo->resource->mem_type) {
case TTM_PL_VRAM:
if (rbo->rdev->ring[radeon_copy_ring_index(rbo->rdev)].ready == false)
radeon_ttm_placement_from_domain(rbo, RADEON_GEM_DOMAIN_CPU);
else if (rbo->rdev->mc.visible_vram_size < rbo->rdev->mc.real_vram_size &&
bo->resource->start < (rbo->rdev->mc.visible_vram_size >> PAGE_SHIFT)) {
unsigned fpfn = rbo->rdev->mc.visible_vram_size >> PAGE_SHIFT;
int i;
/* Try evicting to the CPU inaccessible part of VRAM
* first, but only set GTT as busy placement, so this
* BO will be evicted to GTT rather than causing other
* BOs to be evicted from VRAM
*/
radeon_ttm_placement_from_domain(rbo, RADEON_GEM_DOMAIN_VRAM |
RADEON_GEM_DOMAIN_GTT);
rbo->placement.num_busy_placement = 0;
for (i = 0; i < rbo->placement.num_placement; i++) {
if (rbo->placements[i].mem_type == TTM_PL_VRAM) {
if (rbo->placements[i].fpfn < fpfn)
rbo->placements[i].fpfn = fpfn;
} else {
rbo->placement.busy_placement =
&rbo->placements[i];
rbo->placement.num_busy_placement = 1;
}
}
} else
radeon_ttm_placement_from_domain(rbo, RADEON_GEM_DOMAIN_GTT);
break;
case TTM_PL_TT:
default:
radeon_ttm_placement_from_domain(rbo, RADEON_GEM_DOMAIN_CPU);
}
*placement = rbo->placement;
}
static int radeon_move_blit(struct ttm_buffer_object *bo,
bool evict,
struct ttm_resource *new_mem,
struct ttm_resource *old_mem)
{
struct radeon_device *rdev;
uint64_t old_start, new_start;
struct radeon_fence *fence;
unsigned num_pages;
int r, ridx;
rdev = radeon_get_rdev(bo->bdev);
ridx = radeon_copy_ring_index(rdev);
old_start = (u64)old_mem->start << PAGE_SHIFT;
new_start = (u64)new_mem->start << PAGE_SHIFT;
switch (old_mem->mem_type) {
case TTM_PL_VRAM:
old_start += rdev->mc.vram_start;
break;
case TTM_PL_TT:
old_start += rdev->mc.gtt_start;
break;
default:
DRM_ERROR("Unknown placement %d\n", old_mem->mem_type);
return -EINVAL;
}
switch (new_mem->mem_type) {
case TTM_PL_VRAM:
new_start += rdev->mc.vram_start;
break;
case TTM_PL_TT:
new_start += rdev->mc.gtt_start;
break;
default:
DRM_ERROR("Unknown placement %d\n", old_mem->mem_type);
return -EINVAL;
}
if (!rdev->ring[ridx].ready) {
DRM_ERROR("Trying to move memory with ring turned off.\n");
return -EINVAL;
}
BUILD_BUG_ON((PAGE_SIZE % RADEON_GPU_PAGE_SIZE) != 0);
num_pages = PFN_UP(new_mem->size) * (PAGE_SIZE / RADEON_GPU_PAGE_SIZE);
fence = radeon_copy(rdev, old_start, new_start, num_pages, bo->base.resv);
if (IS_ERR(fence))
return PTR_ERR(fence);
r = ttm_bo_move_accel_cleanup(bo, &fence->base, evict, false, new_mem);
radeon_fence_unref(&fence);
return r;
}
static int radeon_bo_move(struct ttm_buffer_object *bo, bool evict,
struct ttm_operation_ctx *ctx,
struct ttm_resource *new_mem,
struct ttm_place *hop)
{
struct ttm_resource *old_mem = bo->resource;
struct radeon_device *rdev;
struct radeon_bo *rbo;
int r;
if (new_mem->mem_type == TTM_PL_TT) {
r = radeon_ttm_tt_bind(bo->bdev, bo->ttm, new_mem);
if (r)
return r;
}
r = ttm_bo_wait_ctx(bo, ctx);
if (r)
return r;
rbo = container_of(bo, struct radeon_bo, tbo);
rdev = radeon_get_rdev(bo->bdev);
if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
bo->ttm == NULL)) {
ttm_bo_move_null(bo, new_mem);
goto out;
}
if (old_mem->mem_type == TTM_PL_SYSTEM &&
new_mem->mem_type == TTM_PL_TT) {
ttm_bo_move_null(bo, new_mem);
goto out;
}
if (old_mem->mem_type == TTM_PL_TT &&
new_mem->mem_type == TTM_PL_SYSTEM) {
radeon_ttm_tt_unbind(bo->bdev, bo->ttm);
ttm_resource_free(bo, &bo->resource);
ttm_bo_assign_mem(bo, new_mem);
goto out;
}
if (rdev->ring[radeon_copy_ring_index(rdev)].ready &&
rdev->asic->copy.copy != NULL) {
if ((old_mem->mem_type == TTM_PL_SYSTEM &&
new_mem->mem_type == TTM_PL_VRAM) ||
(old_mem->mem_type == TTM_PL_VRAM &&
new_mem->mem_type == TTM_PL_SYSTEM)) {
hop->fpfn = 0;
hop->lpfn = 0;
hop->mem_type = TTM_PL_TT;
hop->flags = 0;
return -EMULTIHOP;
}
r = radeon_move_blit(bo, evict, new_mem, old_mem);
} else {
r = -ENODEV;
}
if (r) {
r = ttm_bo_move_memcpy(bo, ctx, new_mem);
if (r)
return r;
}
out:
/* update statistics */
atomic64_add(bo->base.size, &rdev->num_bytes_moved);
radeon_bo_move_notify(bo);
return 0;
}
static int radeon_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem)
{
struct radeon_device *rdev = radeon_get_rdev(bdev);
size_t bus_size = (size_t)mem->size;
switch (mem->mem_type) {
case TTM_PL_SYSTEM:
/* system memory */
return 0;
case TTM_PL_TT:
#if IS_ENABLED(CONFIG_AGP)
if (rdev->flags & RADEON_IS_AGP) {
/* RADEON_IS_AGP is set only if AGP is active */
mem->bus.offset = (mem->start << PAGE_SHIFT) +
rdev->mc.agp_base;
mem->bus.is_iomem = !rdev->agp->cant_use_aperture;
mem->bus.caching = ttm_write_combined;
}
#endif
break;
case TTM_PL_VRAM:
mem->bus.offset = mem->start << PAGE_SHIFT;
/* check if it's visible */
if ((mem->bus.offset + bus_size) > rdev->mc.visible_vram_size)
return -EINVAL;
mem->bus.offset += rdev->mc.aper_base;
mem->bus.is_iomem = true;
mem->bus.caching = ttm_write_combined;
#ifdef __alpha__
/*
* Alpha: use bus.addr to hold the ioremap() return,
* so we can modify bus.base below.
*/
mem->bus.addr = ioremap_wc(mem->bus.offset, bus_size);
if (!mem->bus.addr)
return -ENOMEM;
/*
* Alpha: Use just the bus offset plus
* the hose/domain memory base for bus.base.
* It then can be used to build PTEs for VRAM
* access, as done in ttm_bo_vm_fault().
*/
mem->bus.offset = (mem->bus.offset & 0x0ffffffffUL) +
rdev->hose->dense_mem_base;
#endif
break;
default:
return -EINVAL;
}
return 0;
}
/*
* TTM backend functions.
*/
struct radeon_ttm_tt {
struct ttm_tt ttm;
u64 offset;
uint64_t userptr;
struct mm_struct *usermm;
uint32_t userflags;
bool bound;
};
/* prepare the sg table with the user pages */
static int radeon_ttm_tt_pin_userptr(struct ttm_device *bdev, struct ttm_tt *ttm)
{
struct radeon_device *rdev = radeon_get_rdev(bdev);
struct radeon_ttm_tt *gtt = (void *)ttm;
unsigned pinned = 0;
int r;
int write = !(gtt->userflags & RADEON_GEM_USERPTR_READONLY);
enum dma_data_direction direction = write ?
DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
if (current->mm != gtt->usermm)
return -EPERM;
if (gtt->userflags & RADEON_GEM_USERPTR_ANONONLY) {
/* check that we only pin down anonymous memory
to prevent problems with writeback */
unsigned long end = gtt->userptr + (u64)ttm->num_pages * PAGE_SIZE;
struct vm_area_struct *vma;
vma = find_vma(gtt->usermm, gtt->userptr);
if (!vma || vma->vm_file || vma->vm_end < end)
return -EPERM;
}
do {
unsigned num_pages = ttm->num_pages - pinned;
uint64_t userptr = gtt->userptr + pinned * PAGE_SIZE;
struct page **pages = ttm->pages + pinned;
r = get_user_pages(userptr, num_pages, write ? FOLL_WRITE : 0,
pages);
if (r < 0)
goto release_pages;
pinned += r;
} while (pinned < ttm->num_pages);
r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
(u64)ttm->num_pages << PAGE_SHIFT,
GFP_KERNEL);
if (r)
goto release_sg;
r = dma_map_sgtable(rdev->dev, ttm->sg, direction, 0);
if (r)
goto release_sg;
drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
ttm->num_pages);
return 0;
release_sg:
kfree(ttm->sg);
release_pages:
release_pages(ttm->pages, pinned);
return r;
}
static void radeon_ttm_tt_unpin_userptr(struct ttm_device *bdev, struct ttm_tt *ttm)
{
struct radeon_device *rdev = radeon_get_rdev(bdev);
struct radeon_ttm_tt *gtt = (void *)ttm;
struct sg_page_iter sg_iter;
int write = !(gtt->userflags & RADEON_GEM_USERPTR_READONLY);
enum dma_data_direction direction = write ?
DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
/* double check that we don't free the table twice */
if (!ttm->sg || !ttm->sg->sgl)
return;
/* free the sg table and pages again */
dma_unmap_sgtable(rdev->dev, ttm->sg, direction, 0);
for_each_sgtable_page(ttm->sg, &sg_iter, 0) {
struct page *page = sg_page_iter_page(&sg_iter);
if (!(gtt->userflags & RADEON_GEM_USERPTR_READONLY))
set_page_dirty(page);
mark_page_accessed(page);
put_page(page);
}
sg_free_table(ttm->sg);
}
static bool radeon_ttm_backend_is_bound(struct ttm_tt *ttm)
{
struct radeon_ttm_tt *gtt = (void*)ttm;
return (gtt->bound);
}
static int radeon_ttm_backend_bind(struct ttm_device *bdev,
struct ttm_tt *ttm,
struct ttm_resource *bo_mem)
{
struct radeon_ttm_tt *gtt = (void*)ttm;
struct radeon_device *rdev = radeon_get_rdev(bdev);
uint32_t flags = RADEON_GART_PAGE_VALID | RADEON_GART_PAGE_READ |
RADEON_GART_PAGE_WRITE;
int r;
if (gtt->bound)
return 0;
if (gtt->userptr) {
radeon_ttm_tt_pin_userptr(bdev, ttm);
flags &= ~RADEON_GART_PAGE_WRITE;
}
gtt->offset = (unsigned long)(bo_mem->start << PAGE_SHIFT);
if (!ttm->num_pages) {
WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
ttm->num_pages, bo_mem, ttm);
}
if (ttm->caching == ttm_cached)
flags |= RADEON_GART_PAGE_SNOOP;
r = radeon_gart_bind(rdev, gtt->offset, ttm->num_pages,
ttm->pages, gtt->ttm.dma_address, flags);
if (r) {
DRM_ERROR("failed to bind %u pages at 0x%08X\n",
ttm->num_pages, (unsigned)gtt->offset);
return r;
}
gtt->bound = true;
return 0;
}
static void radeon_ttm_backend_unbind(struct ttm_device *bdev, struct ttm_tt *ttm)
{
struct radeon_ttm_tt *gtt = (void *)ttm;
struct radeon_device *rdev = radeon_get_rdev(bdev);
if (gtt->userptr)
radeon_ttm_tt_unpin_userptr(bdev, ttm);
if (!gtt->bound)
return;
radeon_gart_unbind(rdev, gtt->offset, ttm->num_pages);
gtt->bound = false;
}
static void radeon_ttm_backend_destroy(struct ttm_device *bdev, struct ttm_tt *ttm)
{
struct radeon_ttm_tt *gtt = (void *)ttm;
ttm_tt_fini(&gtt->ttm);
kfree(gtt);
}
static struct ttm_tt *radeon_ttm_tt_create(struct ttm_buffer_object *bo,
uint32_t page_flags)
{
struct radeon_ttm_tt *gtt;
enum ttm_caching caching;
struct radeon_bo *rbo;
#if IS_ENABLED(CONFIG_AGP)
struct radeon_device *rdev = radeon_get_rdev(bo->bdev);
if (rdev->flags & RADEON_IS_AGP) {
return ttm_agp_tt_create(bo, rdev->agp->bridge, page_flags);
}
#endif
rbo = container_of(bo, struct radeon_bo, tbo);
gtt = kzalloc(sizeof(struct radeon_ttm_tt), GFP_KERNEL);
if (gtt == NULL) {
return NULL;
}
if (rbo->flags & RADEON_GEM_GTT_UC)
caching = ttm_uncached;
else if (rbo->flags & RADEON_GEM_GTT_WC)
caching = ttm_write_combined;
else
caching = ttm_cached;
if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
kfree(gtt);
return NULL;
}
return &gtt->ttm;
}
static struct radeon_ttm_tt *radeon_ttm_tt_to_gtt(struct radeon_device *rdev,
struct ttm_tt *ttm)
{
#if IS_ENABLED(CONFIG_AGP)
if (rdev->flags & RADEON_IS_AGP)
return NULL;
#endif
if (!ttm)
return NULL;
return container_of(ttm, struct radeon_ttm_tt, ttm);
}
static int radeon_ttm_tt_populate(struct ttm_device *bdev,
struct ttm_tt *ttm,
struct ttm_operation_ctx *ctx)
{
struct radeon_device *rdev = radeon_get_rdev(bdev);
struct radeon_ttm_tt *gtt = radeon_ttm_tt_to_gtt(rdev, ttm);
bool slave = !!(ttm->page_flags & TTM_TT_FLAG_EXTERNAL);
if (gtt && gtt->userptr) {
ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
if (!ttm->sg)
return -ENOMEM;
ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
return 0;
}
if (slave && ttm->sg) {
drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
ttm->num_pages);
return 0;
}
return ttm_pool_alloc(&rdev->mman.bdev.pool, ttm, ctx);
}
static void radeon_ttm_tt_unpopulate(struct ttm_device *bdev, struct ttm_tt *ttm)
{
struct radeon_device *rdev = radeon_get_rdev(bdev);
struct radeon_ttm_tt *gtt = radeon_ttm_tt_to_gtt(rdev, ttm);
bool slave = !!(ttm->page_flags & TTM_TT_FLAG_EXTERNAL);
radeon_ttm_tt_unbind(bdev, ttm);
if (gtt && gtt->userptr) {
kfree(ttm->sg);
ttm->page_flags &= ~TTM_TT_FLAG_EXTERNAL;
return;
}
if (slave)
return;
return ttm_pool_free(&rdev->mman.bdev.pool, ttm);
}
int radeon_ttm_tt_set_userptr(struct radeon_device *rdev,
struct ttm_tt *ttm, uint64_t addr,
uint32_t flags)
{
struct radeon_ttm_tt *gtt = radeon_ttm_tt_to_gtt(rdev, ttm);
if (gtt == NULL)
return -EINVAL;
gtt->userptr = addr;
gtt->usermm = current->mm;
gtt->userflags = flags;
return 0;
}
bool radeon_ttm_tt_is_bound(struct ttm_device *bdev,
struct ttm_tt *ttm)
{
#if IS_ENABLED(CONFIG_AGP)
struct radeon_device *rdev = radeon_get_rdev(bdev);
if (rdev->flags & RADEON_IS_AGP)
return ttm_agp_is_bound(ttm);
#endif
return radeon_ttm_backend_is_bound(ttm);
}
static int radeon_ttm_tt_bind(struct ttm_device *bdev,
struct ttm_tt *ttm,
struct ttm_resource *bo_mem)
{
#if IS_ENABLED(CONFIG_AGP)
struct radeon_device *rdev = radeon_get_rdev(bdev);
#endif
if (!bo_mem)
return -EINVAL;
#if IS_ENABLED(CONFIG_AGP)
if (rdev->flags & RADEON_IS_AGP)
return ttm_agp_bind(ttm, bo_mem);
#endif
return radeon_ttm_backend_bind(bdev, ttm, bo_mem);
}
static void radeon_ttm_tt_unbind(struct ttm_device *bdev,
struct ttm_tt *ttm)
{
#if IS_ENABLED(CONFIG_AGP)
struct radeon_device *rdev = radeon_get_rdev(bdev);
if (rdev->flags & RADEON_IS_AGP) {
ttm_agp_unbind(ttm);
return;
}
#endif
radeon_ttm_backend_unbind(bdev, ttm);
}
static void radeon_ttm_tt_destroy(struct ttm_device *bdev,
struct ttm_tt *ttm)
{
#if IS_ENABLED(CONFIG_AGP)
struct radeon_device *rdev = radeon_get_rdev(bdev);
if (rdev->flags & RADEON_IS_AGP) {
ttm_agp_destroy(ttm);
return;
}
#endif
radeon_ttm_backend_destroy(bdev, ttm);
}
bool radeon_ttm_tt_has_userptr(struct radeon_device *rdev,
struct ttm_tt *ttm)
{
struct radeon_ttm_tt *gtt = radeon_ttm_tt_to_gtt(rdev, ttm);
if (gtt == NULL)
return false;
return !!gtt->userptr;
}
bool radeon_ttm_tt_is_readonly(struct radeon_device *rdev,
struct ttm_tt *ttm)
{
struct radeon_ttm_tt *gtt = radeon_ttm_tt_to_gtt(rdev, ttm);
if (gtt == NULL)
return false;
return !!(gtt->userflags & RADEON_GEM_USERPTR_READONLY);
}
static struct ttm_device_funcs radeon_bo_driver = {
.ttm_tt_create = &radeon_ttm_tt_create,
.ttm_tt_populate = &radeon_ttm_tt_populate,
.ttm_tt_unpopulate = &radeon_ttm_tt_unpopulate,
.ttm_tt_destroy = &radeon_ttm_tt_destroy,
.eviction_valuable = ttm_bo_eviction_valuable,
.evict_flags = &radeon_evict_flags,
.move = &radeon_bo_move,
.io_mem_reserve = &radeon_ttm_io_mem_reserve,
};
int radeon_ttm_init(struct radeon_device *rdev)
{
int r;
/* No others user of address space so set it to 0 */
r = ttm_device_init(&rdev->mman.bdev, &radeon_bo_driver, rdev->dev,
rdev->ddev->anon_inode->i_mapping,
rdev->ddev->vma_offset_manager,
rdev->need_swiotlb,
dma_addressing_limited(&rdev->pdev->dev));
if (r) {
DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
return r;
}
rdev->mman.initialized = true;
r = radeon_ttm_init_vram(rdev);
if (r) {
DRM_ERROR("Failed initializing VRAM heap.\n");
return r;
}
/* Change the size here instead of the init above so only lpfn is affected */
radeon_ttm_set_active_vram_size(rdev, rdev->mc.visible_vram_size);
r = radeon_bo_create(rdev, 256 * 1024, PAGE_SIZE, true,
RADEON_GEM_DOMAIN_VRAM, 0, NULL,
NULL, &rdev->stolen_vga_memory);
if (r) {
return r;
}
r = radeon_bo_reserve(rdev->stolen_vga_memory, false);
if (r)
return r;
r = radeon_bo_pin(rdev->stolen_vga_memory, RADEON_GEM_DOMAIN_VRAM, NULL);
radeon_bo_unreserve(rdev->stolen_vga_memory);
if (r) {
radeon_bo_unref(&rdev->stolen_vga_memory);
return r;
}
DRM_INFO("radeon: %uM of VRAM memory ready\n",
(unsigned) (rdev->mc.real_vram_size / (1024 * 1024)));
r = radeon_ttm_init_gtt(rdev);
if (r) {
DRM_ERROR("Failed initializing GTT heap.\n");
return r;
}
DRM_INFO("radeon: %uM of GTT memory ready.\n",
(unsigned)(rdev->mc.gtt_size / (1024 * 1024)));
radeon_ttm_debugfs_init(rdev);
return 0;
}
void radeon_ttm_fini(struct radeon_device *rdev)
{
int r;
if (!rdev->mman.initialized)
return;
if (rdev->stolen_vga_memory) {
r = radeon_bo_reserve(rdev->stolen_vga_memory, false);
if (r == 0) {
radeon_bo_unpin(rdev->stolen_vga_memory);
radeon_bo_unreserve(rdev->stolen_vga_memory);
}
radeon_bo_unref(&rdev->stolen_vga_memory);
}
ttm_range_man_fini(&rdev->mman.bdev, TTM_PL_VRAM);
ttm_range_man_fini(&rdev->mman.bdev, TTM_PL_TT);
ttm_device_fini(&rdev->mman.bdev);
radeon_gart_fini(rdev);
rdev->mman.initialized = false;
DRM_INFO("radeon: ttm finalized\n");
}
/* this should only be called at bootup or when userspace
* isn't running */
void radeon_ttm_set_active_vram_size(struct radeon_device *rdev, u64 size)
{
struct ttm_resource_manager *man;
if (!rdev->mman.initialized)
return;
man = ttm_manager_type(&rdev->mman.bdev, TTM_PL_VRAM);
/* this just adjusts TTM size idea, which sets lpfn to the correct value */
man->size = size >> PAGE_SHIFT;
}
#if defined(CONFIG_DEBUG_FS)
static int radeon_ttm_page_pool_show(struct seq_file *m, void *data)
{
struct radeon_device *rdev = m->private;
return ttm_pool_debugfs(&rdev->mman.bdev.pool, m);
}
DEFINE_SHOW_ATTRIBUTE(radeon_ttm_page_pool);
static int radeon_ttm_vram_open(struct inode *inode, struct file *filep)
{
struct radeon_device *rdev = inode->i_private;
i_size_write(inode, rdev->mc.mc_vram_size);
filep->private_data = inode->i_private;
return 0;
}
static ssize_t radeon_ttm_vram_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct radeon_device *rdev = f->private_data;
ssize_t result = 0;
int r;
if (size & 0x3 || *pos & 0x3)
return -EINVAL;
while (size) {
unsigned long flags;
uint32_t value;
if (*pos >= rdev->mc.mc_vram_size)
return result;
spin_lock_irqsave(&rdev->mmio_idx_lock, flags);
WREG32(RADEON_MM_INDEX, ((uint32_t)*pos) | 0x80000000);
if (rdev->family >= CHIP_CEDAR)
WREG32(EVERGREEN_MM_INDEX_HI, *pos >> 31);
value = RREG32(RADEON_MM_DATA);
spin_unlock_irqrestore(&rdev->mmio_idx_lock, flags);
r = put_user(value, (uint32_t __user *)buf);
if (r)
return r;
result += 4;
buf += 4;
*pos += 4;
size -= 4;
}
return result;
}
static const struct file_operations radeon_ttm_vram_fops = {
.owner = THIS_MODULE,
.open = radeon_ttm_vram_open,
.read = radeon_ttm_vram_read,
.llseek = default_llseek
};
static int radeon_ttm_gtt_open(struct inode *inode, struct file *filep)
{
struct radeon_device *rdev = inode->i_private;
i_size_write(inode, rdev->mc.gtt_size);
filep->private_data = inode->i_private;
return 0;
}
static ssize_t radeon_ttm_gtt_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct radeon_device *rdev = f->private_data;
ssize_t result = 0;
int r;
while (size) {
loff_t p = *pos / PAGE_SIZE;
unsigned off = *pos & ~PAGE_MASK;
size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
struct page *page;
void *ptr;
if (p >= rdev->gart.num_cpu_pages)
return result;
page = rdev->gart.pages[p];
if (page) {
ptr = kmap_local_page(page);
ptr += off;
r = copy_to_user(buf, ptr, cur_size);
kunmap_local(ptr);
} else
r = clear_user(buf, cur_size);
if (r)
return -EFAULT;
result += cur_size;
buf += cur_size;
*pos += cur_size;
size -= cur_size;
}
return result;
}
static const struct file_operations radeon_ttm_gtt_fops = {
.owner = THIS_MODULE,
.open = radeon_ttm_gtt_open,
.read = radeon_ttm_gtt_read,
.llseek = default_llseek
};
#endif
static void radeon_ttm_debugfs_init(struct radeon_device *rdev)
{
#if defined(CONFIG_DEBUG_FS)
struct drm_minor *minor = rdev->ddev->primary;
struct dentry *root = minor->debugfs_root;
debugfs_create_file("radeon_vram", 0444, root, rdev,
&radeon_ttm_vram_fops);
debugfs_create_file("radeon_gtt", 0444, root, rdev,
&radeon_ttm_gtt_fops);
debugfs_create_file("ttm_page_pool", 0444, root, rdev,
&radeon_ttm_page_pool_fops);
ttm_resource_manager_create_debugfs(ttm_manager_type(&rdev->mman.bdev,
TTM_PL_VRAM),
root, "radeon_vram_mm");
ttm_resource_manager_create_debugfs(ttm_manager_type(&rdev->mman.bdev,
TTM_PL_TT),
root, "radeon_gtt_mm");
#endif
}