694 lines
14 KiB
C
694 lines
14 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* cxd2099.c: Driver for the Sony CXD2099AR Common Interface Controller
|
|
*
|
|
* Copyright (C) 2010-2013 Digital Devices GmbH
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/i2c.h>
|
|
#include <linux/regmap.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/io.h>
|
|
|
|
#include "cxd2099.h"
|
|
|
|
static int buffermode;
|
|
module_param(buffermode, int, 0444);
|
|
MODULE_PARM_DESC(buffermode, "Enable CXD2099AR buffer mode (default: disabled)");
|
|
|
|
static int read_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount);
|
|
|
|
struct cxd {
|
|
struct dvb_ca_en50221 en;
|
|
|
|
struct cxd2099_cfg cfg;
|
|
struct i2c_client *client;
|
|
struct regmap *regmap;
|
|
|
|
u8 regs[0x23];
|
|
u8 lastaddress;
|
|
u8 clk_reg_f;
|
|
u8 clk_reg_b;
|
|
int mode;
|
|
int ready;
|
|
int dr;
|
|
int write_busy;
|
|
int slot_stat;
|
|
|
|
u8 amem[1024];
|
|
int amem_read;
|
|
|
|
int cammode;
|
|
struct mutex lock; /* device access lock */
|
|
|
|
u8 rbuf[1028];
|
|
u8 wbuf[1028];
|
|
};
|
|
|
|
static int read_block(struct cxd *ci, u8 adr, u8 *data, u16 n)
|
|
{
|
|
int status = 0;
|
|
|
|
if (ci->lastaddress != adr)
|
|
status = regmap_write(ci->regmap, 0, adr);
|
|
if (!status) {
|
|
ci->lastaddress = adr;
|
|
|
|
while (n) {
|
|
int len = n;
|
|
|
|
if (ci->cfg.max_i2c && len > ci->cfg.max_i2c)
|
|
len = ci->cfg.max_i2c;
|
|
status = regmap_raw_read(ci->regmap, 1, data, len);
|
|
if (status)
|
|
return status;
|
|
data += len;
|
|
n -= len;
|
|
}
|
|
}
|
|
return status;
|
|
}
|
|
|
|
static int read_reg(struct cxd *ci, u8 reg, u8 *val)
|
|
{
|
|
return read_block(ci, reg, val, 1);
|
|
}
|
|
|
|
static int read_pccard(struct cxd *ci, u16 address, u8 *data, u8 n)
|
|
{
|
|
int status;
|
|
u8 addr[2] = {address & 0xff, address >> 8};
|
|
|
|
status = regmap_raw_write(ci->regmap, 2, addr, 2);
|
|
if (!status)
|
|
status = regmap_raw_read(ci->regmap, 3, data, n);
|
|
return status;
|
|
}
|
|
|
|
static int write_pccard(struct cxd *ci, u16 address, u8 *data, u8 n)
|
|
{
|
|
int status;
|
|
u8 addr[2] = {address & 0xff, address >> 8};
|
|
|
|
status = regmap_raw_write(ci->regmap, 2, addr, 2);
|
|
if (!status) {
|
|
u8 buf[256];
|
|
|
|
memcpy(buf, data, n);
|
|
status = regmap_raw_write(ci->regmap, 3, buf, n);
|
|
}
|
|
return status;
|
|
}
|
|
|
|
static int read_io(struct cxd *ci, u16 address, unsigned int *val)
|
|
{
|
|
int status;
|
|
u8 addr[2] = {address & 0xff, address >> 8};
|
|
|
|
status = regmap_raw_write(ci->regmap, 2, addr, 2);
|
|
if (!status)
|
|
status = regmap_read(ci->regmap, 3, val);
|
|
return status;
|
|
}
|
|
|
|
static int write_io(struct cxd *ci, u16 address, u8 val)
|
|
{
|
|
int status;
|
|
u8 addr[2] = {address & 0xff, address >> 8};
|
|
|
|
status = regmap_raw_write(ci->regmap, 2, addr, 2);
|
|
if (!status)
|
|
status = regmap_write(ci->regmap, 3, val);
|
|
return status;
|
|
}
|
|
|
|
static int write_regm(struct cxd *ci, u8 reg, u8 val, u8 mask)
|
|
{
|
|
int status = 0;
|
|
unsigned int regval;
|
|
|
|
if (ci->lastaddress != reg)
|
|
status = regmap_write(ci->regmap, 0, reg);
|
|
if (!status && reg >= 6 && reg <= 8 && mask != 0xff) {
|
|
status = regmap_read(ci->regmap, 1, ®val);
|
|
ci->regs[reg] = regval;
|
|
}
|
|
ci->lastaddress = reg;
|
|
ci->regs[reg] = (ci->regs[reg] & (~mask)) | val;
|
|
if (!status)
|
|
status = regmap_write(ci->regmap, 1, ci->regs[reg]);
|
|
if (reg == 0x20)
|
|
ci->regs[reg] &= 0x7f;
|
|
return status;
|
|
}
|
|
|
|
static int write_reg(struct cxd *ci, u8 reg, u8 val)
|
|
{
|
|
return write_regm(ci, reg, val, 0xff);
|
|
}
|
|
|
|
static int write_block(struct cxd *ci, u8 adr, u8 *data, u16 n)
|
|
{
|
|
int status = 0;
|
|
u8 *buf = ci->wbuf;
|
|
|
|
if (ci->lastaddress != adr)
|
|
status = regmap_write(ci->regmap, 0, adr);
|
|
if (status)
|
|
return status;
|
|
|
|
ci->lastaddress = adr;
|
|
while (n) {
|
|
int len = n;
|
|
|
|
if (ci->cfg.max_i2c && (len + 1 > ci->cfg.max_i2c))
|
|
len = ci->cfg.max_i2c - 1;
|
|
memcpy(buf, data, len);
|
|
status = regmap_raw_write(ci->regmap, 1, buf, len);
|
|
if (status)
|
|
return status;
|
|
n -= len;
|
|
data += len;
|
|
}
|
|
return status;
|
|
}
|
|
|
|
static void set_mode(struct cxd *ci, int mode)
|
|
{
|
|
if (mode == ci->mode)
|
|
return;
|
|
|
|
switch (mode) {
|
|
case 0x00: /* IO mem */
|
|
write_regm(ci, 0x06, 0x00, 0x07);
|
|
break;
|
|
case 0x01: /* ATT mem */
|
|
write_regm(ci, 0x06, 0x02, 0x07);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
ci->mode = mode;
|
|
}
|
|
|
|
static void cam_mode(struct cxd *ci, int mode)
|
|
{
|
|
u8 dummy;
|
|
|
|
if (mode == ci->cammode)
|
|
return;
|
|
|
|
switch (mode) {
|
|
case 0x00:
|
|
write_regm(ci, 0x20, 0x80, 0x80);
|
|
break;
|
|
case 0x01:
|
|
if (!ci->en.read_data)
|
|
return;
|
|
ci->write_busy = 0;
|
|
dev_info(&ci->client->dev, "enable cam buffer mode\n");
|
|
write_reg(ci, 0x0d, 0x00);
|
|
write_reg(ci, 0x0e, 0x01);
|
|
write_regm(ci, 0x08, 0x40, 0x40);
|
|
read_reg(ci, 0x12, &dummy);
|
|
write_regm(ci, 0x08, 0x80, 0x80);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
ci->cammode = mode;
|
|
}
|
|
|
|
static int init(struct cxd *ci)
|
|
{
|
|
int status;
|
|
|
|
mutex_lock(&ci->lock);
|
|
ci->mode = -1;
|
|
do {
|
|
status = write_reg(ci, 0x00, 0x00);
|
|
if (status < 0)
|
|
break;
|
|
status = write_reg(ci, 0x01, 0x00);
|
|
if (status < 0)
|
|
break;
|
|
status = write_reg(ci, 0x02, 0x10);
|
|
if (status < 0)
|
|
break;
|
|
status = write_reg(ci, 0x03, 0x00);
|
|
if (status < 0)
|
|
break;
|
|
status = write_reg(ci, 0x05, 0xFF);
|
|
if (status < 0)
|
|
break;
|
|
status = write_reg(ci, 0x06, 0x1F);
|
|
if (status < 0)
|
|
break;
|
|
status = write_reg(ci, 0x07, 0x1F);
|
|
if (status < 0)
|
|
break;
|
|
status = write_reg(ci, 0x08, 0x28);
|
|
if (status < 0)
|
|
break;
|
|
status = write_reg(ci, 0x14, 0x20);
|
|
if (status < 0)
|
|
break;
|
|
|
|
/* TOSTRT = 8, Mode B (gated clock), falling Edge,
|
|
* Serial, POL=HIGH, MSB
|
|
*/
|
|
status = write_reg(ci, 0x0A, 0xA7);
|
|
if (status < 0)
|
|
break;
|
|
|
|
status = write_reg(ci, 0x0B, 0x33);
|
|
if (status < 0)
|
|
break;
|
|
status = write_reg(ci, 0x0C, 0x33);
|
|
if (status < 0)
|
|
break;
|
|
|
|
status = write_regm(ci, 0x14, 0x00, 0x0F);
|
|
if (status < 0)
|
|
break;
|
|
status = write_reg(ci, 0x15, ci->clk_reg_b);
|
|
if (status < 0)
|
|
break;
|
|
status = write_regm(ci, 0x16, 0x00, 0x0F);
|
|
if (status < 0)
|
|
break;
|
|
status = write_reg(ci, 0x17, ci->clk_reg_f);
|
|
if (status < 0)
|
|
break;
|
|
|
|
if (ci->cfg.clock_mode == 2) {
|
|
/* bitrate*2^13/ 72000 */
|
|
u32 reg = ((ci->cfg.bitrate << 13) + 71999) / 72000;
|
|
|
|
if (ci->cfg.polarity) {
|
|
status = write_reg(ci, 0x09, 0x6f);
|
|
if (status < 0)
|
|
break;
|
|
} else {
|
|
status = write_reg(ci, 0x09, 0x6d);
|
|
if (status < 0)
|
|
break;
|
|
}
|
|
status = write_reg(ci, 0x20, 0x08);
|
|
if (status < 0)
|
|
break;
|
|
status = write_reg(ci, 0x21, (reg >> 8) & 0xff);
|
|
if (status < 0)
|
|
break;
|
|
status = write_reg(ci, 0x22, reg & 0xff);
|
|
if (status < 0)
|
|
break;
|
|
} else if (ci->cfg.clock_mode == 1) {
|
|
if (ci->cfg.polarity) {
|
|
status = write_reg(ci, 0x09, 0x6f); /* D */
|
|
if (status < 0)
|
|
break;
|
|
} else {
|
|
status = write_reg(ci, 0x09, 0x6d);
|
|
if (status < 0)
|
|
break;
|
|
}
|
|
status = write_reg(ci, 0x20, 0x68);
|
|
if (status < 0)
|
|
break;
|
|
status = write_reg(ci, 0x21, 0x00);
|
|
if (status < 0)
|
|
break;
|
|
status = write_reg(ci, 0x22, 0x02);
|
|
if (status < 0)
|
|
break;
|
|
} else {
|
|
if (ci->cfg.polarity) {
|
|
status = write_reg(ci, 0x09, 0x4f); /* C */
|
|
if (status < 0)
|
|
break;
|
|
} else {
|
|
status = write_reg(ci, 0x09, 0x4d);
|
|
if (status < 0)
|
|
break;
|
|
}
|
|
status = write_reg(ci, 0x20, 0x28);
|
|
if (status < 0)
|
|
break;
|
|
status = write_reg(ci, 0x21, 0x00);
|
|
if (status < 0)
|
|
break;
|
|
status = write_reg(ci, 0x22, 0x07);
|
|
if (status < 0)
|
|
break;
|
|
}
|
|
|
|
status = write_regm(ci, 0x20, 0x80, 0x80);
|
|
if (status < 0)
|
|
break;
|
|
status = write_regm(ci, 0x03, 0x02, 0x02);
|
|
if (status < 0)
|
|
break;
|
|
status = write_reg(ci, 0x01, 0x04);
|
|
if (status < 0)
|
|
break;
|
|
status = write_reg(ci, 0x00, 0x31);
|
|
if (status < 0)
|
|
break;
|
|
|
|
/* Put TS in bypass */
|
|
status = write_regm(ci, 0x09, 0x08, 0x08);
|
|
if (status < 0)
|
|
break;
|
|
ci->cammode = -1;
|
|
cam_mode(ci, 0);
|
|
} while (0);
|
|
mutex_unlock(&ci->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int read_attribute_mem(struct dvb_ca_en50221 *ca,
|
|
int slot, int address)
|
|
{
|
|
struct cxd *ci = ca->data;
|
|
u8 val;
|
|
|
|
mutex_lock(&ci->lock);
|
|
set_mode(ci, 1);
|
|
read_pccard(ci, address, &val, 1);
|
|
mutex_unlock(&ci->lock);
|
|
return val;
|
|
}
|
|
|
|
static int write_attribute_mem(struct dvb_ca_en50221 *ca, int slot,
|
|
int address, u8 value)
|
|
{
|
|
struct cxd *ci = ca->data;
|
|
|
|
mutex_lock(&ci->lock);
|
|
set_mode(ci, 1);
|
|
write_pccard(ci, address, &value, 1);
|
|
mutex_unlock(&ci->lock);
|
|
return 0;
|
|
}
|
|
|
|
static int read_cam_control(struct dvb_ca_en50221 *ca,
|
|
int slot, u8 address)
|
|
{
|
|
struct cxd *ci = ca->data;
|
|
unsigned int val;
|
|
|
|
mutex_lock(&ci->lock);
|
|
set_mode(ci, 0);
|
|
read_io(ci, address, &val);
|
|
mutex_unlock(&ci->lock);
|
|
return val;
|
|
}
|
|
|
|
static int write_cam_control(struct dvb_ca_en50221 *ca, int slot,
|
|
u8 address, u8 value)
|
|
{
|
|
struct cxd *ci = ca->data;
|
|
|
|
mutex_lock(&ci->lock);
|
|
set_mode(ci, 0);
|
|
write_io(ci, address, value);
|
|
mutex_unlock(&ci->lock);
|
|
return 0;
|
|
}
|
|
|
|
static int slot_reset(struct dvb_ca_en50221 *ca, int slot)
|
|
{
|
|
struct cxd *ci = ca->data;
|
|
|
|
if (ci->cammode)
|
|
read_data(ca, slot, ci->rbuf, 0);
|
|
|
|
mutex_lock(&ci->lock);
|
|
cam_mode(ci, 0);
|
|
write_reg(ci, 0x00, 0x21);
|
|
write_reg(ci, 0x06, 0x1F);
|
|
write_reg(ci, 0x00, 0x31);
|
|
write_regm(ci, 0x20, 0x80, 0x80);
|
|
write_reg(ci, 0x03, 0x02);
|
|
ci->ready = 0;
|
|
ci->mode = -1;
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 100; i++) {
|
|
usleep_range(10000, 11000);
|
|
if (ci->ready)
|
|
break;
|
|
}
|
|
}
|
|
mutex_unlock(&ci->lock);
|
|
return 0;
|
|
}
|
|
|
|
static int slot_shutdown(struct dvb_ca_en50221 *ca, int slot)
|
|
{
|
|
struct cxd *ci = ca->data;
|
|
|
|
dev_dbg(&ci->client->dev, "%s\n", __func__);
|
|
if (ci->cammode)
|
|
read_data(ca, slot, ci->rbuf, 0);
|
|
mutex_lock(&ci->lock);
|
|
write_reg(ci, 0x00, 0x21);
|
|
write_reg(ci, 0x06, 0x1F);
|
|
msleep(300);
|
|
|
|
write_regm(ci, 0x09, 0x08, 0x08);
|
|
write_regm(ci, 0x20, 0x80, 0x80); /* Reset CAM Mode */
|
|
write_regm(ci, 0x06, 0x07, 0x07); /* Clear IO Mode */
|
|
|
|
ci->mode = -1;
|
|
ci->write_busy = 0;
|
|
mutex_unlock(&ci->lock);
|
|
return 0;
|
|
}
|
|
|
|
static int slot_ts_enable(struct dvb_ca_en50221 *ca, int slot)
|
|
{
|
|
struct cxd *ci = ca->data;
|
|
|
|
mutex_lock(&ci->lock);
|
|
write_regm(ci, 0x09, 0x00, 0x08);
|
|
set_mode(ci, 0);
|
|
cam_mode(ci, 1);
|
|
mutex_unlock(&ci->lock);
|
|
return 0;
|
|
}
|
|
|
|
static int campoll(struct cxd *ci)
|
|
{
|
|
u8 istat;
|
|
|
|
read_reg(ci, 0x04, &istat);
|
|
if (!istat)
|
|
return 0;
|
|
write_reg(ci, 0x05, istat);
|
|
|
|
if (istat & 0x40)
|
|
ci->dr = 1;
|
|
if (istat & 0x20)
|
|
ci->write_busy = 0;
|
|
|
|
if (istat & 2) {
|
|
u8 slotstat;
|
|
|
|
read_reg(ci, 0x01, &slotstat);
|
|
if (!(2 & slotstat)) {
|
|
if (!ci->slot_stat) {
|
|
ci->slot_stat |=
|
|
DVB_CA_EN50221_POLL_CAM_PRESENT;
|
|
write_regm(ci, 0x03, 0x08, 0x08);
|
|
}
|
|
|
|
} else {
|
|
if (ci->slot_stat) {
|
|
ci->slot_stat = 0;
|
|
write_regm(ci, 0x03, 0x00, 0x08);
|
|
dev_info(&ci->client->dev, "NO CAM\n");
|
|
ci->ready = 0;
|
|
}
|
|
}
|
|
if ((istat & 8) &&
|
|
ci->slot_stat == DVB_CA_EN50221_POLL_CAM_PRESENT) {
|
|
ci->ready = 1;
|
|
ci->slot_stat |= DVB_CA_EN50221_POLL_CAM_READY;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int poll_slot_status(struct dvb_ca_en50221 *ca, int slot, int open)
|
|
{
|
|
struct cxd *ci = ca->data;
|
|
u8 slotstat;
|
|
|
|
mutex_lock(&ci->lock);
|
|
campoll(ci);
|
|
read_reg(ci, 0x01, &slotstat);
|
|
mutex_unlock(&ci->lock);
|
|
|
|
return ci->slot_stat;
|
|
}
|
|
|
|
static int read_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount)
|
|
{
|
|
struct cxd *ci = ca->data;
|
|
u8 msb, lsb;
|
|
u16 len;
|
|
|
|
mutex_lock(&ci->lock);
|
|
campoll(ci);
|
|
mutex_unlock(&ci->lock);
|
|
|
|
if (!ci->dr)
|
|
return 0;
|
|
|
|
mutex_lock(&ci->lock);
|
|
read_reg(ci, 0x0f, &msb);
|
|
read_reg(ci, 0x10, &lsb);
|
|
len = ((u16)msb << 8) | lsb;
|
|
if (len > ecount || len < 2) {
|
|
/* read it anyway or cxd may hang */
|
|
read_block(ci, 0x12, ci->rbuf, len);
|
|
mutex_unlock(&ci->lock);
|
|
return -EIO;
|
|
}
|
|
read_block(ci, 0x12, ebuf, len);
|
|
ci->dr = 0;
|
|
mutex_unlock(&ci->lock);
|
|
return len;
|
|
}
|
|
|
|
static int write_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount)
|
|
{
|
|
struct cxd *ci = ca->data;
|
|
|
|
if (ci->write_busy)
|
|
return -EAGAIN;
|
|
mutex_lock(&ci->lock);
|
|
write_reg(ci, 0x0d, ecount >> 8);
|
|
write_reg(ci, 0x0e, ecount & 0xff);
|
|
write_block(ci, 0x11, ebuf, ecount);
|
|
ci->write_busy = 1;
|
|
mutex_unlock(&ci->lock);
|
|
return ecount;
|
|
}
|
|
|
|
static const struct dvb_ca_en50221 en_templ = {
|
|
.read_attribute_mem = read_attribute_mem,
|
|
.write_attribute_mem = write_attribute_mem,
|
|
.read_cam_control = read_cam_control,
|
|
.write_cam_control = write_cam_control,
|
|
.slot_reset = slot_reset,
|
|
.slot_shutdown = slot_shutdown,
|
|
.slot_ts_enable = slot_ts_enable,
|
|
.poll_slot_status = poll_slot_status,
|
|
.read_data = read_data,
|
|
.write_data = write_data,
|
|
};
|
|
|
|
static int cxd2099_probe(struct i2c_client *client)
|
|
{
|
|
struct cxd *ci;
|
|
struct cxd2099_cfg *cfg = client->dev.platform_data;
|
|
static const struct regmap_config rm_cfg = {
|
|
.reg_bits = 8,
|
|
.val_bits = 8,
|
|
};
|
|
unsigned int val;
|
|
int ret;
|
|
|
|
ci = kzalloc(sizeof(*ci), GFP_KERNEL);
|
|
if (!ci) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
ci->client = client;
|
|
memcpy(&ci->cfg, cfg, sizeof(ci->cfg));
|
|
|
|
ci->regmap = regmap_init_i2c(client, &rm_cfg);
|
|
if (IS_ERR(ci->regmap)) {
|
|
ret = PTR_ERR(ci->regmap);
|
|
goto err_kfree;
|
|
}
|
|
|
|
ret = regmap_read(ci->regmap, 0x00, &val);
|
|
if (ret < 0) {
|
|
dev_info(&client->dev, "No CXD2099AR detected at 0x%02x\n",
|
|
client->addr);
|
|
goto err_rmexit;
|
|
}
|
|
|
|
mutex_init(&ci->lock);
|
|
ci->lastaddress = 0xff;
|
|
ci->clk_reg_b = 0x4a;
|
|
ci->clk_reg_f = 0x1b;
|
|
|
|
ci->en = en_templ;
|
|
ci->en.data = ci;
|
|
init(ci);
|
|
dev_info(&client->dev, "Attached CXD2099AR at 0x%02x\n", client->addr);
|
|
|
|
*cfg->en = &ci->en;
|
|
|
|
if (!buffermode) {
|
|
ci->en.read_data = NULL;
|
|
ci->en.write_data = NULL;
|
|
} else {
|
|
dev_info(&client->dev, "Using CXD2099AR buffer mode");
|
|
}
|
|
|
|
i2c_set_clientdata(client, ci);
|
|
|
|
return 0;
|
|
|
|
err_rmexit:
|
|
regmap_exit(ci->regmap);
|
|
err_kfree:
|
|
kfree(ci);
|
|
err:
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void cxd2099_remove(struct i2c_client *client)
|
|
{
|
|
struct cxd *ci = i2c_get_clientdata(client);
|
|
|
|
regmap_exit(ci->regmap);
|
|
kfree(ci);
|
|
}
|
|
|
|
static const struct i2c_device_id cxd2099_id[] = {
|
|
{"cxd2099", 0},
|
|
{}
|
|
};
|
|
MODULE_DEVICE_TABLE(i2c, cxd2099_id);
|
|
|
|
static struct i2c_driver cxd2099_driver = {
|
|
.driver = {
|
|
.name = "cxd2099",
|
|
},
|
|
.probe = cxd2099_probe,
|
|
.remove = cxd2099_remove,
|
|
.id_table = cxd2099_id,
|
|
};
|
|
|
|
module_i2c_driver(cxd2099_driver);
|
|
|
|
MODULE_DESCRIPTION("Sony CXD2099AR Common Interface controller driver");
|
|
MODULE_AUTHOR("Ralph Metzler");
|
|
MODULE_LICENSE("GPL v2");
|