linux-zen-desktop/drivers/net/ethernet/mellanox/mlxsw/reg.h

12986 lines
373 KiB
C
Raw Permalink Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/* SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0 */
/* Copyright (c) 2015-2018 Mellanox Technologies. All rights reserved */
#ifndef _MLXSW_REG_H
#define _MLXSW_REG_H
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/bitops.h>
#include <linux/if_vlan.h>
#include "item.h"
#include "port.h"
struct mlxsw_reg_info {
u16 id;
u16 len; /* In u8 */
const char *name;
};
#define MLXSW_REG_DEFINE(_name, _id, _len) \
static const struct mlxsw_reg_info mlxsw_reg_##_name = { \
.id = _id, \
.len = _len, \
.name = #_name, \
}
#define MLXSW_REG(type) (&mlxsw_reg_##type)
#define MLXSW_REG_LEN(type) MLXSW_REG(type)->len
#define MLXSW_REG_ZERO(type, payload) memset(payload, 0, MLXSW_REG(type)->len)
/* SGCR - Switch General Configuration Register
* --------------------------------------------
* This register is used for configuration of the switch capabilities.
*/
#define MLXSW_REG_SGCR_ID 0x2000
#define MLXSW_REG_SGCR_LEN 0x10
MLXSW_REG_DEFINE(sgcr, MLXSW_REG_SGCR_ID, MLXSW_REG_SGCR_LEN);
/* reg_sgcr_llb
* Link Local Broadcast (Default=0)
* When set, all Link Local packets (224.0.0.X) will be treated as broadcast
* packets and ignore the IGMP snooping entries.
* Access: RW
*/
MLXSW_ITEM32(reg, sgcr, llb, 0x04, 0, 1);
static inline void mlxsw_reg_sgcr_pack(char *payload, bool llb)
{
MLXSW_REG_ZERO(sgcr, payload);
mlxsw_reg_sgcr_llb_set(payload, !!llb);
}
/* SPAD - Switch Physical Address Register
* ---------------------------------------
* The SPAD register configures the switch physical MAC address.
*/
#define MLXSW_REG_SPAD_ID 0x2002
#define MLXSW_REG_SPAD_LEN 0x10
MLXSW_REG_DEFINE(spad, MLXSW_REG_SPAD_ID, MLXSW_REG_SPAD_LEN);
/* reg_spad_base_mac
* Base MAC address for the switch partitions.
* Per switch partition MAC address is equal to:
* base_mac + swid
* Access: RW
*/
MLXSW_ITEM_BUF(reg, spad, base_mac, 0x02, 6);
/* SSPR - Switch System Port Record Register
* -----------------------------------------
* Configures the system port to local port mapping.
*/
#define MLXSW_REG_SSPR_ID 0x2008
#define MLXSW_REG_SSPR_LEN 0x8
MLXSW_REG_DEFINE(sspr, MLXSW_REG_SSPR_ID, MLXSW_REG_SSPR_LEN);
/* reg_sspr_m
* Master - if set, then the record describes the master system port.
* This is needed in case a local port is mapped into several system ports
* (for multipathing). That number will be reported as the source system
* port when packets are forwarded to the CPU. Only one master port is allowed
* per local port.
*
* Note: Must be set for Spectrum.
* Access: RW
*/
MLXSW_ITEM32(reg, sspr, m, 0x00, 31, 1);
/* reg_sspr_local_port
* Local port number.
*
* Access: RW
*/
MLXSW_ITEM32_LP(reg, sspr, 0x00, 16, 0x00, 12);
/* reg_sspr_system_port
* Unique identifier within the stacking domain that represents all the ports
* that are available in the system (external ports).
*
* Currently, only single-ASIC configurations are supported, so we default to
* 1:1 mapping between system ports and local ports.
* Access: Index
*/
MLXSW_ITEM32(reg, sspr, system_port, 0x04, 0, 16);
static inline void mlxsw_reg_sspr_pack(char *payload, u16 local_port)
{
MLXSW_REG_ZERO(sspr, payload);
mlxsw_reg_sspr_m_set(payload, 1);
mlxsw_reg_sspr_local_port_set(payload, local_port);
mlxsw_reg_sspr_system_port_set(payload, local_port);
}
/* SFDAT - Switch Filtering Database Aging Time
* --------------------------------------------
* Controls the Switch aging time. Aging time is able to be set per Switch
* Partition.
*/
#define MLXSW_REG_SFDAT_ID 0x2009
#define MLXSW_REG_SFDAT_LEN 0x8
MLXSW_REG_DEFINE(sfdat, MLXSW_REG_SFDAT_ID, MLXSW_REG_SFDAT_LEN);
/* reg_sfdat_swid
* Switch partition ID.
* Access: Index
*/
MLXSW_ITEM32(reg, sfdat, swid, 0x00, 24, 8);
/* reg_sfdat_age_time
* Aging time in seconds
* Min - 10 seconds
* Max - 1,000,000 seconds
* Default is 300 seconds.
* Access: RW
*/
MLXSW_ITEM32(reg, sfdat, age_time, 0x04, 0, 20);
static inline void mlxsw_reg_sfdat_pack(char *payload, u32 age_time)
{
MLXSW_REG_ZERO(sfdat, payload);
mlxsw_reg_sfdat_swid_set(payload, 0);
mlxsw_reg_sfdat_age_time_set(payload, age_time);
}
/* SFD - Switch Filtering Database
* -------------------------------
* The following register defines the access to the filtering database.
* The register supports querying, adding, removing and modifying the database.
* The access is optimized for bulk updates in which case more than one
* FDB record is present in the same command.
*/
#define MLXSW_REG_SFD_ID 0x200A
#define MLXSW_REG_SFD_BASE_LEN 0x10 /* base length, without records */
#define MLXSW_REG_SFD_REC_LEN 0x10 /* record length */
#define MLXSW_REG_SFD_REC_MAX_COUNT 64
#define MLXSW_REG_SFD_LEN (MLXSW_REG_SFD_BASE_LEN + \
MLXSW_REG_SFD_REC_LEN * MLXSW_REG_SFD_REC_MAX_COUNT)
MLXSW_REG_DEFINE(sfd, MLXSW_REG_SFD_ID, MLXSW_REG_SFD_LEN);
/* reg_sfd_swid
* Switch partition ID for queries. Reserved on Write.
* Access: Index
*/
MLXSW_ITEM32(reg, sfd, swid, 0x00, 24, 8);
enum mlxsw_reg_sfd_op {
/* Dump entire FDB a (process according to record_locator) */
MLXSW_REG_SFD_OP_QUERY_DUMP = 0,
/* Query records by {MAC, VID/FID} value */
MLXSW_REG_SFD_OP_QUERY_QUERY = 1,
/* Query and clear activity. Query records by {MAC, VID/FID} value */
MLXSW_REG_SFD_OP_QUERY_QUERY_AND_CLEAR_ACTIVITY = 2,
/* Test. Response indicates if each of the records could be
* added to the FDB.
*/
MLXSW_REG_SFD_OP_WRITE_TEST = 0,
/* Add/modify. Aged-out records cannot be added. This command removes
* the learning notification of the {MAC, VID/FID}. Response includes
* the entries that were added to the FDB.
*/
MLXSW_REG_SFD_OP_WRITE_EDIT = 1,
/* Remove record by {MAC, VID/FID}. This command also removes
* the learning notification and aged-out notifications
* of the {MAC, VID/FID}. The response provides current (pre-removal)
* entries as non-aged-out.
*/
MLXSW_REG_SFD_OP_WRITE_REMOVE = 2,
/* Remove learned notification by {MAC, VID/FID}. The response provides
* the removed learning notification.
*/
MLXSW_REG_SFD_OP_WRITE_REMOVE_NOTIFICATION = 2,
};
/* reg_sfd_op
* Operation.
* Access: OP
*/
MLXSW_ITEM32(reg, sfd, op, 0x04, 30, 2);
/* reg_sfd_record_locator
* Used for querying the FDB. Use record_locator=0 to initiate the
* query. When a record is returned, a new record_locator is
* returned to be used in the subsequent query.
* Reserved for database update.
* Access: Index
*/
MLXSW_ITEM32(reg, sfd, record_locator, 0x04, 0, 30);
/* reg_sfd_num_rec
* Request: Number of records to read/add/modify/remove
* Response: Number of records read/added/replaced/removed
* See above description for more details.
* Ranges 0..64
* Access: RW
*/
MLXSW_ITEM32(reg, sfd, num_rec, 0x08, 0, 8);
static inline void mlxsw_reg_sfd_pack(char *payload, enum mlxsw_reg_sfd_op op,
u32 record_locator)
{
MLXSW_REG_ZERO(sfd, payload);
mlxsw_reg_sfd_op_set(payload, op);
mlxsw_reg_sfd_record_locator_set(payload, record_locator);
}
/* reg_sfd_rec_swid
* Switch partition ID.
* Access: Index
*/
MLXSW_ITEM32_INDEXED(reg, sfd, rec_swid, MLXSW_REG_SFD_BASE_LEN, 24, 8,
MLXSW_REG_SFD_REC_LEN, 0x00, false);
enum mlxsw_reg_sfd_rec_type {
MLXSW_REG_SFD_REC_TYPE_UNICAST = 0x0,
MLXSW_REG_SFD_REC_TYPE_UNICAST_LAG = 0x1,
MLXSW_REG_SFD_REC_TYPE_MULTICAST = 0x2,
MLXSW_REG_SFD_REC_TYPE_UNICAST_TUNNEL = 0xC,
};
/* reg_sfd_rec_type
* FDB record type.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, sfd, rec_type, MLXSW_REG_SFD_BASE_LEN, 20, 4,
MLXSW_REG_SFD_REC_LEN, 0x00, false);
enum mlxsw_reg_sfd_rec_policy {
/* Replacement disabled, aging disabled. */
MLXSW_REG_SFD_REC_POLICY_STATIC_ENTRY = 0,
/* (mlag remote): Replacement enabled, aging disabled,
* learning notification enabled on this port.
*/
MLXSW_REG_SFD_REC_POLICY_DYNAMIC_ENTRY_MLAG = 1,
/* (ingress device): Replacement enabled, aging enabled. */
MLXSW_REG_SFD_REC_POLICY_DYNAMIC_ENTRY_INGRESS = 3,
};
/* reg_sfd_rec_policy
* Policy.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, sfd, rec_policy, MLXSW_REG_SFD_BASE_LEN, 18, 2,
MLXSW_REG_SFD_REC_LEN, 0x00, false);
/* reg_sfd_rec_a
* Activity. Set for new static entries. Set for static entries if a frame SMAC
* lookup hits on the entry.
* To clear the a bit, use "query and clear activity" op.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, sfd, rec_a, MLXSW_REG_SFD_BASE_LEN, 16, 1,
MLXSW_REG_SFD_REC_LEN, 0x00, false);
/* reg_sfd_rec_mac
* MAC address.
* Access: Index
*/
MLXSW_ITEM_BUF_INDEXED(reg, sfd, rec_mac, MLXSW_REG_SFD_BASE_LEN, 6,
MLXSW_REG_SFD_REC_LEN, 0x02);
enum mlxsw_reg_sfd_rec_action {
/* forward */
MLXSW_REG_SFD_REC_ACTION_NOP = 0,
/* forward and trap, trap_id is FDB_TRAP */
MLXSW_REG_SFD_REC_ACTION_MIRROR_TO_CPU = 1,
/* trap and do not forward, trap_id is FDB_TRAP */
MLXSW_REG_SFD_REC_ACTION_TRAP = 2,
/* forward to IP router */
MLXSW_REG_SFD_REC_ACTION_FORWARD_IP_ROUTER = 3,
MLXSW_REG_SFD_REC_ACTION_DISCARD_ERROR = 15,
};
/* reg_sfd_rec_action
* Action to apply on the packet.
* Note: Dynamic entries can only be configured with NOP action.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, sfd, rec_action, MLXSW_REG_SFD_BASE_LEN, 28, 4,
MLXSW_REG_SFD_REC_LEN, 0x0C, false);
/* reg_sfd_uc_sub_port
* VEPA channel on local port.
* Valid only if local port is a non-stacking port. Must be 0 if multichannel
* VEPA is not enabled.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, sfd, uc_sub_port, MLXSW_REG_SFD_BASE_LEN, 16, 8,
MLXSW_REG_SFD_REC_LEN, 0x08, false);
/* reg_sfd_uc_set_vid
* Set VID.
* 0 - Do not update VID.
* 1 - Set VID.
* For Spectrum-2 when set_vid=0 and smpe_valid=1, the smpe will modify the vid.
* Access: RW
*
* Note: Reserved when legacy bridge model is used.
*/
MLXSW_ITEM32_INDEXED(reg, sfd, uc_set_vid, MLXSW_REG_SFD_BASE_LEN, 31, 1,
MLXSW_REG_SFD_REC_LEN, 0x08, false);
/* reg_sfd_uc_fid_vid
* Filtering ID or VLAN ID
* For SwitchX and SwitchX-2:
* - Dynamic entries (policy 2,3) use FID
* - Static entries (policy 0) use VID
* - When independent learning is configured, VID=FID
* For Spectrum: use FID for both Dynamic and Static entries.
* VID should not be used.
* Access: Index
*/
MLXSW_ITEM32_INDEXED(reg, sfd, uc_fid_vid, MLXSW_REG_SFD_BASE_LEN, 0, 16,
MLXSW_REG_SFD_REC_LEN, 0x08, false);
/* reg_sfd_uc_vid
* New VID when set_vid=1.
* Access: RW
*
* Note: Reserved when legacy bridge model is used and when set_vid=0.
*/
MLXSW_ITEM32_INDEXED(reg, sfd, uc_vid, MLXSW_REG_SFD_BASE_LEN, 16, 12,
MLXSW_REG_SFD_REC_LEN, 0x0C, false);
/* reg_sfd_uc_system_port
* Unique port identifier for the final destination of the packet.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, sfd, uc_system_port, MLXSW_REG_SFD_BASE_LEN, 0, 16,
MLXSW_REG_SFD_REC_LEN, 0x0C, false);
static inline void mlxsw_reg_sfd_rec_pack(char *payload, int rec_index,
enum mlxsw_reg_sfd_rec_type rec_type,
const char *mac,
enum mlxsw_reg_sfd_rec_action action)
{
u8 num_rec = mlxsw_reg_sfd_num_rec_get(payload);
if (rec_index >= num_rec)
mlxsw_reg_sfd_num_rec_set(payload, rec_index + 1);
mlxsw_reg_sfd_rec_swid_set(payload, rec_index, 0);
mlxsw_reg_sfd_rec_type_set(payload, rec_index, rec_type);
mlxsw_reg_sfd_rec_mac_memcpy_to(payload, rec_index, mac);
mlxsw_reg_sfd_rec_action_set(payload, rec_index, action);
}
static inline void mlxsw_reg_sfd_uc_pack(char *payload, int rec_index,
enum mlxsw_reg_sfd_rec_policy policy,
const char *mac, u16 fid_vid, u16 vid,
enum mlxsw_reg_sfd_rec_action action,
u16 local_port)
{
mlxsw_reg_sfd_rec_pack(payload, rec_index,
MLXSW_REG_SFD_REC_TYPE_UNICAST, mac, action);
mlxsw_reg_sfd_rec_policy_set(payload, rec_index, policy);
mlxsw_reg_sfd_uc_sub_port_set(payload, rec_index, 0);
mlxsw_reg_sfd_uc_fid_vid_set(payload, rec_index, fid_vid);
mlxsw_reg_sfd_uc_set_vid_set(payload, rec_index, vid ? true : false);
mlxsw_reg_sfd_uc_vid_set(payload, rec_index, vid);
mlxsw_reg_sfd_uc_system_port_set(payload, rec_index, local_port);
}
/* reg_sfd_uc_lag_sub_port
* LAG sub port.
* Must be 0 if multichannel VEPA is not enabled.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, sfd, uc_lag_sub_port, MLXSW_REG_SFD_BASE_LEN, 16, 8,
MLXSW_REG_SFD_REC_LEN, 0x08, false);
/* reg_sfd_uc_lag_set_vid
* Set VID.
* 0 - Do not update VID.
* 1 - Set VID.
* For Spectrum-2 when set_vid=0 and smpe_valid=1, the smpe will modify the vid.
* Access: RW
*
* Note: Reserved when legacy bridge model is used.
*/
MLXSW_ITEM32_INDEXED(reg, sfd, uc_lag_set_vid, MLXSW_REG_SFD_BASE_LEN, 31, 1,
MLXSW_REG_SFD_REC_LEN, 0x08, false);
/* reg_sfd_uc_lag_fid_vid
* Filtering ID or VLAN ID
* For SwitchX and SwitchX-2:
* - Dynamic entries (policy 2,3) use FID
* - Static entries (policy 0) use VID
* - When independent learning is configured, VID=FID
* For Spectrum: use FID for both Dynamic and Static entries.
* VID should not be used.
* Access: Index
*/
MLXSW_ITEM32_INDEXED(reg, sfd, uc_lag_fid_vid, MLXSW_REG_SFD_BASE_LEN, 0, 16,
MLXSW_REG_SFD_REC_LEN, 0x08, false);
/* reg_sfd_uc_lag_lag_vid
* New vlan ID.
* Access: RW
*
* Note: Reserved when legacy bridge model is used and set_vid=0.
*/
MLXSW_ITEM32_INDEXED(reg, sfd, uc_lag_lag_vid, MLXSW_REG_SFD_BASE_LEN, 16, 12,
MLXSW_REG_SFD_REC_LEN, 0x0C, false);
/* reg_sfd_uc_lag_lag_id
* LAG Identifier - pointer into the LAG descriptor table.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, sfd, uc_lag_lag_id, MLXSW_REG_SFD_BASE_LEN, 0, 10,
MLXSW_REG_SFD_REC_LEN, 0x0C, false);
static inline void
mlxsw_reg_sfd_uc_lag_pack(char *payload, int rec_index,
enum mlxsw_reg_sfd_rec_policy policy,
const char *mac, u16 fid_vid,
enum mlxsw_reg_sfd_rec_action action, u16 lag_vid,
u16 lag_id)
{
mlxsw_reg_sfd_rec_pack(payload, rec_index,
MLXSW_REG_SFD_REC_TYPE_UNICAST_LAG,
mac, action);
mlxsw_reg_sfd_rec_policy_set(payload, rec_index, policy);
mlxsw_reg_sfd_uc_lag_sub_port_set(payload, rec_index, 0);
mlxsw_reg_sfd_uc_lag_fid_vid_set(payload, rec_index, fid_vid);
mlxsw_reg_sfd_uc_lag_set_vid_set(payload, rec_index, true);
mlxsw_reg_sfd_uc_lag_lag_vid_set(payload, rec_index, lag_vid);
mlxsw_reg_sfd_uc_lag_lag_id_set(payload, rec_index, lag_id);
}
/* reg_sfd_mc_pgi
*
* Multicast port group index - index into the port group table.
* Value 0x1FFF indicates the pgi should point to the MID entry.
* For Spectrum this value must be set to 0x1FFF
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, sfd, mc_pgi, MLXSW_REG_SFD_BASE_LEN, 16, 13,
MLXSW_REG_SFD_REC_LEN, 0x08, false);
/* reg_sfd_mc_fid_vid
*
* Filtering ID or VLAN ID
* Access: Index
*/
MLXSW_ITEM32_INDEXED(reg, sfd, mc_fid_vid, MLXSW_REG_SFD_BASE_LEN, 0, 16,
MLXSW_REG_SFD_REC_LEN, 0x08, false);
/* reg_sfd_mc_mid
*
* Multicast identifier - global identifier that represents the multicast
* group across all devices.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, sfd, mc_mid, MLXSW_REG_SFD_BASE_LEN, 0, 16,
MLXSW_REG_SFD_REC_LEN, 0x0C, false);
static inline void
mlxsw_reg_sfd_mc_pack(char *payload, int rec_index,
const char *mac, u16 fid_vid,
enum mlxsw_reg_sfd_rec_action action, u16 mid)
{
mlxsw_reg_sfd_rec_pack(payload, rec_index,
MLXSW_REG_SFD_REC_TYPE_MULTICAST, mac, action);
mlxsw_reg_sfd_mc_pgi_set(payload, rec_index, 0x1FFF);
mlxsw_reg_sfd_mc_fid_vid_set(payload, rec_index, fid_vid);
mlxsw_reg_sfd_mc_mid_set(payload, rec_index, mid);
}
/* reg_sfd_uc_tunnel_uip_msb
* When protocol is IPv4, the most significant byte of the underlay IPv4
* destination IP.
* When protocol is IPv6, reserved.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, sfd, uc_tunnel_uip_msb, MLXSW_REG_SFD_BASE_LEN, 24,
8, MLXSW_REG_SFD_REC_LEN, 0x08, false);
/* reg_sfd_uc_tunnel_fid
* Filtering ID.
* Access: Index
*/
MLXSW_ITEM32_INDEXED(reg, sfd, uc_tunnel_fid, MLXSW_REG_SFD_BASE_LEN, 0, 16,
MLXSW_REG_SFD_REC_LEN, 0x08, false);
enum mlxsw_reg_sfd_uc_tunnel_protocol {
MLXSW_REG_SFD_UC_TUNNEL_PROTOCOL_IPV4,
MLXSW_REG_SFD_UC_TUNNEL_PROTOCOL_IPV6,
};
/* reg_sfd_uc_tunnel_protocol
* IP protocol.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, sfd, uc_tunnel_protocol, MLXSW_REG_SFD_BASE_LEN, 27,
1, MLXSW_REG_SFD_REC_LEN, 0x0C, false);
/* reg_sfd_uc_tunnel_uip_lsb
* When protocol is IPv4, the least significant bytes of the underlay
* IPv4 destination IP.
* When protocol is IPv6, pointer to the underlay IPv6 destination IP
* which is configured by RIPS.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, sfd, uc_tunnel_uip_lsb, MLXSW_REG_SFD_BASE_LEN, 0,
24, MLXSW_REG_SFD_REC_LEN, 0x0C, false);
static inline void
mlxsw_reg_sfd_uc_tunnel_pack(char *payload, int rec_index,
enum mlxsw_reg_sfd_rec_policy policy,
const char *mac, u16 fid,
enum mlxsw_reg_sfd_rec_action action,
enum mlxsw_reg_sfd_uc_tunnel_protocol proto)
{
mlxsw_reg_sfd_rec_pack(payload, rec_index,
MLXSW_REG_SFD_REC_TYPE_UNICAST_TUNNEL, mac,
action);
mlxsw_reg_sfd_rec_policy_set(payload, rec_index, policy);
mlxsw_reg_sfd_uc_tunnel_fid_set(payload, rec_index, fid);
mlxsw_reg_sfd_uc_tunnel_protocol_set(payload, rec_index, proto);
}
static inline void
mlxsw_reg_sfd_uc_tunnel_pack4(char *payload, int rec_index,
enum mlxsw_reg_sfd_rec_policy policy,
const char *mac, u16 fid,
enum mlxsw_reg_sfd_rec_action action, u32 uip)
{
mlxsw_reg_sfd_uc_tunnel_uip_msb_set(payload, rec_index, uip >> 24);
mlxsw_reg_sfd_uc_tunnel_uip_lsb_set(payload, rec_index, uip);
mlxsw_reg_sfd_uc_tunnel_pack(payload, rec_index, policy, mac, fid,
action,
MLXSW_REG_SFD_UC_TUNNEL_PROTOCOL_IPV4);
}
static inline void
mlxsw_reg_sfd_uc_tunnel_pack6(char *payload, int rec_index, const char *mac,
u16 fid, enum mlxsw_reg_sfd_rec_action action,
u32 uip_ptr)
{
mlxsw_reg_sfd_uc_tunnel_uip_lsb_set(payload, rec_index, uip_ptr);
/* Only static policy is supported for IPv6 unicast tunnel entry. */
mlxsw_reg_sfd_uc_tunnel_pack(payload, rec_index,
MLXSW_REG_SFD_REC_POLICY_STATIC_ENTRY,
mac, fid, action,
MLXSW_REG_SFD_UC_TUNNEL_PROTOCOL_IPV6);
}
enum mlxsw_reg_tunnel_port {
MLXSW_REG_TUNNEL_PORT_NVE,
MLXSW_REG_TUNNEL_PORT_VPLS,
MLXSW_REG_TUNNEL_PORT_FLEX_TUNNEL0,
MLXSW_REG_TUNNEL_PORT_FLEX_TUNNEL1,
};
/* SFN - Switch FDB Notification Register
* -------------------------------------------
* The switch provides notifications on newly learned FDB entries and
* aged out entries. The notifications can be polled by software.
*/
#define MLXSW_REG_SFN_ID 0x200B
#define MLXSW_REG_SFN_BASE_LEN 0x10 /* base length, without records */
#define MLXSW_REG_SFN_REC_LEN 0x10 /* record length */
#define MLXSW_REG_SFN_REC_MAX_COUNT 64
#define MLXSW_REG_SFN_LEN (MLXSW_REG_SFN_BASE_LEN + \
MLXSW_REG_SFN_REC_LEN * MLXSW_REG_SFN_REC_MAX_COUNT)
MLXSW_REG_DEFINE(sfn, MLXSW_REG_SFN_ID, MLXSW_REG_SFN_LEN);
/* reg_sfn_swid
* Switch partition ID.
* Access: Index
*/
MLXSW_ITEM32(reg, sfn, swid, 0x00, 24, 8);
/* reg_sfn_end
* Forces the current session to end.
* Access: OP
*/
MLXSW_ITEM32(reg, sfn, end, 0x04, 20, 1);
/* reg_sfn_num_rec
* Request: Number of learned notifications and aged-out notification
* records requested.
* Response: Number of notification records returned (must be smaller
* than or equal to the value requested)
* Ranges 0..64
* Access: OP
*/
MLXSW_ITEM32(reg, sfn, num_rec, 0x04, 0, 8);
static inline void mlxsw_reg_sfn_pack(char *payload)
{
MLXSW_REG_ZERO(sfn, payload);
mlxsw_reg_sfn_swid_set(payload, 0);
mlxsw_reg_sfn_end_set(payload, 0);
mlxsw_reg_sfn_num_rec_set(payload, MLXSW_REG_SFN_REC_MAX_COUNT);
}
/* reg_sfn_rec_swid
* Switch partition ID.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, sfn, rec_swid, MLXSW_REG_SFN_BASE_LEN, 24, 8,
MLXSW_REG_SFN_REC_LEN, 0x00, false);
enum mlxsw_reg_sfn_rec_type {
/* MAC addresses learned on a regular port. */
MLXSW_REG_SFN_REC_TYPE_LEARNED_MAC = 0x5,
/* MAC addresses learned on a LAG port. */
MLXSW_REG_SFN_REC_TYPE_LEARNED_MAC_LAG = 0x6,
/* Aged-out MAC address on a regular port. */
MLXSW_REG_SFN_REC_TYPE_AGED_OUT_MAC = 0x7,
/* Aged-out MAC address on a LAG port. */
MLXSW_REG_SFN_REC_TYPE_AGED_OUT_MAC_LAG = 0x8,
/* Learned unicast tunnel record. */
MLXSW_REG_SFN_REC_TYPE_LEARNED_UNICAST_TUNNEL = 0xD,
/* Aged-out unicast tunnel record. */
MLXSW_REG_SFN_REC_TYPE_AGED_OUT_UNICAST_TUNNEL = 0xE,
};
/* reg_sfn_rec_type
* Notification record type.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, sfn, rec_type, MLXSW_REG_SFN_BASE_LEN, 20, 4,
MLXSW_REG_SFN_REC_LEN, 0x00, false);
/* reg_sfn_rec_mac
* MAC address.
* Access: RO
*/
MLXSW_ITEM_BUF_INDEXED(reg, sfn, rec_mac, MLXSW_REG_SFN_BASE_LEN, 6,
MLXSW_REG_SFN_REC_LEN, 0x02);
/* reg_sfn_mac_sub_port
* VEPA channel on the local port.
* 0 if multichannel VEPA is not enabled.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, sfn, mac_sub_port, MLXSW_REG_SFN_BASE_LEN, 16, 8,
MLXSW_REG_SFN_REC_LEN, 0x08, false);
/* reg_sfn_mac_fid
* Filtering identifier.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, sfn, mac_fid, MLXSW_REG_SFN_BASE_LEN, 0, 16,
MLXSW_REG_SFN_REC_LEN, 0x08, false);
/* reg_sfn_mac_system_port
* Unique port identifier for the final destination of the packet.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, sfn, mac_system_port, MLXSW_REG_SFN_BASE_LEN, 0, 16,
MLXSW_REG_SFN_REC_LEN, 0x0C, false);
static inline void mlxsw_reg_sfn_mac_unpack(char *payload, int rec_index,
char *mac, u16 *p_vid,
u16 *p_local_port)
{
mlxsw_reg_sfn_rec_mac_memcpy_from(payload, rec_index, mac);
*p_vid = mlxsw_reg_sfn_mac_fid_get(payload, rec_index);
*p_local_port = mlxsw_reg_sfn_mac_system_port_get(payload, rec_index);
}
/* reg_sfn_mac_lag_lag_id
* LAG ID (pointer into the LAG descriptor table).
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, sfn, mac_lag_lag_id, MLXSW_REG_SFN_BASE_LEN, 0, 10,
MLXSW_REG_SFN_REC_LEN, 0x0C, false);
static inline void mlxsw_reg_sfn_mac_lag_unpack(char *payload, int rec_index,
char *mac, u16 *p_vid,
u16 *p_lag_id)
{
mlxsw_reg_sfn_rec_mac_memcpy_from(payload, rec_index, mac);
*p_vid = mlxsw_reg_sfn_mac_fid_get(payload, rec_index);
*p_lag_id = mlxsw_reg_sfn_mac_lag_lag_id_get(payload, rec_index);
}
/* reg_sfn_uc_tunnel_uip_msb
* When protocol is IPv4, the most significant byte of the underlay IPv4
* address of the remote VTEP.
* When protocol is IPv6, reserved.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, sfn, uc_tunnel_uip_msb, MLXSW_REG_SFN_BASE_LEN, 24,
8, MLXSW_REG_SFN_REC_LEN, 0x08, false);
enum mlxsw_reg_sfn_uc_tunnel_protocol {
MLXSW_REG_SFN_UC_TUNNEL_PROTOCOL_IPV4,
MLXSW_REG_SFN_UC_TUNNEL_PROTOCOL_IPV6,
};
/* reg_sfn_uc_tunnel_protocol
* IP protocol.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, sfn, uc_tunnel_protocol, MLXSW_REG_SFN_BASE_LEN, 27,
1, MLXSW_REG_SFN_REC_LEN, 0x0C, false);
/* reg_sfn_uc_tunnel_uip_lsb
* When protocol is IPv4, the least significant bytes of the underlay
* IPv4 address of the remote VTEP.
* When protocol is IPv6, ipv6_id to be queried from TNIPSD.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, sfn, uc_tunnel_uip_lsb, MLXSW_REG_SFN_BASE_LEN, 0,
24, MLXSW_REG_SFN_REC_LEN, 0x0C, false);
/* reg_sfn_uc_tunnel_port
* Tunnel port.
* Reserved on Spectrum.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, sfn, tunnel_port, MLXSW_REG_SFN_BASE_LEN, 0, 4,
MLXSW_REG_SFN_REC_LEN, 0x10, false);
static inline void
mlxsw_reg_sfn_uc_tunnel_unpack(char *payload, int rec_index, char *mac,
u16 *p_fid, u32 *p_uip,
enum mlxsw_reg_sfn_uc_tunnel_protocol *p_proto)
{
u32 uip_msb, uip_lsb;
mlxsw_reg_sfn_rec_mac_memcpy_from(payload, rec_index, mac);
*p_fid = mlxsw_reg_sfn_mac_fid_get(payload, rec_index);
uip_msb = mlxsw_reg_sfn_uc_tunnel_uip_msb_get(payload, rec_index);
uip_lsb = mlxsw_reg_sfn_uc_tunnel_uip_lsb_get(payload, rec_index);
*p_uip = uip_msb << 24 | uip_lsb;
*p_proto = mlxsw_reg_sfn_uc_tunnel_protocol_get(payload, rec_index);
}
/* SPMS - Switch Port MSTP/RSTP State Register
* -------------------------------------------
* Configures the spanning tree state of a physical port.
*/
#define MLXSW_REG_SPMS_ID 0x200D
#define MLXSW_REG_SPMS_LEN 0x404
MLXSW_REG_DEFINE(spms, MLXSW_REG_SPMS_ID, MLXSW_REG_SPMS_LEN);
/* reg_spms_local_port
* Local port number.
* Access: Index
*/
MLXSW_ITEM32_LP(reg, spms, 0x00, 16, 0x00, 12);
enum mlxsw_reg_spms_state {
MLXSW_REG_SPMS_STATE_NO_CHANGE,
MLXSW_REG_SPMS_STATE_DISCARDING,
MLXSW_REG_SPMS_STATE_LEARNING,
MLXSW_REG_SPMS_STATE_FORWARDING,
};
/* reg_spms_state
* Spanning tree state of each VLAN ID (VID) of the local port.
* 0 - Do not change spanning tree state (used only when writing).
* 1 - Discarding. No learning or forwarding to/from this port (default).
* 2 - Learning. Port is learning, but not forwarding.
* 3 - Forwarding. Port is learning and forwarding.
* Access: RW
*/
MLXSW_ITEM_BIT_ARRAY(reg, spms, state, 0x04, 0x400, 2);
static inline void mlxsw_reg_spms_pack(char *payload, u16 local_port)
{
MLXSW_REG_ZERO(spms, payload);
mlxsw_reg_spms_local_port_set(payload, local_port);
}
static inline void mlxsw_reg_spms_vid_pack(char *payload, u16 vid,
enum mlxsw_reg_spms_state state)
{
mlxsw_reg_spms_state_set(payload, vid, state);
}
/* SPVID - Switch Port VID
* -----------------------
* The switch port VID configures the default VID for a port.
*/
#define MLXSW_REG_SPVID_ID 0x200E
#define MLXSW_REG_SPVID_LEN 0x08
MLXSW_REG_DEFINE(spvid, MLXSW_REG_SPVID_ID, MLXSW_REG_SPVID_LEN);
/* reg_spvid_tport
* Port is tunnel port.
* Reserved when SwitchX/-2 or Spectrum-1.
* Access: Index
*/
MLXSW_ITEM32(reg, spvid, tport, 0x00, 24, 1);
/* reg_spvid_local_port
* When tport = 0: Local port number. Not supported for CPU port.
* When tport = 1: Tunnel port.
* Access: Index
*/
MLXSW_ITEM32_LP(reg, spvid, 0x00, 16, 0x00, 12);
/* reg_spvid_sub_port
* Virtual port within the physical port.
* Should be set to 0 when virtual ports are not enabled on the port.
* Access: Index
*/
MLXSW_ITEM32(reg, spvid, sub_port, 0x00, 8, 8);
/* reg_spvid_egr_et_set
* When VLAN is pushed at ingress (for untagged packets or for
* QinQ push mode) then the EtherType is decided at the egress port.
* Reserved when Spectrum-1.
* Access: RW
*/
MLXSW_ITEM32(reg, spvid, egr_et_set, 0x04, 24, 1);
/* reg_spvid_et_vlan
* EtherType used for when VLAN is pushed at ingress (for untagged
* packets or for QinQ push mode).
* 0: ether_type0 - (default)
* 1: ether_type1
* 2: ether_type2 - Reserved when Spectrum-1, supported by Spectrum-2
* Ethertype IDs are configured by SVER.
* Reserved when egr_et_set = 1.
* Access: RW
*/
MLXSW_ITEM32(reg, spvid, et_vlan, 0x04, 16, 2);
/* reg_spvid_pvid
* Port default VID
* Access: RW
*/
MLXSW_ITEM32(reg, spvid, pvid, 0x04, 0, 12);
static inline void mlxsw_reg_spvid_pack(char *payload, u16 local_port, u16 pvid,
u8 et_vlan)
{
MLXSW_REG_ZERO(spvid, payload);
mlxsw_reg_spvid_local_port_set(payload, local_port);
mlxsw_reg_spvid_pvid_set(payload, pvid);
mlxsw_reg_spvid_et_vlan_set(payload, et_vlan);
}
/* SPVM - Switch Port VLAN Membership
* ----------------------------------
* The Switch Port VLAN Membership register configures the VLAN membership
* of a port in a VLAN denoted by VID. VLAN membership is managed per
* virtual port. The register can be used to add and remove VID(s) from a port.
*/
#define MLXSW_REG_SPVM_ID 0x200F
#define MLXSW_REG_SPVM_BASE_LEN 0x04 /* base length, without records */
#define MLXSW_REG_SPVM_REC_LEN 0x04 /* record length */
#define MLXSW_REG_SPVM_REC_MAX_COUNT 255
#define MLXSW_REG_SPVM_LEN (MLXSW_REG_SPVM_BASE_LEN + \
MLXSW_REG_SPVM_REC_LEN * MLXSW_REG_SPVM_REC_MAX_COUNT)
MLXSW_REG_DEFINE(spvm, MLXSW_REG_SPVM_ID, MLXSW_REG_SPVM_LEN);
/* reg_spvm_pt
* Priority tagged. If this bit is set, packets forwarded to the port with
* untagged VLAN membership (u bit is set) will be tagged with priority tag
* (VID=0)
* Access: RW
*/
MLXSW_ITEM32(reg, spvm, pt, 0x00, 31, 1);
/* reg_spvm_pte
* Priority Tagged Update Enable. On Write operations, if this bit is cleared,
* the pt bit will NOT be updated. To update the pt bit, pte must be set.
* Access: WO
*/
MLXSW_ITEM32(reg, spvm, pte, 0x00, 30, 1);
/* reg_spvm_local_port
* Local port number.
* Access: Index
*/
MLXSW_ITEM32_LP(reg, spvm, 0x00, 16, 0x00, 12);
/* reg_spvm_sub_port
* Virtual port within the physical port.
* Should be set to 0 when virtual ports are not enabled on the port.
* Access: Index
*/
MLXSW_ITEM32(reg, spvm, sub_port, 0x00, 8, 8);
/* reg_spvm_num_rec
* Number of records to update. Each record contains: i, e, u, vid.
* Access: OP
*/
MLXSW_ITEM32(reg, spvm, num_rec, 0x00, 0, 8);
/* reg_spvm_rec_i
* Ingress membership in VLAN ID.
* Access: Index
*/
MLXSW_ITEM32_INDEXED(reg, spvm, rec_i,
MLXSW_REG_SPVM_BASE_LEN, 14, 1,
MLXSW_REG_SPVM_REC_LEN, 0, false);
/* reg_spvm_rec_e
* Egress membership in VLAN ID.
* Access: Index
*/
MLXSW_ITEM32_INDEXED(reg, spvm, rec_e,
MLXSW_REG_SPVM_BASE_LEN, 13, 1,
MLXSW_REG_SPVM_REC_LEN, 0, false);
/* reg_spvm_rec_u
* Untagged - port is an untagged member - egress transmission uses untagged
* frames on VID<n>
* Access: Index
*/
MLXSW_ITEM32_INDEXED(reg, spvm, rec_u,
MLXSW_REG_SPVM_BASE_LEN, 12, 1,
MLXSW_REG_SPVM_REC_LEN, 0, false);
/* reg_spvm_rec_vid
* Egress membership in VLAN ID.
* Access: Index
*/
MLXSW_ITEM32_INDEXED(reg, spvm, rec_vid,
MLXSW_REG_SPVM_BASE_LEN, 0, 12,
MLXSW_REG_SPVM_REC_LEN, 0, false);
static inline void mlxsw_reg_spvm_pack(char *payload, u16 local_port,
u16 vid_begin, u16 vid_end,
bool is_member, bool untagged)
{
int size = vid_end - vid_begin + 1;
int i;
MLXSW_REG_ZERO(spvm, payload);
mlxsw_reg_spvm_local_port_set(payload, local_port);
mlxsw_reg_spvm_num_rec_set(payload, size);
for (i = 0; i < size; i++) {
mlxsw_reg_spvm_rec_i_set(payload, i, is_member);
mlxsw_reg_spvm_rec_e_set(payload, i, is_member);
mlxsw_reg_spvm_rec_u_set(payload, i, untagged);
mlxsw_reg_spvm_rec_vid_set(payload, i, vid_begin + i);
}
}
/* SPAFT - Switch Port Acceptable Frame Types
* ------------------------------------------
* The Switch Port Acceptable Frame Types register configures the frame
* admittance of the port.
*/
#define MLXSW_REG_SPAFT_ID 0x2010
#define MLXSW_REG_SPAFT_LEN 0x08
MLXSW_REG_DEFINE(spaft, MLXSW_REG_SPAFT_ID, MLXSW_REG_SPAFT_LEN);
/* reg_spaft_local_port
* Local port number.
* Access: Index
*
* Note: CPU port is not supported (all tag types are allowed).
*/
MLXSW_ITEM32_LP(reg, spaft, 0x00, 16, 0x00, 12);
/* reg_spaft_sub_port
* Virtual port within the physical port.
* Should be set to 0 when virtual ports are not enabled on the port.
* Access: RW
*/
MLXSW_ITEM32(reg, spaft, sub_port, 0x00, 8, 8);
/* reg_spaft_allow_untagged
* When set, untagged frames on the ingress are allowed (default).
* Access: RW
*/
MLXSW_ITEM32(reg, spaft, allow_untagged, 0x04, 31, 1);
/* reg_spaft_allow_prio_tagged
* When set, priority tagged frames on the ingress are allowed (default).
* Access: RW
*/
MLXSW_ITEM32(reg, spaft, allow_prio_tagged, 0x04, 30, 1);
/* reg_spaft_allow_tagged
* When set, tagged frames on the ingress are allowed (default).
* Access: RW
*/
MLXSW_ITEM32(reg, spaft, allow_tagged, 0x04, 29, 1);
static inline void mlxsw_reg_spaft_pack(char *payload, u16 local_port,
bool allow_untagged)
{
MLXSW_REG_ZERO(spaft, payload);
mlxsw_reg_spaft_local_port_set(payload, local_port);
mlxsw_reg_spaft_allow_untagged_set(payload, allow_untagged);
mlxsw_reg_spaft_allow_prio_tagged_set(payload, allow_untagged);
mlxsw_reg_spaft_allow_tagged_set(payload, true);
}
/* SFGC - Switch Flooding Group Configuration
* ------------------------------------------
* The following register controls the association of flooding tables and MIDs
* to packet types used for flooding.
*/
#define MLXSW_REG_SFGC_ID 0x2011
#define MLXSW_REG_SFGC_LEN 0x14
MLXSW_REG_DEFINE(sfgc, MLXSW_REG_SFGC_ID, MLXSW_REG_SFGC_LEN);
enum mlxsw_reg_sfgc_type {
MLXSW_REG_SFGC_TYPE_BROADCAST,
MLXSW_REG_SFGC_TYPE_UNKNOWN_UNICAST,
MLXSW_REG_SFGC_TYPE_UNREGISTERED_MULTICAST_IPV4,
MLXSW_REG_SFGC_TYPE_UNREGISTERED_MULTICAST_IPV6,
MLXSW_REG_SFGC_TYPE_RESERVED,
MLXSW_REG_SFGC_TYPE_UNREGISTERED_MULTICAST_NON_IP,
MLXSW_REG_SFGC_TYPE_IPV4_LINK_LOCAL,
MLXSW_REG_SFGC_TYPE_IPV6_ALL_HOST,
MLXSW_REG_SFGC_TYPE_MAX,
};
/* reg_sfgc_type
* The traffic type to reach the flooding table.
* Access: Index
*/
MLXSW_ITEM32(reg, sfgc, type, 0x00, 0, 4);
/* bridge_type is used in SFGC and SFMR. */
enum mlxsw_reg_bridge_type {
MLXSW_REG_BRIDGE_TYPE_0 = 0, /* Used for .1q FIDs. */
MLXSW_REG_BRIDGE_TYPE_1 = 1, /* Used for .1d FIDs. */
};
/* reg_sfgc_bridge_type
* Access: Index
*
* Note: SwitchX-2 only supports 802.1Q mode.
*/
MLXSW_ITEM32(reg, sfgc, bridge_type, 0x04, 24, 3);
enum mlxsw_flood_table_type {
MLXSW_REG_SFGC_TABLE_TYPE_VID = 1,
MLXSW_REG_SFGC_TABLE_TYPE_SINGLE = 2,
MLXSW_REG_SFGC_TABLE_TYPE_ANY = 0,
MLXSW_REG_SFGC_TABLE_TYPE_FID_OFFSET = 3,
MLXSW_REG_SFGC_TABLE_TYPE_FID = 4,
};
/* reg_sfgc_table_type
* See mlxsw_flood_table_type
* Access: RW
*
* Note: FID offset and FID types are not supported in SwitchX-2.
*/
MLXSW_ITEM32(reg, sfgc, table_type, 0x04, 16, 3);
/* reg_sfgc_flood_table
* Flooding table index to associate with the specific type on the specific
* switch partition.
* Access: RW
*/
MLXSW_ITEM32(reg, sfgc, flood_table, 0x04, 0, 6);
/* reg_sfgc_counter_set_type
* Counter Set Type for flow counters.
* Access: RW
*/
MLXSW_ITEM32(reg, sfgc, counter_set_type, 0x0C, 24, 8);
/* reg_sfgc_counter_index
* Counter Index for flow counters.
* Access: RW
*/
MLXSW_ITEM32(reg, sfgc, counter_index, 0x0C, 0, 24);
/* reg_sfgc_mid_base
* MID Base.
* Access: RW
*
* Note: Reserved when legacy bridge model is used.
*/
MLXSW_ITEM32(reg, sfgc, mid_base, 0x10, 0, 16);
static inline void
mlxsw_reg_sfgc_pack(char *payload, enum mlxsw_reg_sfgc_type type,
enum mlxsw_reg_bridge_type bridge_type,
enum mlxsw_flood_table_type table_type,
unsigned int flood_table, u16 mid_base)
{
MLXSW_REG_ZERO(sfgc, payload);
mlxsw_reg_sfgc_type_set(payload, type);
mlxsw_reg_sfgc_bridge_type_set(payload, bridge_type);
mlxsw_reg_sfgc_table_type_set(payload, table_type);
mlxsw_reg_sfgc_flood_table_set(payload, flood_table);
mlxsw_reg_sfgc_mid_base_set(payload, mid_base);
}
/* SFDF - Switch Filtering DB Flush
* --------------------------------
* The switch filtering DB flush register is used to flush the FDB.
* Note that FDB notifications are flushed as well.
*/
#define MLXSW_REG_SFDF_ID 0x2013
#define MLXSW_REG_SFDF_LEN 0x14
MLXSW_REG_DEFINE(sfdf, MLXSW_REG_SFDF_ID, MLXSW_REG_SFDF_LEN);
/* reg_sfdf_swid
* Switch partition ID.
* Access: Index
*/
MLXSW_ITEM32(reg, sfdf, swid, 0x00, 24, 8);
enum mlxsw_reg_sfdf_flush_type {
MLXSW_REG_SFDF_FLUSH_PER_SWID,
MLXSW_REG_SFDF_FLUSH_PER_FID,
MLXSW_REG_SFDF_FLUSH_PER_PORT,
MLXSW_REG_SFDF_FLUSH_PER_PORT_AND_FID,
MLXSW_REG_SFDF_FLUSH_PER_LAG,
MLXSW_REG_SFDF_FLUSH_PER_LAG_AND_FID,
MLXSW_REG_SFDF_FLUSH_PER_NVE,
MLXSW_REG_SFDF_FLUSH_PER_NVE_AND_FID,
};
/* reg_sfdf_flush_type
* Flush type.
* 0 - All SWID dynamic entries are flushed.
* 1 - All FID dynamic entries are flushed.
* 2 - All dynamic entries pointing to port are flushed.
* 3 - All FID dynamic entries pointing to port are flushed.
* 4 - All dynamic entries pointing to LAG are flushed.
* 5 - All FID dynamic entries pointing to LAG are flushed.
* 6 - All entries of type "Unicast Tunnel" or "Multicast Tunnel" are
* flushed.
* 7 - All entries of type "Unicast Tunnel" or "Multicast Tunnel" are
* flushed, per FID.
* Access: RW
*/
MLXSW_ITEM32(reg, sfdf, flush_type, 0x04, 28, 4);
/* reg_sfdf_flush_static
* Static.
* 0 - Flush only dynamic entries.
* 1 - Flush both dynamic and static entries.
* Access: RW
*/
MLXSW_ITEM32(reg, sfdf, flush_static, 0x04, 24, 1);
static inline void mlxsw_reg_sfdf_pack(char *payload,
enum mlxsw_reg_sfdf_flush_type type)
{
MLXSW_REG_ZERO(sfdf, payload);
mlxsw_reg_sfdf_flush_type_set(payload, type);
mlxsw_reg_sfdf_flush_static_set(payload, true);
}
/* reg_sfdf_fid
* FID to flush.
* Access: RW
*/
MLXSW_ITEM32(reg, sfdf, fid, 0x0C, 0, 16);
/* reg_sfdf_system_port
* Port to flush.
* Access: RW
*/
MLXSW_ITEM32(reg, sfdf, system_port, 0x0C, 0, 16);
/* reg_sfdf_port_fid_system_port
* Port to flush, pointed to by FID.
* Access: RW
*/
MLXSW_ITEM32(reg, sfdf, port_fid_system_port, 0x08, 0, 16);
/* reg_sfdf_lag_id
* LAG ID to flush.
* Access: RW
*/
MLXSW_ITEM32(reg, sfdf, lag_id, 0x0C, 0, 10);
/* reg_sfdf_lag_fid_lag_id
* LAG ID to flush, pointed to by FID.
* Access: RW
*/
MLXSW_ITEM32(reg, sfdf, lag_fid_lag_id, 0x08, 0, 10);
/* SLDR - Switch LAG Descriptor Register
* -----------------------------------------
* The switch LAG descriptor register is populated by LAG descriptors.
* Each LAG descriptor is indexed by lag_id. The LAG ID runs from 0 to
* max_lag-1.
*/
#define MLXSW_REG_SLDR_ID 0x2014
#define MLXSW_REG_SLDR_LEN 0x0C /* counting in only one port in list */
MLXSW_REG_DEFINE(sldr, MLXSW_REG_SLDR_ID, MLXSW_REG_SLDR_LEN);
enum mlxsw_reg_sldr_op {
/* Indicates a creation of a new LAG-ID, lag_id must be valid */
MLXSW_REG_SLDR_OP_LAG_CREATE,
MLXSW_REG_SLDR_OP_LAG_DESTROY,
/* Ports that appear in the list have the Distributor enabled */
MLXSW_REG_SLDR_OP_LAG_ADD_PORT_LIST,
/* Removes ports from the disributor list */
MLXSW_REG_SLDR_OP_LAG_REMOVE_PORT_LIST,
};
/* reg_sldr_op
* Operation.
* Access: RW
*/
MLXSW_ITEM32(reg, sldr, op, 0x00, 29, 3);
/* reg_sldr_lag_id
* LAG identifier. The lag_id is the index into the LAG descriptor table.
* Access: Index
*/
MLXSW_ITEM32(reg, sldr, lag_id, 0x00, 0, 10);
static inline void mlxsw_reg_sldr_lag_create_pack(char *payload, u8 lag_id)
{
MLXSW_REG_ZERO(sldr, payload);
mlxsw_reg_sldr_op_set(payload, MLXSW_REG_SLDR_OP_LAG_CREATE);
mlxsw_reg_sldr_lag_id_set(payload, lag_id);
}
static inline void mlxsw_reg_sldr_lag_destroy_pack(char *payload, u8 lag_id)
{
MLXSW_REG_ZERO(sldr, payload);
mlxsw_reg_sldr_op_set(payload, MLXSW_REG_SLDR_OP_LAG_DESTROY);
mlxsw_reg_sldr_lag_id_set(payload, lag_id);
}
/* reg_sldr_num_ports
* The number of member ports of the LAG.
* Reserved for Create / Destroy operations
* For Add / Remove operations - indicates the number of ports in the list.
* Access: RW
*/
MLXSW_ITEM32(reg, sldr, num_ports, 0x04, 24, 8);
/* reg_sldr_system_port
* System port.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, sldr, system_port, 0x08, 0, 16, 4, 0, false);
static inline void mlxsw_reg_sldr_lag_add_port_pack(char *payload, u8 lag_id,
u16 local_port)
{
MLXSW_REG_ZERO(sldr, payload);
mlxsw_reg_sldr_op_set(payload, MLXSW_REG_SLDR_OP_LAG_ADD_PORT_LIST);
mlxsw_reg_sldr_lag_id_set(payload, lag_id);
mlxsw_reg_sldr_num_ports_set(payload, 1);
mlxsw_reg_sldr_system_port_set(payload, 0, local_port);
}
static inline void mlxsw_reg_sldr_lag_remove_port_pack(char *payload, u8 lag_id,
u16 local_port)
{
MLXSW_REG_ZERO(sldr, payload);
mlxsw_reg_sldr_op_set(payload, MLXSW_REG_SLDR_OP_LAG_REMOVE_PORT_LIST);
mlxsw_reg_sldr_lag_id_set(payload, lag_id);
mlxsw_reg_sldr_num_ports_set(payload, 1);
mlxsw_reg_sldr_system_port_set(payload, 0, local_port);
}
/* SLCR - Switch LAG Configuration 2 Register
* -------------------------------------------
* The Switch LAG Configuration register is used for configuring the
* LAG properties of the switch.
*/
#define MLXSW_REG_SLCR_ID 0x2015
#define MLXSW_REG_SLCR_LEN 0x10
MLXSW_REG_DEFINE(slcr, MLXSW_REG_SLCR_ID, MLXSW_REG_SLCR_LEN);
enum mlxsw_reg_slcr_pp {
/* Global Configuration (for all ports) */
MLXSW_REG_SLCR_PP_GLOBAL,
/* Per port configuration, based on local_port field */
MLXSW_REG_SLCR_PP_PER_PORT,
};
/* reg_slcr_pp
* Per Port Configuration
* Note: Reading at Global mode results in reading port 1 configuration.
* Access: Index
*/
MLXSW_ITEM32(reg, slcr, pp, 0x00, 24, 1);
/* reg_slcr_local_port
* Local port number
* Supported from CPU port
* Not supported from router port
* Reserved when pp = Global Configuration
* Access: Index
*/
MLXSW_ITEM32_LP(reg, slcr, 0x00, 16, 0x00, 12);
enum mlxsw_reg_slcr_type {
MLXSW_REG_SLCR_TYPE_CRC, /* default */
MLXSW_REG_SLCR_TYPE_XOR,
MLXSW_REG_SLCR_TYPE_RANDOM,
};
/* reg_slcr_type
* Hash type
* Access: RW
*/
MLXSW_ITEM32(reg, slcr, type, 0x00, 0, 4);
/* Ingress port */
#define MLXSW_REG_SLCR_LAG_HASH_IN_PORT BIT(0)
/* SMAC - for IPv4 and IPv6 packets */
#define MLXSW_REG_SLCR_LAG_HASH_SMAC_IP BIT(1)
/* SMAC - for non-IP packets */
#define MLXSW_REG_SLCR_LAG_HASH_SMAC_NONIP BIT(2)
#define MLXSW_REG_SLCR_LAG_HASH_SMAC \
(MLXSW_REG_SLCR_LAG_HASH_SMAC_IP | \
MLXSW_REG_SLCR_LAG_HASH_SMAC_NONIP)
/* DMAC - for IPv4 and IPv6 packets */
#define MLXSW_REG_SLCR_LAG_HASH_DMAC_IP BIT(3)
/* DMAC - for non-IP packets */
#define MLXSW_REG_SLCR_LAG_HASH_DMAC_NONIP BIT(4)
#define MLXSW_REG_SLCR_LAG_HASH_DMAC \
(MLXSW_REG_SLCR_LAG_HASH_DMAC_IP | \
MLXSW_REG_SLCR_LAG_HASH_DMAC_NONIP)
/* Ethertype - for IPv4 and IPv6 packets */
#define MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE_IP BIT(5)
/* Ethertype - for non-IP packets */
#define MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE_NONIP BIT(6)
#define MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE \
(MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE_IP | \
MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE_NONIP)
/* VLAN ID - for IPv4 and IPv6 packets */
#define MLXSW_REG_SLCR_LAG_HASH_VLANID_IP BIT(7)
/* VLAN ID - for non-IP packets */
#define MLXSW_REG_SLCR_LAG_HASH_VLANID_NONIP BIT(8)
#define MLXSW_REG_SLCR_LAG_HASH_VLANID \
(MLXSW_REG_SLCR_LAG_HASH_VLANID_IP | \
MLXSW_REG_SLCR_LAG_HASH_VLANID_NONIP)
/* Source IP address (can be IPv4 or IPv6) */
#define MLXSW_REG_SLCR_LAG_HASH_SIP BIT(9)
/* Destination IP address (can be IPv4 or IPv6) */
#define MLXSW_REG_SLCR_LAG_HASH_DIP BIT(10)
/* TCP/UDP source port */
#define MLXSW_REG_SLCR_LAG_HASH_SPORT BIT(11)
/* TCP/UDP destination port*/
#define MLXSW_REG_SLCR_LAG_HASH_DPORT BIT(12)
/* IPv4 Protocol/IPv6 Next Header */
#define MLXSW_REG_SLCR_LAG_HASH_IPPROTO BIT(13)
/* IPv6 Flow label */
#define MLXSW_REG_SLCR_LAG_HASH_FLOWLABEL BIT(14)
/* SID - FCoE source ID */
#define MLXSW_REG_SLCR_LAG_HASH_FCOE_SID BIT(15)
/* DID - FCoE destination ID */
#define MLXSW_REG_SLCR_LAG_HASH_FCOE_DID BIT(16)
/* OXID - FCoE originator exchange ID */
#define MLXSW_REG_SLCR_LAG_HASH_FCOE_OXID BIT(17)
/* Destination QP number - for RoCE packets */
#define MLXSW_REG_SLCR_LAG_HASH_ROCE_DQP BIT(19)
/* reg_slcr_lag_hash
* LAG hashing configuration. This is a bitmask, in which each set
* bit includes the corresponding item in the LAG hash calculation.
* The default lag_hash contains SMAC, DMAC, VLANID and
* Ethertype (for all packet types).
* Access: RW
*/
MLXSW_ITEM32(reg, slcr, lag_hash, 0x04, 0, 20);
/* reg_slcr_seed
* LAG seed value. The seed is the same for all ports.
* Access: RW
*/
MLXSW_ITEM32(reg, slcr, seed, 0x08, 0, 32);
static inline void mlxsw_reg_slcr_pack(char *payload, u16 lag_hash, u32 seed)
{
MLXSW_REG_ZERO(slcr, payload);
mlxsw_reg_slcr_pp_set(payload, MLXSW_REG_SLCR_PP_GLOBAL);
mlxsw_reg_slcr_type_set(payload, MLXSW_REG_SLCR_TYPE_CRC);
mlxsw_reg_slcr_lag_hash_set(payload, lag_hash);
mlxsw_reg_slcr_seed_set(payload, seed);
}
/* SLCOR - Switch LAG Collector Register
* -------------------------------------
* The Switch LAG Collector register controls the Local Port membership
* in a LAG and enablement of the collector.
*/
#define MLXSW_REG_SLCOR_ID 0x2016
#define MLXSW_REG_SLCOR_LEN 0x10
MLXSW_REG_DEFINE(slcor, MLXSW_REG_SLCOR_ID, MLXSW_REG_SLCOR_LEN);
enum mlxsw_reg_slcor_col {
/* Port is added with collector disabled */
MLXSW_REG_SLCOR_COL_LAG_ADD_PORT,
MLXSW_REG_SLCOR_COL_LAG_COLLECTOR_ENABLED,
MLXSW_REG_SLCOR_COL_LAG_COLLECTOR_DISABLED,
MLXSW_REG_SLCOR_COL_LAG_REMOVE_PORT,
};
/* reg_slcor_col
* Collector configuration
* Access: RW
*/
MLXSW_ITEM32(reg, slcor, col, 0x00, 30, 2);
/* reg_slcor_local_port
* Local port number
* Not supported for CPU port
* Access: Index
*/
MLXSW_ITEM32_LP(reg, slcor, 0x00, 16, 0x00, 12);
/* reg_slcor_lag_id
* LAG Identifier. Index into the LAG descriptor table.
* Access: Index
*/
MLXSW_ITEM32(reg, slcor, lag_id, 0x00, 0, 10);
/* reg_slcor_port_index
* Port index in the LAG list. Only valid on Add Port to LAG col.
* Valid range is from 0 to cap_max_lag_members-1
* Access: RW
*/
MLXSW_ITEM32(reg, slcor, port_index, 0x04, 0, 10);
static inline void mlxsw_reg_slcor_pack(char *payload,
u16 local_port, u16 lag_id,
enum mlxsw_reg_slcor_col col)
{
MLXSW_REG_ZERO(slcor, payload);
mlxsw_reg_slcor_col_set(payload, col);
mlxsw_reg_slcor_local_port_set(payload, local_port);
mlxsw_reg_slcor_lag_id_set(payload, lag_id);
}
static inline void mlxsw_reg_slcor_port_add_pack(char *payload,
u16 local_port, u16 lag_id,
u8 port_index)
{
mlxsw_reg_slcor_pack(payload, local_port, lag_id,
MLXSW_REG_SLCOR_COL_LAG_ADD_PORT);
mlxsw_reg_slcor_port_index_set(payload, port_index);
}
static inline void mlxsw_reg_slcor_port_remove_pack(char *payload,
u16 local_port, u16 lag_id)
{
mlxsw_reg_slcor_pack(payload, local_port, lag_id,
MLXSW_REG_SLCOR_COL_LAG_REMOVE_PORT);
}
static inline void mlxsw_reg_slcor_col_enable_pack(char *payload,
u16 local_port, u16 lag_id)
{
mlxsw_reg_slcor_pack(payload, local_port, lag_id,
MLXSW_REG_SLCOR_COL_LAG_COLLECTOR_ENABLED);
}
static inline void mlxsw_reg_slcor_col_disable_pack(char *payload,
u16 local_port, u16 lag_id)
{
mlxsw_reg_slcor_pack(payload, local_port, lag_id,
MLXSW_REG_SLCOR_COL_LAG_COLLECTOR_ENABLED);
}
/* SPMLR - Switch Port MAC Learning Register
* -----------------------------------------
* Controls the Switch MAC learning policy per port.
*/
#define MLXSW_REG_SPMLR_ID 0x2018
#define MLXSW_REG_SPMLR_LEN 0x8
MLXSW_REG_DEFINE(spmlr, MLXSW_REG_SPMLR_ID, MLXSW_REG_SPMLR_LEN);
/* reg_spmlr_local_port
* Local port number.
* Access: Index
*/
MLXSW_ITEM32_LP(reg, spmlr, 0x00, 16, 0x00, 12);
/* reg_spmlr_sub_port
* Virtual port within the physical port.
* Should be set to 0 when virtual ports are not enabled on the port.
* Access: Index
*/
MLXSW_ITEM32(reg, spmlr, sub_port, 0x00, 8, 8);
enum mlxsw_reg_spmlr_learn_mode {
MLXSW_REG_SPMLR_LEARN_MODE_DISABLE = 0,
MLXSW_REG_SPMLR_LEARN_MODE_ENABLE = 2,
MLXSW_REG_SPMLR_LEARN_MODE_SEC = 3,
};
/* reg_spmlr_learn_mode
* Learning mode on the port.
* 0 - Learning disabled.
* 2 - Learning enabled.
* 3 - Security mode.
*
* In security mode the switch does not learn MACs on the port, but uses the
* SMAC to see if it exists on another ingress port. If so, the packet is
* classified as a bad packet and is discarded unless the software registers
* to receive port security error packets usign HPKT.
*/
MLXSW_ITEM32(reg, spmlr, learn_mode, 0x04, 30, 2);
static inline void mlxsw_reg_spmlr_pack(char *payload, u16 local_port,
enum mlxsw_reg_spmlr_learn_mode mode)
{
MLXSW_REG_ZERO(spmlr, payload);
mlxsw_reg_spmlr_local_port_set(payload, local_port);
mlxsw_reg_spmlr_sub_port_set(payload, 0);
mlxsw_reg_spmlr_learn_mode_set(payload, mode);
}
/* SVFA - Switch VID to FID Allocation Register
* --------------------------------------------
* Controls the VID to FID mapping and {Port, VID} to FID mapping for
* virtualized ports.
*/
#define MLXSW_REG_SVFA_ID 0x201C
#define MLXSW_REG_SVFA_LEN 0x18
MLXSW_REG_DEFINE(svfa, MLXSW_REG_SVFA_ID, MLXSW_REG_SVFA_LEN);
/* reg_svfa_swid
* Switch partition ID.
* Access: Index
*/
MLXSW_ITEM32(reg, svfa, swid, 0x00, 24, 8);
/* reg_svfa_local_port
* Local port number.
* Access: Index
*
* Note: Reserved for 802.1Q FIDs.
*/
MLXSW_ITEM32_LP(reg, svfa, 0x00, 16, 0x00, 12);
enum mlxsw_reg_svfa_mt {
MLXSW_REG_SVFA_MT_VID_TO_FID,
MLXSW_REG_SVFA_MT_PORT_VID_TO_FID,
MLXSW_REG_SVFA_MT_VNI_TO_FID,
};
/* reg_svfa_mapping_table
* Mapping table:
* 0 - VID to FID
* 1 - {Port, VID} to FID
* Access: Index
*
* Note: Reserved for SwitchX-2.
*/
MLXSW_ITEM32(reg, svfa, mapping_table, 0x00, 8, 3);
/* reg_svfa_v
* Valid.
* Valid if set.
* Access: RW
*
* Note: Reserved for SwitchX-2.
*/
MLXSW_ITEM32(reg, svfa, v, 0x00, 0, 1);
/* reg_svfa_fid
* Filtering ID.
* Access: RW
*/
MLXSW_ITEM32(reg, svfa, fid, 0x04, 16, 16);
/* reg_svfa_vid
* VLAN ID.
* Access: Index
*/
MLXSW_ITEM32(reg, svfa, vid, 0x04, 0, 12);
/* reg_svfa_counter_set_type
* Counter set type for flow counters.
* Access: RW
*
* Note: Reserved for SwitchX-2.
*/
MLXSW_ITEM32(reg, svfa, counter_set_type, 0x08, 24, 8);
/* reg_svfa_counter_index
* Counter index for flow counters.
* Access: RW
*
* Note: Reserved for SwitchX-2.
*/
MLXSW_ITEM32(reg, svfa, counter_index, 0x08, 0, 24);
/* reg_svfa_vni
* Virtual Network Identifier.
* Access: Index
*
* Note: Reserved when mapping_table is not 2 (VNI mapping table).
*/
MLXSW_ITEM32(reg, svfa, vni, 0x10, 0, 24);
/* reg_svfa_irif_v
* Ingress RIF valid.
* 0 - Ingress RIF is not valid, no ingress RIF assigned.
* 1 - Ingress RIF valid.
* Must not be set for a non enabled RIF.
* Access: RW
*
* Note: Reserved when legacy bridge model is used.
*/
MLXSW_ITEM32(reg, svfa, irif_v, 0x14, 24, 1);
/* reg_svfa_irif
* Ingress RIF (Router Interface).
* Range is 0..cap_max_router_interfaces-1.
* Access: RW
*
* Note: Reserved when legacy bridge model is used and when irif_v=0.
*/
MLXSW_ITEM32(reg, svfa, irif, 0x14, 0, 16);
static inline void __mlxsw_reg_svfa_pack(char *payload,
enum mlxsw_reg_svfa_mt mt, bool valid,
u16 fid, bool irif_v, u16 irif)
{
MLXSW_REG_ZERO(svfa, payload);
mlxsw_reg_svfa_swid_set(payload, 0);
mlxsw_reg_svfa_mapping_table_set(payload, mt);
mlxsw_reg_svfa_v_set(payload, valid);
mlxsw_reg_svfa_fid_set(payload, fid);
mlxsw_reg_svfa_irif_v_set(payload, irif_v);
mlxsw_reg_svfa_irif_set(payload, irif_v ? irif : 0);
}
static inline void mlxsw_reg_svfa_port_vid_pack(char *payload, u16 local_port,
bool valid, u16 fid, u16 vid,
bool irif_v, u16 irif)
{
enum mlxsw_reg_svfa_mt mt = MLXSW_REG_SVFA_MT_PORT_VID_TO_FID;
__mlxsw_reg_svfa_pack(payload, mt, valid, fid, irif_v, irif);
mlxsw_reg_svfa_local_port_set(payload, local_port);
mlxsw_reg_svfa_vid_set(payload, vid);
}
static inline void mlxsw_reg_svfa_vid_pack(char *payload, bool valid, u16 fid,
u16 vid, bool irif_v, u16 irif)
{
enum mlxsw_reg_svfa_mt mt = MLXSW_REG_SVFA_MT_VID_TO_FID;
__mlxsw_reg_svfa_pack(payload, mt, valid, fid, irif_v, irif);
mlxsw_reg_svfa_vid_set(payload, vid);
}
static inline void mlxsw_reg_svfa_vni_pack(char *payload, bool valid, u16 fid,
u32 vni, bool irif_v, u16 irif)
{
enum mlxsw_reg_svfa_mt mt = MLXSW_REG_SVFA_MT_VNI_TO_FID;
__mlxsw_reg_svfa_pack(payload, mt, valid, fid, irif_v, irif);
mlxsw_reg_svfa_vni_set(payload, vni);
}
/* SPVTR - Switch Port VLAN Stacking Register
* ------------------------------------------
* The Switch Port VLAN Stacking register configures the VLAN mode of the port
* to enable VLAN stacking.
*/
#define MLXSW_REG_SPVTR_ID 0x201D
#define MLXSW_REG_SPVTR_LEN 0x10
MLXSW_REG_DEFINE(spvtr, MLXSW_REG_SPVTR_ID, MLXSW_REG_SPVTR_LEN);
/* reg_spvtr_tport
* Port is tunnel port.
* Access: Index
*
* Note: Reserved when SwitchX/-2 or Spectrum-1.
*/
MLXSW_ITEM32(reg, spvtr, tport, 0x00, 24, 1);
/* reg_spvtr_local_port
* When tport = 0: local port number (Not supported from/to CPU).
* When tport = 1: tunnel port.
* Access: Index
*/
MLXSW_ITEM32_LP(reg, spvtr, 0x00, 16, 0x00, 12);
/* reg_spvtr_ippe
* Ingress Port Prio Mode Update Enable.
* When set, the Port Prio Mode is updated with the provided ipprio_mode field.
* Reserved on Get operations.
* Access: OP
*/
MLXSW_ITEM32(reg, spvtr, ippe, 0x04, 31, 1);
/* reg_spvtr_ipve
* Ingress Port VID Mode Update Enable.
* When set, the Ingress Port VID Mode is updated with the provided ipvid_mode
* field.
* Reserved on Get operations.
* Access: OP
*/
MLXSW_ITEM32(reg, spvtr, ipve, 0x04, 30, 1);
/* reg_spvtr_epve
* Egress Port VID Mode Update Enable.
* When set, the Egress Port VID Mode is updated with the provided epvid_mode
* field.
* Access: OP
*/
MLXSW_ITEM32(reg, spvtr, epve, 0x04, 29, 1);
/* reg_spvtr_ipprio_mode
* Ingress Port Priority Mode.
* This controls the PCP and DEI of the new outer VLAN
* Note: for SwitchX/-2 the DEI is not affected.
* 0: use port default PCP and DEI (configured by QPDPC).
* 1: use C-VLAN PCP and DEI.
* Has no effect when ipvid_mode = 0.
* Reserved when tport = 1.
* Access: RW
*/
MLXSW_ITEM32(reg, spvtr, ipprio_mode, 0x04, 20, 4);
enum mlxsw_reg_spvtr_ipvid_mode {
/* IEEE Compliant PVID (default) */
MLXSW_REG_SPVTR_IPVID_MODE_IEEE_COMPLIANT_PVID,
/* Push VLAN (for VLAN stacking, except prio tagged packets) */
MLXSW_REG_SPVTR_IPVID_MODE_PUSH_VLAN_FOR_UNTAGGED_PACKET,
/* Always push VLAN (also for prio tagged packets) */
MLXSW_REG_SPVTR_IPVID_MODE_ALWAYS_PUSH_VLAN,
};
/* reg_spvtr_ipvid_mode
* Ingress Port VLAN-ID Mode.
* For Spectrum family, this affects the values of SPVM.i
* Access: RW
*/
MLXSW_ITEM32(reg, spvtr, ipvid_mode, 0x04, 16, 4);
enum mlxsw_reg_spvtr_epvid_mode {
/* IEEE Compliant VLAN membership */
MLXSW_REG_SPVTR_EPVID_MODE_IEEE_COMPLIANT_VLAN_MEMBERSHIP,
/* Pop VLAN (for VLAN stacking) */
MLXSW_REG_SPVTR_EPVID_MODE_POP_VLAN,
};
/* reg_spvtr_epvid_mode
* Egress Port VLAN-ID Mode.
* For Spectrum family, this affects the values of SPVM.e,u,pt.
* Access: WO
*/
MLXSW_ITEM32(reg, spvtr, epvid_mode, 0x04, 0, 4);
static inline void mlxsw_reg_spvtr_pack(char *payload, bool tport,
u16 local_port,
enum mlxsw_reg_spvtr_ipvid_mode ipvid_mode)
{
MLXSW_REG_ZERO(spvtr, payload);
mlxsw_reg_spvtr_tport_set(payload, tport);
mlxsw_reg_spvtr_local_port_set(payload, local_port);
mlxsw_reg_spvtr_ipvid_mode_set(payload, ipvid_mode);
mlxsw_reg_spvtr_ipve_set(payload, true);
}
/* SVPE - Switch Virtual-Port Enabling Register
* --------------------------------------------
* Enables port virtualization.
*/
#define MLXSW_REG_SVPE_ID 0x201E
#define MLXSW_REG_SVPE_LEN 0x4
MLXSW_REG_DEFINE(svpe, MLXSW_REG_SVPE_ID, MLXSW_REG_SVPE_LEN);
/* reg_svpe_local_port
* Local port number
* Access: Index
*
* Note: CPU port is not supported (uses VLAN mode only).
*/
MLXSW_ITEM32_LP(reg, svpe, 0x00, 16, 0x00, 12);
/* reg_svpe_vp_en
* Virtual port enable.
* 0 - Disable, VLAN mode (VID to FID).
* 1 - Enable, Virtual port mode ({Port, VID} to FID).
* Access: RW
*/
MLXSW_ITEM32(reg, svpe, vp_en, 0x00, 8, 1);
static inline void mlxsw_reg_svpe_pack(char *payload, u16 local_port,
bool enable)
{
MLXSW_REG_ZERO(svpe, payload);
mlxsw_reg_svpe_local_port_set(payload, local_port);
mlxsw_reg_svpe_vp_en_set(payload, enable);
}
/* SFMR - Switch FID Management Register
* -------------------------------------
* Creates and configures FIDs.
*/
#define MLXSW_REG_SFMR_ID 0x201F
#define MLXSW_REG_SFMR_LEN 0x30
MLXSW_REG_DEFINE(sfmr, MLXSW_REG_SFMR_ID, MLXSW_REG_SFMR_LEN);
enum mlxsw_reg_sfmr_op {
MLXSW_REG_SFMR_OP_CREATE_FID,
MLXSW_REG_SFMR_OP_DESTROY_FID,
};
/* reg_sfmr_op
* Operation.
* 0 - Create or edit FID.
* 1 - Destroy FID.
* Access: WO
*/
MLXSW_ITEM32(reg, sfmr, op, 0x00, 24, 4);
/* reg_sfmr_fid
* Filtering ID.
* Access: Index
*/
MLXSW_ITEM32(reg, sfmr, fid, 0x00, 0, 16);
/* reg_sfmr_flood_rsp
* Router sub-port flooding table.
* 0 - Regular flooding table.
* 1 - Router sub-port flooding table. For this FID the flooding is per
* router-sub-port local_port. Must not be set for a FID which is not a
* router-sub-port and must be set prior to enabling the relevant RIF.
* Access: RW
*
* Note: Reserved when legacy bridge model is used.
*/
MLXSW_ITEM32(reg, sfmr, flood_rsp, 0x08, 31, 1);
/* reg_sfmr_flood_bridge_type
* Flood bridge type (see SFGC.bridge_type).
* 0 - type_0.
* 1 - type_1.
* Access: RW
*
* Note: Reserved when legacy bridge model is used and when flood_rsp=1.
*/
MLXSW_ITEM32(reg, sfmr, flood_bridge_type, 0x08, 28, 1);
/* reg_sfmr_fid_offset
* FID offset.
* Used to point into the flooding table selected by SFGC register if
* the table is of type FID-Offset. Otherwise, this field is reserved.
* Access: RW
*/
MLXSW_ITEM32(reg, sfmr, fid_offset, 0x08, 0, 16);
/* reg_sfmr_vtfp
* Valid Tunnel Flood Pointer.
* If not set, then nve_tunnel_flood_ptr is reserved and considered NULL.
* Access: RW
*
* Note: Reserved for 802.1Q FIDs.
*/
MLXSW_ITEM32(reg, sfmr, vtfp, 0x0C, 31, 1);
/* reg_sfmr_nve_tunnel_flood_ptr
* Underlay Flooding and BC Pointer.
* Used as a pointer to the first entry of the group based link lists of
* flooding or BC entries (for NVE tunnels).
* Access: RW
*/
MLXSW_ITEM32(reg, sfmr, nve_tunnel_flood_ptr, 0x0C, 0, 24);
/* reg_sfmr_vv
* VNI Valid.
* If not set, then vni is reserved.
* Access: RW
*
* Note: Reserved for 802.1Q FIDs.
*/
MLXSW_ITEM32(reg, sfmr, vv, 0x10, 31, 1);
/* reg_sfmr_vni
* Virtual Network Identifier.
* When legacy bridge model is used, a given VNI can only be assigned to one
* FID. When unified bridge model is used, it configures only the FID->VNI,
* the VNI->FID is done by SVFA.
* Access: RW
*/
MLXSW_ITEM32(reg, sfmr, vni, 0x10, 0, 24);
/* reg_sfmr_irif_v
* Ingress RIF valid.
* 0 - Ingress RIF is not valid, no ingress RIF assigned.
* 1 - Ingress RIF valid.
* Must not be set for a non valid RIF.
* Access: RW
*
* Note: Reserved when legacy bridge model is used.
*/
MLXSW_ITEM32(reg, sfmr, irif_v, 0x14, 24, 1);
/* reg_sfmr_irif
* Ingress RIF (Router Interface).
* Range is 0..cap_max_router_interfaces-1.
* Access: RW
*
* Note: Reserved when legacy bridge model is used and when irif_v=0.
*/
MLXSW_ITEM32(reg, sfmr, irif, 0x14, 0, 16);
/* reg_sfmr_smpe_valid
* SMPE is valid.
* Access: RW
*
* Note: Reserved when legacy bridge model is used, when flood_rsp=1 and on
* Spectrum-1.
*/
MLXSW_ITEM32(reg, sfmr, smpe_valid, 0x28, 20, 1);
/* reg_sfmr_smpe
* Switch multicast port to egress VID.
* Range is 0..cap_max_rmpe-1
* Access: RW
*
* Note: Reserved when legacy bridge model is used, when flood_rsp=1 and on
* Spectrum-1.
*/
MLXSW_ITEM32(reg, sfmr, smpe, 0x28, 0, 16);
static inline void mlxsw_reg_sfmr_pack(char *payload,
enum mlxsw_reg_sfmr_op op, u16 fid,
u16 fid_offset, bool flood_rsp,
enum mlxsw_reg_bridge_type bridge_type,
bool smpe_valid, u16 smpe)
{
MLXSW_REG_ZERO(sfmr, payload);
mlxsw_reg_sfmr_op_set(payload, op);
mlxsw_reg_sfmr_fid_set(payload, fid);
mlxsw_reg_sfmr_fid_offset_set(payload, fid_offset);
mlxsw_reg_sfmr_vtfp_set(payload, false);
mlxsw_reg_sfmr_vv_set(payload, false);
mlxsw_reg_sfmr_flood_rsp_set(payload, flood_rsp);
mlxsw_reg_sfmr_flood_bridge_type_set(payload, bridge_type);
mlxsw_reg_sfmr_smpe_valid_set(payload, smpe_valid);
mlxsw_reg_sfmr_smpe_set(payload, smpe);
}
/* SPVMLR - Switch Port VLAN MAC Learning Register
* -----------------------------------------------
* Controls the switch MAC learning policy per {Port, VID}.
*/
#define MLXSW_REG_SPVMLR_ID 0x2020
#define MLXSW_REG_SPVMLR_BASE_LEN 0x04 /* base length, without records */
#define MLXSW_REG_SPVMLR_REC_LEN 0x04 /* record length */
#define MLXSW_REG_SPVMLR_REC_MAX_COUNT 255
#define MLXSW_REG_SPVMLR_LEN (MLXSW_REG_SPVMLR_BASE_LEN + \
MLXSW_REG_SPVMLR_REC_LEN * \
MLXSW_REG_SPVMLR_REC_MAX_COUNT)
MLXSW_REG_DEFINE(spvmlr, MLXSW_REG_SPVMLR_ID, MLXSW_REG_SPVMLR_LEN);
/* reg_spvmlr_local_port
* Local ingress port.
* Access: Index
*
* Note: CPU port is not supported.
*/
MLXSW_ITEM32_LP(reg, spvmlr, 0x00, 16, 0x00, 12);
/* reg_spvmlr_num_rec
* Number of records to update.
* Access: OP
*/
MLXSW_ITEM32(reg, spvmlr, num_rec, 0x00, 0, 8);
/* reg_spvmlr_rec_learn_enable
* 0 - Disable learning for {Port, VID}.
* 1 - Enable learning for {Port, VID}.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, spvmlr, rec_learn_enable, MLXSW_REG_SPVMLR_BASE_LEN,
31, 1, MLXSW_REG_SPVMLR_REC_LEN, 0x00, false);
/* reg_spvmlr_rec_vid
* VLAN ID to be added/removed from port or for querying.
* Access: Index
*/
MLXSW_ITEM32_INDEXED(reg, spvmlr, rec_vid, MLXSW_REG_SPVMLR_BASE_LEN, 0, 12,
MLXSW_REG_SPVMLR_REC_LEN, 0x00, false);
static inline void mlxsw_reg_spvmlr_pack(char *payload, u16 local_port,
u16 vid_begin, u16 vid_end,
bool learn_enable)
{
int num_rec = vid_end - vid_begin + 1;
int i;
WARN_ON(num_rec < 1 || num_rec > MLXSW_REG_SPVMLR_REC_MAX_COUNT);
MLXSW_REG_ZERO(spvmlr, payload);
mlxsw_reg_spvmlr_local_port_set(payload, local_port);
mlxsw_reg_spvmlr_num_rec_set(payload, num_rec);
for (i = 0; i < num_rec; i++) {
mlxsw_reg_spvmlr_rec_learn_enable_set(payload, i, learn_enable);
mlxsw_reg_spvmlr_rec_vid_set(payload, i, vid_begin + i);
}
}
/* SPFSR - Switch Port FDB Security Register
* -----------------------------------------
* Configures the security mode per port.
*/
#define MLXSW_REG_SPFSR_ID 0x2023
#define MLXSW_REG_SPFSR_LEN 0x08
MLXSW_REG_DEFINE(spfsr, MLXSW_REG_SPFSR_ID, MLXSW_REG_SPFSR_LEN);
/* reg_spfsr_local_port
* Local port.
* Access: Index
*
* Note: not supported for CPU port.
*/
MLXSW_ITEM32_LP(reg, spfsr, 0x00, 16, 0x00, 12);
/* reg_spfsr_security
* Security checks.
* 0: disabled (default)
* 1: enabled
* Access: RW
*/
MLXSW_ITEM32(reg, spfsr, security, 0x04, 31, 1);
static inline void mlxsw_reg_spfsr_pack(char *payload, u16 local_port,
bool security)
{
MLXSW_REG_ZERO(spfsr, payload);
mlxsw_reg_spfsr_local_port_set(payload, local_port);
mlxsw_reg_spfsr_security_set(payload, security);
}
/* SPVC - Switch Port VLAN Classification Register
* -----------------------------------------------
* Configures the port to identify packets as untagged / single tagged /
* double packets based on the packet EtherTypes.
* Ethertype IDs are configured by SVER.
*/
#define MLXSW_REG_SPVC_ID 0x2026
#define MLXSW_REG_SPVC_LEN 0x0C
MLXSW_REG_DEFINE(spvc, MLXSW_REG_SPVC_ID, MLXSW_REG_SPVC_LEN);
/* reg_spvc_local_port
* Local port.
* Access: Index
*
* Note: applies both to Rx port and Tx port, so if a packet traverses
* through Rx port i and a Tx port j then port i and port j must have the
* same configuration.
*/
MLXSW_ITEM32_LP(reg, spvc, 0x00, 16, 0x00, 12);
/* reg_spvc_inner_et2
* Vlan Tag1 EtherType2 enable.
* Packet is initially classified as double VLAN Tag if in addition to
* being classified with a tag0 VLAN Tag its tag1 EtherType value is
* equal to ether_type2.
* 0: disable (default)
* 1: enable
* Access: RW
*/
MLXSW_ITEM32(reg, spvc, inner_et2, 0x08, 17, 1);
/* reg_spvc_et2
* Vlan Tag0 EtherType2 enable.
* Packet is initially classified as VLAN Tag if its tag0 EtherType is
* equal to ether_type2.
* 0: disable (default)
* 1: enable
* Access: RW
*/
MLXSW_ITEM32(reg, spvc, et2, 0x08, 16, 1);
/* reg_spvc_inner_et1
* Vlan Tag1 EtherType1 enable.
* Packet is initially classified as double VLAN Tag if in addition to
* being classified with a tag0 VLAN Tag its tag1 EtherType value is
* equal to ether_type1.
* 0: disable
* 1: enable (default)
* Access: RW
*/
MLXSW_ITEM32(reg, spvc, inner_et1, 0x08, 9, 1);
/* reg_spvc_et1
* Vlan Tag0 EtherType1 enable.
* Packet is initially classified as VLAN Tag if its tag0 EtherType is
* equal to ether_type1.
* 0: disable
* 1: enable (default)
* Access: RW
*/
MLXSW_ITEM32(reg, spvc, et1, 0x08, 8, 1);
/* reg_inner_et0
* Vlan Tag1 EtherType0 enable.
* Packet is initially classified as double VLAN Tag if in addition to
* being classified with a tag0 VLAN Tag its tag1 EtherType value is
* equal to ether_type0.
* 0: disable
* 1: enable (default)
* Access: RW
*/
MLXSW_ITEM32(reg, spvc, inner_et0, 0x08, 1, 1);
/* reg_et0
* Vlan Tag0 EtherType0 enable.
* Packet is initially classified as VLAN Tag if its tag0 EtherType is
* equal to ether_type0.
* 0: disable
* 1: enable (default)
* Access: RW
*/
MLXSW_ITEM32(reg, spvc, et0, 0x08, 0, 1);
static inline void mlxsw_reg_spvc_pack(char *payload, u16 local_port, bool et1,
bool et0)
{
MLXSW_REG_ZERO(spvc, payload);
mlxsw_reg_spvc_local_port_set(payload, local_port);
/* Enable inner_et1 and inner_et0 to enable identification of double
* tagged packets.
*/
mlxsw_reg_spvc_inner_et1_set(payload, 1);
mlxsw_reg_spvc_inner_et0_set(payload, 1);
mlxsw_reg_spvc_et1_set(payload, et1);
mlxsw_reg_spvc_et0_set(payload, et0);
}
/* SPEVET - Switch Port Egress VLAN EtherType
* ------------------------------------------
* The switch port egress VLAN EtherType configures which EtherType to push at
* egress for packets incoming through a local port for which 'SPVID.egr_et_set'
* is set.
*/
#define MLXSW_REG_SPEVET_ID 0x202A
#define MLXSW_REG_SPEVET_LEN 0x08
MLXSW_REG_DEFINE(spevet, MLXSW_REG_SPEVET_ID, MLXSW_REG_SPEVET_LEN);
/* reg_spevet_local_port
* Egress Local port number.
* Not supported to CPU port.
* Access: Index
*/
MLXSW_ITEM32_LP(reg, spevet, 0x00, 16, 0x00, 12);
/* reg_spevet_et_vlan
* Egress EtherType VLAN to push when SPVID.egr_et_set field set for the packet:
* 0: ether_type0 - (default)
* 1: ether_type1
* 2: ether_type2
* Access: RW
*/
MLXSW_ITEM32(reg, spevet, et_vlan, 0x04, 16, 2);
static inline void mlxsw_reg_spevet_pack(char *payload, u16 local_port,
u8 et_vlan)
{
MLXSW_REG_ZERO(spevet, payload);
mlxsw_reg_spevet_local_port_set(payload, local_port);
mlxsw_reg_spevet_et_vlan_set(payload, et_vlan);
}
/* SMPE - Switch Multicast Port to Egress VID
* ------------------------------------------
* The switch multicast port to egress VID maps
* {egress_port, SMPE index} -> {VID}.
*/
#define MLXSW_REG_SMPE_ID 0x202B
#define MLXSW_REG_SMPE_LEN 0x0C
MLXSW_REG_DEFINE(smpe, MLXSW_REG_SMPE_ID, MLXSW_REG_SMPE_LEN);
/* reg_smpe_local_port
* Local port number.
* CPU port is not supported.
* Access: Index
*/
MLXSW_ITEM32_LP(reg, smpe, 0x00, 16, 0x00, 12);
/* reg_smpe_smpe_index
* Switch multicast port to egress VID.
* Range is 0..cap_max_rmpe-1.
* Access: Index
*/
MLXSW_ITEM32(reg, smpe, smpe_index, 0x04, 0, 16);
/* reg_smpe_evid
* Egress VID.
* Access: RW
*/
MLXSW_ITEM32(reg, smpe, evid, 0x08, 0, 12);
static inline void mlxsw_reg_smpe_pack(char *payload, u16 local_port,
u16 smpe_index, u16 evid)
{
MLXSW_REG_ZERO(smpe, payload);
mlxsw_reg_smpe_local_port_set(payload, local_port);
mlxsw_reg_smpe_smpe_index_set(payload, smpe_index);
mlxsw_reg_smpe_evid_set(payload, evid);
}
/* SMID-V2 - Switch Multicast ID Version 2 Register
* ------------------------------------------------
* The MID record maps from a MID (Multicast ID), which is a unique identifier
* of the multicast group within the stacking domain, into a list of local
* ports into which the packet is replicated.
*/
#define MLXSW_REG_SMID2_ID 0x2034
#define MLXSW_REG_SMID2_LEN 0x120
MLXSW_REG_DEFINE(smid2, MLXSW_REG_SMID2_ID, MLXSW_REG_SMID2_LEN);
/* reg_smid2_swid
* Switch partition ID.
* Access: Index
*/
MLXSW_ITEM32(reg, smid2, swid, 0x00, 24, 8);
/* reg_smid2_mid
* Multicast identifier - global identifier that represents the multicast group
* across all devices.
* Access: Index
*/
MLXSW_ITEM32(reg, smid2, mid, 0x00, 0, 16);
/* reg_smid2_smpe_valid
* SMPE is valid.
* When not valid, the egress VID will not be modified by the SMPE table.
* Access: RW
*
* Note: Reserved when legacy bridge model is used and on Spectrum-2.
*/
MLXSW_ITEM32(reg, smid2, smpe_valid, 0x08, 20, 1);
/* reg_smid2_smpe
* Switch multicast port to egress VID.
* Access: RW
*
* Note: Reserved when legacy bridge model is used and on Spectrum-2.
*/
MLXSW_ITEM32(reg, smid2, smpe, 0x08, 0, 16);
/* reg_smid2_port
* Local port memebership (1 bit per port).
* Access: RW
*/
MLXSW_ITEM_BIT_ARRAY(reg, smid2, port, 0x20, 0x80, 1);
/* reg_smid2_port_mask
* Local port mask (1 bit per port).
* Access: WO
*/
MLXSW_ITEM_BIT_ARRAY(reg, smid2, port_mask, 0xA0, 0x80, 1);
static inline void mlxsw_reg_smid2_pack(char *payload, u16 mid, u16 port,
bool set, bool smpe_valid, u16 smpe)
{
MLXSW_REG_ZERO(smid2, payload);
mlxsw_reg_smid2_swid_set(payload, 0);
mlxsw_reg_smid2_mid_set(payload, mid);
mlxsw_reg_smid2_port_set(payload, port, set);
mlxsw_reg_smid2_port_mask_set(payload, port, 1);
mlxsw_reg_smid2_smpe_valid_set(payload, smpe_valid);
mlxsw_reg_smid2_smpe_set(payload, smpe_valid ? smpe : 0);
}
/* CWTP - Congetion WRED ECN TClass Profile
* ----------------------------------------
* Configures the profiles for queues of egress port and traffic class
*/
#define MLXSW_REG_CWTP_ID 0x2802
#define MLXSW_REG_CWTP_BASE_LEN 0x28
#define MLXSW_REG_CWTP_PROFILE_DATA_REC_LEN 0x08
#define MLXSW_REG_CWTP_LEN 0x40
MLXSW_REG_DEFINE(cwtp, MLXSW_REG_CWTP_ID, MLXSW_REG_CWTP_LEN);
/* reg_cwtp_local_port
* Local port number
* Not supported for CPU port
* Access: Index
*/
MLXSW_ITEM32_LP(reg, cwtp, 0x00, 16, 0x00, 12);
/* reg_cwtp_traffic_class
* Traffic Class to configure
* Access: Index
*/
MLXSW_ITEM32(reg, cwtp, traffic_class, 32, 0, 8);
/* reg_cwtp_profile_min
* Minimum Average Queue Size of the profile in cells.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, cwtp, profile_min, MLXSW_REG_CWTP_BASE_LEN,
0, 20, MLXSW_REG_CWTP_PROFILE_DATA_REC_LEN, 0, false);
/* reg_cwtp_profile_percent
* Percentage of WRED and ECN marking for maximum Average Queue size
* Range is 0 to 100, units of integer percentage
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, cwtp, profile_percent, MLXSW_REG_CWTP_BASE_LEN,
24, 7, MLXSW_REG_CWTP_PROFILE_DATA_REC_LEN, 4, false);
/* reg_cwtp_profile_max
* Maximum Average Queue size of the profile in cells
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, cwtp, profile_max, MLXSW_REG_CWTP_BASE_LEN,
0, 20, MLXSW_REG_CWTP_PROFILE_DATA_REC_LEN, 4, false);
#define MLXSW_REG_CWTP_MIN_VALUE 64
#define MLXSW_REG_CWTP_MAX_PROFILE 2
#define MLXSW_REG_CWTP_DEFAULT_PROFILE 1
static inline void mlxsw_reg_cwtp_pack(char *payload, u16 local_port,
u8 traffic_class)
{
int i;
MLXSW_REG_ZERO(cwtp, payload);
mlxsw_reg_cwtp_local_port_set(payload, local_port);
mlxsw_reg_cwtp_traffic_class_set(payload, traffic_class);
for (i = 0; i <= MLXSW_REG_CWTP_MAX_PROFILE; i++) {
mlxsw_reg_cwtp_profile_min_set(payload, i,
MLXSW_REG_CWTP_MIN_VALUE);
mlxsw_reg_cwtp_profile_max_set(payload, i,
MLXSW_REG_CWTP_MIN_VALUE);
}
}
#define MLXSW_REG_CWTP_PROFILE_TO_INDEX(profile) (profile - 1)
static inline void
mlxsw_reg_cwtp_profile_pack(char *payload, u8 profile, u32 min, u32 max,
u32 probability)
{
u8 index = MLXSW_REG_CWTP_PROFILE_TO_INDEX(profile);
mlxsw_reg_cwtp_profile_min_set(payload, index, min);
mlxsw_reg_cwtp_profile_max_set(payload, index, max);
mlxsw_reg_cwtp_profile_percent_set(payload, index, probability);
}
/* CWTPM - Congestion WRED ECN TClass and Pool Mapping
* ---------------------------------------------------
* The CWTPM register maps each egress port and traffic class to profile num.
*/
#define MLXSW_REG_CWTPM_ID 0x2803
#define MLXSW_REG_CWTPM_LEN 0x44
MLXSW_REG_DEFINE(cwtpm, MLXSW_REG_CWTPM_ID, MLXSW_REG_CWTPM_LEN);
/* reg_cwtpm_local_port
* Local port number
* Not supported for CPU port
* Access: Index
*/
MLXSW_ITEM32_LP(reg, cwtpm, 0x00, 16, 0x00, 12);
/* reg_cwtpm_traffic_class
* Traffic Class to configure
* Access: Index
*/
MLXSW_ITEM32(reg, cwtpm, traffic_class, 32, 0, 8);
/* reg_cwtpm_ew
* Control enablement of WRED for traffic class:
* 0 - Disable
* 1 - Enable
* Access: RW
*/
MLXSW_ITEM32(reg, cwtpm, ew, 36, 1, 1);
/* reg_cwtpm_ee
* Control enablement of ECN for traffic class:
* 0 - Disable
* 1 - Enable
* Access: RW
*/
MLXSW_ITEM32(reg, cwtpm, ee, 36, 0, 1);
/* reg_cwtpm_tcp_g
* TCP Green Profile.
* Index of the profile within {port, traffic class} to use.
* 0 for disabling both WRED and ECN for this type of traffic.
* Access: RW
*/
MLXSW_ITEM32(reg, cwtpm, tcp_g, 52, 0, 2);
/* reg_cwtpm_tcp_y
* TCP Yellow Profile.
* Index of the profile within {port, traffic class} to use.
* 0 for disabling both WRED and ECN for this type of traffic.
* Access: RW
*/
MLXSW_ITEM32(reg, cwtpm, tcp_y, 56, 16, 2);
/* reg_cwtpm_tcp_r
* TCP Red Profile.
* Index of the profile within {port, traffic class} to use.
* 0 for disabling both WRED and ECN for this type of traffic.
* Access: RW
*/
MLXSW_ITEM32(reg, cwtpm, tcp_r, 56, 0, 2);
/* reg_cwtpm_ntcp_g
* Non-TCP Green Profile.
* Index of the profile within {port, traffic class} to use.
* 0 for disabling both WRED and ECN for this type of traffic.
* Access: RW
*/
MLXSW_ITEM32(reg, cwtpm, ntcp_g, 60, 0, 2);
/* reg_cwtpm_ntcp_y
* Non-TCP Yellow Profile.
* Index of the profile within {port, traffic class} to use.
* 0 for disabling both WRED and ECN for this type of traffic.
* Access: RW
*/
MLXSW_ITEM32(reg, cwtpm, ntcp_y, 64, 16, 2);
/* reg_cwtpm_ntcp_r
* Non-TCP Red Profile.
* Index of the profile within {port, traffic class} to use.
* 0 for disabling both WRED and ECN for this type of traffic.
* Access: RW
*/
MLXSW_ITEM32(reg, cwtpm, ntcp_r, 64, 0, 2);
#define MLXSW_REG_CWTPM_RESET_PROFILE 0
static inline void mlxsw_reg_cwtpm_pack(char *payload, u16 local_port,
u8 traffic_class, u8 profile,
bool wred, bool ecn)
{
MLXSW_REG_ZERO(cwtpm, payload);
mlxsw_reg_cwtpm_local_port_set(payload, local_port);
mlxsw_reg_cwtpm_traffic_class_set(payload, traffic_class);
mlxsw_reg_cwtpm_ew_set(payload, wred);
mlxsw_reg_cwtpm_ee_set(payload, ecn);
mlxsw_reg_cwtpm_tcp_g_set(payload, profile);
mlxsw_reg_cwtpm_tcp_y_set(payload, profile);
mlxsw_reg_cwtpm_tcp_r_set(payload, profile);
mlxsw_reg_cwtpm_ntcp_g_set(payload, profile);
mlxsw_reg_cwtpm_ntcp_y_set(payload, profile);
mlxsw_reg_cwtpm_ntcp_r_set(payload, profile);
}
/* PGCR - Policy-Engine General Configuration Register
* ---------------------------------------------------
* This register configures general Policy-Engine settings.
*/
#define MLXSW_REG_PGCR_ID 0x3001
#define MLXSW_REG_PGCR_LEN 0x20
MLXSW_REG_DEFINE(pgcr, MLXSW_REG_PGCR_ID, MLXSW_REG_PGCR_LEN);
/* reg_pgcr_default_action_pointer_base
* Default action pointer base. Each region has a default action pointer
* which is equal to default_action_pointer_base + region_id.
* Access: RW
*/
MLXSW_ITEM32(reg, pgcr, default_action_pointer_base, 0x1C, 0, 24);
static inline void mlxsw_reg_pgcr_pack(char *payload, u32 pointer_base)
{
MLXSW_REG_ZERO(pgcr, payload);
mlxsw_reg_pgcr_default_action_pointer_base_set(payload, pointer_base);
}
/* PPBT - Policy-Engine Port Binding Table
* ---------------------------------------
* This register is used for configuration of the Port Binding Table.
*/
#define MLXSW_REG_PPBT_ID 0x3002
#define MLXSW_REG_PPBT_LEN 0x14
MLXSW_REG_DEFINE(ppbt, MLXSW_REG_PPBT_ID, MLXSW_REG_PPBT_LEN);
enum mlxsw_reg_pxbt_e {
MLXSW_REG_PXBT_E_IACL,
MLXSW_REG_PXBT_E_EACL,
};
/* reg_ppbt_e
* Access: Index
*/
MLXSW_ITEM32(reg, ppbt, e, 0x00, 31, 1);
enum mlxsw_reg_pxbt_op {
MLXSW_REG_PXBT_OP_BIND,
MLXSW_REG_PXBT_OP_UNBIND,
};
/* reg_ppbt_op
* Access: RW
*/
MLXSW_ITEM32(reg, ppbt, op, 0x00, 28, 3);
/* reg_ppbt_local_port
* Local port. Not including CPU port.
* Access: Index
*/
MLXSW_ITEM32_LP(reg, ppbt, 0x00, 16, 0x00, 12);
/* reg_ppbt_g
* group - When set, the binding is of an ACL group. When cleared,
* the binding is of an ACL.
* Must be set to 1 for Spectrum.
* Access: RW
*/
MLXSW_ITEM32(reg, ppbt, g, 0x10, 31, 1);
/* reg_ppbt_acl_info
* ACL/ACL group identifier. If the g bit is set, this field should hold
* the acl_group_id, else it should hold the acl_id.
* Access: RW
*/
MLXSW_ITEM32(reg, ppbt, acl_info, 0x10, 0, 16);
static inline void mlxsw_reg_ppbt_pack(char *payload, enum mlxsw_reg_pxbt_e e,
enum mlxsw_reg_pxbt_op op,
u16 local_port, u16 acl_info)
{
MLXSW_REG_ZERO(ppbt, payload);
mlxsw_reg_ppbt_e_set(payload, e);
mlxsw_reg_ppbt_op_set(payload, op);
mlxsw_reg_ppbt_local_port_set(payload, local_port);
mlxsw_reg_ppbt_g_set(payload, true);
mlxsw_reg_ppbt_acl_info_set(payload, acl_info);
}
/* PACL - Policy-Engine ACL Register
* ---------------------------------
* This register is used for configuration of the ACL.
*/
#define MLXSW_REG_PACL_ID 0x3004
#define MLXSW_REG_PACL_LEN 0x70
MLXSW_REG_DEFINE(pacl, MLXSW_REG_PACL_ID, MLXSW_REG_PACL_LEN);
/* reg_pacl_v
* Valid. Setting the v bit makes the ACL valid. It should not be cleared
* while the ACL is bounded to either a port, VLAN or ACL rule.
* Access: RW
*/
MLXSW_ITEM32(reg, pacl, v, 0x00, 24, 1);
/* reg_pacl_acl_id
* An identifier representing the ACL (managed by software)
* Range 0 .. cap_max_acl_regions - 1
* Access: Index
*/
MLXSW_ITEM32(reg, pacl, acl_id, 0x08, 0, 16);
#define MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN 16
/* reg_pacl_tcam_region_info
* Opaque object that represents a TCAM region.
* Obtained through PTAR register.
* Access: RW
*/
MLXSW_ITEM_BUF(reg, pacl, tcam_region_info, 0x30,
MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN);
static inline void mlxsw_reg_pacl_pack(char *payload, u16 acl_id,
bool valid, const char *tcam_region_info)
{
MLXSW_REG_ZERO(pacl, payload);
mlxsw_reg_pacl_acl_id_set(payload, acl_id);
mlxsw_reg_pacl_v_set(payload, valid);
mlxsw_reg_pacl_tcam_region_info_memcpy_to(payload, tcam_region_info);
}
/* PAGT - Policy-Engine ACL Group Table
* ------------------------------------
* This register is used for configuration of the ACL Group Table.
*/
#define MLXSW_REG_PAGT_ID 0x3005
#define MLXSW_REG_PAGT_BASE_LEN 0x30
#define MLXSW_REG_PAGT_ACL_LEN 4
#define MLXSW_REG_PAGT_ACL_MAX_NUM 16
#define MLXSW_REG_PAGT_LEN (MLXSW_REG_PAGT_BASE_LEN + \
MLXSW_REG_PAGT_ACL_MAX_NUM * MLXSW_REG_PAGT_ACL_LEN)
MLXSW_REG_DEFINE(pagt, MLXSW_REG_PAGT_ID, MLXSW_REG_PAGT_LEN);
/* reg_pagt_size
* Number of ACLs in the group.
* Size 0 invalidates a group.
* Range 0 .. cap_max_acl_group_size (hard coded to 16 for now)
* Total number of ACLs in all groups must be lower or equal
* to cap_max_acl_tot_groups
* Note: a group which is binded must not be invalidated
* Access: Index
*/
MLXSW_ITEM32(reg, pagt, size, 0x00, 0, 8);
/* reg_pagt_acl_group_id
* An identifier (numbered from 0..cap_max_acl_groups-1) representing
* the ACL Group identifier (managed by software).
* Access: Index
*/
MLXSW_ITEM32(reg, pagt, acl_group_id, 0x08, 0, 16);
/* reg_pagt_multi
* Multi-ACL
* 0 - This ACL is the last ACL in the multi-ACL
* 1 - This ACL is part of a multi-ACL
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, pagt, multi, 0x30, 31, 1, 0x04, 0x00, false);
/* reg_pagt_acl_id
* ACL identifier
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, pagt, acl_id, 0x30, 0, 16, 0x04, 0x00, false);
static inline void mlxsw_reg_pagt_pack(char *payload, u16 acl_group_id)
{
MLXSW_REG_ZERO(pagt, payload);
mlxsw_reg_pagt_acl_group_id_set(payload, acl_group_id);
}
static inline void mlxsw_reg_pagt_acl_id_pack(char *payload, int index,
u16 acl_id, bool multi)
{
u8 size = mlxsw_reg_pagt_size_get(payload);
if (index >= size)
mlxsw_reg_pagt_size_set(payload, index + 1);
mlxsw_reg_pagt_multi_set(payload, index, multi);
mlxsw_reg_pagt_acl_id_set(payload, index, acl_id);
}
/* PTAR - Policy-Engine TCAM Allocation Register
* ---------------------------------------------
* This register is used for allocation of regions in the TCAM.
* Note: Query method is not supported on this register.
*/
#define MLXSW_REG_PTAR_ID 0x3006
#define MLXSW_REG_PTAR_BASE_LEN 0x20
#define MLXSW_REG_PTAR_KEY_ID_LEN 1
#define MLXSW_REG_PTAR_KEY_ID_MAX_NUM 16
#define MLXSW_REG_PTAR_LEN (MLXSW_REG_PTAR_BASE_LEN + \
MLXSW_REG_PTAR_KEY_ID_MAX_NUM * MLXSW_REG_PTAR_KEY_ID_LEN)
MLXSW_REG_DEFINE(ptar, MLXSW_REG_PTAR_ID, MLXSW_REG_PTAR_LEN);
enum mlxsw_reg_ptar_op {
/* allocate a TCAM region */
MLXSW_REG_PTAR_OP_ALLOC,
/* resize a TCAM region */
MLXSW_REG_PTAR_OP_RESIZE,
/* deallocate TCAM region */
MLXSW_REG_PTAR_OP_FREE,
/* test allocation */
MLXSW_REG_PTAR_OP_TEST,
};
/* reg_ptar_op
* Access: OP
*/
MLXSW_ITEM32(reg, ptar, op, 0x00, 28, 4);
/* reg_ptar_action_set_type
* Type of action set to be used on this region.
* For Spectrum and Spectrum-2, this is always type 2 - "flexible"
* Access: WO
*/
MLXSW_ITEM32(reg, ptar, action_set_type, 0x00, 16, 8);
enum mlxsw_reg_ptar_key_type {
MLXSW_REG_PTAR_KEY_TYPE_FLEX = 0x50, /* Spetrum */
MLXSW_REG_PTAR_KEY_TYPE_FLEX2 = 0x51, /* Spectrum-2 */
};
/* reg_ptar_key_type
* TCAM key type for the region.
* Access: WO
*/
MLXSW_ITEM32(reg, ptar, key_type, 0x00, 0, 8);
/* reg_ptar_region_size
* TCAM region size. When allocating/resizing this is the requested size,
* the response is the actual size. Note that actual size may be
* larger than requested.
* Allowed range 1 .. cap_max_rules-1
* Reserved during op deallocate.
* Access: WO
*/
MLXSW_ITEM32(reg, ptar, region_size, 0x04, 0, 16);
/* reg_ptar_region_id
* Region identifier
* Range 0 .. cap_max_regions-1
* Access: Index
*/
MLXSW_ITEM32(reg, ptar, region_id, 0x08, 0, 16);
/* reg_ptar_tcam_region_info
* Opaque object that represents the TCAM region.
* Returned when allocating a region.
* Provided by software for ACL generation and region deallocation and resize.
* Access: RW
*/
MLXSW_ITEM_BUF(reg, ptar, tcam_region_info, 0x10,
MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN);
/* reg_ptar_flexible_key_id
* Identifier of the Flexible Key.
* Only valid if key_type == "FLEX_KEY"
* The key size will be rounded up to one of the following values:
* 9B, 18B, 36B, 54B.
* This field is reserved for in resize operation.
* Access: WO
*/
MLXSW_ITEM8_INDEXED(reg, ptar, flexible_key_id, 0x20, 0, 8,
MLXSW_REG_PTAR_KEY_ID_LEN, 0x00, false);
static inline void mlxsw_reg_ptar_pack(char *payload, enum mlxsw_reg_ptar_op op,
enum mlxsw_reg_ptar_key_type key_type,
u16 region_size, u16 region_id,
const char *tcam_region_info)
{
MLXSW_REG_ZERO(ptar, payload);
mlxsw_reg_ptar_op_set(payload, op);
mlxsw_reg_ptar_action_set_type_set(payload, 2); /* "flexible" */
mlxsw_reg_ptar_key_type_set(payload, key_type);
mlxsw_reg_ptar_region_size_set(payload, region_size);
mlxsw_reg_ptar_region_id_set(payload, region_id);
mlxsw_reg_ptar_tcam_region_info_memcpy_to(payload, tcam_region_info);
}
static inline void mlxsw_reg_ptar_key_id_pack(char *payload, int index,
u16 key_id)
{
mlxsw_reg_ptar_flexible_key_id_set(payload, index, key_id);
}
static inline void mlxsw_reg_ptar_unpack(char *payload, char *tcam_region_info)
{
mlxsw_reg_ptar_tcam_region_info_memcpy_from(payload, tcam_region_info);
}
/* PPBS - Policy-Engine Policy Based Switching Register
* ----------------------------------------------------
* This register retrieves and sets Policy Based Switching Table entries.
*/
#define MLXSW_REG_PPBS_ID 0x300C
#define MLXSW_REG_PPBS_LEN 0x14
MLXSW_REG_DEFINE(ppbs, MLXSW_REG_PPBS_ID, MLXSW_REG_PPBS_LEN);
/* reg_ppbs_pbs_ptr
* Index into the PBS table.
* For Spectrum, the index points to the KVD Linear.
* Access: Index
*/
MLXSW_ITEM32(reg, ppbs, pbs_ptr, 0x08, 0, 24);
/* reg_ppbs_system_port
* Unique port identifier for the final destination of the packet.
* Access: RW
*/
MLXSW_ITEM32(reg, ppbs, system_port, 0x10, 0, 16);
static inline void mlxsw_reg_ppbs_pack(char *payload, u32 pbs_ptr,
u16 system_port)
{
MLXSW_REG_ZERO(ppbs, payload);
mlxsw_reg_ppbs_pbs_ptr_set(payload, pbs_ptr);
mlxsw_reg_ppbs_system_port_set(payload, system_port);
}
/* PRCR - Policy-Engine Rules Copy Register
* ----------------------------------------
* This register is used for accessing rules within a TCAM region.
*/
#define MLXSW_REG_PRCR_ID 0x300D
#define MLXSW_REG_PRCR_LEN 0x40
MLXSW_REG_DEFINE(prcr, MLXSW_REG_PRCR_ID, MLXSW_REG_PRCR_LEN);
enum mlxsw_reg_prcr_op {
/* Move rules. Moves the rules from "tcam_region_info" starting
* at offset "offset" to "dest_tcam_region_info"
* at offset "dest_offset."
*/
MLXSW_REG_PRCR_OP_MOVE,
/* Copy rules. Copies the rules from "tcam_region_info" starting
* at offset "offset" to "dest_tcam_region_info"
* at offset "dest_offset."
*/
MLXSW_REG_PRCR_OP_COPY,
};
/* reg_prcr_op
* Access: OP
*/
MLXSW_ITEM32(reg, prcr, op, 0x00, 28, 4);
/* reg_prcr_offset
* Offset within the source region to copy/move from.
* Access: Index
*/
MLXSW_ITEM32(reg, prcr, offset, 0x00, 0, 16);
/* reg_prcr_size
* The number of rules to copy/move.
* Access: WO
*/
MLXSW_ITEM32(reg, prcr, size, 0x04, 0, 16);
/* reg_prcr_tcam_region_info
* Opaque object that represents the source TCAM region.
* Access: Index
*/
MLXSW_ITEM_BUF(reg, prcr, tcam_region_info, 0x10,
MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN);
/* reg_prcr_dest_offset
* Offset within the source region to copy/move to.
* Access: Index
*/
MLXSW_ITEM32(reg, prcr, dest_offset, 0x20, 0, 16);
/* reg_prcr_dest_tcam_region_info
* Opaque object that represents the destination TCAM region.
* Access: Index
*/
MLXSW_ITEM_BUF(reg, prcr, dest_tcam_region_info, 0x30,
MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN);
static inline void mlxsw_reg_prcr_pack(char *payload, enum mlxsw_reg_prcr_op op,
const char *src_tcam_region_info,
u16 src_offset,
const char *dest_tcam_region_info,
u16 dest_offset, u16 size)
{
MLXSW_REG_ZERO(prcr, payload);
mlxsw_reg_prcr_op_set(payload, op);
mlxsw_reg_prcr_offset_set(payload, src_offset);
mlxsw_reg_prcr_size_set(payload, size);
mlxsw_reg_prcr_tcam_region_info_memcpy_to(payload,
src_tcam_region_info);
mlxsw_reg_prcr_dest_offset_set(payload, dest_offset);
mlxsw_reg_prcr_dest_tcam_region_info_memcpy_to(payload,
dest_tcam_region_info);
}
/* PEFA - Policy-Engine Extended Flexible Action Register
* ------------------------------------------------------
* This register is used for accessing an extended flexible action entry
* in the central KVD Linear Database.
*/
#define MLXSW_REG_PEFA_ID 0x300F
#define MLXSW_REG_PEFA_LEN 0xB0
MLXSW_REG_DEFINE(pefa, MLXSW_REG_PEFA_ID, MLXSW_REG_PEFA_LEN);
/* reg_pefa_index
* Index in the KVD Linear Centralized Database.
* Access: Index
*/
MLXSW_ITEM32(reg, pefa, index, 0x00, 0, 24);
/* reg_pefa_a
* Index in the KVD Linear Centralized Database.
* Activity
* For a new entry: set if ca=0, clear if ca=1
* Set if a packet lookup has hit on the specific entry
* Access: RO
*/
MLXSW_ITEM32(reg, pefa, a, 0x04, 29, 1);
/* reg_pefa_ca
* Clear activity
* When write: activity is according to this field
* When read: after reading the activity is cleared according to ca
* Access: OP
*/
MLXSW_ITEM32(reg, pefa, ca, 0x04, 24, 1);
#define MLXSW_REG_FLEX_ACTION_SET_LEN 0xA8
/* reg_pefa_flex_action_set
* Action-set to perform when rule is matched.
* Must be zero padded if action set is shorter.
* Access: RW
*/
MLXSW_ITEM_BUF(reg, pefa, flex_action_set, 0x08, MLXSW_REG_FLEX_ACTION_SET_LEN);
static inline void mlxsw_reg_pefa_pack(char *payload, u32 index, bool ca,
const char *flex_action_set)
{
MLXSW_REG_ZERO(pefa, payload);
mlxsw_reg_pefa_index_set(payload, index);
mlxsw_reg_pefa_ca_set(payload, ca);
if (flex_action_set)
mlxsw_reg_pefa_flex_action_set_memcpy_to(payload,
flex_action_set);
}
static inline void mlxsw_reg_pefa_unpack(char *payload, bool *p_a)
{
*p_a = mlxsw_reg_pefa_a_get(payload);
}
/* PEMRBT - Policy-Engine Multicast Router Binding Table Register
* --------------------------------------------------------------
* This register is used for binding Multicast router to an ACL group
* that serves the MC router.
* This register is not supported by SwitchX/-2 and Spectrum.
*/
#define MLXSW_REG_PEMRBT_ID 0x3014
#define MLXSW_REG_PEMRBT_LEN 0x14
MLXSW_REG_DEFINE(pemrbt, MLXSW_REG_PEMRBT_ID, MLXSW_REG_PEMRBT_LEN);
enum mlxsw_reg_pemrbt_protocol {
MLXSW_REG_PEMRBT_PROTO_IPV4,
MLXSW_REG_PEMRBT_PROTO_IPV6,
};
/* reg_pemrbt_protocol
* Access: Index
*/
MLXSW_ITEM32(reg, pemrbt, protocol, 0x00, 0, 1);
/* reg_pemrbt_group_id
* ACL group identifier.
* Range 0..cap_max_acl_groups-1
* Access: RW
*/
MLXSW_ITEM32(reg, pemrbt, group_id, 0x10, 0, 16);
static inline void
mlxsw_reg_pemrbt_pack(char *payload, enum mlxsw_reg_pemrbt_protocol protocol,
u16 group_id)
{
MLXSW_REG_ZERO(pemrbt, payload);
mlxsw_reg_pemrbt_protocol_set(payload, protocol);
mlxsw_reg_pemrbt_group_id_set(payload, group_id);
}
/* PTCE-V2 - Policy-Engine TCAM Entry Register Version 2
* -----------------------------------------------------
* This register is used for accessing rules within a TCAM region.
* It is a new version of PTCE in order to support wider key,
* mask and action within a TCAM region. This register is not supported
* by SwitchX and SwitchX-2.
*/
#define MLXSW_REG_PTCE2_ID 0x3017
#define MLXSW_REG_PTCE2_LEN 0x1D8
MLXSW_REG_DEFINE(ptce2, MLXSW_REG_PTCE2_ID, MLXSW_REG_PTCE2_LEN);
/* reg_ptce2_v
* Valid.
* Access: RW
*/
MLXSW_ITEM32(reg, ptce2, v, 0x00, 31, 1);
/* reg_ptce2_a
* Activity. Set if a packet lookup has hit on the specific entry.
* To clear the "a" bit, use "clear activity" op or "clear on read" op.
* Access: RO
*/
MLXSW_ITEM32(reg, ptce2, a, 0x00, 30, 1);
enum mlxsw_reg_ptce2_op {
/* Read operation. */
MLXSW_REG_PTCE2_OP_QUERY_READ = 0,
/* clear on read operation. Used to read entry
* and clear Activity bit.
*/
MLXSW_REG_PTCE2_OP_QUERY_CLEAR_ON_READ = 1,
/* Write operation. Used to write a new entry to the table.
* All R/W fields are relevant for new entry. Activity bit is set
* for new entries - Note write with v = 0 will delete the entry.
*/
MLXSW_REG_PTCE2_OP_WRITE_WRITE = 0,
/* Update action. Only action set will be updated. */
MLXSW_REG_PTCE2_OP_WRITE_UPDATE = 1,
/* Clear activity. A bit is cleared for the entry. */
MLXSW_REG_PTCE2_OP_WRITE_CLEAR_ACTIVITY = 2,
};
/* reg_ptce2_op
* Access: OP
*/
MLXSW_ITEM32(reg, ptce2, op, 0x00, 20, 3);
/* reg_ptce2_offset
* Access: Index
*/
MLXSW_ITEM32(reg, ptce2, offset, 0x00, 0, 16);
/* reg_ptce2_priority
* Priority of the rule, higher values win. The range is 1..cap_kvd_size-1.
* Note: priority does not have to be unique per rule.
* Within a region, higher priority should have lower offset (no limitation
* between regions in a multi-region).
* Access: RW
*/
MLXSW_ITEM32(reg, ptce2, priority, 0x04, 0, 24);
/* reg_ptce2_tcam_region_info
* Opaque object that represents the TCAM region.
* Access: Index
*/
MLXSW_ITEM_BUF(reg, ptce2, tcam_region_info, 0x10,
MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN);
#define MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN 96
/* reg_ptce2_flex_key_blocks
* ACL Key.
* Access: RW
*/
MLXSW_ITEM_BUF(reg, ptce2, flex_key_blocks, 0x20,
MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN);
/* reg_ptce2_mask
* mask- in the same size as key. A bit that is set directs the TCAM
* to compare the corresponding bit in key. A bit that is clear directs
* the TCAM to ignore the corresponding bit in key.
* Access: RW
*/
MLXSW_ITEM_BUF(reg, ptce2, mask, 0x80,
MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN);
/* reg_ptce2_flex_action_set
* ACL action set.
* Access: RW
*/
MLXSW_ITEM_BUF(reg, ptce2, flex_action_set, 0xE0,
MLXSW_REG_FLEX_ACTION_SET_LEN);
static inline void mlxsw_reg_ptce2_pack(char *payload, bool valid,
enum mlxsw_reg_ptce2_op op,
const char *tcam_region_info,
u16 offset, u32 priority)
{
MLXSW_REG_ZERO(ptce2, payload);
mlxsw_reg_ptce2_v_set(payload, valid);
mlxsw_reg_ptce2_op_set(payload, op);
mlxsw_reg_ptce2_offset_set(payload, offset);
mlxsw_reg_ptce2_priority_set(payload, priority);
mlxsw_reg_ptce2_tcam_region_info_memcpy_to(payload, tcam_region_info);
}
/* PERPT - Policy-Engine ERP Table Register
* ----------------------------------------
* This register adds and removes eRPs from the eRP table.
*/
#define MLXSW_REG_PERPT_ID 0x3021
#define MLXSW_REG_PERPT_LEN 0x80
MLXSW_REG_DEFINE(perpt, MLXSW_REG_PERPT_ID, MLXSW_REG_PERPT_LEN);
/* reg_perpt_erpt_bank
* eRP table bank.
* Range 0 .. cap_max_erp_table_banks - 1
* Access: Index
*/
MLXSW_ITEM32(reg, perpt, erpt_bank, 0x00, 16, 4);
/* reg_perpt_erpt_index
* Index to eRP table within the eRP bank.
* Range is 0 .. cap_max_erp_table_bank_size - 1
* Access: Index
*/
MLXSW_ITEM32(reg, perpt, erpt_index, 0x00, 0, 8);
enum mlxsw_reg_perpt_key_size {
MLXSW_REG_PERPT_KEY_SIZE_2KB,
MLXSW_REG_PERPT_KEY_SIZE_4KB,
MLXSW_REG_PERPT_KEY_SIZE_8KB,
MLXSW_REG_PERPT_KEY_SIZE_12KB,
};
/* reg_perpt_key_size
* Access: OP
*/
MLXSW_ITEM32(reg, perpt, key_size, 0x04, 0, 4);
/* reg_perpt_bf_bypass
* 0 - The eRP is used only if bloom filter state is set for the given
* rule.
* 1 - The eRP is used regardless of bloom filter state.
* The bypass is an OR condition of region_id or eRP. See PERCR.bf_bypass
* Access: RW
*/
MLXSW_ITEM32(reg, perpt, bf_bypass, 0x08, 8, 1);
/* reg_perpt_erp_id
* eRP ID for use by the rules.
* Access: RW
*/
MLXSW_ITEM32(reg, perpt, erp_id, 0x08, 0, 4);
/* reg_perpt_erpt_base_bank
* Base eRP table bank, points to head of erp_vector
* Range is 0 .. cap_max_erp_table_banks - 1
* Access: OP
*/
MLXSW_ITEM32(reg, perpt, erpt_base_bank, 0x0C, 16, 4);
/* reg_perpt_erpt_base_index
* Base index to eRP table within the eRP bank
* Range is 0 .. cap_max_erp_table_bank_size - 1
* Access: OP
*/
MLXSW_ITEM32(reg, perpt, erpt_base_index, 0x0C, 0, 8);
/* reg_perpt_erp_index_in_vector
* eRP index in the vector.
* Access: OP
*/
MLXSW_ITEM32(reg, perpt, erp_index_in_vector, 0x10, 0, 4);
/* reg_perpt_erp_vector
* eRP vector.
* Access: OP
*/
MLXSW_ITEM_BIT_ARRAY(reg, perpt, erp_vector, 0x14, 4, 1);
/* reg_perpt_mask
* Mask
* 0 - A-TCAM will ignore the bit in key
* 1 - A-TCAM will compare the bit in key
* Access: RW
*/
MLXSW_ITEM_BUF(reg, perpt, mask, 0x20, MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN);
static inline void mlxsw_reg_perpt_erp_vector_pack(char *payload,
unsigned long *erp_vector,
unsigned long size)
{
unsigned long bit;
for_each_set_bit(bit, erp_vector, size)
mlxsw_reg_perpt_erp_vector_set(payload, bit, true);
}
static inline void
mlxsw_reg_perpt_pack(char *payload, u8 erpt_bank, u8 erpt_index,
enum mlxsw_reg_perpt_key_size key_size, u8 erp_id,
u8 erpt_base_bank, u8 erpt_base_index, u8 erp_index,
char *mask)
{
MLXSW_REG_ZERO(perpt, payload);
mlxsw_reg_perpt_erpt_bank_set(payload, erpt_bank);
mlxsw_reg_perpt_erpt_index_set(payload, erpt_index);
mlxsw_reg_perpt_key_size_set(payload, key_size);
mlxsw_reg_perpt_bf_bypass_set(payload, false);
mlxsw_reg_perpt_erp_id_set(payload, erp_id);
mlxsw_reg_perpt_erpt_base_bank_set(payload, erpt_base_bank);
mlxsw_reg_perpt_erpt_base_index_set(payload, erpt_base_index);
mlxsw_reg_perpt_erp_index_in_vector_set(payload, erp_index);
mlxsw_reg_perpt_mask_memcpy_to(payload, mask);
}
/* PERAR - Policy-Engine Region Association Register
* -------------------------------------------------
* This register associates a hw region for region_id's. Changing on the fly
* is supported by the device.
*/
#define MLXSW_REG_PERAR_ID 0x3026
#define MLXSW_REG_PERAR_LEN 0x08
MLXSW_REG_DEFINE(perar, MLXSW_REG_PERAR_ID, MLXSW_REG_PERAR_LEN);
/* reg_perar_region_id
* Region identifier
* Range 0 .. cap_max_regions-1
* Access: Index
*/
MLXSW_ITEM32(reg, perar, region_id, 0x00, 0, 16);
static inline unsigned int
mlxsw_reg_perar_hw_regions_needed(unsigned int block_num)
{
return DIV_ROUND_UP(block_num, 4);
}
/* reg_perar_hw_region
* HW Region
* Range 0 .. cap_max_regions-1
* Default: hw_region = region_id
* For a 8 key block region, 2 consecutive regions are used
* For a 12 key block region, 3 consecutive regions are used
* Access: RW
*/
MLXSW_ITEM32(reg, perar, hw_region, 0x04, 0, 16);
static inline void mlxsw_reg_perar_pack(char *payload, u16 region_id,
u16 hw_region)
{
MLXSW_REG_ZERO(perar, payload);
mlxsw_reg_perar_region_id_set(payload, region_id);
mlxsw_reg_perar_hw_region_set(payload, hw_region);
}
/* PTCE-V3 - Policy-Engine TCAM Entry Register Version 3
* -----------------------------------------------------
* This register is a new version of PTCE-V2 in order to support the
* A-TCAM. This register is not supported by SwitchX/-2 and Spectrum.
*/
#define MLXSW_REG_PTCE3_ID 0x3027
#define MLXSW_REG_PTCE3_LEN 0xF0
MLXSW_REG_DEFINE(ptce3, MLXSW_REG_PTCE3_ID, MLXSW_REG_PTCE3_LEN);
/* reg_ptce3_v
* Valid.
* Access: RW
*/
MLXSW_ITEM32(reg, ptce3, v, 0x00, 31, 1);
enum mlxsw_reg_ptce3_op {
/* Write operation. Used to write a new entry to the table.
* All R/W fields are relevant for new entry. Activity bit is set
* for new entries. Write with v = 0 will delete the entry. Must
* not be used if an entry exists.
*/
MLXSW_REG_PTCE3_OP_WRITE_WRITE = 0,
/* Update operation */
MLXSW_REG_PTCE3_OP_WRITE_UPDATE = 1,
/* Read operation */
MLXSW_REG_PTCE3_OP_QUERY_READ = 0,
};
/* reg_ptce3_op
* Access: OP
*/
MLXSW_ITEM32(reg, ptce3, op, 0x00, 20, 3);
/* reg_ptce3_priority
* Priority of the rule. Higher values win.
* For Spectrum-2 range is 1..cap_kvd_size - 1
* Note: Priority does not have to be unique per rule.
* Access: RW
*/
MLXSW_ITEM32(reg, ptce3, priority, 0x04, 0, 24);
/* reg_ptce3_tcam_region_info
* Opaque object that represents the TCAM region.
* Access: Index
*/
MLXSW_ITEM_BUF(reg, ptce3, tcam_region_info, 0x10,
MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN);
/* reg_ptce3_flex2_key_blocks
* ACL key. The key must be masked according to eRP (if exists) or
* according to master mask.
* Access: Index
*/
MLXSW_ITEM_BUF(reg, ptce3, flex2_key_blocks, 0x20,
MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN);
/* reg_ptce3_erp_id
* eRP ID.
* Access: Index
*/
MLXSW_ITEM32(reg, ptce3, erp_id, 0x80, 0, 4);
/* reg_ptce3_delta_start
* Start point of delta_value and delta_mask, in bits. Must not exceed
* num_key_blocks * 36 - 8. Reserved when delta_mask = 0.
* Access: Index
*/
MLXSW_ITEM32(reg, ptce3, delta_start, 0x84, 0, 10);
/* reg_ptce3_delta_mask
* Delta mask.
* 0 - Ignore relevant bit in delta_value
* 1 - Compare relevant bit in delta_value
* Delta mask must not be set for reserved fields in the key blocks.
* Note: No delta when no eRPs. Thus, for regions with
* PERERP.erpt_pointer_valid = 0 the delta mask must be 0.
* Access: Index
*/
MLXSW_ITEM32(reg, ptce3, delta_mask, 0x88, 16, 8);
/* reg_ptce3_delta_value
* Delta value.
* Bits which are masked by delta_mask must be 0.
* Access: Index
*/
MLXSW_ITEM32(reg, ptce3, delta_value, 0x88, 0, 8);
/* reg_ptce3_prune_vector
* Pruning vector relative to the PERPT.erp_id.
* Used for reducing lookups.
* 0 - NEED: Do a lookup using the eRP.
* 1 - PRUNE: Do not perform a lookup using the eRP.
* Maybe be modified by PEAPBL and PEAPBM.
* Note: In Spectrum-2, a region of 8 key blocks must be set to either
* all 1's or all 0's.
* Access: RW
*/
MLXSW_ITEM_BIT_ARRAY(reg, ptce3, prune_vector, 0x90, 4, 1);
/* reg_ptce3_prune_ctcam
* Pruning on C-TCAM. Used for reducing lookups.
* 0 - NEED: Do a lookup in the C-TCAM.
* 1 - PRUNE: Do not perform a lookup in the C-TCAM.
* Access: RW
*/
MLXSW_ITEM32(reg, ptce3, prune_ctcam, 0x94, 31, 1);
/* reg_ptce3_large_exists
* Large entry key ID exists.
* Within the region:
* 0 - SINGLE: The large_entry_key_id is not currently in use.
* For rule insert: The MSB of the key (blocks 6..11) will be added.
* For rule delete: The MSB of the key will be removed.
* 1 - NON_SINGLE: The large_entry_key_id is currently in use.
* For rule insert: The MSB of the key (blocks 6..11) will not be added.
* For rule delete: The MSB of the key will not be removed.
* Access: WO
*/
MLXSW_ITEM32(reg, ptce3, large_exists, 0x98, 31, 1);
/* reg_ptce3_large_entry_key_id
* Large entry key ID.
* A key for 12 key blocks rules. Reserved when region has less than 12 key
* blocks. Must be different for different keys which have the same common
* 6 key blocks (MSB, blocks 6..11) key within a region.
* Range is 0..cap_max_pe_large_key_id - 1
* Access: RW
*/
MLXSW_ITEM32(reg, ptce3, large_entry_key_id, 0x98, 0, 24);
/* reg_ptce3_action_pointer
* Pointer to action.
* Range is 0..cap_max_kvd_action_sets - 1
* Access: RW
*/
MLXSW_ITEM32(reg, ptce3, action_pointer, 0xA0, 0, 24);
static inline void mlxsw_reg_ptce3_pack(char *payload, bool valid,
enum mlxsw_reg_ptce3_op op,
u32 priority,
const char *tcam_region_info,
const char *key, u8 erp_id,
u16 delta_start, u8 delta_mask,
u8 delta_value, bool large_exists,
u32 lkey_id, u32 action_pointer)
{
MLXSW_REG_ZERO(ptce3, payload);
mlxsw_reg_ptce3_v_set(payload, valid);
mlxsw_reg_ptce3_op_set(payload, op);
mlxsw_reg_ptce3_priority_set(payload, priority);
mlxsw_reg_ptce3_tcam_region_info_memcpy_to(payload, tcam_region_info);
mlxsw_reg_ptce3_flex2_key_blocks_memcpy_to(payload, key);
mlxsw_reg_ptce3_erp_id_set(payload, erp_id);
mlxsw_reg_ptce3_delta_start_set(payload, delta_start);
mlxsw_reg_ptce3_delta_mask_set(payload, delta_mask);
mlxsw_reg_ptce3_delta_value_set(payload, delta_value);
mlxsw_reg_ptce3_large_exists_set(payload, large_exists);
mlxsw_reg_ptce3_large_entry_key_id_set(payload, lkey_id);
mlxsw_reg_ptce3_action_pointer_set(payload, action_pointer);
}
/* PERCR - Policy-Engine Region Configuration Register
* ---------------------------------------------------
* This register configures the region parameters. The region_id must be
* allocated.
*/
#define MLXSW_REG_PERCR_ID 0x302A
#define MLXSW_REG_PERCR_LEN 0x80
MLXSW_REG_DEFINE(percr, MLXSW_REG_PERCR_ID, MLXSW_REG_PERCR_LEN);
/* reg_percr_region_id
* Region identifier.
* Range 0..cap_max_regions-1
* Access: Index
*/
MLXSW_ITEM32(reg, percr, region_id, 0x00, 0, 16);
/* reg_percr_atcam_ignore_prune
* Ignore prune_vector by other A-TCAM rules. Used e.g., for a new rule.
* Access: RW
*/
MLXSW_ITEM32(reg, percr, atcam_ignore_prune, 0x04, 25, 1);
/* reg_percr_ctcam_ignore_prune
* Ignore prune_ctcam by other A-TCAM rules. Used e.g., for a new rule.
* Access: RW
*/
MLXSW_ITEM32(reg, percr, ctcam_ignore_prune, 0x04, 24, 1);
/* reg_percr_bf_bypass
* Bloom filter bypass.
* 0 - Bloom filter is used (default)
* 1 - Bloom filter is bypassed. The bypass is an OR condition of
* region_id or eRP. See PERPT.bf_bypass
* Access: RW
*/
MLXSW_ITEM32(reg, percr, bf_bypass, 0x04, 16, 1);
/* reg_percr_master_mask
* Master mask. Logical OR mask of all masks of all rules of a region
* (both A-TCAM and C-TCAM). When there are no eRPs
* (erpt_pointer_valid = 0), then this provides the mask.
* Access: RW
*/
MLXSW_ITEM_BUF(reg, percr, master_mask, 0x20, 96);
static inline void mlxsw_reg_percr_pack(char *payload, u16 region_id)
{
MLXSW_REG_ZERO(percr, payload);
mlxsw_reg_percr_region_id_set(payload, region_id);
mlxsw_reg_percr_atcam_ignore_prune_set(payload, false);
mlxsw_reg_percr_ctcam_ignore_prune_set(payload, false);
mlxsw_reg_percr_bf_bypass_set(payload, false);
}
/* PERERP - Policy-Engine Region eRP Register
* ------------------------------------------
* This register configures the region eRP. The region_id must be
* allocated.
*/
#define MLXSW_REG_PERERP_ID 0x302B
#define MLXSW_REG_PERERP_LEN 0x1C
MLXSW_REG_DEFINE(pererp, MLXSW_REG_PERERP_ID, MLXSW_REG_PERERP_LEN);
/* reg_pererp_region_id
* Region identifier.
* Range 0..cap_max_regions-1
* Access: Index
*/
MLXSW_ITEM32(reg, pererp, region_id, 0x00, 0, 16);
/* reg_pererp_ctcam_le
* C-TCAM lookup enable. Reserved when erpt_pointer_valid = 0.
* Access: RW
*/
MLXSW_ITEM32(reg, pererp, ctcam_le, 0x04, 28, 1);
/* reg_pererp_erpt_pointer_valid
* erpt_pointer is valid.
* Access: RW
*/
MLXSW_ITEM32(reg, pererp, erpt_pointer_valid, 0x10, 31, 1);
/* reg_pererp_erpt_bank_pointer
* Pointer to eRP table bank. May be modified at any time.
* Range 0..cap_max_erp_table_banks-1
* Reserved when erpt_pointer_valid = 0
*/
MLXSW_ITEM32(reg, pererp, erpt_bank_pointer, 0x10, 16, 4);
/* reg_pererp_erpt_pointer
* Pointer to eRP table within the eRP bank. Can be changed for an
* existing region.
* Range 0..cap_max_erp_table_size-1
* Reserved when erpt_pointer_valid = 0
* Access: RW
*/
MLXSW_ITEM32(reg, pererp, erpt_pointer, 0x10, 0, 8);
/* reg_pererp_erpt_vector
* Vector of allowed eRP indexes starting from erpt_pointer within the
* erpt_bank_pointer. Next entries will be in next bank.
* Note that eRP index is used and not eRP ID.
* Reserved when erpt_pointer_valid = 0
* Access: RW
*/
MLXSW_ITEM_BIT_ARRAY(reg, pererp, erpt_vector, 0x14, 4, 1);
/* reg_pererp_master_rp_id
* Master RP ID. When there are no eRPs, then this provides the eRP ID
* for the lookup. Can be changed for an existing region.
* Reserved when erpt_pointer_valid = 1
* Access: RW
*/
MLXSW_ITEM32(reg, pererp, master_rp_id, 0x18, 0, 4);
static inline void mlxsw_reg_pererp_erp_vector_pack(char *payload,
unsigned long *erp_vector,
unsigned long size)
{
unsigned long bit;
for_each_set_bit(bit, erp_vector, size)
mlxsw_reg_pererp_erpt_vector_set(payload, bit, true);
}
static inline void mlxsw_reg_pererp_pack(char *payload, u16 region_id,
bool ctcam_le, bool erpt_pointer_valid,
u8 erpt_bank_pointer, u8 erpt_pointer,
u8 master_rp_id)
{
MLXSW_REG_ZERO(pererp, payload);
mlxsw_reg_pererp_region_id_set(payload, region_id);
mlxsw_reg_pererp_ctcam_le_set(payload, ctcam_le);
mlxsw_reg_pererp_erpt_pointer_valid_set(payload, erpt_pointer_valid);
mlxsw_reg_pererp_erpt_bank_pointer_set(payload, erpt_bank_pointer);
mlxsw_reg_pererp_erpt_pointer_set(payload, erpt_pointer);
mlxsw_reg_pererp_master_rp_id_set(payload, master_rp_id);
}
/* PEABFE - Policy-Engine Algorithmic Bloom Filter Entries Register
* ----------------------------------------------------------------
* This register configures the Bloom filter entries.
*/
#define MLXSW_REG_PEABFE_ID 0x3022
#define MLXSW_REG_PEABFE_BASE_LEN 0x10
#define MLXSW_REG_PEABFE_BF_REC_LEN 0x4
#define MLXSW_REG_PEABFE_BF_REC_MAX_COUNT 256
#define MLXSW_REG_PEABFE_LEN (MLXSW_REG_PEABFE_BASE_LEN + \
MLXSW_REG_PEABFE_BF_REC_LEN * \
MLXSW_REG_PEABFE_BF_REC_MAX_COUNT)
MLXSW_REG_DEFINE(peabfe, MLXSW_REG_PEABFE_ID, MLXSW_REG_PEABFE_LEN);
/* reg_peabfe_size
* Number of BF entries to be updated.
* Range 1..256
* Access: Op
*/
MLXSW_ITEM32(reg, peabfe, size, 0x00, 0, 9);
/* reg_peabfe_bf_entry_state
* Bloom filter state
* 0 - Clear
* 1 - Set
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, peabfe, bf_entry_state,
MLXSW_REG_PEABFE_BASE_LEN, 31, 1,
MLXSW_REG_PEABFE_BF_REC_LEN, 0x00, false);
/* reg_peabfe_bf_entry_bank
* Bloom filter bank ID
* Range 0..cap_max_erp_table_banks-1
* Access: Index
*/
MLXSW_ITEM32_INDEXED(reg, peabfe, bf_entry_bank,
MLXSW_REG_PEABFE_BASE_LEN, 24, 4,
MLXSW_REG_PEABFE_BF_REC_LEN, 0x00, false);
/* reg_peabfe_bf_entry_index
* Bloom filter entry index
* Range 0..2^cap_max_bf_log-1
* Access: Index
*/
MLXSW_ITEM32_INDEXED(reg, peabfe, bf_entry_index,
MLXSW_REG_PEABFE_BASE_LEN, 0, 24,
MLXSW_REG_PEABFE_BF_REC_LEN, 0x00, false);
static inline void mlxsw_reg_peabfe_pack(char *payload)
{
MLXSW_REG_ZERO(peabfe, payload);
}
static inline void mlxsw_reg_peabfe_rec_pack(char *payload, int rec_index,
u8 state, u8 bank, u32 bf_index)
{
u8 num_rec = mlxsw_reg_peabfe_size_get(payload);
if (rec_index >= num_rec)
mlxsw_reg_peabfe_size_set(payload, rec_index + 1);
mlxsw_reg_peabfe_bf_entry_state_set(payload, rec_index, state);
mlxsw_reg_peabfe_bf_entry_bank_set(payload, rec_index, bank);
mlxsw_reg_peabfe_bf_entry_index_set(payload, rec_index, bf_index);
}
/* IEDR - Infrastructure Entry Delete Register
* ----------------------------------------------------
* This register is used for deleting entries from the entry tables.
* It is legitimate to attempt to delete a nonexisting entry (the device will
* respond as a good flow).
*/
#define MLXSW_REG_IEDR_ID 0x3804
#define MLXSW_REG_IEDR_BASE_LEN 0x10 /* base length, without records */
#define MLXSW_REG_IEDR_REC_LEN 0x8 /* record length */
#define MLXSW_REG_IEDR_REC_MAX_COUNT 64
#define MLXSW_REG_IEDR_LEN (MLXSW_REG_IEDR_BASE_LEN + \
MLXSW_REG_IEDR_REC_LEN * \
MLXSW_REG_IEDR_REC_MAX_COUNT)
MLXSW_REG_DEFINE(iedr, MLXSW_REG_IEDR_ID, MLXSW_REG_IEDR_LEN);
/* reg_iedr_num_rec
* Number of records.
* Access: OP
*/
MLXSW_ITEM32(reg, iedr, num_rec, 0x00, 0, 8);
/* reg_iedr_rec_type
* Resource type.
* Access: OP
*/
MLXSW_ITEM32_INDEXED(reg, iedr, rec_type, MLXSW_REG_IEDR_BASE_LEN, 24, 8,
MLXSW_REG_IEDR_REC_LEN, 0x00, false);
/* reg_iedr_rec_size
* Size of entries do be deleted. The unit is 1 entry, regardless of entry type.
* Access: OP
*/
MLXSW_ITEM32_INDEXED(reg, iedr, rec_size, MLXSW_REG_IEDR_BASE_LEN, 0, 13,
MLXSW_REG_IEDR_REC_LEN, 0x00, false);
/* reg_iedr_rec_index_start
* Resource index start.
* Access: OP
*/
MLXSW_ITEM32_INDEXED(reg, iedr, rec_index_start, MLXSW_REG_IEDR_BASE_LEN, 0, 24,
MLXSW_REG_IEDR_REC_LEN, 0x04, false);
static inline void mlxsw_reg_iedr_pack(char *payload)
{
MLXSW_REG_ZERO(iedr, payload);
}
static inline void mlxsw_reg_iedr_rec_pack(char *payload, int rec_index,
u8 rec_type, u16 rec_size,
u32 rec_index_start)
{
u8 num_rec = mlxsw_reg_iedr_num_rec_get(payload);
if (rec_index >= num_rec)
mlxsw_reg_iedr_num_rec_set(payload, rec_index + 1);
mlxsw_reg_iedr_rec_type_set(payload, rec_index, rec_type);
mlxsw_reg_iedr_rec_size_set(payload, rec_index, rec_size);
mlxsw_reg_iedr_rec_index_start_set(payload, rec_index, rec_index_start);
}
/* QPTS - QoS Priority Trust State Register
* ----------------------------------------
* This register controls the port policy to calculate the switch priority and
* packet color based on incoming packet fields.
*/
#define MLXSW_REG_QPTS_ID 0x4002
#define MLXSW_REG_QPTS_LEN 0x8
MLXSW_REG_DEFINE(qpts, MLXSW_REG_QPTS_ID, MLXSW_REG_QPTS_LEN);
/* reg_qpts_local_port
* Local port number.
* Access: Index
*
* Note: CPU port is supported.
*/
MLXSW_ITEM32_LP(reg, qpts, 0x00, 16, 0x00, 12);
enum mlxsw_reg_qpts_trust_state {
MLXSW_REG_QPTS_TRUST_STATE_PCP = 1,
MLXSW_REG_QPTS_TRUST_STATE_DSCP = 2, /* For MPLS, trust EXP. */
};
/* reg_qpts_trust_state
* Trust state for a given port.
* Access: RW
*/
MLXSW_ITEM32(reg, qpts, trust_state, 0x04, 0, 3);
static inline void mlxsw_reg_qpts_pack(char *payload, u16 local_port,
enum mlxsw_reg_qpts_trust_state ts)
{
MLXSW_REG_ZERO(qpts, payload);
mlxsw_reg_qpts_local_port_set(payload, local_port);
mlxsw_reg_qpts_trust_state_set(payload, ts);
}
/* QPCR - QoS Policer Configuration Register
* -----------------------------------------
* The QPCR register is used to create policers - that limit
* the rate of bytes or packets via some trap group.
*/
#define MLXSW_REG_QPCR_ID 0x4004
#define MLXSW_REG_QPCR_LEN 0x28
MLXSW_REG_DEFINE(qpcr, MLXSW_REG_QPCR_ID, MLXSW_REG_QPCR_LEN);
enum mlxsw_reg_qpcr_g {
MLXSW_REG_QPCR_G_GLOBAL = 2,
MLXSW_REG_QPCR_G_STORM_CONTROL = 3,
};
/* reg_qpcr_g
* The policer type.
* Access: Index
*/
MLXSW_ITEM32(reg, qpcr, g, 0x00, 14, 2);
/* reg_qpcr_pid
* Policer ID.
* Access: Index
*/
MLXSW_ITEM32(reg, qpcr, pid, 0x00, 0, 14);
/* reg_qpcr_clear_counter
* Clear counters.
* Access: OP
*/
MLXSW_ITEM32(reg, qpcr, clear_counter, 0x04, 31, 1);
/* reg_qpcr_color_aware
* Is the policer aware of colors.
* Must be 0 (unaware) for cpu port.
* Access: RW for unbounded policer. RO for bounded policer.
*/
MLXSW_ITEM32(reg, qpcr, color_aware, 0x04, 15, 1);
/* reg_qpcr_bytes
* Is policer limit is for bytes per sec or packets per sec.
* 0 - packets
* 1 - bytes
* Access: RW for unbounded policer. RO for bounded policer.
*/
MLXSW_ITEM32(reg, qpcr, bytes, 0x04, 14, 1);
enum mlxsw_reg_qpcr_ir_units {
MLXSW_REG_QPCR_IR_UNITS_M,
MLXSW_REG_QPCR_IR_UNITS_K,
};
/* reg_qpcr_ir_units
* Policer's units for cir and eir fields (for bytes limits only)
* 1 - 10^3
* 0 - 10^6
* Access: OP
*/
MLXSW_ITEM32(reg, qpcr, ir_units, 0x04, 12, 1);
enum mlxsw_reg_qpcr_rate_type {
MLXSW_REG_QPCR_RATE_TYPE_SINGLE = 1,
MLXSW_REG_QPCR_RATE_TYPE_DOUBLE = 2,
};
/* reg_qpcr_rate_type
* Policer can have one limit (single rate) or 2 limits with specific operation
* for packets that exceed the lower rate but not the upper one.
* (For cpu port must be single rate)
* Access: RW for unbounded policer. RO for bounded policer.
*/
MLXSW_ITEM32(reg, qpcr, rate_type, 0x04, 8, 2);
/* reg_qpc_cbs
* Policer's committed burst size.
* The policer is working with time slices of 50 nano sec. By default every
* slice is granted the proportionate share of the committed rate. If we want to
* allow a slice to exceed that share (while still keeping the rate per sec) we
* can allow burst. The burst size is between the default proportionate share
* (and no lower than 8) to 32Gb. (Even though giving a number higher than the
* committed rate will result in exceeding the rate). The burst size must be a
* log of 2 and will be determined by 2^cbs.
* Access: RW
*/
MLXSW_ITEM32(reg, qpcr, cbs, 0x08, 24, 6);
/* reg_qpcr_cir
* Policer's committed rate.
* The rate used for sungle rate, the lower rate for double rate.
* For bytes limits, the rate will be this value * the unit from ir_units.
* (Resolution error is up to 1%).
* Access: RW
*/
MLXSW_ITEM32(reg, qpcr, cir, 0x0C, 0, 32);
/* reg_qpcr_eir
* Policer's exceed rate.
* The higher rate for double rate, reserved for single rate.
* Lower rate for double rate policer.
* For bytes limits, the rate will be this value * the unit from ir_units.
* (Resolution error is up to 1%).
* Access: RW
*/
MLXSW_ITEM32(reg, qpcr, eir, 0x10, 0, 32);
#define MLXSW_REG_QPCR_DOUBLE_RATE_ACTION 2
/* reg_qpcr_exceed_action.
* What to do with packets between the 2 limits for double rate.
* Access: RW for unbounded policer. RO for bounded policer.
*/
MLXSW_ITEM32(reg, qpcr, exceed_action, 0x14, 0, 4);
enum mlxsw_reg_qpcr_action {
/* Discard */
MLXSW_REG_QPCR_ACTION_DISCARD = 1,
/* Forward and set color to red.
* If the packet is intended to cpu port, it will be dropped.
*/
MLXSW_REG_QPCR_ACTION_FORWARD = 2,
};
/* reg_qpcr_violate_action
* What to do with packets that cross the cir limit (for single rate) or the eir
* limit (for double rate).
* Access: RW for unbounded policer. RO for bounded policer.
*/
MLXSW_ITEM32(reg, qpcr, violate_action, 0x18, 0, 4);
/* reg_qpcr_violate_count
* Counts the number of times violate_action happened on this PID.
* Access: RW
*/
MLXSW_ITEM64(reg, qpcr, violate_count, 0x20, 0, 64);
/* Packets */
#define MLXSW_REG_QPCR_LOWEST_CIR 1
#define MLXSW_REG_QPCR_HIGHEST_CIR (2 * 1000 * 1000 * 1000) /* 2Gpps */
#define MLXSW_REG_QPCR_LOWEST_CBS 4
#define MLXSW_REG_QPCR_HIGHEST_CBS 24
/* Bandwidth */
#define MLXSW_REG_QPCR_LOWEST_CIR_BITS 1024 /* bps */
#define MLXSW_REG_QPCR_HIGHEST_CIR_BITS 2000000000000ULL /* 2Tbps */
#define MLXSW_REG_QPCR_LOWEST_CBS_BITS_SP1 4
#define MLXSW_REG_QPCR_LOWEST_CBS_BITS_SP2 4
#define MLXSW_REG_QPCR_HIGHEST_CBS_BITS_SP1 25
#define MLXSW_REG_QPCR_HIGHEST_CBS_BITS_SP2 31
static inline void mlxsw_reg_qpcr_pack(char *payload, u16 pid,
enum mlxsw_reg_qpcr_ir_units ir_units,
bool bytes, u32 cir, u16 cbs)
{
MLXSW_REG_ZERO(qpcr, payload);
mlxsw_reg_qpcr_pid_set(payload, pid);
mlxsw_reg_qpcr_g_set(payload, MLXSW_REG_QPCR_G_GLOBAL);
mlxsw_reg_qpcr_rate_type_set(payload, MLXSW_REG_QPCR_RATE_TYPE_SINGLE);
mlxsw_reg_qpcr_violate_action_set(payload,
MLXSW_REG_QPCR_ACTION_DISCARD);
mlxsw_reg_qpcr_cir_set(payload, cir);
mlxsw_reg_qpcr_ir_units_set(payload, ir_units);
mlxsw_reg_qpcr_bytes_set(payload, bytes);
mlxsw_reg_qpcr_cbs_set(payload, cbs);
}
/* QTCT - QoS Switch Traffic Class Table
* -------------------------------------
* Configures the mapping between the packet switch priority and the
* traffic class on the transmit port.
*/
#define MLXSW_REG_QTCT_ID 0x400A
#define MLXSW_REG_QTCT_LEN 0x08
MLXSW_REG_DEFINE(qtct, MLXSW_REG_QTCT_ID, MLXSW_REG_QTCT_LEN);
/* reg_qtct_local_port
* Local port number.
* Access: Index
*
* Note: CPU port is not supported.
*/
MLXSW_ITEM32_LP(reg, qtct, 0x00, 16, 0x00, 12);
/* reg_qtct_sub_port
* Virtual port within the physical port.
* Should be set to 0 when virtual ports are not enabled on the port.
* Access: Index
*/
MLXSW_ITEM32(reg, qtct, sub_port, 0x00, 8, 8);
/* reg_qtct_switch_prio
* Switch priority.
* Access: Index
*/
MLXSW_ITEM32(reg, qtct, switch_prio, 0x00, 0, 4);
/* reg_qtct_tclass
* Traffic class.
* Default values:
* switch_prio 0 : tclass 1
* switch_prio 1 : tclass 0
* switch_prio i : tclass i, for i > 1
* Access: RW
*/
MLXSW_ITEM32(reg, qtct, tclass, 0x04, 0, 4);
static inline void mlxsw_reg_qtct_pack(char *payload, u16 local_port,
u8 switch_prio, u8 tclass)
{
MLXSW_REG_ZERO(qtct, payload);
mlxsw_reg_qtct_local_port_set(payload, local_port);
mlxsw_reg_qtct_switch_prio_set(payload, switch_prio);
mlxsw_reg_qtct_tclass_set(payload, tclass);
}
/* QEEC - QoS ETS Element Configuration Register
* ---------------------------------------------
* Configures the ETS elements.
*/
#define MLXSW_REG_QEEC_ID 0x400D
#define MLXSW_REG_QEEC_LEN 0x20
MLXSW_REG_DEFINE(qeec, MLXSW_REG_QEEC_ID, MLXSW_REG_QEEC_LEN);
/* reg_qeec_local_port
* Local port number.
* Access: Index
*
* Note: CPU port is supported.
*/
MLXSW_ITEM32_LP(reg, qeec, 0x00, 16, 0x00, 12);
enum mlxsw_reg_qeec_hr {
MLXSW_REG_QEEC_HR_PORT,
MLXSW_REG_QEEC_HR_GROUP,
MLXSW_REG_QEEC_HR_SUBGROUP,
MLXSW_REG_QEEC_HR_TC,
};
/* reg_qeec_element_hierarchy
* 0 - Port
* 1 - Group
* 2 - Subgroup
* 3 - Traffic Class
* Access: Index
*/
MLXSW_ITEM32(reg, qeec, element_hierarchy, 0x04, 16, 4);
/* reg_qeec_element_index
* The index of the element in the hierarchy.
* Access: Index
*/
MLXSW_ITEM32(reg, qeec, element_index, 0x04, 0, 8);
/* reg_qeec_next_element_index
* The index of the next (lower) element in the hierarchy.
* Access: RW
*
* Note: Reserved for element_hierarchy 0.
*/
MLXSW_ITEM32(reg, qeec, next_element_index, 0x08, 0, 8);
/* reg_qeec_mise
* Min shaper configuration enable. Enables configuration of the min
* shaper on this ETS element
* 0 - Disable
* 1 - Enable
* Access: RW
*/
MLXSW_ITEM32(reg, qeec, mise, 0x0C, 31, 1);
/* reg_qeec_ptps
* PTP shaper
* 0: regular shaper mode
* 1: PTP oriented shaper
* Allowed only for hierarchy 0
* Not supported for CPU port
* Note that ptps mode may affect the shaper rates of all hierarchies
* Supported only on Spectrum-1
* Access: RW
*/
MLXSW_ITEM32(reg, qeec, ptps, 0x0C, 29, 1);
enum {
MLXSW_REG_QEEC_BYTES_MODE,
MLXSW_REG_QEEC_PACKETS_MODE,
};
/* reg_qeec_pb
* Packets or bytes mode.
* 0 - Bytes mode
* 1 - Packets mode
* Access: RW
*
* Note: Used for max shaper configuration. For Spectrum, packets mode
* is supported only for traffic classes of CPU port.
*/
MLXSW_ITEM32(reg, qeec, pb, 0x0C, 28, 1);
/* The smallest permitted min shaper rate. */
#define MLXSW_REG_QEEC_MIS_MIN 200000 /* Kbps */
/* reg_qeec_min_shaper_rate
* Min shaper information rate.
* For CPU port, can only be configured for port hierarchy.
* When in bytes mode, value is specified in units of 1000bps.
* Access: RW
*/
MLXSW_ITEM32(reg, qeec, min_shaper_rate, 0x0C, 0, 28);
/* reg_qeec_mase
* Max shaper configuration enable. Enables configuration of the max
* shaper on this ETS element.
* 0 - Disable
* 1 - Enable
* Access: RW
*/
MLXSW_ITEM32(reg, qeec, mase, 0x10, 31, 1);
/* The largest max shaper value possible to disable the shaper. */
#define MLXSW_REG_QEEC_MAS_DIS ((1u << 31) - 1) /* Kbps */
/* reg_qeec_max_shaper_rate
* Max shaper information rate.
* For CPU port, can only be configured for port hierarchy.
* When in bytes mode, value is specified in units of 1000bps.
* Access: RW
*/
MLXSW_ITEM32(reg, qeec, max_shaper_rate, 0x10, 0, 31);
/* reg_qeec_de
* DWRR configuration enable. Enables configuration of the dwrr and
* dwrr_weight.
* 0 - Disable
* 1 - Enable
* Access: RW
*/
MLXSW_ITEM32(reg, qeec, de, 0x18, 31, 1);
/* reg_qeec_dwrr
* Transmission selection algorithm to use on the link going down from
* the ETS element.
* 0 - Strict priority
* 1 - DWRR
* Access: RW
*/
MLXSW_ITEM32(reg, qeec, dwrr, 0x18, 15, 1);
/* reg_qeec_dwrr_weight
* DWRR weight on the link going down from the ETS element. The
* percentage of bandwidth guaranteed to an ETS element within
* its hierarchy. The sum of all weights across all ETS elements
* within one hierarchy should be equal to 100. Reserved when
* transmission selection algorithm is strict priority.
* Access: RW
*/
MLXSW_ITEM32(reg, qeec, dwrr_weight, 0x18, 0, 8);
/* reg_qeec_max_shaper_bs
* Max shaper burst size
* Burst size is 2^max_shaper_bs * 512 bits
* For Spectrum-1: Range is: 5..25
* For Spectrum-2: Range is: 11..25
* Reserved when ptps = 1
* Access: RW
*/
MLXSW_ITEM32(reg, qeec, max_shaper_bs, 0x1C, 0, 6);
#define MLXSW_REG_QEEC_HIGHEST_SHAPER_BS 25
#define MLXSW_REG_QEEC_LOWEST_SHAPER_BS_SP1 5
#define MLXSW_REG_QEEC_LOWEST_SHAPER_BS_SP2 11
#define MLXSW_REG_QEEC_LOWEST_SHAPER_BS_SP3 11
#define MLXSW_REG_QEEC_LOWEST_SHAPER_BS_SP4 11
static inline void mlxsw_reg_qeec_pack(char *payload, u16 local_port,
enum mlxsw_reg_qeec_hr hr, u8 index,
u8 next_index)
{
MLXSW_REG_ZERO(qeec, payload);
mlxsw_reg_qeec_local_port_set(payload, local_port);
mlxsw_reg_qeec_element_hierarchy_set(payload, hr);
mlxsw_reg_qeec_element_index_set(payload, index);
mlxsw_reg_qeec_next_element_index_set(payload, next_index);
}
static inline void mlxsw_reg_qeec_ptps_pack(char *payload, u16 local_port,
bool ptps)
{
MLXSW_REG_ZERO(qeec, payload);
mlxsw_reg_qeec_local_port_set(payload, local_port);
mlxsw_reg_qeec_element_hierarchy_set(payload, MLXSW_REG_QEEC_HR_PORT);
mlxsw_reg_qeec_ptps_set(payload, ptps);
}
/* QRWE - QoS ReWrite Enable
* -------------------------
* This register configures the rewrite enable per receive port.
*/
#define MLXSW_REG_QRWE_ID 0x400F
#define MLXSW_REG_QRWE_LEN 0x08
MLXSW_REG_DEFINE(qrwe, MLXSW_REG_QRWE_ID, MLXSW_REG_QRWE_LEN);
/* reg_qrwe_local_port
* Local port number.
* Access: Index
*
* Note: CPU port is supported. No support for router port.
*/
MLXSW_ITEM32_LP(reg, qrwe, 0x00, 16, 0x00, 12);
/* reg_qrwe_dscp
* Whether to enable DSCP rewrite (default is 0, don't rewrite).
* Access: RW
*/
MLXSW_ITEM32(reg, qrwe, dscp, 0x04, 1, 1);
/* reg_qrwe_pcp
* Whether to enable PCP and DEI rewrite (default is 0, don't rewrite).
* Access: RW
*/
MLXSW_ITEM32(reg, qrwe, pcp, 0x04, 0, 1);
static inline void mlxsw_reg_qrwe_pack(char *payload, u16 local_port,
bool rewrite_pcp, bool rewrite_dscp)
{
MLXSW_REG_ZERO(qrwe, payload);
mlxsw_reg_qrwe_local_port_set(payload, local_port);
mlxsw_reg_qrwe_pcp_set(payload, rewrite_pcp);
mlxsw_reg_qrwe_dscp_set(payload, rewrite_dscp);
}
/* QPDSM - QoS Priority to DSCP Mapping
* ------------------------------------
* QoS Priority to DSCP Mapping Register
*/
#define MLXSW_REG_QPDSM_ID 0x4011
#define MLXSW_REG_QPDSM_BASE_LEN 0x04 /* base length, without records */
#define MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN 0x4 /* record length */
#define MLXSW_REG_QPDSM_PRIO_ENTRY_REC_MAX_COUNT 16
#define MLXSW_REG_QPDSM_LEN (MLXSW_REG_QPDSM_BASE_LEN + \
MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN * \
MLXSW_REG_QPDSM_PRIO_ENTRY_REC_MAX_COUNT)
MLXSW_REG_DEFINE(qpdsm, MLXSW_REG_QPDSM_ID, MLXSW_REG_QPDSM_LEN);
/* reg_qpdsm_local_port
* Local Port. Supported for data packets from CPU port.
* Access: Index
*/
MLXSW_ITEM32_LP(reg, qpdsm, 0x00, 16, 0x00, 12);
/* reg_qpdsm_prio_entry_color0_e
* Enable update of the entry for color 0 and a given port.
* Access: WO
*/
MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color0_e,
MLXSW_REG_QPDSM_BASE_LEN, 31, 1,
MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false);
/* reg_qpdsm_prio_entry_color0_dscp
* DSCP field in the outer label of the packet for color 0 and a given port.
* Reserved when e=0.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color0_dscp,
MLXSW_REG_QPDSM_BASE_LEN, 24, 6,
MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false);
/* reg_qpdsm_prio_entry_color1_e
* Enable update of the entry for color 1 and a given port.
* Access: WO
*/
MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color1_e,
MLXSW_REG_QPDSM_BASE_LEN, 23, 1,
MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false);
/* reg_qpdsm_prio_entry_color1_dscp
* DSCP field in the outer label of the packet for color 1 and a given port.
* Reserved when e=0.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color1_dscp,
MLXSW_REG_QPDSM_BASE_LEN, 16, 6,
MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false);
/* reg_qpdsm_prio_entry_color2_e
* Enable update of the entry for color 2 and a given port.
* Access: WO
*/
MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color2_e,
MLXSW_REG_QPDSM_BASE_LEN, 15, 1,
MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false);
/* reg_qpdsm_prio_entry_color2_dscp
* DSCP field in the outer label of the packet for color 2 and a given port.
* Reserved when e=0.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color2_dscp,
MLXSW_REG_QPDSM_BASE_LEN, 8, 6,
MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false);
static inline void mlxsw_reg_qpdsm_pack(char *payload, u16 local_port)
{
MLXSW_REG_ZERO(qpdsm, payload);
mlxsw_reg_qpdsm_local_port_set(payload, local_port);
}
static inline void
mlxsw_reg_qpdsm_prio_pack(char *payload, unsigned short prio, u8 dscp)
{
mlxsw_reg_qpdsm_prio_entry_color0_e_set(payload, prio, 1);
mlxsw_reg_qpdsm_prio_entry_color0_dscp_set(payload, prio, dscp);
mlxsw_reg_qpdsm_prio_entry_color1_e_set(payload, prio, 1);
mlxsw_reg_qpdsm_prio_entry_color1_dscp_set(payload, prio, dscp);
mlxsw_reg_qpdsm_prio_entry_color2_e_set(payload, prio, 1);
mlxsw_reg_qpdsm_prio_entry_color2_dscp_set(payload, prio, dscp);
}
/* QPDP - QoS Port DSCP to Priority Mapping Register
* -------------------------------------------------
* This register controls the port default Switch Priority and Color. The
* default Switch Priority and Color are used for frames where the trust state
* uses default values. All member ports of a LAG should be configured with the
* same default values.
*/
#define MLXSW_REG_QPDP_ID 0x4007
#define MLXSW_REG_QPDP_LEN 0x8
MLXSW_REG_DEFINE(qpdp, MLXSW_REG_QPDP_ID, MLXSW_REG_QPDP_LEN);
/* reg_qpdp_local_port
* Local Port. Supported for data packets from CPU port.
* Access: Index
*/
MLXSW_ITEM32_LP(reg, qpdp, 0x00, 16, 0x00, 12);
/* reg_qpdp_switch_prio
* Default port Switch Priority (default 0)
* Access: RW
*/
MLXSW_ITEM32(reg, qpdp, switch_prio, 0x04, 0, 4);
static inline void mlxsw_reg_qpdp_pack(char *payload, u16 local_port,
u8 switch_prio)
{
MLXSW_REG_ZERO(qpdp, payload);
mlxsw_reg_qpdp_local_port_set(payload, local_port);
mlxsw_reg_qpdp_switch_prio_set(payload, switch_prio);
}
/* QPDPM - QoS Port DSCP to Priority Mapping Register
* --------------------------------------------------
* This register controls the mapping from DSCP field to
* Switch Priority for IP packets.
*/
#define MLXSW_REG_QPDPM_ID 0x4013
#define MLXSW_REG_QPDPM_BASE_LEN 0x4 /* base length, without records */
#define MLXSW_REG_QPDPM_DSCP_ENTRY_REC_LEN 0x2 /* record length */
#define MLXSW_REG_QPDPM_DSCP_ENTRY_REC_MAX_COUNT 64
#define MLXSW_REG_QPDPM_LEN (MLXSW_REG_QPDPM_BASE_LEN + \
MLXSW_REG_QPDPM_DSCP_ENTRY_REC_LEN * \
MLXSW_REG_QPDPM_DSCP_ENTRY_REC_MAX_COUNT)
MLXSW_REG_DEFINE(qpdpm, MLXSW_REG_QPDPM_ID, MLXSW_REG_QPDPM_LEN);
/* reg_qpdpm_local_port
* Local Port. Supported for data packets from CPU port.
* Access: Index
*/
MLXSW_ITEM32_LP(reg, qpdpm, 0x00, 16, 0x00, 12);
/* reg_qpdpm_dscp_e
* Enable update of the specific entry. When cleared, the switch_prio and color
* fields are ignored and the previous switch_prio and color values are
* preserved.
* Access: WO
*/
MLXSW_ITEM16_INDEXED(reg, qpdpm, dscp_entry_e, MLXSW_REG_QPDPM_BASE_LEN, 15, 1,
MLXSW_REG_QPDPM_DSCP_ENTRY_REC_LEN, 0x00, false);
/* reg_qpdpm_dscp_prio
* The new Switch Priority value for the relevant DSCP value.
* Access: RW
*/
MLXSW_ITEM16_INDEXED(reg, qpdpm, dscp_entry_prio,
MLXSW_REG_QPDPM_BASE_LEN, 0, 4,
MLXSW_REG_QPDPM_DSCP_ENTRY_REC_LEN, 0x00, false);
static inline void mlxsw_reg_qpdpm_pack(char *payload, u16 local_port)
{
MLXSW_REG_ZERO(qpdpm, payload);
mlxsw_reg_qpdpm_local_port_set(payload, local_port);
}
static inline void
mlxsw_reg_qpdpm_dscp_pack(char *payload, unsigned short dscp, u8 prio)
{
mlxsw_reg_qpdpm_dscp_entry_e_set(payload, dscp, 1);
mlxsw_reg_qpdpm_dscp_entry_prio_set(payload, dscp, prio);
}
/* QTCTM - QoS Switch Traffic Class Table is Multicast-Aware Register
* ------------------------------------------------------------------
* This register configures if the Switch Priority to Traffic Class mapping is
* based on Multicast packet indication. If so, then multicast packets will get
* a Traffic Class that is plus (cap_max_tclass_data/2) the value configured by
* QTCT.
* By default, Switch Priority to Traffic Class mapping is not based on
* Multicast packet indication.
*/
#define MLXSW_REG_QTCTM_ID 0x401A
#define MLXSW_REG_QTCTM_LEN 0x08
MLXSW_REG_DEFINE(qtctm, MLXSW_REG_QTCTM_ID, MLXSW_REG_QTCTM_LEN);
/* reg_qtctm_local_port
* Local port number.
* No support for CPU port.
* Access: Index
*/
MLXSW_ITEM32_LP(reg, qtctm, 0x00, 16, 0x00, 12);
/* reg_qtctm_mc
* Multicast Mode
* Whether Switch Priority to Traffic Class mapping is based on Multicast packet
* indication (default is 0, not based on Multicast packet indication).
*/
MLXSW_ITEM32(reg, qtctm, mc, 0x04, 0, 1);
static inline void
mlxsw_reg_qtctm_pack(char *payload, u16 local_port, bool mc)
{
MLXSW_REG_ZERO(qtctm, payload);
mlxsw_reg_qtctm_local_port_set(payload, local_port);
mlxsw_reg_qtctm_mc_set(payload, mc);
}
/* QPSC - QoS PTP Shaper Configuration Register
* --------------------------------------------
* The QPSC allows advanced configuration of the shapers when QEEC.ptps=1.
* Supported only on Spectrum-1.
*/
#define MLXSW_REG_QPSC_ID 0x401B
#define MLXSW_REG_QPSC_LEN 0x28
MLXSW_REG_DEFINE(qpsc, MLXSW_REG_QPSC_ID, MLXSW_REG_QPSC_LEN);
enum mlxsw_reg_qpsc_port_speed {
MLXSW_REG_QPSC_PORT_SPEED_100M,
MLXSW_REG_QPSC_PORT_SPEED_1G,
MLXSW_REG_QPSC_PORT_SPEED_10G,
MLXSW_REG_QPSC_PORT_SPEED_25G,
};
/* reg_qpsc_port_speed
* Port speed.
* Access: Index
*/
MLXSW_ITEM32(reg, qpsc, port_speed, 0x00, 0, 4);
/* reg_qpsc_shaper_time_exp
* The base-time-interval for updating the shapers tokens (for all hierarchies).
* shaper_update_rate = 2 ^ shaper_time_exp * (1 + shaper_time_mantissa) * 32nSec
* shaper_rate = 64bit * shaper_inc / shaper_update_rate
* Access: RW
*/
MLXSW_ITEM32(reg, qpsc, shaper_time_exp, 0x04, 16, 4);
/* reg_qpsc_shaper_time_mantissa
* The base-time-interval for updating the shapers tokens (for all hierarchies).
* shaper_update_rate = 2 ^ shaper_time_exp * (1 + shaper_time_mantissa) * 32nSec
* shaper_rate = 64bit * shaper_inc / shaper_update_rate
* Access: RW
*/
MLXSW_ITEM32(reg, qpsc, shaper_time_mantissa, 0x04, 0, 5);
/* reg_qpsc_shaper_inc
* Number of tokens added to shaper on each update.
* Units of 8B.
* Access: RW
*/
MLXSW_ITEM32(reg, qpsc, shaper_inc, 0x08, 0, 5);
/* reg_qpsc_shaper_bs
* Max shaper Burst size.
* Burst size is 2 ^ max_shaper_bs * 512 [bits]
* Range is: 5..25 (from 2KB..2GB)
* Access: RW
*/
MLXSW_ITEM32(reg, qpsc, shaper_bs, 0x0C, 0, 6);
/* reg_qpsc_ptsc_we
* Write enable to port_to_shaper_credits.
* Access: WO
*/
MLXSW_ITEM32(reg, qpsc, ptsc_we, 0x10, 31, 1);
/* reg_qpsc_port_to_shaper_credits
* For split ports: range 1..57
* For non-split ports: range 1..112
* Written only when ptsc_we is set.
* Access: RW
*/
MLXSW_ITEM32(reg, qpsc, port_to_shaper_credits, 0x10, 0, 8);
/* reg_qpsc_ing_timestamp_inc
* Ingress timestamp increment.
* 2's complement.
* The timestamp of MTPPTR at ingress will be incremented by this value. Global
* value for all ports.
* Same units as used by MTPPTR.
* Access: RW
*/
MLXSW_ITEM32(reg, qpsc, ing_timestamp_inc, 0x20, 0, 32);
/* reg_qpsc_egr_timestamp_inc
* Egress timestamp increment.
* 2's complement.
* The timestamp of MTPPTR at egress will be incremented by this value. Global
* value for all ports.
* Same units as used by MTPPTR.
* Access: RW
*/
MLXSW_ITEM32(reg, qpsc, egr_timestamp_inc, 0x24, 0, 32);
static inline void
mlxsw_reg_qpsc_pack(char *payload, enum mlxsw_reg_qpsc_port_speed port_speed,
u8 shaper_time_exp, u8 shaper_time_mantissa, u8 shaper_inc,
u8 shaper_bs, u8 port_to_shaper_credits,
int ing_timestamp_inc, int egr_timestamp_inc)
{
MLXSW_REG_ZERO(qpsc, payload);
mlxsw_reg_qpsc_port_speed_set(payload, port_speed);
mlxsw_reg_qpsc_shaper_time_exp_set(payload, shaper_time_exp);
mlxsw_reg_qpsc_shaper_time_mantissa_set(payload, shaper_time_mantissa);
mlxsw_reg_qpsc_shaper_inc_set(payload, shaper_inc);
mlxsw_reg_qpsc_shaper_bs_set(payload, shaper_bs);
mlxsw_reg_qpsc_ptsc_we_set(payload, true);
mlxsw_reg_qpsc_port_to_shaper_credits_set(payload, port_to_shaper_credits);
mlxsw_reg_qpsc_ing_timestamp_inc_set(payload, ing_timestamp_inc);
mlxsw_reg_qpsc_egr_timestamp_inc_set(payload, egr_timestamp_inc);
}
/* PMLP - Ports Module to Local Port Register
* ------------------------------------------
* Configures the assignment of modules to local ports.
*/
#define MLXSW_REG_PMLP_ID 0x5002
#define MLXSW_REG_PMLP_LEN 0x40
MLXSW_REG_DEFINE(pmlp, MLXSW_REG_PMLP_ID, MLXSW_REG_PMLP_LEN);
/* reg_pmlp_rxtx
* 0 - Tx value is used for both Tx and Rx.
* 1 - Rx value is taken from a separte field.
* Access: RW
*/
MLXSW_ITEM32(reg, pmlp, rxtx, 0x00, 31, 1);
/* reg_pmlp_local_port
* Local port number.
* Access: Index
*/
MLXSW_ITEM32_LP(reg, pmlp, 0x00, 16, 0x00, 12);
/* reg_pmlp_width
* 0 - Unmap local port.
* 1 - Lane 0 is used.
* 2 - Lanes 0 and 1 are used.
* 4 - Lanes 0, 1, 2 and 3 are used.
* 8 - Lanes 0-7 are used.
* Access: RW
*/
MLXSW_ITEM32(reg, pmlp, width, 0x00, 0, 8);
/* reg_pmlp_module
* Module number.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, pmlp, module, 0x04, 0, 8, 0x04, 0x00, false);
/* reg_pmlp_slot_index
* Module number.
* Slot_index
* Slot_index = 0 represent the onboard (motherboard).
* In case of non-modular system only slot_index = 0 is available.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, pmlp, slot_index, 0x04, 8, 4, 0x04, 0x00, false);
/* reg_pmlp_tx_lane
* Tx Lane. When rxtx field is cleared, this field is used for Rx as well.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, pmlp, tx_lane, 0x04, 16, 4, 0x04, 0x00, false);
/* reg_pmlp_rx_lane
* Rx Lane. When rxtx field is cleared, this field is ignored and Rx lane is
* equal to Tx lane.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, pmlp, rx_lane, 0x04, 24, 4, 0x04, 0x00, false);
static inline void mlxsw_reg_pmlp_pack(char *payload, u16 local_port)
{
MLXSW_REG_ZERO(pmlp, payload);
mlxsw_reg_pmlp_local_port_set(payload, local_port);
}
/* PMTU - Port MTU Register
* ------------------------
* Configures and reports the port MTU.
*/
#define MLXSW_REG_PMTU_ID 0x5003
#define MLXSW_REG_PMTU_LEN 0x10
MLXSW_REG_DEFINE(pmtu, MLXSW_REG_PMTU_ID, MLXSW_REG_PMTU_LEN);
/* reg_pmtu_local_port
* Local port number.
* Access: Index
*/
MLXSW_ITEM32_LP(reg, pmtu, 0x00, 16, 0x00, 12);
/* reg_pmtu_max_mtu
* Maximum MTU.
* When port type (e.g. Ethernet) is configured, the relevant MTU is
* reported, otherwise the minimum between the max_mtu of the different
* types is reported.
* Access: RO
*/
MLXSW_ITEM32(reg, pmtu, max_mtu, 0x04, 16, 16);
/* reg_pmtu_admin_mtu
* MTU value to set port to. Must be smaller or equal to max_mtu.
* Note: If port type is Infiniband, then port must be disabled, when its
* MTU is set.
* Access: RW
*/
MLXSW_ITEM32(reg, pmtu, admin_mtu, 0x08, 16, 16);
/* reg_pmtu_oper_mtu
* The actual MTU configured on the port. Packets exceeding this size
* will be dropped.
* Note: In Ethernet and FC oper_mtu == admin_mtu, however, in Infiniband
* oper_mtu might be smaller than admin_mtu.
* Access: RO
*/
MLXSW_ITEM32(reg, pmtu, oper_mtu, 0x0C, 16, 16);
static inline void mlxsw_reg_pmtu_pack(char *payload, u16 local_port,
u16 new_mtu)
{
MLXSW_REG_ZERO(pmtu, payload);
mlxsw_reg_pmtu_local_port_set(payload, local_port);
mlxsw_reg_pmtu_max_mtu_set(payload, 0);
mlxsw_reg_pmtu_admin_mtu_set(payload, new_mtu);
mlxsw_reg_pmtu_oper_mtu_set(payload, 0);
}
/* PTYS - Port Type and Speed Register
* -----------------------------------
* Configures and reports the port speed type.
*
* Note: When set while the link is up, the changes will not take effect
* until the port transitions from down to up state.
*/
#define MLXSW_REG_PTYS_ID 0x5004
#define MLXSW_REG_PTYS_LEN 0x40
MLXSW_REG_DEFINE(ptys, MLXSW_REG_PTYS_ID, MLXSW_REG_PTYS_LEN);
/* an_disable_admin
* Auto negotiation disable administrative configuration
* 0 - Device doesn't support AN disable.
* 1 - Device supports AN disable.
* Access: RW
*/
MLXSW_ITEM32(reg, ptys, an_disable_admin, 0x00, 30, 1);
/* reg_ptys_local_port
* Local port number.
* Access: Index
*/
MLXSW_ITEM32_LP(reg, ptys, 0x00, 16, 0x00, 12);
#define MLXSW_REG_PTYS_PROTO_MASK_IB BIT(0)
#define MLXSW_REG_PTYS_PROTO_MASK_ETH BIT(2)
/* reg_ptys_proto_mask
* Protocol mask. Indicates which protocol is used.
* 0 - Infiniband.
* 1 - Fibre Channel.
* 2 - Ethernet.
* Access: Index
*/
MLXSW_ITEM32(reg, ptys, proto_mask, 0x00, 0, 3);
enum {
MLXSW_REG_PTYS_AN_STATUS_NA,
MLXSW_REG_PTYS_AN_STATUS_OK,
MLXSW_REG_PTYS_AN_STATUS_FAIL,
};
/* reg_ptys_an_status
* Autonegotiation status.
* Access: RO
*/
MLXSW_ITEM32(reg, ptys, an_status, 0x04, 28, 4);
#define MLXSW_REG_PTYS_EXT_ETH_SPEED_SGMII_100M BIT(0)
#define MLXSW_REG_PTYS_EXT_ETH_SPEED_1000BASE_X_SGMII BIT(1)
#define MLXSW_REG_PTYS_EXT_ETH_SPEED_5GBASE_R BIT(3)
#define MLXSW_REG_PTYS_EXT_ETH_SPEED_XFI_XAUI_1_10G BIT(4)
#define MLXSW_REG_PTYS_EXT_ETH_SPEED_XLAUI_4_XLPPI_4_40G BIT(5)
#define MLXSW_REG_PTYS_EXT_ETH_SPEED_25GAUI_1_25GBASE_CR_KR BIT(6)
#define MLXSW_REG_PTYS_EXT_ETH_SPEED_50GAUI_2_LAUI_2_50GBASE_CR2_KR2 BIT(7)
#define MLXSW_REG_PTYS_EXT_ETH_SPEED_50GAUI_1_LAUI_1_50GBASE_CR_KR BIT(8)
#define MLXSW_REG_PTYS_EXT_ETH_SPEED_CAUI_4_100GBASE_CR4_KR4 BIT(9)
#define MLXSW_REG_PTYS_EXT_ETH_SPEED_100GAUI_2_100GBASE_CR2_KR2 BIT(10)
#define MLXSW_REG_PTYS_EXT_ETH_SPEED_200GAUI_4_200GBASE_CR4_KR4 BIT(12)
#define MLXSW_REG_PTYS_EXT_ETH_SPEED_400GAUI_8 BIT(15)
#define MLXSW_REG_PTYS_EXT_ETH_SPEED_800GAUI_8 BIT(19)
/* reg_ptys_ext_eth_proto_cap
* Extended Ethernet port supported speeds and protocols.
* Access: RO
*/
MLXSW_ITEM32(reg, ptys, ext_eth_proto_cap, 0x08, 0, 32);
#define MLXSW_REG_PTYS_ETH_SPEED_SGMII BIT(0)
#define MLXSW_REG_PTYS_ETH_SPEED_1000BASE_KX BIT(1)
#define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_CX4 BIT(2)
#define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_KX4 BIT(3)
#define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_KR BIT(4)
#define MLXSW_REG_PTYS_ETH_SPEED_40GBASE_CR4 BIT(6)
#define MLXSW_REG_PTYS_ETH_SPEED_40GBASE_KR4 BIT(7)
#define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_CR BIT(12)
#define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_SR BIT(13)
#define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_ER_LR BIT(14)
#define MLXSW_REG_PTYS_ETH_SPEED_40GBASE_SR4 BIT(15)
#define MLXSW_REG_PTYS_ETH_SPEED_40GBASE_LR4_ER4 BIT(16)
#define MLXSW_REG_PTYS_ETH_SPEED_50GBASE_SR2 BIT(18)
#define MLXSW_REG_PTYS_ETH_SPEED_50GBASE_KR4 BIT(19)
#define MLXSW_REG_PTYS_ETH_SPEED_100GBASE_CR4 BIT(20)
#define MLXSW_REG_PTYS_ETH_SPEED_100GBASE_SR4 BIT(21)
#define MLXSW_REG_PTYS_ETH_SPEED_100GBASE_KR4 BIT(22)
#define MLXSW_REG_PTYS_ETH_SPEED_100GBASE_LR4_ER4 BIT(23)
#define MLXSW_REG_PTYS_ETH_SPEED_100BASE_T BIT(24)
#define MLXSW_REG_PTYS_ETH_SPEED_1000BASE_T BIT(25)
#define MLXSW_REG_PTYS_ETH_SPEED_25GBASE_CR BIT(27)
#define MLXSW_REG_PTYS_ETH_SPEED_25GBASE_KR BIT(28)
#define MLXSW_REG_PTYS_ETH_SPEED_25GBASE_SR BIT(29)
#define MLXSW_REG_PTYS_ETH_SPEED_50GBASE_CR2 BIT(30)
#define MLXSW_REG_PTYS_ETH_SPEED_50GBASE_KR2 BIT(31)
/* reg_ptys_eth_proto_cap
* Ethernet port supported speeds and protocols.
* Access: RO
*/
MLXSW_ITEM32(reg, ptys, eth_proto_cap, 0x0C, 0, 32);
/* reg_ptys_ext_eth_proto_admin
* Extended speed and protocol to set port to.
* Access: RW
*/
MLXSW_ITEM32(reg, ptys, ext_eth_proto_admin, 0x14, 0, 32);
/* reg_ptys_eth_proto_admin
* Speed and protocol to set port to.
* Access: RW
*/
MLXSW_ITEM32(reg, ptys, eth_proto_admin, 0x18, 0, 32);
/* reg_ptys_ext_eth_proto_oper
* The extended current speed and protocol configured for the port.
* Access: RO
*/
MLXSW_ITEM32(reg, ptys, ext_eth_proto_oper, 0x20, 0, 32);
/* reg_ptys_eth_proto_oper
* The current speed and protocol configured for the port.
* Access: RO
*/
MLXSW_ITEM32(reg, ptys, eth_proto_oper, 0x24, 0, 32);
enum mlxsw_reg_ptys_connector_type {
MLXSW_REG_PTYS_CONNECTOR_TYPE_UNKNOWN_OR_NO_CONNECTOR,
MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_NONE,
MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_TP,
MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_AUI,
MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_BNC,
MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_MII,
MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_FIBRE,
MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_DA,
MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_OTHER,
};
/* reg_ptys_connector_type
* Connector type indication.
* Access: RO
*/
MLXSW_ITEM32(reg, ptys, connector_type, 0x2C, 0, 4);
static inline void mlxsw_reg_ptys_eth_pack(char *payload, u16 local_port,
u32 proto_admin, bool autoneg)
{
MLXSW_REG_ZERO(ptys, payload);
mlxsw_reg_ptys_local_port_set(payload, local_port);
mlxsw_reg_ptys_proto_mask_set(payload, MLXSW_REG_PTYS_PROTO_MASK_ETH);
mlxsw_reg_ptys_eth_proto_admin_set(payload, proto_admin);
mlxsw_reg_ptys_an_disable_admin_set(payload, !autoneg);
}
static inline void mlxsw_reg_ptys_ext_eth_pack(char *payload, u16 local_port,
u32 proto_admin, bool autoneg)
{
MLXSW_REG_ZERO(ptys, payload);
mlxsw_reg_ptys_local_port_set(payload, local_port);
mlxsw_reg_ptys_proto_mask_set(payload, MLXSW_REG_PTYS_PROTO_MASK_ETH);
mlxsw_reg_ptys_ext_eth_proto_admin_set(payload, proto_admin);
mlxsw_reg_ptys_an_disable_admin_set(payload, !autoneg);
}
static inline void mlxsw_reg_ptys_eth_unpack(char *payload,
u32 *p_eth_proto_cap,
u32 *p_eth_proto_admin,
u32 *p_eth_proto_oper)
{
if (p_eth_proto_cap)
*p_eth_proto_cap =
mlxsw_reg_ptys_eth_proto_cap_get(payload);
if (p_eth_proto_admin)
*p_eth_proto_admin =
mlxsw_reg_ptys_eth_proto_admin_get(payload);
if (p_eth_proto_oper)
*p_eth_proto_oper =
mlxsw_reg_ptys_eth_proto_oper_get(payload);
}
static inline void mlxsw_reg_ptys_ext_eth_unpack(char *payload,
u32 *p_eth_proto_cap,
u32 *p_eth_proto_admin,
u32 *p_eth_proto_oper)
{
if (p_eth_proto_cap)
*p_eth_proto_cap =
mlxsw_reg_ptys_ext_eth_proto_cap_get(payload);
if (p_eth_proto_admin)
*p_eth_proto_admin =
mlxsw_reg_ptys_ext_eth_proto_admin_get(payload);
if (p_eth_proto_oper)
*p_eth_proto_oper =
mlxsw_reg_ptys_ext_eth_proto_oper_get(payload);
}
/* PPAD - Port Physical Address Register
* -------------------------------------
* The PPAD register configures the per port physical MAC address.
*/
#define MLXSW_REG_PPAD_ID 0x5005
#define MLXSW_REG_PPAD_LEN 0x10
MLXSW_REG_DEFINE(ppad, MLXSW_REG_PPAD_ID, MLXSW_REG_PPAD_LEN);
/* reg_ppad_single_base_mac
* 0: base_mac, local port should be 0 and mac[7:0] is
* reserved. HW will set incremental
* 1: single_mac - mac of the local_port
* Access: RW
*/
MLXSW_ITEM32(reg, ppad, single_base_mac, 0x00, 28, 1);
/* reg_ppad_local_port
* port number, if single_base_mac = 0 then local_port is reserved
* Access: RW
*/
MLXSW_ITEM32_LP(reg, ppad, 0x00, 16, 0x00, 24);
/* reg_ppad_mac
* If single_base_mac = 0 - base MAC address, mac[7:0] is reserved.
* If single_base_mac = 1 - the per port MAC address
* Access: RW
*/
MLXSW_ITEM_BUF(reg, ppad, mac, 0x02, 6);
static inline void mlxsw_reg_ppad_pack(char *payload, bool single_base_mac,
u16 local_port)
{
MLXSW_REG_ZERO(ppad, payload);
mlxsw_reg_ppad_single_base_mac_set(payload, !!single_base_mac);
mlxsw_reg_ppad_local_port_set(payload, local_port);
}
/* PAOS - Ports Administrative and Operational Status Register
* -----------------------------------------------------------
* Configures and retrieves per port administrative and operational status.
*/
#define MLXSW_REG_PAOS_ID 0x5006
#define MLXSW_REG_PAOS_LEN 0x10
MLXSW_REG_DEFINE(paos, MLXSW_REG_PAOS_ID, MLXSW_REG_PAOS_LEN);
/* reg_paos_swid
* Switch partition ID with which to associate the port.
* Note: while external ports uses unique local port numbers (and thus swid is
* redundant), router ports use the same local port number where swid is the
* only indication for the relevant port.
* Access: Index
*/
MLXSW_ITEM32(reg, paos, swid, 0x00, 24, 8);
/* reg_paos_local_port
* Local port number.
* Access: Index
*/
MLXSW_ITEM32_LP(reg, paos, 0x00, 16, 0x00, 12);
/* reg_paos_admin_status
* Port administrative state (the desired state of the port):
* 1 - Up.
* 2 - Down.
* 3 - Up once. This means that in case of link failure, the port won't go
* into polling mode, but will wait to be re-enabled by software.
* 4 - Disabled by system. Can only be set by hardware.
* Access: RW
*/
MLXSW_ITEM32(reg, paos, admin_status, 0x00, 8, 4);
/* reg_paos_oper_status
* Port operational state (the current state):
* 1 - Up.
* 2 - Down.
* 3 - Down by port failure. This means that the device will not let the
* port up again until explicitly specified by software.
* Access: RO
*/
MLXSW_ITEM32(reg, paos, oper_status, 0x00, 0, 4);
/* reg_paos_ase
* Admin state update enabled.
* Access: WO
*/
MLXSW_ITEM32(reg, paos, ase, 0x04, 31, 1);
/* reg_paos_ee
* Event update enable. If this bit is set, event generation will be
* updated based on the e field.
* Access: WO
*/
MLXSW_ITEM32(reg, paos, ee, 0x04, 30, 1);
/* reg_paos_e
* Event generation on operational state change:
* 0 - Do not generate event.
* 1 - Generate Event.
* 2 - Generate Single Event.
* Access: RW
*/
MLXSW_ITEM32(reg, paos, e, 0x04, 0, 2);
static inline void mlxsw_reg_paos_pack(char *payload, u16 local_port,
enum mlxsw_port_admin_status status)
{
MLXSW_REG_ZERO(paos, payload);
mlxsw_reg_paos_swid_set(payload, 0);
mlxsw_reg_paos_local_port_set(payload, local_port);
mlxsw_reg_paos_admin_status_set(payload, status);
mlxsw_reg_paos_oper_status_set(payload, 0);
mlxsw_reg_paos_ase_set(payload, 1);
mlxsw_reg_paos_ee_set(payload, 1);
mlxsw_reg_paos_e_set(payload, 1);
}
/* PFCC - Ports Flow Control Configuration Register
* ------------------------------------------------
* Configures and retrieves the per port flow control configuration.
*/
#define MLXSW_REG_PFCC_ID 0x5007
#define MLXSW_REG_PFCC_LEN 0x20
MLXSW_REG_DEFINE(pfcc, MLXSW_REG_PFCC_ID, MLXSW_REG_PFCC_LEN);
/* reg_pfcc_local_port
* Local port number.
* Access: Index
*/
MLXSW_ITEM32_LP(reg, pfcc, 0x00, 16, 0x00, 12);
/* reg_pfcc_pnat
* Port number access type. Determines the way local_port is interpreted:
* 0 - Local port number.
* 1 - IB / label port number.
* Access: Index
*/
MLXSW_ITEM32(reg, pfcc, pnat, 0x00, 14, 2);
/* reg_pfcc_shl_cap
* Send to higher layers capabilities:
* 0 - No capability of sending Pause and PFC frames to higher layers.
* 1 - Device has capability of sending Pause and PFC frames to higher
* layers.
* Access: RO
*/
MLXSW_ITEM32(reg, pfcc, shl_cap, 0x00, 1, 1);
/* reg_pfcc_shl_opr
* Send to higher layers operation:
* 0 - Pause and PFC frames are handled by the port (default).
* 1 - Pause and PFC frames are handled by the port and also sent to
* higher layers. Only valid if shl_cap = 1.
* Access: RW
*/
MLXSW_ITEM32(reg, pfcc, shl_opr, 0x00, 0, 1);
/* reg_pfcc_ppan
* Pause policy auto negotiation.
* 0 - Disabled. Generate / ignore Pause frames based on pptx / pprtx.
* 1 - Enabled. When auto-negotiation is performed, set the Pause policy
* based on the auto-negotiation resolution.
* Access: RW
*
* Note: The auto-negotiation advertisement is set according to pptx and
* pprtx. When PFC is set on Tx / Rx, ppan must be set to 0.
*/
MLXSW_ITEM32(reg, pfcc, ppan, 0x04, 28, 4);
/* reg_pfcc_prio_mask_tx
* Bit per priority indicating if Tx flow control policy should be
* updated based on bit pfctx.
* Access: WO
*/
MLXSW_ITEM32(reg, pfcc, prio_mask_tx, 0x04, 16, 8);
/* reg_pfcc_prio_mask_rx
* Bit per priority indicating if Rx flow control policy should be
* updated based on bit pfcrx.
* Access: WO
*/
MLXSW_ITEM32(reg, pfcc, prio_mask_rx, 0x04, 0, 8);
/* reg_pfcc_pptx
* Admin Pause policy on Tx.
* 0 - Never generate Pause frames (default).
* 1 - Generate Pause frames according to Rx buffer threshold.
* Access: RW
*/
MLXSW_ITEM32(reg, pfcc, pptx, 0x08, 31, 1);
/* reg_pfcc_aptx
* Active (operational) Pause policy on Tx.
* 0 - Never generate Pause frames.
* 1 - Generate Pause frames according to Rx buffer threshold.
* Access: RO
*/
MLXSW_ITEM32(reg, pfcc, aptx, 0x08, 30, 1);
/* reg_pfcc_pfctx
* Priority based flow control policy on Tx[7:0]. Per-priority bit mask:
* 0 - Never generate priority Pause frames on the specified priority
* (default).
* 1 - Generate priority Pause frames according to Rx buffer threshold on
* the specified priority.
* Access: RW
*
* Note: pfctx and pptx must be mutually exclusive.
*/
MLXSW_ITEM32(reg, pfcc, pfctx, 0x08, 16, 8);
/* reg_pfcc_pprx
* Admin Pause policy on Rx.
* 0 - Ignore received Pause frames (default).
* 1 - Respect received Pause frames.
* Access: RW
*/
MLXSW_ITEM32(reg, pfcc, pprx, 0x0C, 31, 1);
/* reg_pfcc_aprx
* Active (operational) Pause policy on Rx.
* 0 - Ignore received Pause frames.
* 1 - Respect received Pause frames.
* Access: RO
*/
MLXSW_ITEM32(reg, pfcc, aprx, 0x0C, 30, 1);
/* reg_pfcc_pfcrx
* Priority based flow control policy on Rx[7:0]. Per-priority bit mask:
* 0 - Ignore incoming priority Pause frames on the specified priority
* (default).
* 1 - Respect incoming priority Pause frames on the specified priority.
* Access: RW
*/
MLXSW_ITEM32(reg, pfcc, pfcrx, 0x0C, 16, 8);
#define MLXSW_REG_PFCC_ALL_PRIO 0xFF
static inline void mlxsw_reg_pfcc_prio_pack(char *payload, u8 pfc_en)
{
mlxsw_reg_pfcc_prio_mask_tx_set(payload, MLXSW_REG_PFCC_ALL_PRIO);
mlxsw_reg_pfcc_prio_mask_rx_set(payload, MLXSW_REG_PFCC_ALL_PRIO);
mlxsw_reg_pfcc_pfctx_set(payload, pfc_en);
mlxsw_reg_pfcc_pfcrx_set(payload, pfc_en);
}
static inline void mlxsw_reg_pfcc_pack(char *payload, u16 local_port)
{
MLXSW_REG_ZERO(pfcc, payload);
mlxsw_reg_pfcc_local_port_set(payload, local_port);
}
/* PPCNT - Ports Performance Counters Register
* -------------------------------------------
* The PPCNT register retrieves per port performance counters.
*/
#define MLXSW_REG_PPCNT_ID 0x5008
#define MLXSW_REG_PPCNT_LEN 0x100
#define MLXSW_REG_PPCNT_COUNTERS_OFFSET 0x08
MLXSW_REG_DEFINE(ppcnt, MLXSW_REG_PPCNT_ID, MLXSW_REG_PPCNT_LEN);
/* reg_ppcnt_swid
* For HCA: must be always 0.
* Switch partition ID to associate port with.
* Switch partitions are numbered from 0 to 7 inclusively.
* Switch partition 254 indicates stacking ports.
* Switch partition 255 indicates all switch partitions.
* Only valid on Set() operation with local_port=255.
* Access: Index
*/
MLXSW_ITEM32(reg, ppcnt, swid, 0x00, 24, 8);
/* reg_ppcnt_local_port
* Local port number.
* Access: Index
*/
MLXSW_ITEM32_LP(reg, ppcnt, 0x00, 16, 0x00, 12);
/* reg_ppcnt_pnat
* Port number access type:
* 0 - Local port number
* 1 - IB port number
* Access: Index
*/
MLXSW_ITEM32(reg, ppcnt, pnat, 0x00, 14, 2);
enum mlxsw_reg_ppcnt_grp {
MLXSW_REG_PPCNT_IEEE_8023_CNT = 0x0,
MLXSW_REG_PPCNT_RFC_2863_CNT = 0x1,
MLXSW_REG_PPCNT_RFC_2819_CNT = 0x2,
MLXSW_REG_PPCNT_RFC_3635_CNT = 0x3,
MLXSW_REG_PPCNT_EXT_CNT = 0x5,
MLXSW_REG_PPCNT_DISCARD_CNT = 0x6,
MLXSW_REG_PPCNT_PRIO_CNT = 0x10,
MLXSW_REG_PPCNT_TC_CNT = 0x11,
MLXSW_REG_PPCNT_TC_CONG_CNT = 0x13,
};
/* reg_ppcnt_grp
* Performance counter group.
* Group 63 indicates all groups. Only valid on Set() operation with
* clr bit set.
* 0x0: IEEE 802.3 Counters
* 0x1: RFC 2863 Counters
* 0x2: RFC 2819 Counters
* 0x3: RFC 3635 Counters
* 0x5: Ethernet Extended Counters
* 0x6: Ethernet Discard Counters
* 0x8: Link Level Retransmission Counters
* 0x10: Per Priority Counters
* 0x11: Per Traffic Class Counters
* 0x12: Physical Layer Counters
* 0x13: Per Traffic Class Congestion Counters
* Access: Index
*/
MLXSW_ITEM32(reg, ppcnt, grp, 0x00, 0, 6);
/* reg_ppcnt_clr
* Clear counters. Setting the clr bit will reset the counter value
* for all counters in the counter group. This bit can be set
* for both Set() and Get() operation.
* Access: OP
*/
MLXSW_ITEM32(reg, ppcnt, clr, 0x04, 31, 1);
/* reg_ppcnt_lp_gl
* Local port global variable.
* 0: local_port 255 = all ports of the device.
* 1: local_port indicates local port number for all ports.
* Access: OP
*/
MLXSW_ITEM32(reg, ppcnt, lp_gl, 0x04, 30, 1);
/* reg_ppcnt_prio_tc
* Priority for counter set that support per priority, valid values: 0-7.
* Traffic class for counter set that support per traffic class,
* valid values: 0- cap_max_tclass-1 .
* For HCA: cap_max_tclass is always 8.
* Otherwise must be 0.
* Access: Index
*/
MLXSW_ITEM32(reg, ppcnt, prio_tc, 0x04, 0, 5);
/* Ethernet IEEE 802.3 Counter Group */
/* reg_ppcnt_a_frames_transmitted_ok
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, a_frames_transmitted_ok,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64);
/* reg_ppcnt_a_frames_received_ok
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, a_frames_received_ok,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64);
/* reg_ppcnt_a_frame_check_sequence_errors
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, a_frame_check_sequence_errors,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x10, 0, 64);
/* reg_ppcnt_a_alignment_errors
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, a_alignment_errors,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x18, 0, 64);
/* reg_ppcnt_a_octets_transmitted_ok
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, a_octets_transmitted_ok,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x20, 0, 64);
/* reg_ppcnt_a_octets_received_ok
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, a_octets_received_ok,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x28, 0, 64);
/* reg_ppcnt_a_multicast_frames_xmitted_ok
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, a_multicast_frames_xmitted_ok,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x30, 0, 64);
/* reg_ppcnt_a_broadcast_frames_xmitted_ok
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, a_broadcast_frames_xmitted_ok,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x38, 0, 64);
/* reg_ppcnt_a_multicast_frames_received_ok
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, a_multicast_frames_received_ok,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x40, 0, 64);
/* reg_ppcnt_a_broadcast_frames_received_ok
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, a_broadcast_frames_received_ok,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x48, 0, 64);
/* reg_ppcnt_a_in_range_length_errors
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, a_in_range_length_errors,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x50, 0, 64);
/* reg_ppcnt_a_out_of_range_length_field
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, a_out_of_range_length_field,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x58, 0, 64);
/* reg_ppcnt_a_frame_too_long_errors
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, a_frame_too_long_errors,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64);
/* reg_ppcnt_a_symbol_error_during_carrier
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, a_symbol_error_during_carrier,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x68, 0, 64);
/* reg_ppcnt_a_mac_control_frames_transmitted
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, a_mac_control_frames_transmitted,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64);
/* reg_ppcnt_a_mac_control_frames_received
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, a_mac_control_frames_received,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x78, 0, 64);
/* reg_ppcnt_a_unsupported_opcodes_received
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, a_unsupported_opcodes_received,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x80, 0, 64);
/* reg_ppcnt_a_pause_mac_ctrl_frames_received
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, a_pause_mac_ctrl_frames_received,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x88, 0, 64);
/* reg_ppcnt_a_pause_mac_ctrl_frames_transmitted
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, a_pause_mac_ctrl_frames_transmitted,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x90, 0, 64);
/* Ethernet RFC 2863 Counter Group */
/* reg_ppcnt_if_in_discards
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, if_in_discards,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x10, 0, 64);
/* reg_ppcnt_if_out_discards
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, if_out_discards,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x38, 0, 64);
/* reg_ppcnt_if_out_errors
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, if_out_errors,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x40, 0, 64);
/* Ethernet RFC 2819 Counter Group */
/* reg_ppcnt_ether_stats_undersize_pkts
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ether_stats_undersize_pkts,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x30, 0, 64);
/* reg_ppcnt_ether_stats_oversize_pkts
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ether_stats_oversize_pkts,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x38, 0, 64);
/* reg_ppcnt_ether_stats_fragments
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ether_stats_fragments,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x40, 0, 64);
/* reg_ppcnt_ether_stats_pkts64octets
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts64octets,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x58, 0, 64);
/* reg_ppcnt_ether_stats_pkts65to127octets
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts65to127octets,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64);
/* reg_ppcnt_ether_stats_pkts128to255octets
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts128to255octets,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x68, 0, 64);
/* reg_ppcnt_ether_stats_pkts256to511octets
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts256to511octets,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64);
/* reg_ppcnt_ether_stats_pkts512to1023octets
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts512to1023octets,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x78, 0, 64);
/* reg_ppcnt_ether_stats_pkts1024to1518octets
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts1024to1518octets,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x80, 0, 64);
/* reg_ppcnt_ether_stats_pkts1519to2047octets
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts1519to2047octets,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x88, 0, 64);
/* reg_ppcnt_ether_stats_pkts2048to4095octets
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts2048to4095octets,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x90, 0, 64);
/* reg_ppcnt_ether_stats_pkts4096to8191octets
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts4096to8191octets,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x98, 0, 64);
/* reg_ppcnt_ether_stats_pkts8192to10239octets
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts8192to10239octets,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0xA0, 0, 64);
/* Ethernet RFC 3635 Counter Group */
/* reg_ppcnt_dot3stats_fcs_errors
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, dot3stats_fcs_errors,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64);
/* reg_ppcnt_dot3stats_symbol_errors
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, dot3stats_symbol_errors,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64);
/* reg_ppcnt_dot3control_in_unknown_opcodes
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, dot3control_in_unknown_opcodes,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x68, 0, 64);
/* reg_ppcnt_dot3in_pause_frames
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, dot3in_pause_frames,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64);
/* Ethernet Extended Counter Group Counters */
/* reg_ppcnt_ecn_marked
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ecn_marked,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64);
/* Ethernet Discard Counter Group Counters */
/* reg_ppcnt_ingress_general
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ingress_general,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64);
/* reg_ppcnt_ingress_policy_engine
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ingress_policy_engine,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64);
/* reg_ppcnt_ingress_vlan_membership
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ingress_vlan_membership,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x10, 0, 64);
/* reg_ppcnt_ingress_tag_frame_type
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ingress_tag_frame_type,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x18, 0, 64);
/* reg_ppcnt_egress_vlan_membership
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, egress_vlan_membership,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x20, 0, 64);
/* reg_ppcnt_loopback_filter
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, loopback_filter,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x28, 0, 64);
/* reg_ppcnt_egress_general
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, egress_general,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x30, 0, 64);
/* reg_ppcnt_egress_hoq
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, egress_hoq,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x40, 0, 64);
/* reg_ppcnt_egress_policy_engine
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, egress_policy_engine,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x50, 0, 64);
/* reg_ppcnt_ingress_tx_link_down
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ingress_tx_link_down,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x58, 0, 64);
/* reg_ppcnt_egress_stp_filter
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, egress_stp_filter,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64);
/* reg_ppcnt_egress_sll
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, egress_sll,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64);
/* Ethernet Per Priority Group Counters */
/* reg_ppcnt_rx_octets
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, rx_octets,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64);
/* reg_ppcnt_rx_frames
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, rx_frames,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x20, 0, 64);
/* reg_ppcnt_tx_octets
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, tx_octets,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x28, 0, 64);
/* reg_ppcnt_tx_frames
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, tx_frames,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x48, 0, 64);
/* reg_ppcnt_rx_pause
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, rx_pause,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x50, 0, 64);
/* reg_ppcnt_rx_pause_duration
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, rx_pause_duration,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x58, 0, 64);
/* reg_ppcnt_tx_pause
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, tx_pause,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64);
/* reg_ppcnt_tx_pause_duration
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, tx_pause_duration,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x68, 0, 64);
/* reg_ppcnt_rx_pause_transition
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, tx_pause_transition,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64);
/* Ethernet Per Traffic Class Counters */
/* reg_ppcnt_tc_transmit_queue
* Contains the transmit queue depth in cells of traffic class
* selected by prio_tc and the port selected by local_port.
* The field cannot be cleared.
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, tc_transmit_queue,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64);
/* reg_ppcnt_tc_no_buffer_discard_uc
* The number of unicast packets dropped due to lack of shared
* buffer resources.
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, tc_no_buffer_discard_uc,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64);
/* Ethernet Per Traffic Class Congestion Group Counters */
/* reg_ppcnt_wred_discard
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, wred_discard,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64);
/* reg_ppcnt_ecn_marked_tc
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ecn_marked_tc,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64);
static inline void mlxsw_reg_ppcnt_pack(char *payload, u16 local_port,
enum mlxsw_reg_ppcnt_grp grp,
u8 prio_tc)
{
MLXSW_REG_ZERO(ppcnt, payload);
mlxsw_reg_ppcnt_swid_set(payload, 0);
mlxsw_reg_ppcnt_local_port_set(payload, local_port);
mlxsw_reg_ppcnt_pnat_set(payload, 0);
mlxsw_reg_ppcnt_grp_set(payload, grp);
mlxsw_reg_ppcnt_clr_set(payload, 0);
mlxsw_reg_ppcnt_lp_gl_set(payload, 1);
mlxsw_reg_ppcnt_prio_tc_set(payload, prio_tc);
}
/* PPTB - Port Prio To Buffer Register
* -----------------------------------
* Configures the switch priority to buffer table.
*/
#define MLXSW_REG_PPTB_ID 0x500B
#define MLXSW_REG_PPTB_LEN 0x10
MLXSW_REG_DEFINE(pptb, MLXSW_REG_PPTB_ID, MLXSW_REG_PPTB_LEN);
enum {
MLXSW_REG_PPTB_MM_UM,
MLXSW_REG_PPTB_MM_UNICAST,
MLXSW_REG_PPTB_MM_MULTICAST,
};
/* reg_pptb_mm
* Mapping mode.
* 0 - Map both unicast and multicast packets to the same buffer.
* 1 - Map only unicast packets.
* 2 - Map only multicast packets.
* Access: Index
*
* Note: SwitchX-2 only supports the first option.
*/
MLXSW_ITEM32(reg, pptb, mm, 0x00, 28, 2);
/* reg_pptb_local_port
* Local port number.
* Access: Index
*/
MLXSW_ITEM32_LP(reg, pptb, 0x00, 16, 0x00, 12);
/* reg_pptb_um
* Enables the update of the untagged_buf field.
* Access: RW
*/
MLXSW_ITEM32(reg, pptb, um, 0x00, 8, 1);
/* reg_pptb_pm
* Enables the update of the prio_to_buff field.
* Bit <i> is a flag for updating the mapping for switch priority <i>.
* Access: RW
*/
MLXSW_ITEM32(reg, pptb, pm, 0x00, 0, 8);
/* reg_pptb_prio_to_buff
* Mapping of switch priority <i> to one of the allocated receive port
* buffers.
* Access: RW
*/
MLXSW_ITEM_BIT_ARRAY(reg, pptb, prio_to_buff, 0x04, 0x04, 4);
/* reg_pptb_pm_msb
* Enables the update of the prio_to_buff field.
* Bit <i> is a flag for updating the mapping for switch priority <i+8>.
* Access: RW
*/
MLXSW_ITEM32(reg, pptb, pm_msb, 0x08, 24, 8);
/* reg_pptb_untagged_buff
* Mapping of untagged frames to one of the allocated receive port buffers.
* Access: RW
*
* Note: In SwitchX-2 this field must be mapped to buffer 8. Reserved for
* Spectrum, as it maps untagged packets based on the default switch priority.
*/
MLXSW_ITEM32(reg, pptb, untagged_buff, 0x08, 0, 4);
/* reg_pptb_prio_to_buff_msb
* Mapping of switch priority <i+8> to one of the allocated receive port
* buffers.
* Access: RW
*/
MLXSW_ITEM_BIT_ARRAY(reg, pptb, prio_to_buff_msb, 0x0C, 0x04, 4);
#define MLXSW_REG_PPTB_ALL_PRIO 0xFF
static inline void mlxsw_reg_pptb_pack(char *payload, u16 local_port)
{
MLXSW_REG_ZERO(pptb, payload);
mlxsw_reg_pptb_mm_set(payload, MLXSW_REG_PPTB_MM_UM);
mlxsw_reg_pptb_local_port_set(payload, local_port);
mlxsw_reg_pptb_pm_set(payload, MLXSW_REG_PPTB_ALL_PRIO);
mlxsw_reg_pptb_pm_msb_set(payload, MLXSW_REG_PPTB_ALL_PRIO);
}
static inline void mlxsw_reg_pptb_prio_to_buff_pack(char *payload, u8 prio,
u8 buff)
{
mlxsw_reg_pptb_prio_to_buff_set(payload, prio, buff);
mlxsw_reg_pptb_prio_to_buff_msb_set(payload, prio, buff);
}
/* PBMC - Port Buffer Management Control Register
* ----------------------------------------------
* The PBMC register configures and retrieves the port packet buffer
* allocation for different Prios, and the Pause threshold management.
*/
#define MLXSW_REG_PBMC_ID 0x500C
#define MLXSW_REG_PBMC_LEN 0x6C
MLXSW_REG_DEFINE(pbmc, MLXSW_REG_PBMC_ID, MLXSW_REG_PBMC_LEN);
/* reg_pbmc_local_port
* Local port number.
* Access: Index
*/
MLXSW_ITEM32_LP(reg, pbmc, 0x00, 16, 0x00, 12);
/* reg_pbmc_xoff_timer_value
* When device generates a pause frame, it uses this value as the pause
* timer (time for the peer port to pause in quota-512 bit time).
* Access: RW
*/
MLXSW_ITEM32(reg, pbmc, xoff_timer_value, 0x04, 16, 16);
/* reg_pbmc_xoff_refresh
* The time before a new pause frame should be sent to refresh the pause RW
* state. Using the same units as xoff_timer_value above (in quota-512 bit
* time).
* Access: RW
*/
MLXSW_ITEM32(reg, pbmc, xoff_refresh, 0x04, 0, 16);
#define MLXSW_REG_PBMC_PORT_SHARED_BUF_IDX 11
/* reg_pbmc_buf_lossy
* The field indicates if the buffer is lossy.
* 0 - Lossless
* 1 - Lossy
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, pbmc, buf_lossy, 0x0C, 25, 1, 0x08, 0x00, false);
/* reg_pbmc_buf_epsb
* Eligible for Port Shared buffer.
* If epsb is set, packets assigned to buffer are allowed to insert the port
* shared buffer.
* When buf_lossy is MLXSW_REG_PBMC_LOSSY_LOSSY this field is reserved.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, pbmc, buf_epsb, 0x0C, 24, 1, 0x08, 0x00, false);
/* reg_pbmc_buf_size
* The part of the packet buffer array is allocated for the specific buffer.
* Units are represented in cells.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, pbmc, buf_size, 0x0C, 0, 16, 0x08, 0x00, false);
/* reg_pbmc_buf_xoff_threshold
* Once the amount of data in the buffer goes above this value, device
* starts sending PFC frames for all priorities associated with the
* buffer. Units are represented in cells. Reserved in case of lossy
* buffer.
* Access: RW
*
* Note: In Spectrum, reserved for buffer[9].
*/
MLXSW_ITEM32_INDEXED(reg, pbmc, buf_xoff_threshold, 0x0C, 16, 16,
0x08, 0x04, false);
/* reg_pbmc_buf_xon_threshold
* When the amount of data in the buffer goes below this value, device
* stops sending PFC frames for the priorities associated with the
* buffer. Units are represented in cells. Reserved in case of lossy
* buffer.
* Access: RW
*
* Note: In Spectrum, reserved for buffer[9].
*/
MLXSW_ITEM32_INDEXED(reg, pbmc, buf_xon_threshold, 0x0C, 0, 16,
0x08, 0x04, false);
static inline void mlxsw_reg_pbmc_pack(char *payload, u16 local_port,
u16 xoff_timer_value, u16 xoff_refresh)
{
MLXSW_REG_ZERO(pbmc, payload);
mlxsw_reg_pbmc_local_port_set(payload, local_port);
mlxsw_reg_pbmc_xoff_timer_value_set(payload, xoff_timer_value);
mlxsw_reg_pbmc_xoff_refresh_set(payload, xoff_refresh);
}
static inline void mlxsw_reg_pbmc_lossy_buffer_pack(char *payload,
int buf_index,
u16 size)
{
mlxsw_reg_pbmc_buf_lossy_set(payload, buf_index, 1);
mlxsw_reg_pbmc_buf_epsb_set(payload, buf_index, 0);
mlxsw_reg_pbmc_buf_size_set(payload, buf_index, size);
}
static inline void mlxsw_reg_pbmc_lossless_buffer_pack(char *payload,
int buf_index, u16 size,
u16 threshold)
{
mlxsw_reg_pbmc_buf_lossy_set(payload, buf_index, 0);
mlxsw_reg_pbmc_buf_epsb_set(payload, buf_index, 0);
mlxsw_reg_pbmc_buf_size_set(payload, buf_index, size);
mlxsw_reg_pbmc_buf_xoff_threshold_set(payload, buf_index, threshold);
mlxsw_reg_pbmc_buf_xon_threshold_set(payload, buf_index, threshold);
}
/* PSPA - Port Switch Partition Allocation
* ---------------------------------------
* Controls the association of a port with a switch partition and enables
* configuring ports as stacking ports.
*/
#define MLXSW_REG_PSPA_ID 0x500D
#define MLXSW_REG_PSPA_LEN 0x8
MLXSW_REG_DEFINE(pspa, MLXSW_REG_PSPA_ID, MLXSW_REG_PSPA_LEN);
/* reg_pspa_swid
* Switch partition ID.
* Access: RW
*/
MLXSW_ITEM32(reg, pspa, swid, 0x00, 24, 8);
/* reg_pspa_local_port
* Local port number.
* Access: Index
*/
MLXSW_ITEM32_LP(reg, pspa, 0x00, 16, 0x00, 0);
/* reg_pspa_sub_port
* Virtual port within the local port. Set to 0 when virtual ports are
* disabled on the local port.
* Access: Index
*/
MLXSW_ITEM32(reg, pspa, sub_port, 0x00, 8, 8);
static inline void mlxsw_reg_pspa_pack(char *payload, u8 swid, u16 local_port)
{
MLXSW_REG_ZERO(pspa, payload);
mlxsw_reg_pspa_swid_set(payload, swid);
mlxsw_reg_pspa_local_port_set(payload, local_port);
mlxsw_reg_pspa_sub_port_set(payload, 0);
}
/* PMAOS - Ports Module Administrative and Operational Status
* ----------------------------------------------------------
* This register configures and retrieves the per module status.
*/
#define MLXSW_REG_PMAOS_ID 0x5012
#define MLXSW_REG_PMAOS_LEN 0x10
MLXSW_REG_DEFINE(pmaos, MLXSW_REG_PMAOS_ID, MLXSW_REG_PMAOS_LEN);
/* reg_pmaos_rst
* Module reset toggle.
* Note: Setting reset while module is plugged-in will result in transition to
* "initializing" operational state.
* Access: OP
*/
MLXSW_ITEM32(reg, pmaos, rst, 0x00, 31, 1);
/* reg_pmaos_slot_index
* Slot index.
* Access: Index
*/
MLXSW_ITEM32(reg, pmaos, slot_index, 0x00, 24, 4);
/* reg_pmaos_module
* Module number.
* Access: Index
*/
MLXSW_ITEM32(reg, pmaos, module, 0x00, 16, 8);
enum mlxsw_reg_pmaos_admin_status {
MLXSW_REG_PMAOS_ADMIN_STATUS_ENABLED = 1,
MLXSW_REG_PMAOS_ADMIN_STATUS_DISABLED = 2,
/* If the module is active and then unplugged, or experienced an error
* event, the operational status should go to "disabled" and can only
* be enabled upon explicit enable command.
*/
MLXSW_REG_PMAOS_ADMIN_STATUS_ENABLED_ONCE = 3,
};
/* reg_pmaos_admin_status
* Module administrative state (the desired state of the module).
* Note: To disable a module, all ports associated with the port must be
* administatively down first.
* Access: RW
*/
MLXSW_ITEM32(reg, pmaos, admin_status, 0x00, 8, 4);
/* reg_pmaos_ase
* Admin state update enable.
* If this bit is set, admin state will be updated based on admin_state field.
* Only relevant on Set() operations.
* Access: WO
*/
MLXSW_ITEM32(reg, pmaos, ase, 0x04, 31, 1);
/* reg_pmaos_ee
* Event update enable.
* If this bit is set, event generation will be updated based on the e field.
* Only relevant on Set operations.
* Access: WO
*/
MLXSW_ITEM32(reg, pmaos, ee, 0x04, 30, 1);
enum mlxsw_reg_pmaos_e {
MLXSW_REG_PMAOS_E_DO_NOT_GENERATE_EVENT,
MLXSW_REG_PMAOS_E_GENERATE_EVENT,
MLXSW_REG_PMAOS_E_GENERATE_SINGLE_EVENT,
};
/* reg_pmaos_e
* Event Generation on operational state change.
* Access: RW
*/
MLXSW_ITEM32(reg, pmaos, e, 0x04, 0, 2);
static inline void mlxsw_reg_pmaos_pack(char *payload, u8 slot_index, u8 module)
{
MLXSW_REG_ZERO(pmaos, payload);
mlxsw_reg_pmaos_slot_index_set(payload, slot_index);
mlxsw_reg_pmaos_module_set(payload, module);
}
/* PPLR - Port Physical Loopback Register
* --------------------------------------
* This register allows configuration of the port's loopback mode.
*/
#define MLXSW_REG_PPLR_ID 0x5018
#define MLXSW_REG_PPLR_LEN 0x8
MLXSW_REG_DEFINE(pplr, MLXSW_REG_PPLR_ID, MLXSW_REG_PPLR_LEN);
/* reg_pplr_local_port
* Local port number.
* Access: Index
*/
MLXSW_ITEM32_LP(reg, pplr, 0x00, 16, 0x00, 12);
/* Phy local loopback. When set the port's egress traffic is looped back
* to the receiver and the port transmitter is disabled.
*/
#define MLXSW_REG_PPLR_LB_TYPE_BIT_PHY_LOCAL BIT(1)
/* reg_pplr_lb_en
* Loopback enable.
* Access: RW
*/
MLXSW_ITEM32(reg, pplr, lb_en, 0x04, 0, 8);
static inline void mlxsw_reg_pplr_pack(char *payload, u16 local_port,
bool phy_local)
{
MLXSW_REG_ZERO(pplr, payload);
mlxsw_reg_pplr_local_port_set(payload, local_port);
mlxsw_reg_pplr_lb_en_set(payload,
phy_local ?
MLXSW_REG_PPLR_LB_TYPE_BIT_PHY_LOCAL : 0);
}
/* PMTDB - Port Module To local DataBase Register
* ----------------------------------------------
* The PMTDB register allows to query the possible module<->local port
* mapping than can be used in PMLP. It does not represent the actual/current
* mapping of the local to module. Actual mapping is only defined by PMLP.
*/
#define MLXSW_REG_PMTDB_ID 0x501A
#define MLXSW_REG_PMTDB_LEN 0x40
MLXSW_REG_DEFINE(pmtdb, MLXSW_REG_PMTDB_ID, MLXSW_REG_PMTDB_LEN);
/* reg_pmtdb_slot_index
* Slot index (0: Main board).
* Access: Index
*/
MLXSW_ITEM32(reg, pmtdb, slot_index, 0x00, 24, 4);
/* reg_pmtdb_module
* Module number.
* Access: Index
*/
MLXSW_ITEM32(reg, pmtdb, module, 0x00, 16, 8);
/* reg_pmtdb_ports_width
* Port's width
* Access: Index
*/
MLXSW_ITEM32(reg, pmtdb, ports_width, 0x00, 12, 4);
/* reg_pmtdb_num_ports
* Number of ports in a single module (split/breakout)
* Access: Index
*/
MLXSW_ITEM32(reg, pmtdb, num_ports, 0x00, 8, 4);
enum mlxsw_reg_pmtdb_status {
MLXSW_REG_PMTDB_STATUS_SUCCESS,
};
/* reg_pmtdb_status
* Status
* Access: RO
*/
MLXSW_ITEM32(reg, pmtdb, status, 0x00, 0, 4);
/* reg_pmtdb_port_num
* The local_port value which can be assigned to the module.
* In case of more than one port, port<x> represent the /<x> port of
* the module.
* Access: RO
*/
MLXSW_ITEM16_INDEXED(reg, pmtdb, port_num, 0x04, 0, 10, 0x02, 0x00, false);
static inline void mlxsw_reg_pmtdb_pack(char *payload, u8 slot_index, u8 module,
u8 ports_width, u8 num_ports)
{
MLXSW_REG_ZERO(pmtdb, payload);
mlxsw_reg_pmtdb_slot_index_set(payload, slot_index);
mlxsw_reg_pmtdb_module_set(payload, module);
mlxsw_reg_pmtdb_ports_width_set(payload, ports_width);
mlxsw_reg_pmtdb_num_ports_set(payload, num_ports);
}
/* PMECR - Ports Mapping Event Configuration Register
* --------------------------------------------------
* The PMECR register is used to enable/disable event triggering
* in case of local port mapping change.
*/
#define MLXSW_REG_PMECR_ID 0x501B
#define MLXSW_REG_PMECR_LEN 0x20
MLXSW_REG_DEFINE(pmecr, MLXSW_REG_PMECR_ID, MLXSW_REG_PMECR_LEN);
/* reg_pmecr_local_port
* Local port number.
* Access: Index
*/
MLXSW_ITEM32_LP(reg, pmecr, 0x00, 16, 0x00, 12);
/* reg_pmecr_ee
* Event update enable. If this bit is set, event generation will be updated
* based on the e field. Only relevant on Set operations.
* Access: WO
*/
MLXSW_ITEM32(reg, pmecr, ee, 0x04, 30, 1);
/* reg_pmecr_eswi
* Software ignore enable bit. If this bit is set, the value of swi is used.
* If this bit is clear, the value of swi is ignored.
* Only relevant on Set operations.
* Access: WO
*/
MLXSW_ITEM32(reg, pmecr, eswi, 0x04, 24, 1);
/* reg_pmecr_swi
* Software ignore. If this bit is set, the device shouldn't generate events
* in case of PMLP SET operation but only upon self local port mapping change
* (if applicable according to e configuration). This is supplementary
* configuration on top of e value.
* Access: RW
*/
MLXSW_ITEM32(reg, pmecr, swi, 0x04, 8, 1);
enum mlxsw_reg_pmecr_e {
MLXSW_REG_PMECR_E_DO_NOT_GENERATE_EVENT,
MLXSW_REG_PMECR_E_GENERATE_EVENT,
MLXSW_REG_PMECR_E_GENERATE_SINGLE_EVENT,
};
/* reg_pmecr_e
* Event generation on local port mapping change.
* Access: RW
*/
MLXSW_ITEM32(reg, pmecr, e, 0x04, 0, 2);
static inline void mlxsw_reg_pmecr_pack(char *payload, u16 local_port,
enum mlxsw_reg_pmecr_e e)
{
MLXSW_REG_ZERO(pmecr, payload);
mlxsw_reg_pmecr_local_port_set(payload, local_port);
mlxsw_reg_pmecr_e_set(payload, e);
mlxsw_reg_pmecr_ee_set(payload, true);
mlxsw_reg_pmecr_swi_set(payload, true);
mlxsw_reg_pmecr_eswi_set(payload, true);
}
/* PMPE - Port Module Plug/Unplug Event Register
* ---------------------------------------------
* This register reports any operational status change of a module.
* A change in the modules state will generate an event only if the change
* happens after arming the event mechanism. Any changes to the module state
* while the event mechanism is not armed will not be reported. Software can
* query the PMPE register for module status.
*/
#define MLXSW_REG_PMPE_ID 0x5024
#define MLXSW_REG_PMPE_LEN 0x10
MLXSW_REG_DEFINE(pmpe, MLXSW_REG_PMPE_ID, MLXSW_REG_PMPE_LEN);
/* reg_pmpe_slot_index
* Slot index.
* Access: Index
*/
MLXSW_ITEM32(reg, pmpe, slot_index, 0x00, 24, 4);
/* reg_pmpe_module
* Module number.
* Access: Index
*/
MLXSW_ITEM32(reg, pmpe, module, 0x00, 16, 8);
enum mlxsw_reg_pmpe_module_status {
MLXSW_REG_PMPE_MODULE_STATUS_PLUGGED_ENABLED = 1,
MLXSW_REG_PMPE_MODULE_STATUS_UNPLUGGED,
MLXSW_REG_PMPE_MODULE_STATUS_PLUGGED_ERROR,
MLXSW_REG_PMPE_MODULE_STATUS_PLUGGED_DISABLED,
};
/* reg_pmpe_module_status
* Module status.
* Access: RO
*/
MLXSW_ITEM32(reg, pmpe, module_status, 0x00, 0, 4);
/* reg_pmpe_error_type
* Module error details.
* Access: RO
*/
MLXSW_ITEM32(reg, pmpe, error_type, 0x04, 8, 4);
/* PDDR - Port Diagnostics Database Register
* -----------------------------------------
* The PDDR enables to read the Phy debug database
*/
#define MLXSW_REG_PDDR_ID 0x5031
#define MLXSW_REG_PDDR_LEN 0x100
MLXSW_REG_DEFINE(pddr, MLXSW_REG_PDDR_ID, MLXSW_REG_PDDR_LEN);
/* reg_pddr_local_port
* Local port number.
* Access: Index
*/
MLXSW_ITEM32_LP(reg, pddr, 0x00, 16, 0x00, 12);
enum mlxsw_reg_pddr_page_select {
MLXSW_REG_PDDR_PAGE_SELECT_TROUBLESHOOTING_INFO = 1,
};
/* reg_pddr_page_select
* Page select index.
* Access: Index
*/
MLXSW_ITEM32(reg, pddr, page_select, 0x04, 0, 8);
enum mlxsw_reg_pddr_trblsh_group_opcode {
/* Monitor opcodes */
MLXSW_REG_PDDR_TRBLSH_GROUP_OPCODE_MONITOR,
};
/* reg_pddr_group_opcode
* Group selector.
* Access: Index
*/
MLXSW_ITEM32(reg, pddr, trblsh_group_opcode, 0x08, 0, 16);
/* reg_pddr_status_opcode
* Group selector.
* Access: RO
*/
MLXSW_ITEM32(reg, pddr, trblsh_status_opcode, 0x0C, 0, 16);
static inline void mlxsw_reg_pddr_pack(char *payload, u16 local_port,
u8 page_select)
{
MLXSW_REG_ZERO(pddr, payload);
mlxsw_reg_pddr_local_port_set(payload, local_port);
mlxsw_reg_pddr_page_select_set(payload, page_select);
}
/* PMMP - Port Module Memory Map Properties Register
* -------------------------------------------------
* The PMMP register allows to override the module memory map advertisement.
* The register can only be set when the module is disabled by PMAOS register.
*/
#define MLXSW_REG_PMMP_ID 0x5044
#define MLXSW_REG_PMMP_LEN 0x2C
MLXSW_REG_DEFINE(pmmp, MLXSW_REG_PMMP_ID, MLXSW_REG_PMMP_LEN);
/* reg_pmmp_module
* Module number.
* Access: Index
*/
MLXSW_ITEM32(reg, pmmp, module, 0x00, 16, 8);
/* reg_pmmp_slot_index
* Slot index.
* Access: Index
*/
MLXSW_ITEM32(reg, pmmp, slot_index, 0x00, 24, 4);
/* reg_pmmp_sticky
* When set, will keep eeprom_override values after plug-out event.
* Access: OP
*/
MLXSW_ITEM32(reg, pmmp, sticky, 0x00, 0, 1);
/* reg_pmmp_eeprom_override_mask
* Write mask bit (negative polarity).
* 0 - Allow write
* 1 - Ignore write
* On write, indicates which of the bits from eeprom_override field are
* updated.
* Access: WO
*/
MLXSW_ITEM32(reg, pmmp, eeprom_override_mask, 0x04, 16, 16);
enum {
/* Set module to low power mode */
MLXSW_REG_PMMP_EEPROM_OVERRIDE_LOW_POWER_MASK = BIT(8),
};
/* reg_pmmp_eeprom_override
* Override / ignore EEPROM advertisement properties bitmask
* Access: RW
*/
MLXSW_ITEM32(reg, pmmp, eeprom_override, 0x04, 0, 16);
static inline void mlxsw_reg_pmmp_pack(char *payload, u8 slot_index, u8 module)
{
MLXSW_REG_ZERO(pmmp, payload);
mlxsw_reg_pmmp_slot_index_set(payload, slot_index);
mlxsw_reg_pmmp_module_set(payload, module);
}
/* PLLP - Port Local port to Label Port mapping Register
* -----------------------------------------------------
* The PLLP register returns the mapping from Local Port into Label Port.
*/
#define MLXSW_REG_PLLP_ID 0x504A
#define MLXSW_REG_PLLP_LEN 0x10
MLXSW_REG_DEFINE(pllp, MLXSW_REG_PLLP_ID, MLXSW_REG_PLLP_LEN);
/* reg_pllp_local_port
* Local port number.
* Access: Index
*/
MLXSW_ITEM32_LP(reg, pllp, 0x00, 16, 0x00, 12);
/* reg_pllp_label_port
* Front panel label of the port.
* Access: RO
*/
MLXSW_ITEM32(reg, pllp, label_port, 0x00, 0, 8);
/* reg_pllp_split_num
* Label split mapping for local_port.
* Access: RO
*/
MLXSW_ITEM32(reg, pllp, split_num, 0x04, 0, 4);
/* reg_pllp_slot_index
* Slot index (0: Main board).
* Access: RO
*/
MLXSW_ITEM32(reg, pllp, slot_index, 0x08, 0, 4);
static inline void mlxsw_reg_pllp_pack(char *payload, u16 local_port)
{
MLXSW_REG_ZERO(pllp, payload);
mlxsw_reg_pllp_local_port_set(payload, local_port);
}
static inline void mlxsw_reg_pllp_unpack(char *payload, u8 *label_port,
u8 *split_num, u8 *slot_index)
{
*label_port = mlxsw_reg_pllp_label_port_get(payload);
*split_num = mlxsw_reg_pllp_split_num_get(payload);
*slot_index = mlxsw_reg_pllp_slot_index_get(payload);
}
/* PMTM - Port Module Type Mapping Register
* ----------------------------------------
* The PMTM register allows query or configuration of module types.
* The register can only be set when the module is disabled by PMAOS register
*/
#define MLXSW_REG_PMTM_ID 0x5067
#define MLXSW_REG_PMTM_LEN 0x10
MLXSW_REG_DEFINE(pmtm, MLXSW_REG_PMTM_ID, MLXSW_REG_PMTM_LEN);
/* reg_pmtm_slot_index
* Slot index.
* Access: Index
*/
MLXSW_ITEM32(reg, pmtm, slot_index, 0x00, 24, 4);
/* reg_pmtm_module
* Module number.
* Access: Index
*/
MLXSW_ITEM32(reg, pmtm, module, 0x00, 16, 8);
enum mlxsw_reg_pmtm_module_type {
MLXSW_REG_PMTM_MODULE_TYPE_BACKPLANE_4_LANES = 0,
MLXSW_REG_PMTM_MODULE_TYPE_QSFP = 1,
MLXSW_REG_PMTM_MODULE_TYPE_SFP = 2,
MLXSW_REG_PMTM_MODULE_TYPE_BACKPLANE_SINGLE_LANE = 4,
MLXSW_REG_PMTM_MODULE_TYPE_BACKPLANE_2_LANES = 8,
MLXSW_REG_PMTM_MODULE_TYPE_CHIP2CHIP4X = 10,
MLXSW_REG_PMTM_MODULE_TYPE_CHIP2CHIP2X = 11,
MLXSW_REG_PMTM_MODULE_TYPE_CHIP2CHIP1X = 12,
MLXSW_REG_PMTM_MODULE_TYPE_QSFP_DD = 14,
MLXSW_REG_PMTM_MODULE_TYPE_OSFP = 15,
MLXSW_REG_PMTM_MODULE_TYPE_SFP_DD = 16,
MLXSW_REG_PMTM_MODULE_TYPE_DSFP = 17,
MLXSW_REG_PMTM_MODULE_TYPE_CHIP2CHIP8X = 18,
MLXSW_REG_PMTM_MODULE_TYPE_TWISTED_PAIR = 19,
};
/* reg_pmtm_module_type
* Module type.
* Access: RW
*/
MLXSW_ITEM32(reg, pmtm, module_type, 0x04, 0, 5);
static inline void mlxsw_reg_pmtm_pack(char *payload, u8 slot_index, u8 module)
{
MLXSW_REG_ZERO(pmtm, payload);
mlxsw_reg_pmtm_slot_index_set(payload, slot_index);
mlxsw_reg_pmtm_module_set(payload, module);
}
/* HTGT - Host Trap Group Table
* ----------------------------
* Configures the properties for forwarding to CPU.
*/
#define MLXSW_REG_HTGT_ID 0x7002
#define MLXSW_REG_HTGT_LEN 0x20
MLXSW_REG_DEFINE(htgt, MLXSW_REG_HTGT_ID, MLXSW_REG_HTGT_LEN);
/* reg_htgt_swid
* Switch partition ID.
* Access: Index
*/
MLXSW_ITEM32(reg, htgt, swid, 0x00, 24, 8);
#define MLXSW_REG_HTGT_PATH_TYPE_LOCAL 0x0 /* For locally attached CPU */
/* reg_htgt_type
* CPU path type.
* Access: RW
*/
MLXSW_ITEM32(reg, htgt, type, 0x00, 8, 4);
enum mlxsw_reg_htgt_trap_group {
MLXSW_REG_HTGT_TRAP_GROUP_EMAD,
MLXSW_REG_HTGT_TRAP_GROUP_CORE_EVENT,
MLXSW_REG_HTGT_TRAP_GROUP_SP_STP,
MLXSW_REG_HTGT_TRAP_GROUP_SP_LACP,
MLXSW_REG_HTGT_TRAP_GROUP_SP_LLDP,
MLXSW_REG_HTGT_TRAP_GROUP_SP_MC_SNOOPING,
MLXSW_REG_HTGT_TRAP_GROUP_SP_BGP,
MLXSW_REG_HTGT_TRAP_GROUP_SP_OSPF,
MLXSW_REG_HTGT_TRAP_GROUP_SP_PIM,
MLXSW_REG_HTGT_TRAP_GROUP_SP_MULTICAST,
MLXSW_REG_HTGT_TRAP_GROUP_SP_NEIGH_DISCOVERY,
MLXSW_REG_HTGT_TRAP_GROUP_SP_ROUTER_EXP,
MLXSW_REG_HTGT_TRAP_GROUP_SP_EXTERNAL_ROUTE,
MLXSW_REG_HTGT_TRAP_GROUP_SP_IP2ME,
MLXSW_REG_HTGT_TRAP_GROUP_SP_DHCP,
MLXSW_REG_HTGT_TRAP_GROUP_SP_EVENT,
MLXSW_REG_HTGT_TRAP_GROUP_SP_IPV6,
MLXSW_REG_HTGT_TRAP_GROUP_SP_LBERROR,
MLXSW_REG_HTGT_TRAP_GROUP_SP_PTP0,
MLXSW_REG_HTGT_TRAP_GROUP_SP_PTP1,
MLXSW_REG_HTGT_TRAP_GROUP_SP_VRRP,
MLXSW_REG_HTGT_TRAP_GROUP_SP_PKT_SAMPLE,
MLXSW_REG_HTGT_TRAP_GROUP_SP_FLOW_LOGGING,
MLXSW_REG_HTGT_TRAP_GROUP_SP_FID_MISS,
MLXSW_REG_HTGT_TRAP_GROUP_SP_BFD,
MLXSW_REG_HTGT_TRAP_GROUP_SP_DUMMY,
MLXSW_REG_HTGT_TRAP_GROUP_SP_L2_DISCARDS,
MLXSW_REG_HTGT_TRAP_GROUP_SP_L3_DISCARDS,
MLXSW_REG_HTGT_TRAP_GROUP_SP_L3_EXCEPTIONS,
MLXSW_REG_HTGT_TRAP_GROUP_SP_TUNNEL_DISCARDS,
MLXSW_REG_HTGT_TRAP_GROUP_SP_ACL_DISCARDS,
MLXSW_REG_HTGT_TRAP_GROUP_SP_BUFFER_DISCARDS,
MLXSW_REG_HTGT_TRAP_GROUP_SP_EAPOL,
__MLXSW_REG_HTGT_TRAP_GROUP_MAX,
MLXSW_REG_HTGT_TRAP_GROUP_MAX = __MLXSW_REG_HTGT_TRAP_GROUP_MAX - 1
};
/* reg_htgt_trap_group
* Trap group number. User defined number specifying which trap groups
* should be forwarded to the CPU. The mapping between trap IDs and trap
* groups is configured using HPKT register.
* Access: Index
*/
MLXSW_ITEM32(reg, htgt, trap_group, 0x00, 0, 8);
enum {
MLXSW_REG_HTGT_POLICER_DISABLE,
MLXSW_REG_HTGT_POLICER_ENABLE,
};
/* reg_htgt_pide
* Enable policer ID specified using 'pid' field.
* Access: RW
*/
MLXSW_ITEM32(reg, htgt, pide, 0x04, 15, 1);
#define MLXSW_REG_HTGT_INVALID_POLICER 0xff
/* reg_htgt_pid
* Policer ID for the trap group.
* Access: RW
*/
MLXSW_ITEM32(reg, htgt, pid, 0x04, 0, 8);
#define MLXSW_REG_HTGT_TRAP_TO_CPU 0x0
/* reg_htgt_mirror_action
* Mirror action to use.
* 0 - Trap to CPU.
* 1 - Trap to CPU and mirror to a mirroring agent.
* 2 - Mirror to a mirroring agent and do not trap to CPU.
* Access: RW
*
* Note: Mirroring to a mirroring agent is only supported in Spectrum.
*/
MLXSW_ITEM32(reg, htgt, mirror_action, 0x08, 8, 2);
/* reg_htgt_mirroring_agent
* Mirroring agent.
* Access: RW
*/
MLXSW_ITEM32(reg, htgt, mirroring_agent, 0x08, 0, 3);
#define MLXSW_REG_HTGT_DEFAULT_PRIORITY 0
/* reg_htgt_priority
* Trap group priority.
* In case a packet matches multiple classification rules, the packet will
* only be trapped once, based on the trap ID associated with the group (via
* register HPKT) with the highest priority.
* Supported values are 0-7, with 7 represnting the highest priority.
* Access: RW
*
* Note: In SwitchX-2 this field is ignored and the priority value is replaced
* by the 'trap_group' field.
*/
MLXSW_ITEM32(reg, htgt, priority, 0x0C, 0, 4);
#define MLXSW_REG_HTGT_DEFAULT_TC 7
/* reg_htgt_local_path_cpu_tclass
* CPU ingress traffic class for the trap group.
* Access: RW
*/
MLXSW_ITEM32(reg, htgt, local_path_cpu_tclass, 0x10, 16, 6);
enum mlxsw_reg_htgt_local_path_rdq {
MLXSW_REG_HTGT_LOCAL_PATH_RDQ_SX2_CTRL = 0x13,
MLXSW_REG_HTGT_LOCAL_PATH_RDQ_SX2_RX = 0x14,
MLXSW_REG_HTGT_LOCAL_PATH_RDQ_SX2_EMAD = 0x15,
MLXSW_REG_HTGT_LOCAL_PATH_RDQ_SIB_EMAD = 0x15,
};
/* reg_htgt_local_path_rdq
* Receive descriptor queue (RDQ) to use for the trap group.
* Access: RW
*/
MLXSW_ITEM32(reg, htgt, local_path_rdq, 0x10, 0, 6);
static inline void mlxsw_reg_htgt_pack(char *payload, u8 group, u8 policer_id,
u8 priority, u8 tc)
{
MLXSW_REG_ZERO(htgt, payload);
if (policer_id == MLXSW_REG_HTGT_INVALID_POLICER) {
mlxsw_reg_htgt_pide_set(payload,
MLXSW_REG_HTGT_POLICER_DISABLE);
} else {
mlxsw_reg_htgt_pide_set(payload,
MLXSW_REG_HTGT_POLICER_ENABLE);
mlxsw_reg_htgt_pid_set(payload, policer_id);
}
mlxsw_reg_htgt_type_set(payload, MLXSW_REG_HTGT_PATH_TYPE_LOCAL);
mlxsw_reg_htgt_trap_group_set(payload, group);
mlxsw_reg_htgt_mirror_action_set(payload, MLXSW_REG_HTGT_TRAP_TO_CPU);
mlxsw_reg_htgt_mirroring_agent_set(payload, 0);
mlxsw_reg_htgt_priority_set(payload, priority);
mlxsw_reg_htgt_local_path_cpu_tclass_set(payload, tc);
mlxsw_reg_htgt_local_path_rdq_set(payload, group);
}
/* HPKT - Host Packet Trap
* -----------------------
* Configures trap IDs inside trap groups.
*/
#define MLXSW_REG_HPKT_ID 0x7003
#define MLXSW_REG_HPKT_LEN 0x10
MLXSW_REG_DEFINE(hpkt, MLXSW_REG_HPKT_ID, MLXSW_REG_HPKT_LEN);
enum {
MLXSW_REG_HPKT_ACK_NOT_REQUIRED,
MLXSW_REG_HPKT_ACK_REQUIRED,
};
/* reg_hpkt_ack
* Require acknowledgements from the host for events.
* If set, then the device will wait for the event it sent to be acknowledged
* by the host. This option is only relevant for event trap IDs.
* Access: RW
*
* Note: Currently not supported by firmware.
*/
MLXSW_ITEM32(reg, hpkt, ack, 0x00, 24, 1);
enum mlxsw_reg_hpkt_action {
MLXSW_REG_HPKT_ACTION_FORWARD,
MLXSW_REG_HPKT_ACTION_TRAP_TO_CPU,
MLXSW_REG_HPKT_ACTION_MIRROR_TO_CPU,
MLXSW_REG_HPKT_ACTION_DISCARD,
MLXSW_REG_HPKT_ACTION_SOFT_DISCARD,
MLXSW_REG_HPKT_ACTION_TRAP_AND_SOFT_DISCARD,
MLXSW_REG_HPKT_ACTION_TRAP_EXCEPTION_TO_CPU,
MLXSW_REG_HPKT_ACTION_SET_FW_DEFAULT = 15,
};
/* reg_hpkt_action
* Action to perform on packet when trapped.
* 0 - No action. Forward to CPU based on switching rules.
* 1 - Trap to CPU (CPU receives sole copy).
* 2 - Mirror to CPU (CPU receives a replica of the packet).
* 3 - Discard.
* 4 - Soft discard (allow other traps to act on the packet).
* 5 - Trap and soft discard (allow other traps to overwrite this trap).
* 6 - Trap to CPU (CPU receives sole copy) and count it as error.
* 15 - Restore the firmware's default action.
* Access: RW
*
* Note: Must be set to 0 (forward) for event trap IDs, as they are already
* addressed to the CPU.
*/
MLXSW_ITEM32(reg, hpkt, action, 0x00, 20, 3);
/* reg_hpkt_trap_group
* Trap group to associate the trap with.
* Access: RW
*/
MLXSW_ITEM32(reg, hpkt, trap_group, 0x00, 12, 6);
/* reg_hpkt_trap_id
* Trap ID.
* Access: Index
*
* Note: A trap ID can only be associated with a single trap group. The device
* will associate the trap ID with the last trap group configured.
*/
MLXSW_ITEM32(reg, hpkt, trap_id, 0x00, 0, 10);
enum {
MLXSW_REG_HPKT_CTRL_PACKET_DEFAULT,
MLXSW_REG_HPKT_CTRL_PACKET_NO_BUFFER,
MLXSW_REG_HPKT_CTRL_PACKET_USE_BUFFER,
};
/* reg_hpkt_ctrl
* Configure dedicated buffer resources for control packets.
* Ignored by SwitchX-2.
* 0 - Keep factory defaults.
* 1 - Do not use control buffer for this trap ID.
* 2 - Use control buffer for this trap ID.
* Access: RW
*/
MLXSW_ITEM32(reg, hpkt, ctrl, 0x04, 16, 2);
static inline void mlxsw_reg_hpkt_pack(char *payload, u8 action, u16 trap_id,
enum mlxsw_reg_htgt_trap_group trap_group,
bool is_ctrl)
{
MLXSW_REG_ZERO(hpkt, payload);
mlxsw_reg_hpkt_ack_set(payload, MLXSW_REG_HPKT_ACK_NOT_REQUIRED);
mlxsw_reg_hpkt_action_set(payload, action);
mlxsw_reg_hpkt_trap_group_set(payload, trap_group);
mlxsw_reg_hpkt_trap_id_set(payload, trap_id);
mlxsw_reg_hpkt_ctrl_set(payload, is_ctrl ?
MLXSW_REG_HPKT_CTRL_PACKET_USE_BUFFER :
MLXSW_REG_HPKT_CTRL_PACKET_NO_BUFFER);
}
/* RGCR - Router General Configuration Register
* --------------------------------------------
* The register is used for setting up the router configuration.
*/
#define MLXSW_REG_RGCR_ID 0x8001
#define MLXSW_REG_RGCR_LEN 0x28
MLXSW_REG_DEFINE(rgcr, MLXSW_REG_RGCR_ID, MLXSW_REG_RGCR_LEN);
/* reg_rgcr_ipv4_en
* IPv4 router enable.
* Access: RW
*/
MLXSW_ITEM32(reg, rgcr, ipv4_en, 0x00, 31, 1);
/* reg_rgcr_ipv6_en
* IPv6 router enable.
* Access: RW
*/
MLXSW_ITEM32(reg, rgcr, ipv6_en, 0x00, 30, 1);
/* reg_rgcr_max_router_interfaces
* Defines the maximum number of active router interfaces for all virtual
* routers.
* Access: RW
*/
MLXSW_ITEM32(reg, rgcr, max_router_interfaces, 0x10, 0, 16);
/* reg_rgcr_usp
* Update switch priority and packet color.
* 0 - Preserve the value of Switch Priority and packet color.
* 1 - Recalculate the value of Switch Priority and packet color.
* Access: RW
*
* Note: Not supported by SwitchX and SwitchX-2.
*/
MLXSW_ITEM32(reg, rgcr, usp, 0x18, 20, 1);
/* reg_rgcr_pcp_rw
* Indicates how to handle the pcp_rewrite_en value:
* 0 - Preserve the value of pcp_rewrite_en.
* 2 - Disable PCP rewrite.
* 3 - Enable PCP rewrite.
* Access: RW
*
* Note: Not supported by SwitchX and SwitchX-2.
*/
MLXSW_ITEM32(reg, rgcr, pcp_rw, 0x18, 16, 2);
/* reg_rgcr_activity_dis
* Activity disable:
* 0 - Activity will be set when an entry is hit (default).
* 1 - Activity will not be set when an entry is hit.
*
* Bit 0 - Disable activity bit in Router Algorithmic LPM Unicast Entry
* (RALUE).
* Bit 1 - Disable activity bit in Router Algorithmic LPM Unicast Host
* Entry (RAUHT).
* Bits 2:7 are reserved.
* Access: RW
*
* Note: Not supported by SwitchX, SwitchX-2 and Switch-IB.
*/
MLXSW_ITEM32(reg, rgcr, activity_dis, 0x20, 0, 8);
static inline void mlxsw_reg_rgcr_pack(char *payload, bool ipv4_en,
bool ipv6_en)
{
MLXSW_REG_ZERO(rgcr, payload);
mlxsw_reg_rgcr_ipv4_en_set(payload, ipv4_en);
mlxsw_reg_rgcr_ipv6_en_set(payload, ipv6_en);
}
/* RITR - Router Interface Table Register
* --------------------------------------
* The register is used to configure the router interface table.
*/
#define MLXSW_REG_RITR_ID 0x8002
#define MLXSW_REG_RITR_LEN 0x40
MLXSW_REG_DEFINE(ritr, MLXSW_REG_RITR_ID, MLXSW_REG_RITR_LEN);
/* reg_ritr_enable
* Enables routing on the router interface.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, enable, 0x00, 31, 1);
/* reg_ritr_ipv4
* IPv4 routing enable. Enables routing of IPv4 traffic on the router
* interface.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, ipv4, 0x00, 29, 1);
/* reg_ritr_ipv6
* IPv6 routing enable. Enables routing of IPv6 traffic on the router
* interface.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, ipv6, 0x00, 28, 1);
/* reg_ritr_ipv4_mc
* IPv4 multicast routing enable.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, ipv4_mc, 0x00, 27, 1);
/* reg_ritr_ipv6_mc
* IPv6 multicast routing enable.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, ipv6_mc, 0x00, 26, 1);
enum mlxsw_reg_ritr_if_type {
/* VLAN interface. */
MLXSW_REG_RITR_VLAN_IF,
/* FID interface. */
MLXSW_REG_RITR_FID_IF,
/* Sub-port interface. */
MLXSW_REG_RITR_SP_IF,
/* Loopback Interface. */
MLXSW_REG_RITR_LOOPBACK_IF,
};
/* reg_ritr_type
* Router interface type as per enum mlxsw_reg_ritr_if_type.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, type, 0x00, 23, 3);
enum {
MLXSW_REG_RITR_RIF_CREATE,
MLXSW_REG_RITR_RIF_DEL,
};
/* reg_ritr_op
* Opcode:
* 0 - Create or edit RIF.
* 1 - Delete RIF.
* Reserved for SwitchX-2. For Spectrum, editing of interface properties
* is not supported. An interface must be deleted and re-created in order
* to update properties.
* Access: WO
*/
MLXSW_ITEM32(reg, ritr, op, 0x00, 20, 2);
/* reg_ritr_rif
* Router interface index. A pointer to the Router Interface Table.
* Access: Index
*/
MLXSW_ITEM32(reg, ritr, rif, 0x00, 0, 16);
/* reg_ritr_ipv4_fe
* IPv4 Forwarding Enable.
* Enables routing of IPv4 traffic on the router interface. When disabled,
* forwarding is blocked but local traffic (traps and IP2ME) will be enabled.
* Not supported in SwitchX-2.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, ipv4_fe, 0x04, 29, 1);
/* reg_ritr_ipv6_fe
* IPv6 Forwarding Enable.
* Enables routing of IPv6 traffic on the router interface. When disabled,
* forwarding is blocked but local traffic (traps and IP2ME) will be enabled.
* Not supported in SwitchX-2.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, ipv6_fe, 0x04, 28, 1);
/* reg_ritr_ipv4_mc_fe
* IPv4 Multicast Forwarding Enable.
* When disabled, forwarding is blocked but local traffic (traps and IP to me)
* will be enabled.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, ipv4_mc_fe, 0x04, 27, 1);
/* reg_ritr_ipv6_mc_fe
* IPv6 Multicast Forwarding Enable.
* When disabled, forwarding is blocked but local traffic (traps and IP to me)
* will be enabled.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, ipv6_mc_fe, 0x04, 26, 1);
/* reg_ritr_lb_en
* Loop-back filter enable for unicast packets.
* If the flag is set then loop-back filter for unicast packets is
* implemented on the RIF. Multicast packets are always subject to
* loop-back filtering.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, lb_en, 0x04, 24, 1);
/* reg_ritr_virtual_router
* Virtual router ID associated with the router interface.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, virtual_router, 0x04, 0, 16);
/* reg_ritr_mtu
* Router interface MTU.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, mtu, 0x34, 0, 16);
/* reg_ritr_if_swid
* Switch partition ID.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, if_swid, 0x08, 24, 8);
/* reg_ritr_if_mac_profile_id
* MAC msb profile ID.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, if_mac_profile_id, 0x10, 16, 4);
/* reg_ritr_if_mac
* Router interface MAC address.
* In Spectrum, all MAC addresses must have the same 38 MSBits.
* Access: RW
*/
MLXSW_ITEM_BUF(reg, ritr, if_mac, 0x12, 6);
/* reg_ritr_if_vrrp_id_ipv6
* VRRP ID for IPv6
* Note: Reserved for RIF types other than VLAN, FID and Sub-port.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, if_vrrp_id_ipv6, 0x1C, 8, 8);
/* reg_ritr_if_vrrp_id_ipv4
* VRRP ID for IPv4
* Note: Reserved for RIF types other than VLAN, FID and Sub-port.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, if_vrrp_id_ipv4, 0x1C, 0, 8);
/* VLAN Interface */
/* reg_ritr_vlan_if_vlan_id
* VLAN ID.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, vlan_if_vlan_id, 0x08, 0, 12);
/* reg_ritr_vlan_if_efid
* Egress FID.
* Used to connect the RIF to a bridge.
* Access: RW
*
* Note: Reserved when legacy bridge model is used and on Spectrum-1.
*/
MLXSW_ITEM32(reg, ritr, vlan_if_efid, 0x0C, 0, 16);
/* FID Interface */
/* reg_ritr_fid_if_fid
* Filtering ID. Used to connect a bridge to the router.
* When legacy bridge model is used, only FIDs from the vFID range are
* supported. When unified bridge model is used, this is the egress FID for
* router to bridge.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, fid_if_fid, 0x08, 0, 16);
/* Sub-port Interface */
/* reg_ritr_sp_if_lag
* LAG indication. When this bit is set the system_port field holds the
* LAG identifier.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, sp_if_lag, 0x08, 24, 1);
/* reg_ritr_sp_system_port
* Port unique indentifier. When lag bit is set, this field holds the
* lag_id in bits 0:9.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, sp_if_system_port, 0x08, 0, 16);
/* reg_ritr_sp_if_efid
* Egress filtering ID.
* Used to connect the eRIF to a bridge if eRIF-ACL has modified the DMAC or
* the VID.
* Access: RW
*
* Note: Reserved when legacy bridge model is used.
*/
MLXSW_ITEM32(reg, ritr, sp_if_efid, 0x0C, 0, 16);
/* reg_ritr_sp_if_vid
* VLAN ID.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, sp_if_vid, 0x18, 0, 12);
/* Loopback Interface */
enum mlxsw_reg_ritr_loopback_protocol {
/* IPinIP IPv4 underlay Unicast */
MLXSW_REG_RITR_LOOPBACK_PROTOCOL_IPIP_IPV4,
/* IPinIP IPv6 underlay Unicast */
MLXSW_REG_RITR_LOOPBACK_PROTOCOL_IPIP_IPV6,
/* IPinIP generic - used for Spectrum-2 underlay RIF */
MLXSW_REG_RITR_LOOPBACK_GENERIC,
};
/* reg_ritr_loopback_protocol
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, loopback_protocol, 0x08, 28, 4);
enum mlxsw_reg_ritr_loopback_ipip_type {
/* Tunnel is IPinIP. */
MLXSW_REG_RITR_LOOPBACK_IPIP_TYPE_IP_IN_IP,
/* Tunnel is GRE, no key. */
MLXSW_REG_RITR_LOOPBACK_IPIP_TYPE_IP_IN_GRE_IN_IP,
/* Tunnel is GRE, with a key. */
MLXSW_REG_RITR_LOOPBACK_IPIP_TYPE_IP_IN_GRE_KEY_IN_IP,
};
/* reg_ritr_loopback_ipip_type
* Encapsulation type.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, loopback_ipip_type, 0x10, 24, 4);
enum mlxsw_reg_ritr_loopback_ipip_options {
/* The key is defined by gre_key. */
MLXSW_REG_RITR_LOOPBACK_IPIP_OPTIONS_GRE_KEY_PRESET,
};
/* reg_ritr_loopback_ipip_options
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, loopback_ipip_options, 0x10, 20, 4);
/* reg_ritr_loopback_ipip_uvr
* Underlay Virtual Router ID.
* Range is 0..cap_max_virtual_routers-1.
* Reserved for Spectrum-2.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, loopback_ipip_uvr, 0x10, 0, 16);
/* reg_ritr_loopback_ipip_underlay_rif
* Underlay ingress router interface.
* Reserved for Spectrum.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, loopback_ipip_underlay_rif, 0x14, 0, 16);
/* reg_ritr_loopback_ipip_usip*
* Encapsulation Underlay source IP.
* Access: RW
*/
MLXSW_ITEM_BUF(reg, ritr, loopback_ipip_usip6, 0x18, 16);
MLXSW_ITEM32(reg, ritr, loopback_ipip_usip4, 0x24, 0, 32);
/* reg_ritr_loopback_ipip_gre_key
* GRE Key.
* Reserved when ipip_type is not IP_IN_GRE_KEY_IN_IP.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, loopback_ipip_gre_key, 0x28, 0, 32);
/* Shared between ingress/egress */
enum mlxsw_reg_ritr_counter_set_type {
/* No Count. */
MLXSW_REG_RITR_COUNTER_SET_TYPE_NO_COUNT = 0x0,
/* Basic. Used for router interfaces, counting the following:
* - Error and Discard counters.
* - Unicast, Multicast and Broadcast counters. Sharing the
* same set of counters for the different type of traffic
* (IPv4, IPv6 and mpls).
*/
MLXSW_REG_RITR_COUNTER_SET_TYPE_BASIC = 0x9,
};
/* reg_ritr_ingress_counter_index
* Counter Index for flow counter.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, ingress_counter_index, 0x38, 0, 24);
/* reg_ritr_ingress_counter_set_type
* Igress Counter Set Type for router interface counter.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, ingress_counter_set_type, 0x38, 24, 8);
/* reg_ritr_egress_counter_index
* Counter Index for flow counter.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, egress_counter_index, 0x3C, 0, 24);
/* reg_ritr_egress_counter_set_type
* Egress Counter Set Type for router interface counter.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, egress_counter_set_type, 0x3C, 24, 8);
static inline void mlxsw_reg_ritr_counter_pack(char *payload, u32 index,
bool enable, bool egress)
{
enum mlxsw_reg_ritr_counter_set_type set_type;
if (enable)
set_type = MLXSW_REG_RITR_COUNTER_SET_TYPE_BASIC;
else
set_type = MLXSW_REG_RITR_COUNTER_SET_TYPE_NO_COUNT;
if (egress) {
mlxsw_reg_ritr_egress_counter_set_type_set(payload, set_type);
mlxsw_reg_ritr_egress_counter_index_set(payload, index);
} else {
mlxsw_reg_ritr_ingress_counter_set_type_set(payload, set_type);
mlxsw_reg_ritr_ingress_counter_index_set(payload, index);
}
}
static inline void mlxsw_reg_ritr_rif_pack(char *payload, u16 rif)
{
MLXSW_REG_ZERO(ritr, payload);
mlxsw_reg_ritr_rif_set(payload, rif);
}
static inline void mlxsw_reg_ritr_sp_if_pack(char *payload, bool lag,
u16 system_port, u16 efid, u16 vid)
{
mlxsw_reg_ritr_sp_if_lag_set(payload, lag);
mlxsw_reg_ritr_sp_if_system_port_set(payload, system_port);
mlxsw_reg_ritr_sp_if_efid_set(payload, efid);
mlxsw_reg_ritr_sp_if_vid_set(payload, vid);
}
static inline void mlxsw_reg_ritr_pack(char *payload, bool enable,
enum mlxsw_reg_ritr_if_type type,
u16 rif, u16 vr_id, u16 mtu)
{
bool op = enable ? MLXSW_REG_RITR_RIF_CREATE : MLXSW_REG_RITR_RIF_DEL;
MLXSW_REG_ZERO(ritr, payload);
mlxsw_reg_ritr_enable_set(payload, enable);
mlxsw_reg_ritr_ipv4_set(payload, 1);
mlxsw_reg_ritr_ipv6_set(payload, 1);
mlxsw_reg_ritr_ipv4_mc_set(payload, 1);
mlxsw_reg_ritr_ipv6_mc_set(payload, 1);
mlxsw_reg_ritr_type_set(payload, type);
mlxsw_reg_ritr_op_set(payload, op);
mlxsw_reg_ritr_rif_set(payload, rif);
mlxsw_reg_ritr_ipv4_fe_set(payload, 1);
mlxsw_reg_ritr_ipv6_fe_set(payload, 1);
mlxsw_reg_ritr_ipv4_mc_fe_set(payload, 1);
mlxsw_reg_ritr_ipv6_mc_fe_set(payload, 1);
mlxsw_reg_ritr_lb_en_set(payload, 1);
mlxsw_reg_ritr_virtual_router_set(payload, vr_id);
mlxsw_reg_ritr_mtu_set(payload, mtu);
}
static inline void mlxsw_reg_ritr_mac_pack(char *payload, const char *mac)
{
mlxsw_reg_ritr_if_mac_memcpy_to(payload, mac);
}
static inline void
mlxsw_reg_ritr_vlan_if_pack(char *payload, bool enable, u16 rif, u16 vr_id,
u16 mtu, const char *mac, u8 mac_profile_id,
u16 vlan_id, u16 efid)
{
enum mlxsw_reg_ritr_if_type type = MLXSW_REG_RITR_VLAN_IF;
mlxsw_reg_ritr_pack(payload, enable, type, rif, vr_id, mtu);
mlxsw_reg_ritr_if_mac_memcpy_to(payload, mac);
mlxsw_reg_ritr_if_mac_profile_id_set(payload, mac_profile_id);
mlxsw_reg_ritr_vlan_if_vlan_id_set(payload, vlan_id);
mlxsw_reg_ritr_vlan_if_efid_set(payload, efid);
}
static inline void
mlxsw_reg_ritr_loopback_ipip_common_pack(char *payload,
enum mlxsw_reg_ritr_loopback_ipip_type ipip_type,
enum mlxsw_reg_ritr_loopback_ipip_options options,
u16 uvr_id, u16 underlay_rif, u32 gre_key)
{
mlxsw_reg_ritr_loopback_ipip_type_set(payload, ipip_type);
mlxsw_reg_ritr_loopback_ipip_options_set(payload, options);
mlxsw_reg_ritr_loopback_ipip_uvr_set(payload, uvr_id);
mlxsw_reg_ritr_loopback_ipip_underlay_rif_set(payload, underlay_rif);
mlxsw_reg_ritr_loopback_ipip_gre_key_set(payload, gre_key);
}
static inline void
mlxsw_reg_ritr_loopback_ipip4_pack(char *payload,
enum mlxsw_reg_ritr_loopback_ipip_type ipip_type,
enum mlxsw_reg_ritr_loopback_ipip_options options,
u16 uvr_id, u16 underlay_rif, u32 usip, u32 gre_key)
{
mlxsw_reg_ritr_loopback_protocol_set(payload,
MLXSW_REG_RITR_LOOPBACK_PROTOCOL_IPIP_IPV4);
mlxsw_reg_ritr_loopback_ipip_common_pack(payload, ipip_type, options,
uvr_id, underlay_rif, gre_key);
mlxsw_reg_ritr_loopback_ipip_usip4_set(payload, usip);
}
static inline void
mlxsw_reg_ritr_loopback_ipip6_pack(char *payload,
enum mlxsw_reg_ritr_loopback_ipip_type ipip_type,
enum mlxsw_reg_ritr_loopback_ipip_options options,
u16 uvr_id, u16 underlay_rif,
const struct in6_addr *usip, u32 gre_key)
{
enum mlxsw_reg_ritr_loopback_protocol protocol =
MLXSW_REG_RITR_LOOPBACK_PROTOCOL_IPIP_IPV6;
mlxsw_reg_ritr_loopback_protocol_set(payload, protocol);
mlxsw_reg_ritr_loopback_ipip_common_pack(payload, ipip_type, options,
uvr_id, underlay_rif, gre_key);
mlxsw_reg_ritr_loopback_ipip_usip6_memcpy_to(payload,
(const char *)usip);
}
/* RTAR - Router TCAM Allocation Register
* --------------------------------------
* This register is used for allocation of regions in the TCAM table.
*/
#define MLXSW_REG_RTAR_ID 0x8004
#define MLXSW_REG_RTAR_LEN 0x20
MLXSW_REG_DEFINE(rtar, MLXSW_REG_RTAR_ID, MLXSW_REG_RTAR_LEN);
enum mlxsw_reg_rtar_op {
MLXSW_REG_RTAR_OP_ALLOCATE,
MLXSW_REG_RTAR_OP_RESIZE,
MLXSW_REG_RTAR_OP_DEALLOCATE,
};
/* reg_rtar_op
* Access: WO
*/
MLXSW_ITEM32(reg, rtar, op, 0x00, 28, 4);
enum mlxsw_reg_rtar_key_type {
MLXSW_REG_RTAR_KEY_TYPE_IPV4_MULTICAST = 1,
MLXSW_REG_RTAR_KEY_TYPE_IPV6_MULTICAST = 3
};
/* reg_rtar_key_type
* TCAM key type for the region.
* Access: WO
*/
MLXSW_ITEM32(reg, rtar, key_type, 0x00, 0, 8);
/* reg_rtar_region_size
* TCAM region size. When allocating/resizing this is the requested
* size, the response is the actual size.
* Note: Actual size may be larger than requested.
* Reserved for op = Deallocate
* Access: WO
*/
MLXSW_ITEM32(reg, rtar, region_size, 0x04, 0, 16);
static inline void mlxsw_reg_rtar_pack(char *payload,
enum mlxsw_reg_rtar_op op,
enum mlxsw_reg_rtar_key_type key_type,
u16 region_size)
{
MLXSW_REG_ZERO(rtar, payload);
mlxsw_reg_rtar_op_set(payload, op);
mlxsw_reg_rtar_key_type_set(payload, key_type);
mlxsw_reg_rtar_region_size_set(payload, region_size);
}
/* RATR - Router Adjacency Table Register
* --------------------------------------
* The RATR register is used to configure the Router Adjacency (next-hop)
* Table.
*/
#define MLXSW_REG_RATR_ID 0x8008
#define MLXSW_REG_RATR_LEN 0x2C
MLXSW_REG_DEFINE(ratr, MLXSW_REG_RATR_ID, MLXSW_REG_RATR_LEN);
enum mlxsw_reg_ratr_op {
/* Read */
MLXSW_REG_RATR_OP_QUERY_READ = 0,
/* Read and clear activity */
MLXSW_REG_RATR_OP_QUERY_READ_CLEAR = 2,
/* Write Adjacency entry */
MLXSW_REG_RATR_OP_WRITE_WRITE_ENTRY = 1,
/* Write Adjacency entry only if the activity is cleared.
* The write may not succeed if the activity is set. There is not
* direct feedback if the write has succeeded or not, however
* the get will reveal the actual entry (SW can compare the get
* response to the set command).
*/
MLXSW_REG_RATR_OP_WRITE_WRITE_ENTRY_ON_ACTIVITY = 3,
};
/* reg_ratr_op
* Note that Write operation may also be used for updating
* counter_set_type and counter_index. In this case all other
* fields must not be updated.
* Access: OP
*/
MLXSW_ITEM32(reg, ratr, op, 0x00, 28, 4);
/* reg_ratr_v
* Valid bit. Indicates if the adjacency entry is valid.
* Note: the device may need some time before reusing an invalidated
* entry. During this time the entry can not be reused. It is
* recommended to use another entry before reusing an invalidated
* entry (e.g. software can put it at the end of the list for
* reusing). Trying to access an invalidated entry not yet cleared
* by the device results with failure indicating "Try Again" status.
* When valid is '0' then egress_router_interface,trap_action,
* adjacency_parameters and counters are reserved
* Access: RW
*/
MLXSW_ITEM32(reg, ratr, v, 0x00, 24, 1);
/* reg_ratr_a
* Activity. Set for new entries. Set if a packet lookup has hit on
* the specific entry. To clear the a bit, use "clear activity".
* Access: RO
*/
MLXSW_ITEM32(reg, ratr, a, 0x00, 16, 1);
enum mlxsw_reg_ratr_type {
/* Ethernet */
MLXSW_REG_RATR_TYPE_ETHERNET,
/* IPoIB Unicast without GRH.
* Reserved for Spectrum.
*/
MLXSW_REG_RATR_TYPE_IPOIB_UC,
/* IPoIB Unicast with GRH. Supported only in table 0 (Ethernet unicast
* adjacency).
* Reserved for Spectrum.
*/
MLXSW_REG_RATR_TYPE_IPOIB_UC_W_GRH,
/* IPoIB Multicast.
* Reserved for Spectrum.
*/
MLXSW_REG_RATR_TYPE_IPOIB_MC,
/* MPLS.
* Reserved for SwitchX/-2.
*/
MLXSW_REG_RATR_TYPE_MPLS,
/* IPinIP Encap.
* Reserved for SwitchX/-2.
*/
MLXSW_REG_RATR_TYPE_IPIP,
};
/* reg_ratr_type
* Adjacency entry type.
* Access: RW
*/
MLXSW_ITEM32(reg, ratr, type, 0x04, 28, 4);
/* reg_ratr_adjacency_index_low
* Bits 15:0 of index into the adjacency table.
* For SwitchX and SwitchX-2, the adjacency table is linear and
* used for adjacency entries only.
* For Spectrum, the index is to the KVD linear.
* Access: Index
*/
MLXSW_ITEM32(reg, ratr, adjacency_index_low, 0x04, 0, 16);
/* reg_ratr_egress_router_interface
* Range is 0 .. cap_max_router_interfaces - 1
* Access: RW
*/
MLXSW_ITEM32(reg, ratr, egress_router_interface, 0x08, 0, 16);
enum mlxsw_reg_ratr_trap_action {
MLXSW_REG_RATR_TRAP_ACTION_NOP,
MLXSW_REG_RATR_TRAP_ACTION_TRAP,
MLXSW_REG_RATR_TRAP_ACTION_MIRROR_TO_CPU,
MLXSW_REG_RATR_TRAP_ACTION_MIRROR,
MLXSW_REG_RATR_TRAP_ACTION_DISCARD_ERRORS,
};
/* reg_ratr_trap_action
* see mlxsw_reg_ratr_trap_action
* Access: RW
*/
MLXSW_ITEM32(reg, ratr, trap_action, 0x0C, 28, 4);
/* reg_ratr_adjacency_index_high
* Bits 23:16 of the adjacency_index.
* Access: Index
*/
MLXSW_ITEM32(reg, ratr, adjacency_index_high, 0x0C, 16, 8);
enum mlxsw_reg_ratr_trap_id {
MLXSW_REG_RATR_TRAP_ID_RTR_EGRESS0,
MLXSW_REG_RATR_TRAP_ID_RTR_EGRESS1,
};
/* reg_ratr_trap_id
* Trap ID to be reported to CPU.
* Trap-ID is RTR_EGRESS0 or RTR_EGRESS1.
* For trap_action of NOP, MIRROR and DISCARD_ERROR
* Access: RW
*/
MLXSW_ITEM32(reg, ratr, trap_id, 0x0C, 0, 8);
/* reg_ratr_eth_destination_mac
* MAC address of the destination next-hop.
* Access: RW
*/
MLXSW_ITEM_BUF(reg, ratr, eth_destination_mac, 0x12, 6);
enum mlxsw_reg_ratr_ipip_type {
/* IPv4, address set by mlxsw_reg_ratr_ipip_ipv4_udip. */
MLXSW_REG_RATR_IPIP_TYPE_IPV4,
/* IPv6, address set by mlxsw_reg_ratr_ipip_ipv6_ptr. */
MLXSW_REG_RATR_IPIP_TYPE_IPV6,
};
/* reg_ratr_ipip_type
* Underlay destination ip type.
* Note: the type field must match the protocol of the router interface.
* Access: RW
*/
MLXSW_ITEM32(reg, ratr, ipip_type, 0x10, 16, 4);
/* reg_ratr_ipip_ipv4_udip
* Underlay ipv4 dip.
* Reserved when ipip_type is IPv6.
* Access: RW
*/
MLXSW_ITEM32(reg, ratr, ipip_ipv4_udip, 0x18, 0, 32);
/* reg_ratr_ipip_ipv6_ptr
* Pointer to IPv6 underlay destination ip address.
* For Spectrum: Pointer to KVD linear space.
* Access: RW
*/
MLXSW_ITEM32(reg, ratr, ipip_ipv6_ptr, 0x1C, 0, 24);
enum mlxsw_reg_flow_counter_set_type {
/* No count */
MLXSW_REG_FLOW_COUNTER_SET_TYPE_NO_COUNT = 0x00,
/* Count packets and bytes */
MLXSW_REG_FLOW_COUNTER_SET_TYPE_PACKETS_BYTES = 0x03,
/* Count only packets */
MLXSW_REG_FLOW_COUNTER_SET_TYPE_PACKETS = 0x05,
};
/* reg_ratr_counter_set_type
* Counter set type for flow counters
* Access: RW
*/
MLXSW_ITEM32(reg, ratr, counter_set_type, 0x28, 24, 8);
/* reg_ratr_counter_index
* Counter index for flow counters
* Access: RW
*/
MLXSW_ITEM32(reg, ratr, counter_index, 0x28, 0, 24);
static inline void
mlxsw_reg_ratr_pack(char *payload,
enum mlxsw_reg_ratr_op op, bool valid,
enum mlxsw_reg_ratr_type type,
u32 adjacency_index, u16 egress_rif)
{
MLXSW_REG_ZERO(ratr, payload);
mlxsw_reg_ratr_op_set(payload, op);
mlxsw_reg_ratr_v_set(payload, valid);
mlxsw_reg_ratr_type_set(payload, type);
mlxsw_reg_ratr_adjacency_index_low_set(payload, adjacency_index);
mlxsw_reg_ratr_adjacency_index_high_set(payload, adjacency_index >> 16);
mlxsw_reg_ratr_egress_router_interface_set(payload, egress_rif);
}
static inline void mlxsw_reg_ratr_eth_entry_pack(char *payload,
const char *dest_mac)
{
mlxsw_reg_ratr_eth_destination_mac_memcpy_to(payload, dest_mac);
}
static inline void mlxsw_reg_ratr_ipip4_entry_pack(char *payload, u32 ipv4_udip)
{
mlxsw_reg_ratr_ipip_type_set(payload, MLXSW_REG_RATR_IPIP_TYPE_IPV4);
mlxsw_reg_ratr_ipip_ipv4_udip_set(payload, ipv4_udip);
}
static inline void mlxsw_reg_ratr_ipip6_entry_pack(char *payload, u32 ipv6_ptr)
{
mlxsw_reg_ratr_ipip_type_set(payload, MLXSW_REG_RATR_IPIP_TYPE_IPV6);
mlxsw_reg_ratr_ipip_ipv6_ptr_set(payload, ipv6_ptr);
}
static inline void mlxsw_reg_ratr_counter_pack(char *payload, u64 counter_index,
bool counter_enable)
{
enum mlxsw_reg_flow_counter_set_type set_type;
if (counter_enable)
set_type = MLXSW_REG_FLOW_COUNTER_SET_TYPE_PACKETS_BYTES;
else
set_type = MLXSW_REG_FLOW_COUNTER_SET_TYPE_NO_COUNT;
mlxsw_reg_ratr_counter_index_set(payload, counter_index);
mlxsw_reg_ratr_counter_set_type_set(payload, set_type);
}
/* RDPM - Router DSCP to Priority Mapping
* --------------------------------------
* Controls the mapping from DSCP field to switch priority on routed packets
*/
#define MLXSW_REG_RDPM_ID 0x8009
#define MLXSW_REG_RDPM_BASE_LEN 0x00
#define MLXSW_REG_RDPM_DSCP_ENTRY_REC_LEN 0x01
#define MLXSW_REG_RDPM_DSCP_ENTRY_REC_MAX_COUNT 64
#define MLXSW_REG_RDPM_LEN 0x40
#define MLXSW_REG_RDPM_LAST_ENTRY (MLXSW_REG_RDPM_BASE_LEN + \
MLXSW_REG_RDPM_LEN - \
MLXSW_REG_RDPM_DSCP_ENTRY_REC_LEN)
MLXSW_REG_DEFINE(rdpm, MLXSW_REG_RDPM_ID, MLXSW_REG_RDPM_LEN);
/* reg_dscp_entry_e
* Enable update of the specific entry
* Access: Index
*/
MLXSW_ITEM8_INDEXED(reg, rdpm, dscp_entry_e, MLXSW_REG_RDPM_LAST_ENTRY, 7, 1,
-MLXSW_REG_RDPM_DSCP_ENTRY_REC_LEN, 0x00, false);
/* reg_dscp_entry_prio
* Switch Priority
* Access: RW
*/
MLXSW_ITEM8_INDEXED(reg, rdpm, dscp_entry_prio, MLXSW_REG_RDPM_LAST_ENTRY, 0, 4,
-MLXSW_REG_RDPM_DSCP_ENTRY_REC_LEN, 0x00, false);
static inline void mlxsw_reg_rdpm_pack(char *payload, unsigned short index,
u8 prio)
{
mlxsw_reg_rdpm_dscp_entry_e_set(payload, index, 1);
mlxsw_reg_rdpm_dscp_entry_prio_set(payload, index, prio);
}
/* RICNT - Router Interface Counter Register
* -----------------------------------------
* The RICNT register retrieves per port performance counters
*/
#define MLXSW_REG_RICNT_ID 0x800B
#define MLXSW_REG_RICNT_LEN 0x100
MLXSW_REG_DEFINE(ricnt, MLXSW_REG_RICNT_ID, MLXSW_REG_RICNT_LEN);
/* reg_ricnt_counter_index
* Counter index
* Access: RW
*/
MLXSW_ITEM32(reg, ricnt, counter_index, 0x04, 0, 24);
enum mlxsw_reg_ricnt_counter_set_type {
/* No Count. */
MLXSW_REG_RICNT_COUNTER_SET_TYPE_NO_COUNT = 0x00,
/* Basic. Used for router interfaces, counting the following:
* - Error and Discard counters.
* - Unicast, Multicast and Broadcast counters. Sharing the
* same set of counters for the different type of traffic
* (IPv4, IPv6 and mpls).
*/
MLXSW_REG_RICNT_COUNTER_SET_TYPE_BASIC = 0x09,
};
/* reg_ricnt_counter_set_type
* Counter Set Type for router interface counter
* Access: RW
*/
MLXSW_ITEM32(reg, ricnt, counter_set_type, 0x04, 24, 8);
enum mlxsw_reg_ricnt_opcode {
/* Nop. Supported only for read access*/
MLXSW_REG_RICNT_OPCODE_NOP = 0x00,
/* Clear. Setting the clr bit will reset the counter value for
* all counters of the specified Router Interface.
*/
MLXSW_REG_RICNT_OPCODE_CLEAR = 0x08,
};
/* reg_ricnt_opcode
* Opcode
* Access: RW
*/
MLXSW_ITEM32(reg, ricnt, op, 0x00, 28, 4);
/* reg_ricnt_good_unicast_packets
* good unicast packets.
* Access: RW
*/
MLXSW_ITEM64(reg, ricnt, good_unicast_packets, 0x08, 0, 64);
/* reg_ricnt_good_multicast_packets
* good multicast packets.
* Access: RW
*/
MLXSW_ITEM64(reg, ricnt, good_multicast_packets, 0x10, 0, 64);
/* reg_ricnt_good_broadcast_packets
* good broadcast packets
* Access: RW
*/
MLXSW_ITEM64(reg, ricnt, good_broadcast_packets, 0x18, 0, 64);
/* reg_ricnt_good_unicast_bytes
* A count of L3 data and padding octets not including L2 headers
* for good unicast frames.
* Access: RW
*/
MLXSW_ITEM64(reg, ricnt, good_unicast_bytes, 0x20, 0, 64);
/* reg_ricnt_good_multicast_bytes
* A count of L3 data and padding octets not including L2 headers
* for good multicast frames.
* Access: RW
*/
MLXSW_ITEM64(reg, ricnt, good_multicast_bytes, 0x28, 0, 64);
/* reg_ritr_good_broadcast_bytes
* A count of L3 data and padding octets not including L2 headers
* for good broadcast frames.
* Access: RW
*/
MLXSW_ITEM64(reg, ricnt, good_broadcast_bytes, 0x30, 0, 64);
/* reg_ricnt_error_packets
* A count of errored frames that do not pass the router checks.
* Access: RW
*/
MLXSW_ITEM64(reg, ricnt, error_packets, 0x38, 0, 64);
/* reg_ricnt_discrad_packets
* A count of non-errored frames that do not pass the router checks.
* Access: RW
*/
MLXSW_ITEM64(reg, ricnt, discard_packets, 0x40, 0, 64);
/* reg_ricnt_error_bytes
* A count of L3 data and padding octets not including L2 headers
* for errored frames.
* Access: RW
*/
MLXSW_ITEM64(reg, ricnt, error_bytes, 0x48, 0, 64);
/* reg_ricnt_discard_bytes
* A count of L3 data and padding octets not including L2 headers
* for non-errored frames that do not pass the router checks.
* Access: RW
*/
MLXSW_ITEM64(reg, ricnt, discard_bytes, 0x50, 0, 64);
static inline void mlxsw_reg_ricnt_pack(char *payload, u32 index,
enum mlxsw_reg_ricnt_opcode op)
{
MLXSW_REG_ZERO(ricnt, payload);
mlxsw_reg_ricnt_op_set(payload, op);
mlxsw_reg_ricnt_counter_index_set(payload, index);
mlxsw_reg_ricnt_counter_set_type_set(payload,
MLXSW_REG_RICNT_COUNTER_SET_TYPE_BASIC);
}
/* RRCR - Router Rules Copy Register Layout
* ----------------------------------------
* This register is used for moving and copying route entry rules.
*/
#define MLXSW_REG_RRCR_ID 0x800F
#define MLXSW_REG_RRCR_LEN 0x24
MLXSW_REG_DEFINE(rrcr, MLXSW_REG_RRCR_ID, MLXSW_REG_RRCR_LEN);
enum mlxsw_reg_rrcr_op {
/* Move rules */
MLXSW_REG_RRCR_OP_MOVE,
/* Copy rules */
MLXSW_REG_RRCR_OP_COPY,
};
/* reg_rrcr_op
* Access: WO
*/
MLXSW_ITEM32(reg, rrcr, op, 0x00, 28, 4);
/* reg_rrcr_offset
* Offset within the region from which to copy/move.
* Access: Index
*/
MLXSW_ITEM32(reg, rrcr, offset, 0x00, 0, 16);
/* reg_rrcr_size
* The number of rules to copy/move.
* Access: WO
*/
MLXSW_ITEM32(reg, rrcr, size, 0x04, 0, 16);
/* reg_rrcr_table_id
* Identifier of the table on which to perform the operation. Encoding is the
* same as in RTAR.key_type
* Access: Index
*/
MLXSW_ITEM32(reg, rrcr, table_id, 0x10, 0, 4);
/* reg_rrcr_dest_offset
* Offset within the region to which to copy/move
* Access: Index
*/
MLXSW_ITEM32(reg, rrcr, dest_offset, 0x20, 0, 16);
static inline void mlxsw_reg_rrcr_pack(char *payload, enum mlxsw_reg_rrcr_op op,
u16 offset, u16 size,
enum mlxsw_reg_rtar_key_type table_id,
u16 dest_offset)
{
MLXSW_REG_ZERO(rrcr, payload);
mlxsw_reg_rrcr_op_set(payload, op);
mlxsw_reg_rrcr_offset_set(payload, offset);
mlxsw_reg_rrcr_size_set(payload, size);
mlxsw_reg_rrcr_table_id_set(payload, table_id);
mlxsw_reg_rrcr_dest_offset_set(payload, dest_offset);
}
/* RALTA - Router Algorithmic LPM Tree Allocation Register
* -------------------------------------------------------
* RALTA is used to allocate the LPM trees of the SHSPM method.
*/
#define MLXSW_REG_RALTA_ID 0x8010
#define MLXSW_REG_RALTA_LEN 0x04
MLXSW_REG_DEFINE(ralta, MLXSW_REG_RALTA_ID, MLXSW_REG_RALTA_LEN);
/* reg_ralta_op
* opcode (valid for Write, must be 0 on Read)
* 0 - allocate a tree
* 1 - deallocate a tree
* Access: OP
*/
MLXSW_ITEM32(reg, ralta, op, 0x00, 28, 2);
enum mlxsw_reg_ralxx_protocol {
MLXSW_REG_RALXX_PROTOCOL_IPV4,
MLXSW_REG_RALXX_PROTOCOL_IPV6,
};
/* reg_ralta_protocol
* Protocol.
* Deallocation opcode: Reserved.
* Access: RW
*/
MLXSW_ITEM32(reg, ralta, protocol, 0x00, 24, 4);
/* reg_ralta_tree_id
* An identifier (numbered from 1..cap_shspm_max_trees-1) representing
* the tree identifier (managed by software).
* Note that tree_id 0 is allocated for a default-route tree.
* Access: Index
*/
MLXSW_ITEM32(reg, ralta, tree_id, 0x00, 0, 8);
static inline void mlxsw_reg_ralta_pack(char *payload, bool alloc,
enum mlxsw_reg_ralxx_protocol protocol,
u8 tree_id)
{
MLXSW_REG_ZERO(ralta, payload);
mlxsw_reg_ralta_op_set(payload, !alloc);
mlxsw_reg_ralta_protocol_set(payload, protocol);
mlxsw_reg_ralta_tree_id_set(payload, tree_id);
}
/* RALST - Router Algorithmic LPM Structure Tree Register
* ------------------------------------------------------
* RALST is used to set and query the structure of an LPM tree.
* The structure of the tree must be sorted as a sorted binary tree, while
* each node is a bin that is tagged as the length of the prefixes the lookup
* will refer to. Therefore, bin X refers to a set of entries with prefixes
* of X bits to match with the destination address. The bin 0 indicates
* the default action, when there is no match of any prefix.
*/
#define MLXSW_REG_RALST_ID 0x8011
#define MLXSW_REG_RALST_LEN 0x104
MLXSW_REG_DEFINE(ralst, MLXSW_REG_RALST_ID, MLXSW_REG_RALST_LEN);
/* reg_ralst_root_bin
* The bin number of the root bin.
* 0<root_bin=<(length of IP address)
* For a default-route tree configure 0xff
* Access: RW
*/
MLXSW_ITEM32(reg, ralst, root_bin, 0x00, 16, 8);
/* reg_ralst_tree_id
* Tree identifier numbered from 1..(cap_shspm_max_trees-1).
* Access: Index
*/
MLXSW_ITEM32(reg, ralst, tree_id, 0x00, 0, 8);
#define MLXSW_REG_RALST_BIN_NO_CHILD 0xff
#define MLXSW_REG_RALST_BIN_OFFSET 0x04
#define MLXSW_REG_RALST_BIN_COUNT 128
/* reg_ralst_left_child_bin
* Holding the children of the bin according to the stored tree's structure.
* For trees composed of less than 4 blocks, the bins in excess are reserved.
* Note that tree_id 0 is allocated for a default-route tree, bins are 0xff
* Access: RW
*/
MLXSW_ITEM16_INDEXED(reg, ralst, left_child_bin, 0x04, 8, 8, 0x02, 0x00, false);
/* reg_ralst_right_child_bin
* Holding the children of the bin according to the stored tree's structure.
* For trees composed of less than 4 blocks, the bins in excess are reserved.
* Note that tree_id 0 is allocated for a default-route tree, bins are 0xff
* Access: RW
*/
MLXSW_ITEM16_INDEXED(reg, ralst, right_child_bin, 0x04, 0, 8, 0x02, 0x00,
false);
static inline void mlxsw_reg_ralst_pack(char *payload, u8 root_bin, u8 tree_id)
{
MLXSW_REG_ZERO(ralst, payload);
/* Initialize all bins to have no left or right child */
memset(payload + MLXSW_REG_RALST_BIN_OFFSET,
MLXSW_REG_RALST_BIN_NO_CHILD, MLXSW_REG_RALST_BIN_COUNT * 2);
mlxsw_reg_ralst_root_bin_set(payload, root_bin);
mlxsw_reg_ralst_tree_id_set(payload, tree_id);
}
static inline void mlxsw_reg_ralst_bin_pack(char *payload, u8 bin_number,
u8 left_child_bin,
u8 right_child_bin)
{
int bin_index = bin_number - 1;
mlxsw_reg_ralst_left_child_bin_set(payload, bin_index, left_child_bin);
mlxsw_reg_ralst_right_child_bin_set(payload, bin_index,
right_child_bin);
}
/* RALTB - Router Algorithmic LPM Tree Binding Register
* ----------------------------------------------------
* RALTB is used to bind virtual router and protocol to an allocated LPM tree.
*/
#define MLXSW_REG_RALTB_ID 0x8012
#define MLXSW_REG_RALTB_LEN 0x04
MLXSW_REG_DEFINE(raltb, MLXSW_REG_RALTB_ID, MLXSW_REG_RALTB_LEN);
/* reg_raltb_virtual_router
* Virtual Router ID
* Range is 0..cap_max_virtual_routers-1
* Access: Index
*/
MLXSW_ITEM32(reg, raltb, virtual_router, 0x00, 16, 16);
/* reg_raltb_protocol
* Protocol.
* Access: Index
*/
MLXSW_ITEM32(reg, raltb, protocol, 0x00, 12, 4);
/* reg_raltb_tree_id
* Tree to be used for the {virtual_router, protocol}
* Tree identifier numbered from 1..(cap_shspm_max_trees-1).
* By default, all Unicast IPv4 and IPv6 are bound to tree_id 0.
* Access: RW
*/
MLXSW_ITEM32(reg, raltb, tree_id, 0x00, 0, 8);
static inline void mlxsw_reg_raltb_pack(char *payload, u16 virtual_router,
enum mlxsw_reg_ralxx_protocol protocol,
u8 tree_id)
{
MLXSW_REG_ZERO(raltb, payload);
mlxsw_reg_raltb_virtual_router_set(payload, virtual_router);
mlxsw_reg_raltb_protocol_set(payload, protocol);
mlxsw_reg_raltb_tree_id_set(payload, tree_id);
}
/* RALUE - Router Algorithmic LPM Unicast Entry Register
* -----------------------------------------------------
* RALUE is used to configure and query LPM entries that serve
* the Unicast protocols.
*/
#define MLXSW_REG_RALUE_ID 0x8013
#define MLXSW_REG_RALUE_LEN 0x38
MLXSW_REG_DEFINE(ralue, MLXSW_REG_RALUE_ID, MLXSW_REG_RALUE_LEN);
/* reg_ralue_protocol
* Protocol.
* Access: Index
*/
MLXSW_ITEM32(reg, ralue, protocol, 0x00, 24, 4);
enum mlxsw_reg_ralue_op {
/* Read operation. If entry doesn't exist, the operation fails. */
MLXSW_REG_RALUE_OP_QUERY_READ = 0,
/* Clear on read operation. Used to read entry and
* clear Activity bit.
*/
MLXSW_REG_RALUE_OP_QUERY_CLEAR = 1,
/* Write operation. Used to write a new entry to the table. All RW
* fields are written for new entry. Activity bit is set
* for new entries.
*/
MLXSW_REG_RALUE_OP_WRITE_WRITE = 0,
/* Update operation. Used to update an existing route entry and
* only update the RW fields that are detailed in the field
* op_u_mask. If entry doesn't exist, the operation fails.
*/
MLXSW_REG_RALUE_OP_WRITE_UPDATE = 1,
/* Clear activity. The Activity bit (the field a) is cleared
* for the entry.
*/
MLXSW_REG_RALUE_OP_WRITE_CLEAR = 2,
/* Delete operation. Used to delete an existing entry. If entry
* doesn't exist, the operation fails.
*/
MLXSW_REG_RALUE_OP_WRITE_DELETE = 3,
};
/* reg_ralue_op
* Operation.
* Access: OP
*/
MLXSW_ITEM32(reg, ralue, op, 0x00, 20, 3);
/* reg_ralue_a
* Activity. Set for new entries. Set if a packet lookup has hit on the
* specific entry, only if the entry is a route. To clear the a bit, use
* "clear activity" op.
* Enabled by activity_dis in RGCR
* Access: RO
*/
MLXSW_ITEM32(reg, ralue, a, 0x00, 16, 1);
/* reg_ralue_virtual_router
* Virtual Router ID
* Range is 0..cap_max_virtual_routers-1
* Access: Index
*/
MLXSW_ITEM32(reg, ralue, virtual_router, 0x04, 16, 16);
#define MLXSW_REG_RALUE_OP_U_MASK_ENTRY_TYPE BIT(0)
#define MLXSW_REG_RALUE_OP_U_MASK_BMP_LEN BIT(1)
#define MLXSW_REG_RALUE_OP_U_MASK_ACTION BIT(2)
/* reg_ralue_op_u_mask
* opcode update mask.
* On read operation, this field is reserved.
* This field is valid for update opcode, otherwise - reserved.
* This field is a bitmask of the fields that should be updated.
* Access: WO
*/
MLXSW_ITEM32(reg, ralue, op_u_mask, 0x04, 8, 3);
/* reg_ralue_prefix_len
* Number of bits in the prefix of the LPM route.
* Note that for IPv6 prefixes, if prefix_len>64 the entry consumes
* two entries in the physical HW table.
* Access: Index
*/
MLXSW_ITEM32(reg, ralue, prefix_len, 0x08, 0, 8);
/* reg_ralue_dip*
* The prefix of the route or of the marker that the object of the LPM
* is compared with. The most significant bits of the dip are the prefix.
* The least significant bits must be '0' if the prefix_len is smaller
* than 128 for IPv6 or smaller than 32 for IPv4.
* IPv4 address uses bits dip[31:0] and bits dip[127:32] are reserved.
* Access: Index
*/
MLXSW_ITEM32(reg, ralue, dip4, 0x18, 0, 32);
MLXSW_ITEM_BUF(reg, ralue, dip6, 0x0C, 16);
enum mlxsw_reg_ralue_entry_type {
MLXSW_REG_RALUE_ENTRY_TYPE_MARKER_ENTRY = 1,
MLXSW_REG_RALUE_ENTRY_TYPE_ROUTE_ENTRY = 2,
MLXSW_REG_RALUE_ENTRY_TYPE_MARKER_AND_ROUTE_ENTRY = 3,
};
/* reg_ralue_entry_type
* Entry type.
* Note - for Marker entries, the action_type and action fields are reserved.
* Access: RW
*/
MLXSW_ITEM32(reg, ralue, entry_type, 0x1C, 30, 2);
/* reg_ralue_bmp_len
* The best match prefix length in the case that there is no match for
* longer prefixes.
* If (entry_type != MARKER_ENTRY), bmp_len must be equal to prefix_len
* Note for any update operation with entry_type modification this
* field must be set.
* Access: RW
*/
MLXSW_ITEM32(reg, ralue, bmp_len, 0x1C, 16, 8);
enum mlxsw_reg_ralue_action_type {
MLXSW_REG_RALUE_ACTION_TYPE_REMOTE,
MLXSW_REG_RALUE_ACTION_TYPE_LOCAL,
MLXSW_REG_RALUE_ACTION_TYPE_IP2ME,
};
/* reg_ralue_action_type
* Action Type
* Indicates how the IP address is connected.
* It can be connected to a local subnet through local_erif or can be
* on a remote subnet connected through a next-hop router,
* or transmitted to the CPU.
* Reserved when entry_type = MARKER_ENTRY
* Access: RW
*/
MLXSW_ITEM32(reg, ralue, action_type, 0x1C, 0, 2);
enum mlxsw_reg_ralue_trap_action {
MLXSW_REG_RALUE_TRAP_ACTION_NOP,
MLXSW_REG_RALUE_TRAP_ACTION_TRAP,
MLXSW_REG_RALUE_TRAP_ACTION_MIRROR_TO_CPU,
MLXSW_REG_RALUE_TRAP_ACTION_MIRROR,
MLXSW_REG_RALUE_TRAP_ACTION_DISCARD_ERROR,
};
/* reg_ralue_trap_action
* Trap action.
* For IP2ME action, only NOP and MIRROR are possible.
* Access: RW
*/
MLXSW_ITEM32(reg, ralue, trap_action, 0x20, 28, 4);
/* reg_ralue_trap_id
* Trap ID to be reported to CPU.
* Trap ID is RTR_INGRESS0 or RTR_INGRESS1.
* For trap_action of NOP, MIRROR and DISCARD_ERROR, trap_id is reserved.
* Access: RW
*/
MLXSW_ITEM32(reg, ralue, trap_id, 0x20, 0, 9);
/* reg_ralue_adjacency_index
* Points to the first entry of the group-based ECMP.
* Only relevant in case of REMOTE action.
* Access: RW
*/
MLXSW_ITEM32(reg, ralue, adjacency_index, 0x24, 0, 24);
/* reg_ralue_ecmp_size
* Amount of sequential entries starting
* from the adjacency_index (the number of ECMPs).
* The valid range is 1-64, 512, 1024, 2048 and 4096.
* Reserved when trap_action is TRAP or DISCARD_ERROR.
* Only relevant in case of REMOTE action.
* Access: RW
*/
MLXSW_ITEM32(reg, ralue, ecmp_size, 0x28, 0, 13);
/* reg_ralue_local_erif
* Egress Router Interface.
* Only relevant in case of LOCAL action.
* Access: RW
*/
MLXSW_ITEM32(reg, ralue, local_erif, 0x24, 0, 16);
/* reg_ralue_ip2me_v
* Valid bit for the tunnel_ptr field.
* If valid = 0 then trap to CPU as IP2ME trap ID.
* If valid = 1 and the packet format allows NVE or IPinIP tunnel
* decapsulation then tunnel decapsulation is done.
* If valid = 1 and packet format does not allow NVE or IPinIP tunnel
* decapsulation then trap as IP2ME trap ID.
* Only relevant in case of IP2ME action.
* Access: RW
*/
MLXSW_ITEM32(reg, ralue, ip2me_v, 0x24, 31, 1);
/* reg_ralue_ip2me_tunnel_ptr
* Tunnel Pointer for NVE or IPinIP tunnel decapsulation.
* For Spectrum, pointer to KVD Linear.
* Only relevant in case of IP2ME action.
* Access: RW
*/
MLXSW_ITEM32(reg, ralue, ip2me_tunnel_ptr, 0x24, 0, 24);
static inline void mlxsw_reg_ralue_pack(char *payload,
enum mlxsw_reg_ralxx_protocol protocol,
enum mlxsw_reg_ralue_op op,
u16 virtual_router, u8 prefix_len)
{
MLXSW_REG_ZERO(ralue, payload);
mlxsw_reg_ralue_protocol_set(payload, protocol);
mlxsw_reg_ralue_op_set(payload, op);
mlxsw_reg_ralue_virtual_router_set(payload, virtual_router);
mlxsw_reg_ralue_prefix_len_set(payload, prefix_len);
mlxsw_reg_ralue_entry_type_set(payload,
MLXSW_REG_RALUE_ENTRY_TYPE_ROUTE_ENTRY);
mlxsw_reg_ralue_bmp_len_set(payload, prefix_len);
}
static inline void mlxsw_reg_ralue_pack4(char *payload,
enum mlxsw_reg_ralxx_protocol protocol,
enum mlxsw_reg_ralue_op op,
u16 virtual_router, u8 prefix_len,
u32 dip)
{
mlxsw_reg_ralue_pack(payload, protocol, op, virtual_router, prefix_len);
mlxsw_reg_ralue_dip4_set(payload, dip);
}
static inline void mlxsw_reg_ralue_pack6(char *payload,
enum mlxsw_reg_ralxx_protocol protocol,
enum mlxsw_reg_ralue_op op,
u16 virtual_router, u8 prefix_len,
const void *dip)
{
mlxsw_reg_ralue_pack(payload, protocol, op, virtual_router, prefix_len);
mlxsw_reg_ralue_dip6_memcpy_to(payload, dip);
}
static inline void
mlxsw_reg_ralue_act_remote_pack(char *payload,
enum mlxsw_reg_ralue_trap_action trap_action,
u16 trap_id, u32 adjacency_index, u16 ecmp_size)
{
mlxsw_reg_ralue_action_type_set(payload,
MLXSW_REG_RALUE_ACTION_TYPE_REMOTE);
mlxsw_reg_ralue_trap_action_set(payload, trap_action);
mlxsw_reg_ralue_trap_id_set(payload, trap_id);
mlxsw_reg_ralue_adjacency_index_set(payload, adjacency_index);
mlxsw_reg_ralue_ecmp_size_set(payload, ecmp_size);
}
static inline void
mlxsw_reg_ralue_act_local_pack(char *payload,
enum mlxsw_reg_ralue_trap_action trap_action,
u16 trap_id, u16 local_erif)
{
mlxsw_reg_ralue_action_type_set(payload,
MLXSW_REG_RALUE_ACTION_TYPE_LOCAL);
mlxsw_reg_ralue_trap_action_set(payload, trap_action);
mlxsw_reg_ralue_trap_id_set(payload, trap_id);
mlxsw_reg_ralue_local_erif_set(payload, local_erif);
}
static inline void
mlxsw_reg_ralue_act_ip2me_pack(char *payload)
{
mlxsw_reg_ralue_action_type_set(payload,
MLXSW_REG_RALUE_ACTION_TYPE_IP2ME);
}
static inline void
mlxsw_reg_ralue_act_ip2me_tun_pack(char *payload, u32 tunnel_ptr)
{
mlxsw_reg_ralue_action_type_set(payload,
MLXSW_REG_RALUE_ACTION_TYPE_IP2ME);
mlxsw_reg_ralue_ip2me_v_set(payload, 1);
mlxsw_reg_ralue_ip2me_tunnel_ptr_set(payload, tunnel_ptr);
}
/* RAUHT - Router Algorithmic LPM Unicast Host Table Register
* ----------------------------------------------------------
* The RAUHT register is used to configure and query the Unicast Host table in
* devices that implement the Algorithmic LPM.
*/
#define MLXSW_REG_RAUHT_ID 0x8014
#define MLXSW_REG_RAUHT_LEN 0x74
MLXSW_REG_DEFINE(rauht, MLXSW_REG_RAUHT_ID, MLXSW_REG_RAUHT_LEN);
enum mlxsw_reg_rauht_type {
MLXSW_REG_RAUHT_TYPE_IPV4,
MLXSW_REG_RAUHT_TYPE_IPV6,
};
/* reg_rauht_type
* Access: Index
*/
MLXSW_ITEM32(reg, rauht, type, 0x00, 24, 2);
enum mlxsw_reg_rauht_op {
MLXSW_REG_RAUHT_OP_QUERY_READ = 0,
/* Read operation */
MLXSW_REG_RAUHT_OP_QUERY_CLEAR_ON_READ = 1,
/* Clear on read operation. Used to read entry and clear
* activity bit.
*/
MLXSW_REG_RAUHT_OP_WRITE_ADD = 0,
/* Add. Used to write a new entry to the table. All R/W fields are
* relevant for new entry. Activity bit is set for new entries.
*/
MLXSW_REG_RAUHT_OP_WRITE_UPDATE = 1,
/* Update action. Used to update an existing route entry and
* only update the following fields:
* trap_action, trap_id, mac, counter_set_type, counter_index
*/
MLXSW_REG_RAUHT_OP_WRITE_CLEAR_ACTIVITY = 2,
/* Clear activity. A bit is cleared for the entry. */
MLXSW_REG_RAUHT_OP_WRITE_DELETE = 3,
/* Delete entry */
MLXSW_REG_RAUHT_OP_WRITE_DELETE_ALL = 4,
/* Delete all host entries on a RIF. In this command, dip
* field is reserved.
*/
};
/* reg_rauht_op
* Access: OP
*/
MLXSW_ITEM32(reg, rauht, op, 0x00, 20, 3);
/* reg_rauht_a
* Activity. Set for new entries. Set if a packet lookup has hit on
* the specific entry.
* To clear the a bit, use "clear activity" op.
* Enabled by activity_dis in RGCR
* Access: RO
*/
MLXSW_ITEM32(reg, rauht, a, 0x00, 16, 1);
/* reg_rauht_rif
* Router Interface
* Access: Index
*/
MLXSW_ITEM32(reg, rauht, rif, 0x00, 0, 16);
/* reg_rauht_dip*
* Destination address.
* Access: Index
*/
MLXSW_ITEM32(reg, rauht, dip4, 0x1C, 0x0, 32);
MLXSW_ITEM_BUF(reg, rauht, dip6, 0x10, 16);
enum mlxsw_reg_rauht_trap_action {
MLXSW_REG_RAUHT_TRAP_ACTION_NOP,
MLXSW_REG_RAUHT_TRAP_ACTION_TRAP,
MLXSW_REG_RAUHT_TRAP_ACTION_MIRROR_TO_CPU,
MLXSW_REG_RAUHT_TRAP_ACTION_MIRROR,
MLXSW_REG_RAUHT_TRAP_ACTION_DISCARD_ERRORS,
};
/* reg_rauht_trap_action
* Access: RW
*/
MLXSW_ITEM32(reg, rauht, trap_action, 0x60, 28, 4);
enum mlxsw_reg_rauht_trap_id {
MLXSW_REG_RAUHT_TRAP_ID_RTR_EGRESS0,
MLXSW_REG_RAUHT_TRAP_ID_RTR_EGRESS1,
};
/* reg_rauht_trap_id
* Trap ID to be reported to CPU.
* Trap-ID is RTR_EGRESS0 or RTR_EGRESS1.
* For trap_action of NOP, MIRROR and DISCARD_ERROR,
* trap_id is reserved.
* Access: RW
*/
MLXSW_ITEM32(reg, rauht, trap_id, 0x60, 0, 9);
/* reg_rauht_counter_set_type
* Counter set type for flow counters
* Access: RW
*/
MLXSW_ITEM32(reg, rauht, counter_set_type, 0x68, 24, 8);
/* reg_rauht_counter_index
* Counter index for flow counters
* Access: RW
*/
MLXSW_ITEM32(reg, rauht, counter_index, 0x68, 0, 24);
/* reg_rauht_mac
* MAC address.
* Access: RW
*/
MLXSW_ITEM_BUF(reg, rauht, mac, 0x6E, 6);
static inline void mlxsw_reg_rauht_pack(char *payload,
enum mlxsw_reg_rauht_op op, u16 rif,
const char *mac)
{
MLXSW_REG_ZERO(rauht, payload);
mlxsw_reg_rauht_op_set(payload, op);
mlxsw_reg_rauht_rif_set(payload, rif);
mlxsw_reg_rauht_mac_memcpy_to(payload, mac);
}
static inline void mlxsw_reg_rauht_pack4(char *payload,
enum mlxsw_reg_rauht_op op, u16 rif,
const char *mac, u32 dip)
{
mlxsw_reg_rauht_pack(payload, op, rif, mac);
mlxsw_reg_rauht_dip4_set(payload, dip);
}
static inline void mlxsw_reg_rauht_pack6(char *payload,
enum mlxsw_reg_rauht_op op, u16 rif,
const char *mac, const char *dip)
{
mlxsw_reg_rauht_pack(payload, op, rif, mac);
mlxsw_reg_rauht_type_set(payload, MLXSW_REG_RAUHT_TYPE_IPV6);
mlxsw_reg_rauht_dip6_memcpy_to(payload, dip);
}
static inline void mlxsw_reg_rauht_pack_counter(char *payload,
u64 counter_index)
{
mlxsw_reg_rauht_counter_index_set(payload, counter_index);
mlxsw_reg_rauht_counter_set_type_set(payload,
MLXSW_REG_FLOW_COUNTER_SET_TYPE_PACKETS_BYTES);
}
/* RALEU - Router Algorithmic LPM ECMP Update Register
* ---------------------------------------------------
* The register enables updating the ECMP section in the action for multiple
* LPM Unicast entries in a single operation. The update is executed to
* all entries of a {virtual router, protocol} tuple using the same ECMP group.
*/
#define MLXSW_REG_RALEU_ID 0x8015
#define MLXSW_REG_RALEU_LEN 0x28
MLXSW_REG_DEFINE(raleu, MLXSW_REG_RALEU_ID, MLXSW_REG_RALEU_LEN);
/* reg_raleu_protocol
* Protocol.
* Access: Index
*/
MLXSW_ITEM32(reg, raleu, protocol, 0x00, 24, 4);
/* reg_raleu_virtual_router
* Virtual Router ID
* Range is 0..cap_max_virtual_routers-1
* Access: Index
*/
MLXSW_ITEM32(reg, raleu, virtual_router, 0x00, 0, 16);
/* reg_raleu_adjacency_index
* Adjacency Index used for matching on the existing entries.
* Access: Index
*/
MLXSW_ITEM32(reg, raleu, adjacency_index, 0x10, 0, 24);
/* reg_raleu_ecmp_size
* ECMP Size used for matching on the existing entries.
* Access: Index
*/
MLXSW_ITEM32(reg, raleu, ecmp_size, 0x14, 0, 13);
/* reg_raleu_new_adjacency_index
* New Adjacency Index.
* Access: WO
*/
MLXSW_ITEM32(reg, raleu, new_adjacency_index, 0x20, 0, 24);
/* reg_raleu_new_ecmp_size
* New ECMP Size.
* Access: WO
*/
MLXSW_ITEM32(reg, raleu, new_ecmp_size, 0x24, 0, 13);
static inline void mlxsw_reg_raleu_pack(char *payload,
enum mlxsw_reg_ralxx_protocol protocol,
u16 virtual_router,
u32 adjacency_index, u16 ecmp_size,
u32 new_adjacency_index,
u16 new_ecmp_size)
{
MLXSW_REG_ZERO(raleu, payload);
mlxsw_reg_raleu_protocol_set(payload, protocol);
mlxsw_reg_raleu_virtual_router_set(payload, virtual_router);
mlxsw_reg_raleu_adjacency_index_set(payload, adjacency_index);
mlxsw_reg_raleu_ecmp_size_set(payload, ecmp_size);
mlxsw_reg_raleu_new_adjacency_index_set(payload, new_adjacency_index);
mlxsw_reg_raleu_new_ecmp_size_set(payload, new_ecmp_size);
}
/* RAUHTD - Router Algorithmic LPM Unicast Host Table Dump Register
* ----------------------------------------------------------------
* The RAUHTD register allows dumping entries from the Router Unicast Host
* Table. For a given session an entry is dumped no more than one time. The
* first RAUHTD access after reset is a new session. A session ends when the
* num_rec response is smaller than num_rec request or for IPv4 when the
* num_entries is smaller than 4. The clear activity affect the current session
* or the last session if a new session has not started.
*/
#define MLXSW_REG_RAUHTD_ID 0x8018
#define MLXSW_REG_RAUHTD_BASE_LEN 0x20
#define MLXSW_REG_RAUHTD_REC_LEN 0x20
#define MLXSW_REG_RAUHTD_REC_MAX_NUM 32
#define MLXSW_REG_RAUHTD_LEN (MLXSW_REG_RAUHTD_BASE_LEN + \
MLXSW_REG_RAUHTD_REC_MAX_NUM * MLXSW_REG_RAUHTD_REC_LEN)
#define MLXSW_REG_RAUHTD_IPV4_ENT_PER_REC 4
MLXSW_REG_DEFINE(rauhtd, MLXSW_REG_RAUHTD_ID, MLXSW_REG_RAUHTD_LEN);
#define MLXSW_REG_RAUHTD_FILTER_A BIT(0)
#define MLXSW_REG_RAUHTD_FILTER_RIF BIT(3)
/* reg_rauhtd_filter_fields
* if a bit is '0' then the relevant field is ignored and dump is done
* regardless of the field value
* Bit0 - filter by activity: entry_a
* Bit3 - filter by entry rip: entry_rif
* Access: Index
*/
MLXSW_ITEM32(reg, rauhtd, filter_fields, 0x00, 0, 8);
enum mlxsw_reg_rauhtd_op {
MLXSW_REG_RAUHTD_OP_DUMP,
MLXSW_REG_RAUHTD_OP_DUMP_AND_CLEAR,
};
/* reg_rauhtd_op
* Access: OP
*/
MLXSW_ITEM32(reg, rauhtd, op, 0x04, 24, 2);
/* reg_rauhtd_num_rec
* At request: number of records requested
* At response: number of records dumped
* For IPv4, each record has 4 entries at request and up to 4 entries
* at response
* Range is 0..MLXSW_REG_RAUHTD_REC_MAX_NUM
* Access: Index
*/
MLXSW_ITEM32(reg, rauhtd, num_rec, 0x04, 0, 8);
/* reg_rauhtd_entry_a
* Dump only if activity has value of entry_a
* Reserved if filter_fields bit0 is '0'
* Access: Index
*/
MLXSW_ITEM32(reg, rauhtd, entry_a, 0x08, 16, 1);
enum mlxsw_reg_rauhtd_type {
MLXSW_REG_RAUHTD_TYPE_IPV4,
MLXSW_REG_RAUHTD_TYPE_IPV6,
};
/* reg_rauhtd_type
* Dump only if record type is:
* 0 - IPv4
* 1 - IPv6
* Access: Index
*/
MLXSW_ITEM32(reg, rauhtd, type, 0x08, 0, 4);
/* reg_rauhtd_entry_rif
* Dump only if RIF has value of entry_rif
* Reserved if filter_fields bit3 is '0'
* Access: Index
*/
MLXSW_ITEM32(reg, rauhtd, entry_rif, 0x0C, 0, 16);
static inline void mlxsw_reg_rauhtd_pack(char *payload,
enum mlxsw_reg_rauhtd_type type)
{
MLXSW_REG_ZERO(rauhtd, payload);
mlxsw_reg_rauhtd_filter_fields_set(payload, MLXSW_REG_RAUHTD_FILTER_A);
mlxsw_reg_rauhtd_op_set(payload, MLXSW_REG_RAUHTD_OP_DUMP_AND_CLEAR);
mlxsw_reg_rauhtd_num_rec_set(payload, MLXSW_REG_RAUHTD_REC_MAX_NUM);
mlxsw_reg_rauhtd_entry_a_set(payload, 1);
mlxsw_reg_rauhtd_type_set(payload, type);
}
/* reg_rauhtd_ipv4_rec_num_entries
* Number of valid entries in this record:
* 0 - 1 valid entry
* 1 - 2 valid entries
* 2 - 3 valid entries
* 3 - 4 valid entries
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv4_rec_num_entries,
MLXSW_REG_RAUHTD_BASE_LEN, 28, 2,
MLXSW_REG_RAUHTD_REC_LEN, 0x00, false);
/* reg_rauhtd_rec_type
* Record type.
* 0 - IPv4
* 1 - IPv6
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, rauhtd, rec_type, MLXSW_REG_RAUHTD_BASE_LEN, 24, 2,
MLXSW_REG_RAUHTD_REC_LEN, 0x00, false);
#define MLXSW_REG_RAUHTD_IPV4_ENT_LEN 0x8
/* reg_rauhtd_ipv4_ent_a
* Activity. Set for new entries. Set if a packet lookup has hit on the
* specific entry.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv4_ent_a, MLXSW_REG_RAUHTD_BASE_LEN, 16, 1,
MLXSW_REG_RAUHTD_IPV4_ENT_LEN, 0x00, false);
/* reg_rauhtd_ipv4_ent_rif
* Router interface.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv4_ent_rif, MLXSW_REG_RAUHTD_BASE_LEN, 0,
16, MLXSW_REG_RAUHTD_IPV4_ENT_LEN, 0x00, false);
/* reg_rauhtd_ipv4_ent_dip
* Destination IPv4 address.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv4_ent_dip, MLXSW_REG_RAUHTD_BASE_LEN, 0,
32, MLXSW_REG_RAUHTD_IPV4_ENT_LEN, 0x04, false);
#define MLXSW_REG_RAUHTD_IPV6_ENT_LEN 0x20
/* reg_rauhtd_ipv6_ent_a
* Activity. Set for new entries. Set if a packet lookup has hit on the
* specific entry.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv6_ent_a, MLXSW_REG_RAUHTD_BASE_LEN, 16, 1,
MLXSW_REG_RAUHTD_IPV6_ENT_LEN, 0x00, false);
/* reg_rauhtd_ipv6_ent_rif
* Router interface.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv6_ent_rif, MLXSW_REG_RAUHTD_BASE_LEN, 0,
16, MLXSW_REG_RAUHTD_IPV6_ENT_LEN, 0x00, false);
/* reg_rauhtd_ipv6_ent_dip
* Destination IPv6 address.
* Access: RO
*/
MLXSW_ITEM_BUF_INDEXED(reg, rauhtd, ipv6_ent_dip, MLXSW_REG_RAUHTD_BASE_LEN,
16, MLXSW_REG_RAUHTD_IPV6_ENT_LEN, 0x10);
static inline void mlxsw_reg_rauhtd_ent_ipv4_unpack(char *payload,
int ent_index, u16 *p_rif,
u32 *p_dip)
{
*p_rif = mlxsw_reg_rauhtd_ipv4_ent_rif_get(payload, ent_index);
*p_dip = mlxsw_reg_rauhtd_ipv4_ent_dip_get(payload, ent_index);
}
static inline void mlxsw_reg_rauhtd_ent_ipv6_unpack(char *payload,
int rec_index, u16 *p_rif,
char *p_dip)
{
*p_rif = mlxsw_reg_rauhtd_ipv6_ent_rif_get(payload, rec_index);
mlxsw_reg_rauhtd_ipv6_ent_dip_memcpy_from(payload, rec_index, p_dip);
}
/* RTDP - Routing Tunnel Decap Properties Register
* -----------------------------------------------
* The RTDP register is used for configuring the tunnel decap properties of NVE
* and IPinIP.
*/
#define MLXSW_REG_RTDP_ID 0x8020
#define MLXSW_REG_RTDP_LEN 0x44
MLXSW_REG_DEFINE(rtdp, MLXSW_REG_RTDP_ID, MLXSW_REG_RTDP_LEN);
enum mlxsw_reg_rtdp_type {
MLXSW_REG_RTDP_TYPE_NVE,
MLXSW_REG_RTDP_TYPE_IPIP,
};
/* reg_rtdp_type
* Type of the RTDP entry as per enum mlxsw_reg_rtdp_type.
* Access: RW
*/
MLXSW_ITEM32(reg, rtdp, type, 0x00, 28, 4);
/* reg_rtdp_tunnel_index
* Index to the Decap entry.
* For Spectrum, Index to KVD Linear.
* Access: Index
*/
MLXSW_ITEM32(reg, rtdp, tunnel_index, 0x00, 0, 24);
/* reg_rtdp_egress_router_interface
* Underlay egress router interface.
* Valid range is from 0 to cap_max_router_interfaces - 1
* Access: RW
*/
MLXSW_ITEM32(reg, rtdp, egress_router_interface, 0x40, 0, 16);
/* IPinIP */
/* reg_rtdp_ipip_irif
* Ingress Router Interface for the overlay router
* Access: RW
*/
MLXSW_ITEM32(reg, rtdp, ipip_irif, 0x04, 16, 16);
enum mlxsw_reg_rtdp_ipip_sip_check {
/* No sip checks. */
MLXSW_REG_RTDP_IPIP_SIP_CHECK_NO,
/* Filter packet if underlay is not IPv4 or if underlay SIP does not
* equal ipv4_usip.
*/
MLXSW_REG_RTDP_IPIP_SIP_CHECK_FILTER_IPV4,
/* Filter packet if underlay is not IPv6 or if underlay SIP does not
* equal ipv6_usip.
*/
MLXSW_REG_RTDP_IPIP_SIP_CHECK_FILTER_IPV6 = 3,
};
/* reg_rtdp_ipip_sip_check
* SIP check to perform. If decapsulation failed due to these configurations
* then trap_id is IPIP_DECAP_ERROR.
* Access: RW
*/
MLXSW_ITEM32(reg, rtdp, ipip_sip_check, 0x04, 0, 3);
/* If set, allow decapsulation of IPinIP (without GRE). */
#define MLXSW_REG_RTDP_IPIP_TYPE_CHECK_ALLOW_IPIP BIT(0)
/* If set, allow decapsulation of IPinGREinIP without a key. */
#define MLXSW_REG_RTDP_IPIP_TYPE_CHECK_ALLOW_GRE BIT(1)
/* If set, allow decapsulation of IPinGREinIP with a key. */
#define MLXSW_REG_RTDP_IPIP_TYPE_CHECK_ALLOW_GRE_KEY BIT(2)
/* reg_rtdp_ipip_type_check
* Flags as per MLXSW_REG_RTDP_IPIP_TYPE_CHECK_*. If decapsulation failed due to
* these configurations then trap_id is IPIP_DECAP_ERROR.
* Access: RW
*/
MLXSW_ITEM32(reg, rtdp, ipip_type_check, 0x08, 24, 3);
/* reg_rtdp_ipip_gre_key_check
* Whether GRE key should be checked. When check is enabled:
* - A packet received as IPinIP (without GRE) will always pass.
* - A packet received as IPinGREinIP without a key will not pass the check.
* - A packet received as IPinGREinIP with a key will pass the check only if the
* key in the packet is equal to expected_gre_key.
* If decapsulation failed due to GRE key then trap_id is IPIP_DECAP_ERROR.
* Access: RW
*/
MLXSW_ITEM32(reg, rtdp, ipip_gre_key_check, 0x08, 23, 1);
/* reg_rtdp_ipip_ipv4_usip
* Underlay IPv4 address for ipv4 source address check.
* Reserved when sip_check is not '1'.
* Access: RW
*/
MLXSW_ITEM32(reg, rtdp, ipip_ipv4_usip, 0x0C, 0, 32);
/* reg_rtdp_ipip_ipv6_usip_ptr
* This field is valid when sip_check is "sipv6 check explicitly". This is a
* pointer to the IPv6 DIP which is configured by RIPS. For Spectrum, the index
* is to the KVD linear.
* Reserved when sip_check is not MLXSW_REG_RTDP_IPIP_SIP_CHECK_FILTER_IPV6.
* Access: RW
*/
MLXSW_ITEM32(reg, rtdp, ipip_ipv6_usip_ptr, 0x10, 0, 24);
/* reg_rtdp_ipip_expected_gre_key
* GRE key for checking.
* Reserved when gre_key_check is '0'.
* Access: RW
*/
MLXSW_ITEM32(reg, rtdp, ipip_expected_gre_key, 0x14, 0, 32);
static inline void mlxsw_reg_rtdp_pack(char *payload,
enum mlxsw_reg_rtdp_type type,
u32 tunnel_index)
{
MLXSW_REG_ZERO(rtdp, payload);
mlxsw_reg_rtdp_type_set(payload, type);
mlxsw_reg_rtdp_tunnel_index_set(payload, tunnel_index);
}
static inline void
mlxsw_reg_rtdp_ipip_pack(char *payload, u16 irif,
enum mlxsw_reg_rtdp_ipip_sip_check sip_check,
unsigned int type_check, bool gre_key_check,
u32 expected_gre_key)
{
mlxsw_reg_rtdp_ipip_irif_set(payload, irif);
mlxsw_reg_rtdp_ipip_sip_check_set(payload, sip_check);
mlxsw_reg_rtdp_ipip_type_check_set(payload, type_check);
mlxsw_reg_rtdp_ipip_gre_key_check_set(payload, gre_key_check);
mlxsw_reg_rtdp_ipip_expected_gre_key_set(payload, expected_gre_key);
}
static inline void
mlxsw_reg_rtdp_ipip4_pack(char *payload, u16 irif,
enum mlxsw_reg_rtdp_ipip_sip_check sip_check,
unsigned int type_check, bool gre_key_check,
u32 ipv4_usip, u32 expected_gre_key)
{
mlxsw_reg_rtdp_ipip_pack(payload, irif, sip_check, type_check,
gre_key_check, expected_gre_key);
mlxsw_reg_rtdp_ipip_ipv4_usip_set(payload, ipv4_usip);
}
static inline void
mlxsw_reg_rtdp_ipip6_pack(char *payload, u16 irif,
enum mlxsw_reg_rtdp_ipip_sip_check sip_check,
unsigned int type_check, bool gre_key_check,
u32 ipv6_usip_ptr, u32 expected_gre_key)
{
mlxsw_reg_rtdp_ipip_pack(payload, irif, sip_check, type_check,
gre_key_check, expected_gre_key);
mlxsw_reg_rtdp_ipip_ipv6_usip_ptr_set(payload, ipv6_usip_ptr);
}
/* RIPS - Router IP version Six Register
* -------------------------------------
* The RIPS register is used to store IPv6 addresses for use by the NVE and
* IPinIP
*/
#define MLXSW_REG_RIPS_ID 0x8021
#define MLXSW_REG_RIPS_LEN 0x14
MLXSW_REG_DEFINE(rips, MLXSW_REG_RIPS_ID, MLXSW_REG_RIPS_LEN);
/* reg_rips_index
* Index to IPv6 address.
* For Spectrum, the index is to the KVD linear.
* Access: Index
*/
MLXSW_ITEM32(reg, rips, index, 0x00, 0, 24);
/* reg_rips_ipv6
* IPv6 address
* Access: RW
*/
MLXSW_ITEM_BUF(reg, rips, ipv6, 0x04, 16);
static inline void mlxsw_reg_rips_pack(char *payload, u32 index,
const struct in6_addr *ipv6)
{
MLXSW_REG_ZERO(rips, payload);
mlxsw_reg_rips_index_set(payload, index);
mlxsw_reg_rips_ipv6_memcpy_to(payload, (const char *)ipv6);
}
/* RATRAD - Router Adjacency Table Activity Dump Register
* ------------------------------------------------------
* The RATRAD register is used to dump and optionally clear activity bits of
* router adjacency table entries.
*/
#define MLXSW_REG_RATRAD_ID 0x8022
#define MLXSW_REG_RATRAD_LEN 0x210
MLXSW_REG_DEFINE(ratrad, MLXSW_REG_RATRAD_ID, MLXSW_REG_RATRAD_LEN);
enum {
/* Read activity */
MLXSW_REG_RATRAD_OP_READ_ACTIVITY,
/* Read and clear activity */
MLXSW_REG_RATRAD_OP_READ_CLEAR_ACTIVITY,
};
/* reg_ratrad_op
* Access: Operation
*/
MLXSW_ITEM32(reg, ratrad, op, 0x00, 30, 2);
/* reg_ratrad_ecmp_size
* ecmp_size is the amount of sequential entries from adjacency_index. Valid
* ranges:
* Spectrum-1: 32-64, 512, 1024, 2048, 4096
* Spectrum-2/3: 32-128, 256, 512, 1024, 2048, 4096
* Access: Index
*/
MLXSW_ITEM32(reg, ratrad, ecmp_size, 0x00, 0, 13);
/* reg_ratrad_adjacency_index
* Index into the adjacency table.
* Access: Index
*/
MLXSW_ITEM32(reg, ratrad, adjacency_index, 0x04, 0, 24);
/* reg_ratrad_activity_vector
* Activity bit per adjacency index.
* Bits higher than ecmp_size are reserved.
* Access: RO
*/
MLXSW_ITEM_BIT_ARRAY(reg, ratrad, activity_vector, 0x10, 0x200, 1);
static inline void mlxsw_reg_ratrad_pack(char *payload, u32 adjacency_index,
u16 ecmp_size)
{
MLXSW_REG_ZERO(ratrad, payload);
mlxsw_reg_ratrad_op_set(payload,
MLXSW_REG_RATRAD_OP_READ_CLEAR_ACTIVITY);
mlxsw_reg_ratrad_ecmp_size_set(payload, ecmp_size);
mlxsw_reg_ratrad_adjacency_index_set(payload, adjacency_index);
}
/* RIGR-V2 - Router Interface Group Register Version 2
* ---------------------------------------------------
* The RIGR_V2 register is used to add, remove and query egress interface list
* of a multicast forwarding entry.
*/
#define MLXSW_REG_RIGR2_ID 0x8023
#define MLXSW_REG_RIGR2_LEN 0xB0
#define MLXSW_REG_RIGR2_MAX_ERIFS 32
MLXSW_REG_DEFINE(rigr2, MLXSW_REG_RIGR2_ID, MLXSW_REG_RIGR2_LEN);
/* reg_rigr2_rigr_index
* KVD Linear index.
* Access: Index
*/
MLXSW_ITEM32(reg, rigr2, rigr_index, 0x04, 0, 24);
/* reg_rigr2_vnext
* Next RIGR Index is valid.
* Access: RW
*/
MLXSW_ITEM32(reg, rigr2, vnext, 0x08, 31, 1);
/* reg_rigr2_next_rigr_index
* Next RIGR Index. The index is to the KVD linear.
* Reserved when vnxet = '0'.
* Access: RW
*/
MLXSW_ITEM32(reg, rigr2, next_rigr_index, 0x08, 0, 24);
/* reg_rigr2_vrmid
* RMID Index is valid.
* Access: RW
*/
MLXSW_ITEM32(reg, rigr2, vrmid, 0x20, 31, 1);
/* reg_rigr2_rmid_index
* RMID Index.
* Range 0 .. max_mid - 1
* Reserved when vrmid = '0'.
* The index is to the Port Group Table (PGT)
* Access: RW
*/
MLXSW_ITEM32(reg, rigr2, rmid_index, 0x20, 0, 16);
/* reg_rigr2_erif_entry_v
* Egress Router Interface is valid.
* Note that low-entries must be set if high-entries are set. For
* example: if erif_entry[2].v is set then erif_entry[1].v and
* erif_entry[0].v must be set.
* Index can be from 0 to cap_mc_erif_list_entries-1
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, rigr2, erif_entry_v, 0x24, 31, 1, 4, 0, false);
/* reg_rigr2_erif_entry_erif
* Egress Router Interface.
* Valid range is from 0 to cap_max_router_interfaces - 1
* Index can be from 0 to MLXSW_REG_RIGR2_MAX_ERIFS - 1
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, rigr2, erif_entry_erif, 0x24, 0, 16, 4, 0, false);
static inline void mlxsw_reg_rigr2_pack(char *payload, u32 rigr_index,
bool vnext, u32 next_rigr_index)
{
MLXSW_REG_ZERO(rigr2, payload);
mlxsw_reg_rigr2_rigr_index_set(payload, rigr_index);
mlxsw_reg_rigr2_vnext_set(payload, vnext);
mlxsw_reg_rigr2_next_rigr_index_set(payload, next_rigr_index);
mlxsw_reg_rigr2_vrmid_set(payload, 0);
mlxsw_reg_rigr2_rmid_index_set(payload, 0);
}
static inline void mlxsw_reg_rigr2_erif_entry_pack(char *payload, int index,
bool v, u16 erif)
{
mlxsw_reg_rigr2_erif_entry_v_set(payload, index, v);
mlxsw_reg_rigr2_erif_entry_erif_set(payload, index, erif);
}
/* RECR-V2 - Router ECMP Configuration Version 2 Register
* ------------------------------------------------------
*/
#define MLXSW_REG_RECR2_ID 0x8025
#define MLXSW_REG_RECR2_LEN 0x38
MLXSW_REG_DEFINE(recr2, MLXSW_REG_RECR2_ID, MLXSW_REG_RECR2_LEN);
/* reg_recr2_pp
* Per-port configuration
* Access: Index
*/
MLXSW_ITEM32(reg, recr2, pp, 0x00, 24, 1);
/* reg_recr2_sh
* Symmetric hash
* Access: RW
*/
MLXSW_ITEM32(reg, recr2, sh, 0x00, 8, 1);
/* reg_recr2_seed
* Seed
* Access: RW
*/
MLXSW_ITEM32(reg, recr2, seed, 0x08, 0, 32);
enum {
/* Enable IPv4 fields if packet is not TCP and not UDP */
MLXSW_REG_RECR2_IPV4_EN_NOT_TCP_NOT_UDP = 3,
/* Enable IPv4 fields if packet is TCP or UDP */
MLXSW_REG_RECR2_IPV4_EN_TCP_UDP = 4,
/* Enable IPv6 fields if packet is not TCP and not UDP */
MLXSW_REG_RECR2_IPV6_EN_NOT_TCP_NOT_UDP = 5,
/* Enable IPv6 fields if packet is TCP or UDP */
MLXSW_REG_RECR2_IPV6_EN_TCP_UDP = 6,
/* Enable TCP/UDP header fields if packet is IPv4 */
MLXSW_REG_RECR2_TCP_UDP_EN_IPV4 = 7,
/* Enable TCP/UDP header fields if packet is IPv6 */
MLXSW_REG_RECR2_TCP_UDP_EN_IPV6 = 8,
__MLXSW_REG_RECR2_HEADER_CNT,
};
/* reg_recr2_outer_header_enables
* Bit mask where each bit enables a specific layer to be included in
* the hash calculation.
* Access: RW
*/
MLXSW_ITEM_BIT_ARRAY(reg, recr2, outer_header_enables, 0x10, 0x04, 1);
enum {
/* IPv4 Source IP */
MLXSW_REG_RECR2_IPV4_SIP0 = 9,
MLXSW_REG_RECR2_IPV4_SIP3 = 12,
/* IPv4 Destination IP */
MLXSW_REG_RECR2_IPV4_DIP0 = 13,
MLXSW_REG_RECR2_IPV4_DIP3 = 16,
/* IP Protocol */
MLXSW_REG_RECR2_IPV4_PROTOCOL = 17,
/* IPv6 Source IP */
MLXSW_REG_RECR2_IPV6_SIP0_7 = 21,
MLXSW_REG_RECR2_IPV6_SIP8 = 29,
MLXSW_REG_RECR2_IPV6_SIP15 = 36,
/* IPv6 Destination IP */
MLXSW_REG_RECR2_IPV6_DIP0_7 = 37,
MLXSW_REG_RECR2_IPV6_DIP8 = 45,
MLXSW_REG_RECR2_IPV6_DIP15 = 52,
/* IPv6 Next Header */
MLXSW_REG_RECR2_IPV6_NEXT_HEADER = 53,
/* IPv6 Flow Label */
MLXSW_REG_RECR2_IPV6_FLOW_LABEL = 57,
/* TCP/UDP Source Port */
MLXSW_REG_RECR2_TCP_UDP_SPORT = 74,
/* TCP/UDP Destination Port */
MLXSW_REG_RECR2_TCP_UDP_DPORT = 75,
__MLXSW_REG_RECR2_FIELD_CNT,
};
/* reg_recr2_outer_header_fields_enable
* Packet fields to enable for ECMP hash subject to outer_header_enable.
* Access: RW
*/
MLXSW_ITEM_BIT_ARRAY(reg, recr2, outer_header_fields_enable, 0x14, 0x14, 1);
/* reg_recr2_inner_header_enables
* Bit mask where each bit enables a specific inner layer to be included in the
* hash calculation. Same values as reg_recr2_outer_header_enables.
* Access: RW
*/
MLXSW_ITEM_BIT_ARRAY(reg, recr2, inner_header_enables, 0x2C, 0x04, 1);
enum {
/* Inner IPv4 Source IP */
MLXSW_REG_RECR2_INNER_IPV4_SIP0 = 3,
MLXSW_REG_RECR2_INNER_IPV4_SIP3 = 6,
/* Inner IPv4 Destination IP */
MLXSW_REG_RECR2_INNER_IPV4_DIP0 = 7,
MLXSW_REG_RECR2_INNER_IPV4_DIP3 = 10,
/* Inner IP Protocol */
MLXSW_REG_RECR2_INNER_IPV4_PROTOCOL = 11,
/* Inner IPv6 Source IP */
MLXSW_REG_RECR2_INNER_IPV6_SIP0_7 = 12,
MLXSW_REG_RECR2_INNER_IPV6_SIP8 = 20,
MLXSW_REG_RECR2_INNER_IPV6_SIP15 = 27,
/* Inner IPv6 Destination IP */
MLXSW_REG_RECR2_INNER_IPV6_DIP0_7 = 28,
MLXSW_REG_RECR2_INNER_IPV6_DIP8 = 36,
MLXSW_REG_RECR2_INNER_IPV6_DIP15 = 43,
/* Inner IPv6 Next Header */
MLXSW_REG_RECR2_INNER_IPV6_NEXT_HEADER = 44,
/* Inner IPv6 Flow Label */
MLXSW_REG_RECR2_INNER_IPV6_FLOW_LABEL = 45,
/* Inner TCP/UDP Source Port */
MLXSW_REG_RECR2_INNER_TCP_UDP_SPORT = 46,
/* Inner TCP/UDP Destination Port */
MLXSW_REG_RECR2_INNER_TCP_UDP_DPORT = 47,
__MLXSW_REG_RECR2_INNER_FIELD_CNT,
};
/* reg_recr2_inner_header_fields_enable
* Inner packet fields to enable for ECMP hash subject to inner_header_enables.
* Access: RW
*/
MLXSW_ITEM_BIT_ARRAY(reg, recr2, inner_header_fields_enable, 0x30, 0x08, 1);
static inline void mlxsw_reg_recr2_pack(char *payload, u32 seed)
{
MLXSW_REG_ZERO(recr2, payload);
mlxsw_reg_recr2_pp_set(payload, false);
mlxsw_reg_recr2_sh_set(payload, true);
mlxsw_reg_recr2_seed_set(payload, seed);
}
/* RMFT-V2 - Router Multicast Forwarding Table Version 2 Register
* --------------------------------------------------------------
* The RMFT_V2 register is used to configure and query the multicast table.
*/
#define MLXSW_REG_RMFT2_ID 0x8027
#define MLXSW_REG_RMFT2_LEN 0x174
MLXSW_REG_DEFINE(rmft2, MLXSW_REG_RMFT2_ID, MLXSW_REG_RMFT2_LEN);
/* reg_rmft2_v
* Valid
* Access: RW
*/
MLXSW_ITEM32(reg, rmft2, v, 0x00, 31, 1);
enum mlxsw_reg_rmft2_type {
MLXSW_REG_RMFT2_TYPE_IPV4,
MLXSW_REG_RMFT2_TYPE_IPV6
};
/* reg_rmft2_type
* Access: Index
*/
MLXSW_ITEM32(reg, rmft2, type, 0x00, 28, 2);
enum mlxsw_sp_reg_rmft2_op {
/* For Write:
* Write operation. Used to write a new entry to the table. All RW
* fields are relevant for new entry. Activity bit is set for new
* entries - Note write with v (Valid) 0 will delete the entry.
* For Query:
* Read operation
*/
MLXSW_REG_RMFT2_OP_READ_WRITE,
};
/* reg_rmft2_op
* Operation.
* Access: OP
*/
MLXSW_ITEM32(reg, rmft2, op, 0x00, 20, 2);
/* reg_rmft2_a
* Activity. Set for new entries. Set if a packet lookup has hit on the specific
* entry.
* Access: RO
*/
MLXSW_ITEM32(reg, rmft2, a, 0x00, 16, 1);
/* reg_rmft2_offset
* Offset within the multicast forwarding table to write to.
* Access: Index
*/
MLXSW_ITEM32(reg, rmft2, offset, 0x00, 0, 16);
/* reg_rmft2_virtual_router
* Virtual Router ID. Range from 0..cap_max_virtual_routers-1
* Access: RW
*/
MLXSW_ITEM32(reg, rmft2, virtual_router, 0x04, 0, 16);
enum mlxsw_reg_rmft2_irif_mask {
MLXSW_REG_RMFT2_IRIF_MASK_IGNORE,
MLXSW_REG_RMFT2_IRIF_MASK_COMPARE
};
/* reg_rmft2_irif_mask
* Ingress RIF mask.
* Access: RW
*/
MLXSW_ITEM32(reg, rmft2, irif_mask, 0x08, 24, 1);
/* reg_rmft2_irif
* Ingress RIF index.
* Access: RW
*/
MLXSW_ITEM32(reg, rmft2, irif, 0x08, 0, 16);
/* reg_rmft2_dip{4,6}
* Destination IPv4/6 address
* Access: RW
*/
MLXSW_ITEM_BUF(reg, rmft2, dip6, 0x10, 16);
MLXSW_ITEM32(reg, rmft2, dip4, 0x1C, 0, 32);
/* reg_rmft2_dip{4,6}_mask
* A bit that is set directs the TCAM to compare the corresponding bit in key. A
* bit that is clear directs the TCAM to ignore the corresponding bit in key.
* Access: RW
*/
MLXSW_ITEM_BUF(reg, rmft2, dip6_mask, 0x20, 16);
MLXSW_ITEM32(reg, rmft2, dip4_mask, 0x2C, 0, 32);
/* reg_rmft2_sip{4,6}
* Source IPv4/6 address
* Access: RW
*/
MLXSW_ITEM_BUF(reg, rmft2, sip6, 0x30, 16);
MLXSW_ITEM32(reg, rmft2, sip4, 0x3C, 0, 32);
/* reg_rmft2_sip{4,6}_mask
* A bit that is set directs the TCAM to compare the corresponding bit in key. A
* bit that is clear directs the TCAM to ignore the corresponding bit in key.
* Access: RW
*/
MLXSW_ITEM_BUF(reg, rmft2, sip6_mask, 0x40, 16);
MLXSW_ITEM32(reg, rmft2, sip4_mask, 0x4C, 0, 32);
/* reg_rmft2_flexible_action_set
* ACL action set. The only supported action types in this field and in any
* action-set pointed from here are as follows:
* 00h: ACTION_NULL
* 01h: ACTION_MAC_TTL, only TTL configuration is supported.
* 03h: ACTION_TRAP
* 06h: ACTION_QOS
* 08h: ACTION_POLICING_MONITORING
* 10h: ACTION_ROUTER_MC
* Access: RW
*/
MLXSW_ITEM_BUF(reg, rmft2, flexible_action_set, 0x80,
MLXSW_REG_FLEX_ACTION_SET_LEN);
static inline void
mlxsw_reg_rmft2_common_pack(char *payload, bool v, u16 offset,
u16 virtual_router,
enum mlxsw_reg_rmft2_irif_mask irif_mask, u16 irif,
const char *flex_action_set)
{
MLXSW_REG_ZERO(rmft2, payload);
mlxsw_reg_rmft2_v_set(payload, v);
mlxsw_reg_rmft2_op_set(payload, MLXSW_REG_RMFT2_OP_READ_WRITE);
mlxsw_reg_rmft2_offset_set(payload, offset);
mlxsw_reg_rmft2_virtual_router_set(payload, virtual_router);
mlxsw_reg_rmft2_irif_mask_set(payload, irif_mask);
mlxsw_reg_rmft2_irif_set(payload, irif);
if (flex_action_set)
mlxsw_reg_rmft2_flexible_action_set_memcpy_to(payload,
flex_action_set);
}
static inline void
mlxsw_reg_rmft2_ipv4_pack(char *payload, bool v, u16 offset, u16 virtual_router,
enum mlxsw_reg_rmft2_irif_mask irif_mask, u16 irif,
u32 dip4, u32 dip4_mask, u32 sip4, u32 sip4_mask,
const char *flexible_action_set)
{
mlxsw_reg_rmft2_common_pack(payload, v, offset, virtual_router,
irif_mask, irif, flexible_action_set);
mlxsw_reg_rmft2_type_set(payload, MLXSW_REG_RMFT2_TYPE_IPV4);
mlxsw_reg_rmft2_dip4_set(payload, dip4);
mlxsw_reg_rmft2_dip4_mask_set(payload, dip4_mask);
mlxsw_reg_rmft2_sip4_set(payload, sip4);
mlxsw_reg_rmft2_sip4_mask_set(payload, sip4_mask);
}
static inline void
mlxsw_reg_rmft2_ipv6_pack(char *payload, bool v, u16 offset, u16 virtual_router,
enum mlxsw_reg_rmft2_irif_mask irif_mask, u16 irif,
struct in6_addr dip6, struct in6_addr dip6_mask,
struct in6_addr sip6, struct in6_addr sip6_mask,
const char *flexible_action_set)
{
mlxsw_reg_rmft2_common_pack(payload, v, offset, virtual_router,
irif_mask, irif, flexible_action_set);
mlxsw_reg_rmft2_type_set(payload, MLXSW_REG_RMFT2_TYPE_IPV6);
mlxsw_reg_rmft2_dip6_memcpy_to(payload, (void *)&dip6);
mlxsw_reg_rmft2_dip6_mask_memcpy_to(payload, (void *)&dip6_mask);
mlxsw_reg_rmft2_sip6_memcpy_to(payload, (void *)&sip6);
mlxsw_reg_rmft2_sip6_mask_memcpy_to(payload, (void *)&sip6_mask);
}
/* REIV - Router Egress Interface to VID Register
* ----------------------------------------------
* The REIV register maps {eRIF, egress_port} -> VID.
* This mapping is done at the egress, after the ACLs.
* This mapping always takes effect after router, regardless of cast
* (for unicast/multicast/port-base multicast), regardless of eRIF type and
* regardless of bridge decisions (e.g. SFD for unicast or SMPE).
* Reserved when the RIF is a loopback RIF.
*
* Note: Reserved when legacy bridge model is used.
*/
#define MLXSW_REG_REIV_ID 0x8034
#define MLXSW_REG_REIV_BASE_LEN 0x20 /* base length, without records */
#define MLXSW_REG_REIV_REC_LEN 0x04 /* record length */
#define MLXSW_REG_REIV_REC_MAX_COUNT 256 /* firmware limitation */
#define MLXSW_REG_REIV_LEN (MLXSW_REG_REIV_BASE_LEN + \
MLXSW_REG_REIV_REC_LEN * \
MLXSW_REG_REIV_REC_MAX_COUNT)
MLXSW_REG_DEFINE(reiv, MLXSW_REG_REIV_ID, MLXSW_REG_REIV_LEN);
/* reg_reiv_port_page
* Port page - elport_record[0] is 256*port_page.
* Access: Index
*/
MLXSW_ITEM32(reg, reiv, port_page, 0x00, 0, 4);
/* reg_reiv_erif
* Egress RIF.
* Range is 0..cap_max_router_interfaces-1.
* Access: Index
*/
MLXSW_ITEM32(reg, reiv, erif, 0x04, 0, 16);
/* reg_reiv_rec_update
* Update enable (when write):
* 0 - Do not update the entry.
* 1 - Update the entry.
* Access: OP
*/
MLXSW_ITEM32_INDEXED(reg, reiv, rec_update, MLXSW_REG_REIV_BASE_LEN, 31, 1,
MLXSW_REG_REIV_REC_LEN, 0x00, false);
/* reg_reiv_rec_evid
* Egress VID.
* Range is 0..4095.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, reiv, rec_evid, MLXSW_REG_REIV_BASE_LEN, 0, 12,
MLXSW_REG_REIV_REC_LEN, 0x00, false);
static inline void mlxsw_reg_reiv_pack(char *payload, u8 port_page, u16 erif)
{
MLXSW_REG_ZERO(reiv, payload);
mlxsw_reg_reiv_port_page_set(payload, port_page);
mlxsw_reg_reiv_erif_set(payload, erif);
}
/* MFCR - Management Fan Control Register
* --------------------------------------
* This register controls the settings of the Fan Speed PWM mechanism.
*/
#define MLXSW_REG_MFCR_ID 0x9001
#define MLXSW_REG_MFCR_LEN 0x08
MLXSW_REG_DEFINE(mfcr, MLXSW_REG_MFCR_ID, MLXSW_REG_MFCR_LEN);
enum mlxsw_reg_mfcr_pwm_frequency {
MLXSW_REG_MFCR_PWM_FEQ_11HZ = 0x00,
MLXSW_REG_MFCR_PWM_FEQ_14_7HZ = 0x01,
MLXSW_REG_MFCR_PWM_FEQ_22_1HZ = 0x02,
MLXSW_REG_MFCR_PWM_FEQ_1_4KHZ = 0x40,
MLXSW_REG_MFCR_PWM_FEQ_5KHZ = 0x41,
MLXSW_REG_MFCR_PWM_FEQ_20KHZ = 0x42,
MLXSW_REG_MFCR_PWM_FEQ_22_5KHZ = 0x43,
MLXSW_REG_MFCR_PWM_FEQ_25KHZ = 0x44,
};
/* reg_mfcr_pwm_frequency
* Controls the frequency of the PWM signal.
* Access: RW
*/
MLXSW_ITEM32(reg, mfcr, pwm_frequency, 0x00, 0, 7);
#define MLXSW_MFCR_TACHOS_MAX 10
/* reg_mfcr_tacho_active
* Indicates which of the tachometer is active (bit per tachometer).
* Access: RO
*/
MLXSW_ITEM32(reg, mfcr, tacho_active, 0x04, 16, MLXSW_MFCR_TACHOS_MAX);
#define MLXSW_MFCR_PWMS_MAX 5
/* reg_mfcr_pwm_active
* Indicates which of the PWM control is active (bit per PWM).
* Access: RO
*/
MLXSW_ITEM32(reg, mfcr, pwm_active, 0x04, 0, MLXSW_MFCR_PWMS_MAX);
static inline void
mlxsw_reg_mfcr_pack(char *payload,
enum mlxsw_reg_mfcr_pwm_frequency pwm_frequency)
{
MLXSW_REG_ZERO(mfcr, payload);
mlxsw_reg_mfcr_pwm_frequency_set(payload, pwm_frequency);
}
static inline void
mlxsw_reg_mfcr_unpack(char *payload,
enum mlxsw_reg_mfcr_pwm_frequency *p_pwm_frequency,
u16 *p_tacho_active, u8 *p_pwm_active)
{
*p_pwm_frequency = mlxsw_reg_mfcr_pwm_frequency_get(payload);
*p_tacho_active = mlxsw_reg_mfcr_tacho_active_get(payload);
*p_pwm_active = mlxsw_reg_mfcr_pwm_active_get(payload);
}
/* MFSC - Management Fan Speed Control Register
* --------------------------------------------
* This register controls the settings of the Fan Speed PWM mechanism.
*/
#define MLXSW_REG_MFSC_ID 0x9002
#define MLXSW_REG_MFSC_LEN 0x08
MLXSW_REG_DEFINE(mfsc, MLXSW_REG_MFSC_ID, MLXSW_REG_MFSC_LEN);
/* reg_mfsc_pwm
* Fan pwm to control / monitor.
* Access: Index
*/
MLXSW_ITEM32(reg, mfsc, pwm, 0x00, 24, 3);
/* reg_mfsc_pwm_duty_cycle
* Controls the duty cycle of the PWM. Value range from 0..255 to
* represent duty cycle of 0%...100%.
* Access: RW
*/
MLXSW_ITEM32(reg, mfsc, pwm_duty_cycle, 0x04, 0, 8);
static inline void mlxsw_reg_mfsc_pack(char *payload, u8 pwm,
u8 pwm_duty_cycle)
{
MLXSW_REG_ZERO(mfsc, payload);
mlxsw_reg_mfsc_pwm_set(payload, pwm);
mlxsw_reg_mfsc_pwm_duty_cycle_set(payload, pwm_duty_cycle);
}
/* MFSM - Management Fan Speed Measurement
* ---------------------------------------
* This register controls the settings of the Tacho measurements and
* enables reading the Tachometer measurements.
*/
#define MLXSW_REG_MFSM_ID 0x9003
#define MLXSW_REG_MFSM_LEN 0x08
MLXSW_REG_DEFINE(mfsm, MLXSW_REG_MFSM_ID, MLXSW_REG_MFSM_LEN);
/* reg_mfsm_tacho
* Fan tachometer index.
* Access: Index
*/
MLXSW_ITEM32(reg, mfsm, tacho, 0x00, 24, 4);
/* reg_mfsm_rpm
* Fan speed (round per minute).
* Access: RO
*/
MLXSW_ITEM32(reg, mfsm, rpm, 0x04, 0, 16);
static inline void mlxsw_reg_mfsm_pack(char *payload, u8 tacho)
{
MLXSW_REG_ZERO(mfsm, payload);
mlxsw_reg_mfsm_tacho_set(payload, tacho);
}
/* MFSL - Management Fan Speed Limit Register
* ------------------------------------------
* The Fan Speed Limit register is used to configure the fan speed
* event / interrupt notification mechanism. Fan speed threshold are
* defined for both under-speed and over-speed.
*/
#define MLXSW_REG_MFSL_ID 0x9004
#define MLXSW_REG_MFSL_LEN 0x0C
MLXSW_REG_DEFINE(mfsl, MLXSW_REG_MFSL_ID, MLXSW_REG_MFSL_LEN);
/* reg_mfsl_tacho
* Fan tachometer index.
* Access: Index
*/
MLXSW_ITEM32(reg, mfsl, tacho, 0x00, 24, 4);
/* reg_mfsl_tach_min
* Tachometer minimum value (minimum RPM).
* Access: RW
*/
MLXSW_ITEM32(reg, mfsl, tach_min, 0x04, 0, 16);
/* reg_mfsl_tach_max
* Tachometer maximum value (maximum RPM).
* Access: RW
*/
MLXSW_ITEM32(reg, mfsl, tach_max, 0x08, 0, 16);
static inline void mlxsw_reg_mfsl_pack(char *payload, u8 tacho,
u16 tach_min, u16 tach_max)
{
MLXSW_REG_ZERO(mfsl, payload);
mlxsw_reg_mfsl_tacho_set(payload, tacho);
mlxsw_reg_mfsl_tach_min_set(payload, tach_min);
mlxsw_reg_mfsl_tach_max_set(payload, tach_max);
}
static inline void mlxsw_reg_mfsl_unpack(char *payload, u8 tacho,
u16 *p_tach_min, u16 *p_tach_max)
{
if (p_tach_min)
*p_tach_min = mlxsw_reg_mfsl_tach_min_get(payload);
if (p_tach_max)
*p_tach_max = mlxsw_reg_mfsl_tach_max_get(payload);
}
/* FORE - Fan Out of Range Event Register
* --------------------------------------
* This register reports the status of the controlled fans compared to the
* range defined by the MFSL register.
*/
#define MLXSW_REG_FORE_ID 0x9007
#define MLXSW_REG_FORE_LEN 0x0C
MLXSW_REG_DEFINE(fore, MLXSW_REG_FORE_ID, MLXSW_REG_FORE_LEN);
/* fan_under_limit
* Fan speed is below the low limit defined in MFSL register. Each bit relates
* to a single tachometer and indicates the specific tachometer reading is
* below the threshold.
* Access: RO
*/
MLXSW_ITEM32(reg, fore, fan_under_limit, 0x00, 16, 10);
static inline void mlxsw_reg_fore_unpack(char *payload, u8 tacho,
bool *fault)
{
u16 limit;
if (fault) {
limit = mlxsw_reg_fore_fan_under_limit_get(payload);
*fault = limit & BIT(tacho);
}
}
/* MTCAP - Management Temperature Capabilities
* -------------------------------------------
* This register exposes the capabilities of the device and
* system temperature sensing.
*/
#define MLXSW_REG_MTCAP_ID 0x9009
#define MLXSW_REG_MTCAP_LEN 0x08
MLXSW_REG_DEFINE(mtcap, MLXSW_REG_MTCAP_ID, MLXSW_REG_MTCAP_LEN);
/* reg_mtcap_sensor_count
* Number of sensors supported by the device.
* This includes the QSFP module sensors (if exists in the QSFP module).
* Access: RO
*/
MLXSW_ITEM32(reg, mtcap, sensor_count, 0x00, 0, 7);
/* MTMP - Management Temperature
* -----------------------------
* This register controls the settings of the temperature measurements
* and enables reading the temperature measurements. Note that temperature
* is in 0.125 degrees Celsius.
*/
#define MLXSW_REG_MTMP_ID 0x900A
#define MLXSW_REG_MTMP_LEN 0x20
MLXSW_REG_DEFINE(mtmp, MLXSW_REG_MTMP_ID, MLXSW_REG_MTMP_LEN);
/* reg_mtmp_slot_index
* Slot index (0: Main board).
* Access: Index
*/
MLXSW_ITEM32(reg, mtmp, slot_index, 0x00, 16, 4);
#define MLXSW_REG_MTMP_MODULE_INDEX_MIN 64
#define MLXSW_REG_MTMP_GBOX_INDEX_MIN 256
/* reg_mtmp_sensor_index
* Sensors index to access.
* 64-127 of sensor_index are mapped to the SFP+/QSFP modules sequentially
* (module 0 is mapped to sensor_index 64).
* Access: Index
*/
MLXSW_ITEM32(reg, mtmp, sensor_index, 0x00, 0, 12);
/* Convert to milli degrees Celsius */
#define MLXSW_REG_MTMP_TEMP_TO_MC(val) ({ typeof(val) v_ = (val); \
((v_) >= 0) ? ((v_) * 125) : \
((s16)((GENMASK(15, 0) + (v_) + 1) \
* 125)); })
/* reg_mtmp_max_operational_temperature
* The highest temperature in the nominal operational range. Reading is in
* 0.125 Celsius degrees units.
* In case of module this is SFF critical temperature threshold.
* Access: RO
*/
MLXSW_ITEM32(reg, mtmp, max_operational_temperature, 0x04, 16, 16);
/* reg_mtmp_temperature
* Temperature reading from the sensor. Reading is in 0.125 Celsius
* degrees units.
* Access: RO
*/
MLXSW_ITEM32(reg, mtmp, temperature, 0x04, 0, 16);
/* reg_mtmp_mte
* Max Temperature Enable - enables measuring the max temperature on a sensor.
* Access: RW
*/
MLXSW_ITEM32(reg, mtmp, mte, 0x08, 31, 1);
/* reg_mtmp_mtr
* Max Temperature Reset - clears the value of the max temperature register.
* Access: WO
*/
MLXSW_ITEM32(reg, mtmp, mtr, 0x08, 30, 1);
/* reg_mtmp_max_temperature
* The highest measured temperature from the sensor.
* When the bit mte is cleared, the field max_temperature is reserved.
* Access: RO
*/
MLXSW_ITEM32(reg, mtmp, max_temperature, 0x08, 0, 16);
/* reg_mtmp_tee
* Temperature Event Enable.
* 0 - Do not generate event
* 1 - Generate event
* 2 - Generate single event
* Access: RW
*/
enum mlxsw_reg_mtmp_tee {
MLXSW_REG_MTMP_TEE_NO_EVENT,
MLXSW_REG_MTMP_TEE_GENERATE_EVENT,
MLXSW_REG_MTMP_TEE_GENERATE_SINGLE_EVENT,
};
MLXSW_ITEM32(reg, mtmp, tee, 0x0C, 30, 2);
#define MLXSW_REG_MTMP_THRESH_HI 0x348 /* 105 Celsius */
/* reg_mtmp_temperature_threshold_hi
* High threshold for Temperature Warning Event. In 0.125 Celsius.
* Access: RW
*/
MLXSW_ITEM32(reg, mtmp, temperature_threshold_hi, 0x0C, 0, 16);
#define MLXSW_REG_MTMP_HYSTERESIS_TEMP 0x28 /* 5 Celsius */
/* reg_mtmp_temperature_threshold_lo
* Low threshold for Temperature Warning Event. In 0.125 Celsius.
* Access: RW
*/
MLXSW_ITEM32(reg, mtmp, temperature_threshold_lo, 0x10, 0, 16);
#define MLXSW_REG_MTMP_SENSOR_NAME_SIZE 8
/* reg_mtmp_sensor_name
* Sensor Name
* Access: RO
*/
MLXSW_ITEM_BUF(reg, mtmp, sensor_name, 0x18, MLXSW_REG_MTMP_SENSOR_NAME_SIZE);
static inline void mlxsw_reg_mtmp_pack(char *payload, u8 slot_index,
u16 sensor_index, bool max_temp_enable,
bool max_temp_reset)
{
MLXSW_REG_ZERO(mtmp, payload);
mlxsw_reg_mtmp_slot_index_set(payload, slot_index);
mlxsw_reg_mtmp_sensor_index_set(payload, sensor_index);
mlxsw_reg_mtmp_mte_set(payload, max_temp_enable);
mlxsw_reg_mtmp_mtr_set(payload, max_temp_reset);
mlxsw_reg_mtmp_temperature_threshold_hi_set(payload,
MLXSW_REG_MTMP_THRESH_HI);
}
static inline void mlxsw_reg_mtmp_unpack(char *payload, int *p_temp,
int *p_max_temp, int *p_temp_hi,
int *p_max_oper_temp,
char *sensor_name)
{
s16 temp;
if (p_temp) {
temp = mlxsw_reg_mtmp_temperature_get(payload);
*p_temp = MLXSW_REG_MTMP_TEMP_TO_MC(temp);
}
if (p_max_temp) {
temp = mlxsw_reg_mtmp_max_temperature_get(payload);
*p_max_temp = MLXSW_REG_MTMP_TEMP_TO_MC(temp);
}
if (p_temp_hi) {
temp = mlxsw_reg_mtmp_temperature_threshold_hi_get(payload);
*p_temp_hi = MLXSW_REG_MTMP_TEMP_TO_MC(temp);
}
if (p_max_oper_temp) {
temp = mlxsw_reg_mtmp_max_operational_temperature_get(payload);
*p_max_oper_temp = MLXSW_REG_MTMP_TEMP_TO_MC(temp);
}
if (sensor_name)
mlxsw_reg_mtmp_sensor_name_memcpy_from(payload, sensor_name);
}
/* MTWE - Management Temperature Warning Event
* -------------------------------------------
* This register is used for over temperature warning.
*/
#define MLXSW_REG_MTWE_ID 0x900B
#define MLXSW_REG_MTWE_LEN 0x10
MLXSW_REG_DEFINE(mtwe, MLXSW_REG_MTWE_ID, MLXSW_REG_MTWE_LEN);
/* reg_mtwe_sensor_warning
* Bit vector indicating which of the sensor reading is above threshold.
* Address 00h bit31 is sensor_warning[127].
* Address 0Ch bit0 is sensor_warning[0].
* Access: RO
*/
MLXSW_ITEM_BIT_ARRAY(reg, mtwe, sensor_warning, 0x0, 0x10, 1);
/* MTBR - Management Temperature Bulk Register
* -------------------------------------------
* This register is used for bulk temperature reading.
*/
#define MLXSW_REG_MTBR_ID 0x900F
#define MLXSW_REG_MTBR_BASE_LEN 0x10 /* base length, without records */
#define MLXSW_REG_MTBR_REC_LEN 0x04 /* record length */
#define MLXSW_REG_MTBR_REC_MAX_COUNT 47 /* firmware limitation */
#define MLXSW_REG_MTBR_LEN (MLXSW_REG_MTBR_BASE_LEN + \
MLXSW_REG_MTBR_REC_LEN * \
MLXSW_REG_MTBR_REC_MAX_COUNT)
MLXSW_REG_DEFINE(mtbr, MLXSW_REG_MTBR_ID, MLXSW_REG_MTBR_LEN);
/* reg_mtbr_slot_index
* Slot index (0: Main board).
* Access: Index
*/
MLXSW_ITEM32(reg, mtbr, slot_index, 0x00, 16, 4);
/* reg_mtbr_base_sensor_index
* Base sensors index to access (0 - ASIC sensor, 1-63 - ambient sensors,
* 64-127 are mapped to the SFP+/QSFP modules sequentially).
* Access: Index
*/
MLXSW_ITEM32(reg, mtbr, base_sensor_index, 0x00, 0, 12);
/* reg_mtbr_num_rec
* Request: Number of records to read
* Response: Number of records read
* See above description for more details.
* Range 1..255
* Access: RW
*/
MLXSW_ITEM32(reg, mtbr, num_rec, 0x04, 0, 8);
/* reg_mtbr_rec_max_temp
* The highest measured temperature from the sensor.
* When the bit mte is cleared, the field max_temperature is reserved.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, mtbr, rec_max_temp, MLXSW_REG_MTBR_BASE_LEN, 16,
16, MLXSW_REG_MTBR_REC_LEN, 0x00, false);
/* reg_mtbr_rec_temp
* Temperature reading from the sensor. Reading is in 0..125 Celsius
* degrees units.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, mtbr, rec_temp, MLXSW_REG_MTBR_BASE_LEN, 0, 16,
MLXSW_REG_MTBR_REC_LEN, 0x00, false);
static inline void mlxsw_reg_mtbr_pack(char *payload, u8 slot_index,
u16 base_sensor_index, u8 num_rec)
{
MLXSW_REG_ZERO(mtbr, payload);
mlxsw_reg_mtbr_slot_index_set(payload, slot_index);
mlxsw_reg_mtbr_base_sensor_index_set(payload, base_sensor_index);
mlxsw_reg_mtbr_num_rec_set(payload, num_rec);
}
/* Error codes from temperatute reading */
enum mlxsw_reg_mtbr_temp_status {
MLXSW_REG_MTBR_NO_CONN = 0x8000,
MLXSW_REG_MTBR_NO_TEMP_SENS = 0x8001,
MLXSW_REG_MTBR_INDEX_NA = 0x8002,
MLXSW_REG_MTBR_BAD_SENS_INFO = 0x8003,
};
/* Base index for reading modules temperature */
#define MLXSW_REG_MTBR_BASE_MODULE_INDEX 64
static inline void mlxsw_reg_mtbr_temp_unpack(char *payload, int rec_ind,
u16 *p_temp, u16 *p_max_temp)
{
if (p_temp)
*p_temp = mlxsw_reg_mtbr_rec_temp_get(payload, rec_ind);
if (p_max_temp)
*p_max_temp = mlxsw_reg_mtbr_rec_max_temp_get(payload, rec_ind);
}
/* MCIA - Management Cable Info Access
* -----------------------------------
* MCIA register is used to access the SFP+ and QSFP connector's EPROM.
*/
#define MLXSW_REG_MCIA_ID 0x9014
#define MLXSW_REG_MCIA_LEN 0x40
MLXSW_REG_DEFINE(mcia, MLXSW_REG_MCIA_ID, MLXSW_REG_MCIA_LEN);
/* reg_mcia_l
* Lock bit. Setting this bit will lock the access to the specific
* cable. Used for updating a full page in a cable EPROM. Any access
* other then subsequence writes will fail while the port is locked.
* Access: RW
*/
MLXSW_ITEM32(reg, mcia, l, 0x00, 31, 1);
/* reg_mcia_module
* Module number.
* Access: Index
*/
MLXSW_ITEM32(reg, mcia, module, 0x00, 16, 8);
/* reg_mcia_slot_index
* Slot index (0: Main board)
* Access: Index
*/
MLXSW_ITEM32(reg, mcia, slot, 0x00, 12, 4);
enum {
MLXSW_REG_MCIA_STATUS_GOOD = 0,
/* No response from module's EEPROM. */
MLXSW_REG_MCIA_STATUS_NO_EEPROM_MODULE = 1,
/* Module type not supported by the device. */
MLXSW_REG_MCIA_STATUS_MODULE_NOT_SUPPORTED = 2,
/* No module present indication. */
MLXSW_REG_MCIA_STATUS_MODULE_NOT_CONNECTED = 3,
/* Error occurred while trying to access module's EEPROM using I2C. */
MLXSW_REG_MCIA_STATUS_I2C_ERROR = 9,
/* Module is disabled. */
MLXSW_REG_MCIA_STATUS_MODULE_DISABLED = 16,
};
/* reg_mcia_status
* Module status.
* Access: RO
*/
MLXSW_ITEM32(reg, mcia, status, 0x00, 0, 8);
/* reg_mcia_i2c_device_address
* I2C device address.
* Access: RW
*/
MLXSW_ITEM32(reg, mcia, i2c_device_address, 0x04, 24, 8);
/* reg_mcia_page_number
* Page number.
* Access: RW
*/
MLXSW_ITEM32(reg, mcia, page_number, 0x04, 16, 8);
/* reg_mcia_device_address
* Device address.
* Access: RW
*/
MLXSW_ITEM32(reg, mcia, device_address, 0x04, 0, 16);
/* reg_mcia_bank_number
* Bank number.
* Access: Index
*/
MLXSW_ITEM32(reg, mcia, bank_number, 0x08, 16, 8);
/* reg_mcia_size
* Number of bytes to read/write (up to 48 bytes).
* Access: RW
*/
MLXSW_ITEM32(reg, mcia, size, 0x08, 0, 16);
#define MLXSW_REG_MCIA_EEPROM_PAGE_LENGTH 256
#define MLXSW_REG_MCIA_EEPROM_UP_PAGE_LENGTH 128
#define MLXSW_REG_MCIA_EEPROM_SIZE 48
#define MLXSW_REG_MCIA_I2C_ADDR_LOW 0x50
#define MLXSW_REG_MCIA_I2C_ADDR_HIGH 0x51
#define MLXSW_REG_MCIA_PAGE0_LO_OFF 0xa0
#define MLXSW_REG_MCIA_TH_ITEM_SIZE 2
#define MLXSW_REG_MCIA_TH_PAGE_NUM 3
#define MLXSW_REG_MCIA_TH_PAGE_CMIS_NUM 2
#define MLXSW_REG_MCIA_PAGE0_LO 0
#define MLXSW_REG_MCIA_TH_PAGE_OFF 0x80
#define MLXSW_REG_MCIA_EEPROM_CMIS_FLAT_MEMORY BIT(7)
enum mlxsw_reg_mcia_eeprom_module_info_rev_id {
MLXSW_REG_MCIA_EEPROM_MODULE_INFO_REV_ID_UNSPC = 0x00,
MLXSW_REG_MCIA_EEPROM_MODULE_INFO_REV_ID_8436 = 0x01,
MLXSW_REG_MCIA_EEPROM_MODULE_INFO_REV_ID_8636 = 0x03,
};
enum mlxsw_reg_mcia_eeprom_module_info_id {
MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_SFP = 0x03,
MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_QSFP = 0x0C,
MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_QSFP_PLUS = 0x0D,
MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_QSFP28 = 0x11,
MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_QSFP_DD = 0x18,
MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_OSFP = 0x19,
};
enum mlxsw_reg_mcia_eeprom_module_info {
MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID,
MLXSW_REG_MCIA_EEPROM_MODULE_INFO_REV_ID,
MLXSW_REG_MCIA_EEPROM_MODULE_INFO_TYPE_ID,
MLXSW_REG_MCIA_EEPROM_MODULE_INFO_SIZE,
};
/* reg_mcia_eeprom
* Bytes to read/write.
* Access: RW
*/
MLXSW_ITEM_BUF(reg, mcia, eeprom, 0x10, MLXSW_REG_MCIA_EEPROM_SIZE);
/* This is used to access the optional upper pages (1-3) in the QSFP+
* memory map. Page 1 is available on offset 256 through 383, page 2 -
* on offset 384 through 511, page 3 - on offset 512 through 639.
*/
#define MLXSW_REG_MCIA_PAGE_GET(off) (((off) - \
MLXSW_REG_MCIA_EEPROM_PAGE_LENGTH) / \
MLXSW_REG_MCIA_EEPROM_UP_PAGE_LENGTH + 1)
static inline void mlxsw_reg_mcia_pack(char *payload, u8 slot_index, u8 module,
u8 lock, u8 page_number,
u16 device_addr, u8 size,
u8 i2c_device_addr)
{
MLXSW_REG_ZERO(mcia, payload);
mlxsw_reg_mcia_slot_set(payload, slot_index);
mlxsw_reg_mcia_module_set(payload, module);
mlxsw_reg_mcia_l_set(payload, lock);
mlxsw_reg_mcia_page_number_set(payload, page_number);
mlxsw_reg_mcia_device_address_set(payload, device_addr);
mlxsw_reg_mcia_size_set(payload, size);
mlxsw_reg_mcia_i2c_device_address_set(payload, i2c_device_addr);
}
/* MPAT - Monitoring Port Analyzer Table
* -------------------------------------
* MPAT Register is used to query and configure the Switch PortAnalyzer Table.
* For an enabled analyzer, all fields except e (enable) cannot be modified.
*/
#define MLXSW_REG_MPAT_ID 0x901A
#define MLXSW_REG_MPAT_LEN 0x78
MLXSW_REG_DEFINE(mpat, MLXSW_REG_MPAT_ID, MLXSW_REG_MPAT_LEN);
/* reg_mpat_pa_id
* Port Analyzer ID.
* Access: Index
*/
MLXSW_ITEM32(reg, mpat, pa_id, 0x00, 28, 4);
/* reg_mpat_session_id
* Mirror Session ID.
* Used for MIRROR_SESSION<i> trap.
* Access: RW
*/
MLXSW_ITEM32(reg, mpat, session_id, 0x00, 24, 4);
/* reg_mpat_system_port
* A unique port identifier for the final destination of the packet.
* Access: RW
*/
MLXSW_ITEM32(reg, mpat, system_port, 0x00, 0, 16);
/* reg_mpat_e
* Enable. Indicating the Port Analyzer is enabled.
* Access: RW
*/
MLXSW_ITEM32(reg, mpat, e, 0x04, 31, 1);
/* reg_mpat_qos
* Quality Of Service Mode.
* 0: CONFIGURED - QoS parameters (Switch Priority, and encapsulation
* PCP, DEI, DSCP or VL) are configured.
* 1: MAINTAIN - QoS parameters (Switch Priority, Color) are the
* same as in the original packet that has triggered the mirroring. For
* SPAN also the pcp,dei are maintained.
* Access: RW
*/
MLXSW_ITEM32(reg, mpat, qos, 0x04, 26, 1);
/* reg_mpat_be
* Best effort mode. Indicates mirroring traffic should not cause packet
* drop or back pressure, but will discard the mirrored packets. Mirrored
* packets will be forwarded on a best effort manner.
* 0: Do not discard mirrored packets
* 1: Discard mirrored packets if causing congestion
* Access: RW
*/
MLXSW_ITEM32(reg, mpat, be, 0x04, 25, 1);
enum mlxsw_reg_mpat_span_type {
/* Local SPAN Ethernet.
* The original packet is not encapsulated.
*/
MLXSW_REG_MPAT_SPAN_TYPE_LOCAL_ETH = 0x0,
/* Remote SPAN Ethernet VLAN.
* The packet is forwarded to the monitoring port on the monitoring
* VLAN.
*/
MLXSW_REG_MPAT_SPAN_TYPE_REMOTE_ETH = 0x1,
/* Encapsulated Remote SPAN Ethernet L3 GRE.
* The packet is encapsulated with GRE header.
*/
MLXSW_REG_MPAT_SPAN_TYPE_REMOTE_ETH_L3 = 0x3,
};
/* reg_mpat_span_type
* SPAN type.
* Access: RW
*/
MLXSW_ITEM32(reg, mpat, span_type, 0x04, 0, 4);
/* reg_mpat_pide
* Policer enable.
* Access: RW
*/
MLXSW_ITEM32(reg, mpat, pide, 0x0C, 15, 1);
/* reg_mpat_pid
* Policer ID.
* Access: RW
*/
MLXSW_ITEM32(reg, mpat, pid, 0x0C, 0, 14);
/* Remote SPAN - Ethernet VLAN
* - - - - - - - - - - - - - -
*/
/* reg_mpat_eth_rspan_vid
* Encapsulation header VLAN ID.
* Access: RW
*/
MLXSW_ITEM32(reg, mpat, eth_rspan_vid, 0x18, 0, 12);
/* Encapsulated Remote SPAN - Ethernet L2
* - - - - - - - - - - - - - - - - - - -
*/
enum mlxsw_reg_mpat_eth_rspan_version {
MLXSW_REG_MPAT_ETH_RSPAN_VERSION_NO_HEADER = 15,
};
/* reg_mpat_eth_rspan_version
* RSPAN mirror header version.
* Access: RW
*/
MLXSW_ITEM32(reg, mpat, eth_rspan_version, 0x10, 18, 4);
/* reg_mpat_eth_rspan_mac
* Destination MAC address.
* Access: RW
*/
MLXSW_ITEM_BUF(reg, mpat, eth_rspan_mac, 0x12, 6);
/* reg_mpat_eth_rspan_tp
* Tag Packet. Indicates whether the mirroring header should be VLAN tagged.
* Access: RW
*/
MLXSW_ITEM32(reg, mpat, eth_rspan_tp, 0x18, 16, 1);
/* Encapsulated Remote SPAN - Ethernet L3
* - - - - - - - - - - - - - - - - - - -
*/
enum mlxsw_reg_mpat_eth_rspan_protocol {
MLXSW_REG_MPAT_ETH_RSPAN_PROTOCOL_IPV4,
MLXSW_REG_MPAT_ETH_RSPAN_PROTOCOL_IPV6,
};
/* reg_mpat_eth_rspan_protocol
* SPAN encapsulation protocol.
* Access: RW
*/
MLXSW_ITEM32(reg, mpat, eth_rspan_protocol, 0x18, 24, 4);
/* reg_mpat_eth_rspan_ttl
* Encapsulation header Time-to-Live/HopLimit.
* Access: RW
*/
MLXSW_ITEM32(reg, mpat, eth_rspan_ttl, 0x1C, 4, 8);
/* reg_mpat_eth_rspan_smac
* Source MAC address
* Access: RW
*/
MLXSW_ITEM_BUF(reg, mpat, eth_rspan_smac, 0x22, 6);
/* reg_mpat_eth_rspan_dip*
* Destination IP address. The IP version is configured by protocol.
* Access: RW
*/
MLXSW_ITEM32(reg, mpat, eth_rspan_dip4, 0x4C, 0, 32);
MLXSW_ITEM_BUF(reg, mpat, eth_rspan_dip6, 0x40, 16);
/* reg_mpat_eth_rspan_sip*
* Source IP address. The IP version is configured by protocol.
* Access: RW
*/
MLXSW_ITEM32(reg, mpat, eth_rspan_sip4, 0x5C, 0, 32);
MLXSW_ITEM_BUF(reg, mpat, eth_rspan_sip6, 0x50, 16);
static inline void mlxsw_reg_mpat_pack(char *payload, u8 pa_id,
u16 system_port, bool e,
enum mlxsw_reg_mpat_span_type span_type)
{
MLXSW_REG_ZERO(mpat, payload);
mlxsw_reg_mpat_pa_id_set(payload, pa_id);
mlxsw_reg_mpat_system_port_set(payload, system_port);
mlxsw_reg_mpat_e_set(payload, e);
mlxsw_reg_mpat_qos_set(payload, 1);
mlxsw_reg_mpat_be_set(payload, 1);
mlxsw_reg_mpat_span_type_set(payload, span_type);
}
static inline void mlxsw_reg_mpat_eth_rspan_pack(char *payload, u16 vid)
{
mlxsw_reg_mpat_eth_rspan_vid_set(payload, vid);
}
static inline void
mlxsw_reg_mpat_eth_rspan_l2_pack(char *payload,
enum mlxsw_reg_mpat_eth_rspan_version version,
const char *mac,
bool tp)
{
mlxsw_reg_mpat_eth_rspan_version_set(payload, version);
mlxsw_reg_mpat_eth_rspan_mac_memcpy_to(payload, mac);
mlxsw_reg_mpat_eth_rspan_tp_set(payload, tp);
}
static inline void
mlxsw_reg_mpat_eth_rspan_l3_ipv4_pack(char *payload, u8 ttl,
const char *smac,
u32 sip, u32 dip)
{
mlxsw_reg_mpat_eth_rspan_ttl_set(payload, ttl);
mlxsw_reg_mpat_eth_rspan_smac_memcpy_to(payload, smac);
mlxsw_reg_mpat_eth_rspan_protocol_set(payload,
MLXSW_REG_MPAT_ETH_RSPAN_PROTOCOL_IPV4);
mlxsw_reg_mpat_eth_rspan_sip4_set(payload, sip);
mlxsw_reg_mpat_eth_rspan_dip4_set(payload, dip);
}
static inline void
mlxsw_reg_mpat_eth_rspan_l3_ipv6_pack(char *payload, u8 ttl,
const char *smac,
struct in6_addr sip, struct in6_addr dip)
{
mlxsw_reg_mpat_eth_rspan_ttl_set(payload, ttl);
mlxsw_reg_mpat_eth_rspan_smac_memcpy_to(payload, smac);
mlxsw_reg_mpat_eth_rspan_protocol_set(payload,
MLXSW_REG_MPAT_ETH_RSPAN_PROTOCOL_IPV6);
mlxsw_reg_mpat_eth_rspan_sip6_memcpy_to(payload, (void *)&sip);
mlxsw_reg_mpat_eth_rspan_dip6_memcpy_to(payload, (void *)&dip);
}
/* MPAR - Monitoring Port Analyzer Register
* ----------------------------------------
* MPAR register is used to query and configure the port analyzer port mirroring
* properties.
*/
#define MLXSW_REG_MPAR_ID 0x901B
#define MLXSW_REG_MPAR_LEN 0x0C
MLXSW_REG_DEFINE(mpar, MLXSW_REG_MPAR_ID, MLXSW_REG_MPAR_LEN);
/* reg_mpar_local_port
* The local port to mirror the packets from.
* Access: Index
*/
MLXSW_ITEM32_LP(reg, mpar, 0x00, 16, 0x00, 4);
enum mlxsw_reg_mpar_i_e {
MLXSW_REG_MPAR_TYPE_EGRESS,
MLXSW_REG_MPAR_TYPE_INGRESS,
};
/* reg_mpar_i_e
* Ingress/Egress
* Access: Index
*/
MLXSW_ITEM32(reg, mpar, i_e, 0x00, 0, 4);
/* reg_mpar_enable
* Enable mirroring
* By default, port mirroring is disabled for all ports.
* Access: RW
*/
MLXSW_ITEM32(reg, mpar, enable, 0x04, 31, 1);
/* reg_mpar_pa_id
* Port Analyzer ID.
* Access: RW
*/
MLXSW_ITEM32(reg, mpar, pa_id, 0x04, 0, 4);
#define MLXSW_REG_MPAR_RATE_MAX 3500000000UL
/* reg_mpar_probability_rate
* Sampling rate.
* Valid values are: 1 to 3.5*10^9
* Value of 1 means "sample all". Default is 1.
* Reserved when Spectrum-1.
* Access: RW
*/
MLXSW_ITEM32(reg, mpar, probability_rate, 0x08, 0, 32);
static inline void mlxsw_reg_mpar_pack(char *payload, u16 local_port,
enum mlxsw_reg_mpar_i_e i_e,
bool enable, u8 pa_id,
u32 probability_rate)
{
MLXSW_REG_ZERO(mpar, payload);
mlxsw_reg_mpar_local_port_set(payload, local_port);
mlxsw_reg_mpar_enable_set(payload, enable);
mlxsw_reg_mpar_i_e_set(payload, i_e);
mlxsw_reg_mpar_pa_id_set(payload, pa_id);
mlxsw_reg_mpar_probability_rate_set(payload, probability_rate);
}
/* MGIR - Management General Information Register
* ----------------------------------------------
* MGIR register allows software to query the hardware and firmware general
* information.
*/
#define MLXSW_REG_MGIR_ID 0x9020
#define MLXSW_REG_MGIR_LEN 0x9C
MLXSW_REG_DEFINE(mgir, MLXSW_REG_MGIR_ID, MLXSW_REG_MGIR_LEN);
/* reg_mgir_hw_info_device_hw_revision
* Access: RO
*/
MLXSW_ITEM32(reg, mgir, hw_info_device_hw_revision, 0x0, 16, 16);
/* reg_mgir_fw_info_latency_tlv
* When set, latency-TLV is supported.
* Access: RO
*/
MLXSW_ITEM32(reg, mgir, fw_info_latency_tlv, 0x20, 29, 1);
/* reg_mgir_fw_info_string_tlv
* When set, string-TLV is supported.
* Access: RO
*/
MLXSW_ITEM32(reg, mgir, fw_info_string_tlv, 0x20, 28, 1);
#define MLXSW_REG_MGIR_FW_INFO_PSID_SIZE 16
/* reg_mgir_fw_info_psid
* PSID (ASCII string).
* Access: RO
*/
MLXSW_ITEM_BUF(reg, mgir, fw_info_psid, 0x30, MLXSW_REG_MGIR_FW_INFO_PSID_SIZE);
/* reg_mgir_fw_info_extended_major
* Access: RO
*/
MLXSW_ITEM32(reg, mgir, fw_info_extended_major, 0x44, 0, 32);
/* reg_mgir_fw_info_extended_minor
* Access: RO
*/
MLXSW_ITEM32(reg, mgir, fw_info_extended_minor, 0x48, 0, 32);
/* reg_mgir_fw_info_extended_sub_minor
* Access: RO
*/
MLXSW_ITEM32(reg, mgir, fw_info_extended_sub_minor, 0x4C, 0, 32);
static inline void mlxsw_reg_mgir_pack(char *payload)
{
MLXSW_REG_ZERO(mgir, payload);
}
static inline void
mlxsw_reg_mgir_unpack(char *payload, u32 *hw_rev, char *fw_info_psid,
u32 *fw_major, u32 *fw_minor, u32 *fw_sub_minor)
{
*hw_rev = mlxsw_reg_mgir_hw_info_device_hw_revision_get(payload);
mlxsw_reg_mgir_fw_info_psid_memcpy_from(payload, fw_info_psid);
*fw_major = mlxsw_reg_mgir_fw_info_extended_major_get(payload);
*fw_minor = mlxsw_reg_mgir_fw_info_extended_minor_get(payload);
*fw_sub_minor = mlxsw_reg_mgir_fw_info_extended_sub_minor_get(payload);
}
/* MRSR - Management Reset and Shutdown Register
* ---------------------------------------------
* MRSR register is used to reset or shutdown the switch or
* the entire system (when applicable).
*/
#define MLXSW_REG_MRSR_ID 0x9023
#define MLXSW_REG_MRSR_LEN 0x08
MLXSW_REG_DEFINE(mrsr, MLXSW_REG_MRSR_ID, MLXSW_REG_MRSR_LEN);
/* reg_mrsr_command
* Reset/shutdown command
* 0 - do nothing
* 1 - software reset
* Access: WO
*/
MLXSW_ITEM32(reg, mrsr, command, 0x00, 0, 4);
static inline void mlxsw_reg_mrsr_pack(char *payload)
{
MLXSW_REG_ZERO(mrsr, payload);
mlxsw_reg_mrsr_command_set(payload, 1);
}
/* MLCR - Management LED Control Register
* --------------------------------------
* Controls the system LEDs.
*/
#define MLXSW_REG_MLCR_ID 0x902B
#define MLXSW_REG_MLCR_LEN 0x0C
MLXSW_REG_DEFINE(mlcr, MLXSW_REG_MLCR_ID, MLXSW_REG_MLCR_LEN);
/* reg_mlcr_local_port
* Local port number.
* Access: RW
*/
MLXSW_ITEM32_LP(reg, mlcr, 0x00, 16, 0x00, 24);
#define MLXSW_REG_MLCR_DURATION_MAX 0xFFFF
/* reg_mlcr_beacon_duration
* Duration of the beacon to be active, in seconds.
* 0x0 - Will turn off the beacon.
* 0xFFFF - Will turn on the beacon until explicitly turned off.
* Access: RW
*/
MLXSW_ITEM32(reg, mlcr, beacon_duration, 0x04, 0, 16);
/* reg_mlcr_beacon_remain
* Remaining duration of the beacon, in seconds.
* 0xFFFF indicates an infinite amount of time.
* Access: RO
*/
MLXSW_ITEM32(reg, mlcr, beacon_remain, 0x08, 0, 16);
static inline void mlxsw_reg_mlcr_pack(char *payload, u16 local_port,
bool active)
{
MLXSW_REG_ZERO(mlcr, payload);
mlxsw_reg_mlcr_local_port_set(payload, local_port);
mlxsw_reg_mlcr_beacon_duration_set(payload, active ?
MLXSW_REG_MLCR_DURATION_MAX : 0);
}
/* MCION - Management Cable IO and Notifications Register
* ------------------------------------------------------
* The MCION register is used to query transceiver modules' IO pins and other
* notifications.
*/
#define MLXSW_REG_MCION_ID 0x9052
#define MLXSW_REG_MCION_LEN 0x18
MLXSW_REG_DEFINE(mcion, MLXSW_REG_MCION_ID, MLXSW_REG_MCION_LEN);
/* reg_mcion_module
* Module number.
* Access: Index
*/
MLXSW_ITEM32(reg, mcion, module, 0x00, 16, 8);
/* reg_mcion_slot_index
* Slot index.
* Access: Index
*/
MLXSW_ITEM32(reg, mcion, slot_index, 0x00, 12, 4);
enum {
MLXSW_REG_MCION_MODULE_STATUS_BITS_PRESENT_MASK = BIT(0),
MLXSW_REG_MCION_MODULE_STATUS_BITS_LOW_POWER_MASK = BIT(8),
};
/* reg_mcion_module_status_bits
* Module IO status as defined by SFF.
* Access: RO
*/
MLXSW_ITEM32(reg, mcion, module_status_bits, 0x04, 0, 16);
static inline void mlxsw_reg_mcion_pack(char *payload, u8 slot_index, u8 module)
{
MLXSW_REG_ZERO(mcion, payload);
mlxsw_reg_mcion_slot_index_set(payload, slot_index);
mlxsw_reg_mcion_module_set(payload, module);
}
/* MTPPS - Management Pulse Per Second Register
* --------------------------------------------
* This register provides the device PPS capabilities, configure the PPS in and
* out modules and holds the PPS in time stamp.
*/
#define MLXSW_REG_MTPPS_ID 0x9053
#define MLXSW_REG_MTPPS_LEN 0x3C
MLXSW_REG_DEFINE(mtpps, MLXSW_REG_MTPPS_ID, MLXSW_REG_MTPPS_LEN);
/* reg_mtpps_enable
* Enables the PPS functionality the specific pin.
* A boolean variable.
* Access: RW
*/
MLXSW_ITEM32(reg, mtpps, enable, 0x20, 31, 1);
enum mlxsw_reg_mtpps_pin_mode {
MLXSW_REG_MTPPS_PIN_MODE_VIRTUAL_PIN = 0x2,
};
/* reg_mtpps_pin_mode
* Pin mode to be used. The mode must comply with the supported modes of the
* requested pin.
* Access: RW
*/
MLXSW_ITEM32(reg, mtpps, pin_mode, 0x20, 8, 4);
#define MLXSW_REG_MTPPS_PIN_SP_VIRTUAL_PIN 7
/* reg_mtpps_pin
* Pin to be configured or queried out of the supported pins.
* Access: Index
*/
MLXSW_ITEM32(reg, mtpps, pin, 0x20, 0, 8);
/* reg_mtpps_time_stamp
* When pin_mode = pps_in, the latched device time when it was triggered from
* the external GPIO pin.
* When pin_mode = pps_out or virtual_pin or pps_out_and_virtual_pin, the target
* time to generate next output signal.
* Time is in units of device clock.
* Access: RW
*/
MLXSW_ITEM64(reg, mtpps, time_stamp, 0x28, 0, 64);
static inline void
mlxsw_reg_mtpps_vpin_pack(char *payload, u64 time_stamp)
{
MLXSW_REG_ZERO(mtpps, payload);
mlxsw_reg_mtpps_pin_set(payload, MLXSW_REG_MTPPS_PIN_SP_VIRTUAL_PIN);
mlxsw_reg_mtpps_pin_mode_set(payload,
MLXSW_REG_MTPPS_PIN_MODE_VIRTUAL_PIN);
mlxsw_reg_mtpps_enable_set(payload, true);
mlxsw_reg_mtpps_time_stamp_set(payload, time_stamp);
}
/* MTUTC - Management UTC Register
* -------------------------------
* Configures the HW UTC counter.
*/
#define MLXSW_REG_MTUTC_ID 0x9055
#define MLXSW_REG_MTUTC_LEN 0x1C
MLXSW_REG_DEFINE(mtutc, MLXSW_REG_MTUTC_ID, MLXSW_REG_MTUTC_LEN);
enum mlxsw_reg_mtutc_operation {
MLXSW_REG_MTUTC_OPERATION_SET_TIME_AT_NEXT_SEC = 0,
MLXSW_REG_MTUTC_OPERATION_SET_TIME_IMMEDIATE = 1,
MLXSW_REG_MTUTC_OPERATION_ADJUST_TIME = 2,
MLXSW_REG_MTUTC_OPERATION_ADJUST_FREQ = 3,
};
/* reg_mtutc_operation
* Operation.
* Access: OP
*/
MLXSW_ITEM32(reg, mtutc, operation, 0x00, 0, 4);
/* reg_mtutc_freq_adjustment
* Frequency adjustment: Every PPS the HW frequency will be
* adjusted by this value. Units of HW clock, where HW counts
* 10^9 HW clocks for 1 HW second. Range is from -50,000,000 to +50,000,000.
* In Spectrum-2, the field is reversed, positive values mean to decrease the
* frequency.
* Access: RW
*/
MLXSW_ITEM32(reg, mtutc, freq_adjustment, 0x04, 0, 32);
#define MLXSW_REG_MTUTC_MAX_FREQ_ADJ (50 * 1000 * 1000)
/* reg_mtutc_utc_sec
* UTC seconds.
* Access: WO
*/
MLXSW_ITEM32(reg, mtutc, utc_sec, 0x10, 0, 32);
/* reg_mtutc_utc_nsec
* UTC nSecs.
* Range 0..(10^9-1)
* Updated when operation is SET_TIME_IMMEDIATE.
* Reserved on Spectrum-1.
* Access: WO
*/
MLXSW_ITEM32(reg, mtutc, utc_nsec, 0x14, 0, 30);
/* reg_mtutc_time_adjustment
* Time adjustment.
* Units of nSec.
* Range is from -32768 to +32767.
* Updated when operation is ADJUST_TIME.
* Reserved on Spectrum-1.
* Access: WO
*/
MLXSW_ITEM32(reg, mtutc, time_adjustment, 0x18, 0, 32);
static inline void
mlxsw_reg_mtutc_pack(char *payload, enum mlxsw_reg_mtutc_operation oper,
u32 freq_adj, u32 utc_sec, u32 utc_nsec, u32 time_adj)
{
MLXSW_REG_ZERO(mtutc, payload);
mlxsw_reg_mtutc_operation_set(payload, oper);
mlxsw_reg_mtutc_freq_adjustment_set(payload, freq_adj);
mlxsw_reg_mtutc_utc_sec_set(payload, utc_sec);
mlxsw_reg_mtutc_utc_nsec_set(payload, utc_nsec);
mlxsw_reg_mtutc_time_adjustment_set(payload, time_adj);
}
/* MCQI - Management Component Query Information
* ---------------------------------------------
* This register allows querying information about firmware components.
*/
#define MLXSW_REG_MCQI_ID 0x9061
#define MLXSW_REG_MCQI_BASE_LEN 0x18
#define MLXSW_REG_MCQI_CAP_LEN 0x14
#define MLXSW_REG_MCQI_LEN (MLXSW_REG_MCQI_BASE_LEN + MLXSW_REG_MCQI_CAP_LEN)
MLXSW_REG_DEFINE(mcqi, MLXSW_REG_MCQI_ID, MLXSW_REG_MCQI_LEN);
/* reg_mcqi_component_index
* Index of the accessed component.
* Access: Index
*/
MLXSW_ITEM32(reg, mcqi, component_index, 0x00, 0, 16);
enum mlxfw_reg_mcqi_info_type {
MLXSW_REG_MCQI_INFO_TYPE_CAPABILITIES,
};
/* reg_mcqi_info_type
* Component properties set.
* Access: RW
*/
MLXSW_ITEM32(reg, mcqi, info_type, 0x08, 0, 5);
/* reg_mcqi_offset
* The requested/returned data offset from the section start, given in bytes.
* Must be DWORD aligned.
* Access: RW
*/
MLXSW_ITEM32(reg, mcqi, offset, 0x10, 0, 32);
/* reg_mcqi_data_size
* The requested/returned data size, given in bytes. If data_size is not DWORD
* aligned, the last bytes are zero padded.
* Access: RW
*/
MLXSW_ITEM32(reg, mcqi, data_size, 0x14, 0, 16);
/* reg_mcqi_cap_max_component_size
* Maximum size for this component, given in bytes.
* Access: RO
*/
MLXSW_ITEM32(reg, mcqi, cap_max_component_size, 0x20, 0, 32);
/* reg_mcqi_cap_log_mcda_word_size
* Log 2 of the access word size in bytes. Read and write access must be aligned
* to the word size. Write access must be done for an integer number of words.
* Access: RO
*/
MLXSW_ITEM32(reg, mcqi, cap_log_mcda_word_size, 0x24, 28, 4);
/* reg_mcqi_cap_mcda_max_write_size
* Maximal write size for MCDA register
* Access: RO
*/
MLXSW_ITEM32(reg, mcqi, cap_mcda_max_write_size, 0x24, 0, 16);
static inline void mlxsw_reg_mcqi_pack(char *payload, u16 component_index)
{
MLXSW_REG_ZERO(mcqi, payload);
mlxsw_reg_mcqi_component_index_set(payload, component_index);
mlxsw_reg_mcqi_info_type_set(payload,
MLXSW_REG_MCQI_INFO_TYPE_CAPABILITIES);
mlxsw_reg_mcqi_offset_set(payload, 0);
mlxsw_reg_mcqi_data_size_set(payload, MLXSW_REG_MCQI_CAP_LEN);
}
static inline void mlxsw_reg_mcqi_unpack(char *payload,
u32 *p_cap_max_component_size,
u8 *p_cap_log_mcda_word_size,
u16 *p_cap_mcda_max_write_size)
{
*p_cap_max_component_size =
mlxsw_reg_mcqi_cap_max_component_size_get(payload);
*p_cap_log_mcda_word_size =
mlxsw_reg_mcqi_cap_log_mcda_word_size_get(payload);
*p_cap_mcda_max_write_size =
mlxsw_reg_mcqi_cap_mcda_max_write_size_get(payload);
}
/* MCC - Management Component Control
* ----------------------------------
* Controls the firmware component and updates the FSM.
*/
#define MLXSW_REG_MCC_ID 0x9062
#define MLXSW_REG_MCC_LEN 0x1C
MLXSW_REG_DEFINE(mcc, MLXSW_REG_MCC_ID, MLXSW_REG_MCC_LEN);
enum mlxsw_reg_mcc_instruction {
MLXSW_REG_MCC_INSTRUCTION_LOCK_UPDATE_HANDLE = 0x01,
MLXSW_REG_MCC_INSTRUCTION_RELEASE_UPDATE_HANDLE = 0x02,
MLXSW_REG_MCC_INSTRUCTION_UPDATE_COMPONENT = 0x03,
MLXSW_REG_MCC_INSTRUCTION_VERIFY_COMPONENT = 0x04,
MLXSW_REG_MCC_INSTRUCTION_ACTIVATE = 0x06,
MLXSW_REG_MCC_INSTRUCTION_CANCEL = 0x08,
};
/* reg_mcc_instruction
* Command to be executed by the FSM.
* Applicable for write operation only.
* Access: RW
*/
MLXSW_ITEM32(reg, mcc, instruction, 0x00, 0, 8);
/* reg_mcc_component_index
* Index of the accessed component. Applicable only for commands that
* refer to components. Otherwise, this field is reserved.
* Access: Index
*/
MLXSW_ITEM32(reg, mcc, component_index, 0x04, 0, 16);
/* reg_mcc_update_handle
* Token representing the current flow executed by the FSM.
* Access: WO
*/
MLXSW_ITEM32(reg, mcc, update_handle, 0x08, 0, 24);
/* reg_mcc_error_code
* Indicates the successful completion of the instruction, or the reason it
* failed
* Access: RO
*/
MLXSW_ITEM32(reg, mcc, error_code, 0x0C, 8, 8);
/* reg_mcc_control_state
* Current FSM state
* Access: RO
*/
MLXSW_ITEM32(reg, mcc, control_state, 0x0C, 0, 4);
/* reg_mcc_component_size
* Component size in bytes. Valid for UPDATE_COMPONENT instruction. Specifying
* the size may shorten the update time. Value 0x0 means that size is
* unspecified.
* Access: WO
*/
MLXSW_ITEM32(reg, mcc, component_size, 0x10, 0, 32);
static inline void mlxsw_reg_mcc_pack(char *payload,
enum mlxsw_reg_mcc_instruction instr,
u16 component_index, u32 update_handle,
u32 component_size)
{
MLXSW_REG_ZERO(mcc, payload);
mlxsw_reg_mcc_instruction_set(payload, instr);
mlxsw_reg_mcc_component_index_set(payload, component_index);
mlxsw_reg_mcc_update_handle_set(payload, update_handle);
mlxsw_reg_mcc_component_size_set(payload, component_size);
}
static inline void mlxsw_reg_mcc_unpack(char *payload, u32 *p_update_handle,
u8 *p_error_code, u8 *p_control_state)
{
if (p_update_handle)
*p_update_handle = mlxsw_reg_mcc_update_handle_get(payload);
if (p_error_code)
*p_error_code = mlxsw_reg_mcc_error_code_get(payload);
if (p_control_state)
*p_control_state = mlxsw_reg_mcc_control_state_get(payload);
}
/* MCDA - Management Component Data Access
* ---------------------------------------
* This register allows reading and writing a firmware component.
*/
#define MLXSW_REG_MCDA_ID 0x9063
#define MLXSW_REG_MCDA_BASE_LEN 0x10
#define MLXSW_REG_MCDA_MAX_DATA_LEN 0x80
#define MLXSW_REG_MCDA_LEN \
(MLXSW_REG_MCDA_BASE_LEN + MLXSW_REG_MCDA_MAX_DATA_LEN)
MLXSW_REG_DEFINE(mcda, MLXSW_REG_MCDA_ID, MLXSW_REG_MCDA_LEN);
/* reg_mcda_update_handle
* Token representing the current flow executed by the FSM.
* Access: RW
*/
MLXSW_ITEM32(reg, mcda, update_handle, 0x00, 0, 24);
/* reg_mcda_offset
* Offset of accessed address relative to component start. Accesses must be in
* accordance to log_mcda_word_size in MCQI reg.
* Access: RW
*/
MLXSW_ITEM32(reg, mcda, offset, 0x04, 0, 32);
/* reg_mcda_size
* Size of the data accessed, given in bytes.
* Access: RW
*/
MLXSW_ITEM32(reg, mcda, size, 0x08, 0, 16);
/* reg_mcda_data
* Data block accessed.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, mcda, data, 0x10, 0, 32, 4, 0, false);
static inline void mlxsw_reg_mcda_pack(char *payload, u32 update_handle,
u32 offset, u16 size, u8 *data)
{
int i;
MLXSW_REG_ZERO(mcda, payload);
mlxsw_reg_mcda_update_handle_set(payload, update_handle);
mlxsw_reg_mcda_offset_set(payload, offset);
mlxsw_reg_mcda_size_set(payload, size);
for (i = 0; i < size / 4; i++)
mlxsw_reg_mcda_data_set(payload, i, *(u32 *) &data[i * 4]);
}
/* MPSC - Monitoring Packet Sampling Configuration Register
* --------------------------------------------------------
* MPSC Register is used to configure the Packet Sampling mechanism.
*/
#define MLXSW_REG_MPSC_ID 0x9080
#define MLXSW_REG_MPSC_LEN 0x1C
MLXSW_REG_DEFINE(mpsc, MLXSW_REG_MPSC_ID, MLXSW_REG_MPSC_LEN);
/* reg_mpsc_local_port
* Local port number
* Not supported for CPU port
* Access: Index
*/
MLXSW_ITEM32_LP(reg, mpsc, 0x00, 16, 0x00, 12);
/* reg_mpsc_e
* Enable sampling on port local_port
* Access: RW
*/
MLXSW_ITEM32(reg, mpsc, e, 0x04, 30, 1);
#define MLXSW_REG_MPSC_RATE_MAX 3500000000UL
/* reg_mpsc_rate
* Sampling rate = 1 out of rate packets (with randomization around
* the point). Valid values are: 1 to MLXSW_REG_MPSC_RATE_MAX
* Access: RW
*/
MLXSW_ITEM32(reg, mpsc, rate, 0x08, 0, 32);
static inline void mlxsw_reg_mpsc_pack(char *payload, u16 local_port, bool e,
u32 rate)
{
MLXSW_REG_ZERO(mpsc, payload);
mlxsw_reg_mpsc_local_port_set(payload, local_port);
mlxsw_reg_mpsc_e_set(payload, e);
mlxsw_reg_mpsc_rate_set(payload, rate);
}
/* MGPC - Monitoring General Purpose Counter Set Register
* The MGPC register retrieves and sets the General Purpose Counter Set.
*/
#define MLXSW_REG_MGPC_ID 0x9081
#define MLXSW_REG_MGPC_LEN 0x18
MLXSW_REG_DEFINE(mgpc, MLXSW_REG_MGPC_ID, MLXSW_REG_MGPC_LEN);
/* reg_mgpc_counter_set_type
* Counter set type.
* Access: OP
*/
MLXSW_ITEM32(reg, mgpc, counter_set_type, 0x00, 24, 8);
/* reg_mgpc_counter_index
* Counter index.
* Access: Index
*/
MLXSW_ITEM32(reg, mgpc, counter_index, 0x00, 0, 24);
enum mlxsw_reg_mgpc_opcode {
/* Nop */
MLXSW_REG_MGPC_OPCODE_NOP = 0x00,
/* Clear counters */
MLXSW_REG_MGPC_OPCODE_CLEAR = 0x08,
};
/* reg_mgpc_opcode
* Opcode.
* Access: OP
*/
MLXSW_ITEM32(reg, mgpc, opcode, 0x04, 28, 4);
/* reg_mgpc_byte_counter
* Byte counter value.
* Access: RW
*/
MLXSW_ITEM64(reg, mgpc, byte_counter, 0x08, 0, 64);
/* reg_mgpc_packet_counter
* Packet counter value.
* Access: RW
*/
MLXSW_ITEM64(reg, mgpc, packet_counter, 0x10, 0, 64);
static inline void mlxsw_reg_mgpc_pack(char *payload, u32 counter_index,
enum mlxsw_reg_mgpc_opcode opcode,
enum mlxsw_reg_flow_counter_set_type set_type)
{
MLXSW_REG_ZERO(mgpc, payload);
mlxsw_reg_mgpc_counter_index_set(payload, counter_index);
mlxsw_reg_mgpc_counter_set_type_set(payload, set_type);
mlxsw_reg_mgpc_opcode_set(payload, opcode);
}
/* MPRS - Monitoring Parsing State Register
* ----------------------------------------
* The MPRS register is used for setting up the parsing for hash,
* policy-engine and routing.
*/
#define MLXSW_REG_MPRS_ID 0x9083
#define MLXSW_REG_MPRS_LEN 0x14
MLXSW_REG_DEFINE(mprs, MLXSW_REG_MPRS_ID, MLXSW_REG_MPRS_LEN);
/* reg_mprs_parsing_depth
* Minimum parsing depth.
* Need to enlarge parsing depth according to L3, MPLS, tunnels, ACL
* rules, traps, hash, etc. Default is 96 bytes. Reserved when SwitchX-2.
* Access: RW
*/
MLXSW_ITEM32(reg, mprs, parsing_depth, 0x00, 0, 16);
/* reg_mprs_parsing_en
* Parsing enable.
* Bit 0 - Enable parsing of NVE of types VxLAN, VxLAN-GPE, GENEVE and
* NVGRE. Default is enabled. Reserved when SwitchX-2.
* Access: RW
*/
MLXSW_ITEM32(reg, mprs, parsing_en, 0x04, 0, 16);
/* reg_mprs_vxlan_udp_dport
* VxLAN UDP destination port.
* Used for identifying VxLAN packets and for dport field in
* encapsulation. Default is 4789.
* Access: RW
*/
MLXSW_ITEM32(reg, mprs, vxlan_udp_dport, 0x10, 0, 16);
static inline void mlxsw_reg_mprs_pack(char *payload, u16 parsing_depth,
u16 vxlan_udp_dport)
{
MLXSW_REG_ZERO(mprs, payload);
mlxsw_reg_mprs_parsing_depth_set(payload, parsing_depth);
mlxsw_reg_mprs_parsing_en_set(payload, true);
mlxsw_reg_mprs_vxlan_udp_dport_set(payload, vxlan_udp_dport);
}
/* MOGCR - Monitoring Global Configuration Register
* ------------------------------------------------
*/
#define MLXSW_REG_MOGCR_ID 0x9086
#define MLXSW_REG_MOGCR_LEN 0x20
MLXSW_REG_DEFINE(mogcr, MLXSW_REG_MOGCR_ID, MLXSW_REG_MOGCR_LEN);
/* reg_mogcr_ptp_iftc
* PTP Ingress FIFO Trap Clear
* The PTP_ING_FIFO trap provides MTPPTR with clr according
* to this value. Default 0.
* Reserved when IB switches and when SwitchX/-2, Spectrum-2
* Access: RW
*/
MLXSW_ITEM32(reg, mogcr, ptp_iftc, 0x00, 1, 1);
/* reg_mogcr_ptp_eftc
* PTP Egress FIFO Trap Clear
* The PTP_EGR_FIFO trap provides MTPPTR with clr according
* to this value. Default 0.
* Reserved when IB switches and when SwitchX/-2, Spectrum-2
* Access: RW
*/
MLXSW_ITEM32(reg, mogcr, ptp_eftc, 0x00, 0, 1);
/* reg_mogcr_mirroring_pid_base
* Base policer id for mirroring policers.
* Must have an even value (e.g. 1000, not 1001).
* Reserved when SwitchX/-2, Switch-IB/2, Spectrum-1 and Quantum.
* Access: RW
*/
MLXSW_ITEM32(reg, mogcr, mirroring_pid_base, 0x0C, 0, 14);
/* MPAGR - Monitoring Port Analyzer Global Register
* ------------------------------------------------
* This register is used for global port analyzer configurations.
* Note: This register is not supported by current FW versions for Spectrum-1.
*/
#define MLXSW_REG_MPAGR_ID 0x9089
#define MLXSW_REG_MPAGR_LEN 0x0C
MLXSW_REG_DEFINE(mpagr, MLXSW_REG_MPAGR_ID, MLXSW_REG_MPAGR_LEN);
enum mlxsw_reg_mpagr_trigger {
MLXSW_REG_MPAGR_TRIGGER_EGRESS,
MLXSW_REG_MPAGR_TRIGGER_INGRESS,
MLXSW_REG_MPAGR_TRIGGER_INGRESS_WRED,
MLXSW_REG_MPAGR_TRIGGER_INGRESS_SHARED_BUFFER,
MLXSW_REG_MPAGR_TRIGGER_INGRESS_ING_CONG,
MLXSW_REG_MPAGR_TRIGGER_INGRESS_EGR_CONG,
MLXSW_REG_MPAGR_TRIGGER_EGRESS_ECN,
MLXSW_REG_MPAGR_TRIGGER_EGRESS_HIGH_LATENCY,
};
/* reg_mpagr_trigger
* Mirror trigger.
* Access: Index
*/
MLXSW_ITEM32(reg, mpagr, trigger, 0x00, 0, 4);
/* reg_mpagr_pa_id
* Port analyzer ID.
* Access: RW
*/
MLXSW_ITEM32(reg, mpagr, pa_id, 0x04, 0, 4);
#define MLXSW_REG_MPAGR_RATE_MAX 3500000000UL
/* reg_mpagr_probability_rate
* Sampling rate.
* Valid values are: 1 to 3.5*10^9
* Value of 1 means "sample all". Default is 1.
* Access: RW
*/
MLXSW_ITEM32(reg, mpagr, probability_rate, 0x08, 0, 32);
static inline void mlxsw_reg_mpagr_pack(char *payload,
enum mlxsw_reg_mpagr_trigger trigger,
u8 pa_id, u32 probability_rate)
{
MLXSW_REG_ZERO(mpagr, payload);
mlxsw_reg_mpagr_trigger_set(payload, trigger);
mlxsw_reg_mpagr_pa_id_set(payload, pa_id);
mlxsw_reg_mpagr_probability_rate_set(payload, probability_rate);
}
/* MOMTE - Monitoring Mirror Trigger Enable Register
* -------------------------------------------------
* This register is used to configure the mirror enable for different mirror
* reasons.
*/
#define MLXSW_REG_MOMTE_ID 0x908D
#define MLXSW_REG_MOMTE_LEN 0x10
MLXSW_REG_DEFINE(momte, MLXSW_REG_MOMTE_ID, MLXSW_REG_MOMTE_LEN);
/* reg_momte_local_port
* Local port number.
* Access: Index
*/
MLXSW_ITEM32_LP(reg, momte, 0x00, 16, 0x00, 12);
enum mlxsw_reg_momte_type {
MLXSW_REG_MOMTE_TYPE_WRED = 0x20,
MLXSW_REG_MOMTE_TYPE_SHARED_BUFFER_TCLASS = 0x31,
MLXSW_REG_MOMTE_TYPE_SHARED_BUFFER_TCLASS_DESCRIPTORS = 0x32,
MLXSW_REG_MOMTE_TYPE_SHARED_BUFFER_EGRESS_PORT = 0x33,
MLXSW_REG_MOMTE_TYPE_ING_CONG = 0x40,
MLXSW_REG_MOMTE_TYPE_EGR_CONG = 0x50,
MLXSW_REG_MOMTE_TYPE_ECN = 0x60,
MLXSW_REG_MOMTE_TYPE_HIGH_LATENCY = 0x70,
};
/* reg_momte_type
* Type of mirroring.
* Access: Index
*/
MLXSW_ITEM32(reg, momte, type, 0x04, 0, 8);
/* reg_momte_tclass_en
* TClass/PG mirror enable. Each bit represents corresponding tclass.
* 0: disable (default)
* 1: enable
* Access: RW
*/
MLXSW_ITEM_BIT_ARRAY(reg, momte, tclass_en, 0x08, 0x08, 1);
static inline void mlxsw_reg_momte_pack(char *payload, u16 local_port,
enum mlxsw_reg_momte_type type)
{
MLXSW_REG_ZERO(momte, payload);
mlxsw_reg_momte_local_port_set(payload, local_port);
mlxsw_reg_momte_type_set(payload, type);
}
/* MTPPPC - Time Precision Packet Port Configuration
* -------------------------------------------------
* This register serves for configuration of which PTP messages should be
* timestamped. This is a global configuration, despite the register name.
*
* Reserved when Spectrum-2.
*/
#define MLXSW_REG_MTPPPC_ID 0x9090
#define MLXSW_REG_MTPPPC_LEN 0x28
MLXSW_REG_DEFINE(mtpppc, MLXSW_REG_MTPPPC_ID, MLXSW_REG_MTPPPC_LEN);
/* reg_mtpppc_ing_timestamp_message_type
* Bitwise vector of PTP message types to timestamp at ingress.
* MessageType field as defined by IEEE 1588
* Each bit corresponds to a value (e.g. Bit0: Sync, Bit1: Delay_Req)
* Default all 0
* Access: RW
*/
MLXSW_ITEM32(reg, mtpppc, ing_timestamp_message_type, 0x08, 0, 16);
/* reg_mtpppc_egr_timestamp_message_type
* Bitwise vector of PTP message types to timestamp at egress.
* MessageType field as defined by IEEE 1588
* Each bit corresponds to a value (e.g. Bit0: Sync, Bit1: Delay_Req)
* Default all 0
* Access: RW
*/
MLXSW_ITEM32(reg, mtpppc, egr_timestamp_message_type, 0x0C, 0, 16);
static inline void mlxsw_reg_mtpppc_pack(char *payload, u16 ing, u16 egr)
{
MLXSW_REG_ZERO(mtpppc, payload);
mlxsw_reg_mtpppc_ing_timestamp_message_type_set(payload, ing);
mlxsw_reg_mtpppc_egr_timestamp_message_type_set(payload, egr);
}
/* MTPPTR - Time Precision Packet Timestamping Reading
* ---------------------------------------------------
* The MTPPTR is used for reading the per port PTP timestamp FIFO.
* There is a trap for packets which are latched to the timestamp FIFO, thus the
* SW knows which FIFO to read. Note that packets enter the FIFO before been
* trapped. The sequence number is used to synchronize the timestamp FIFO
* entries and the trapped packets.
* Reserved when Spectrum-2.
*/
#define MLXSW_REG_MTPPTR_ID 0x9091
#define MLXSW_REG_MTPPTR_BASE_LEN 0x10 /* base length, without records */
#define MLXSW_REG_MTPPTR_REC_LEN 0x10 /* record length */
#define MLXSW_REG_MTPPTR_REC_MAX_COUNT 4
#define MLXSW_REG_MTPPTR_LEN (MLXSW_REG_MTPPTR_BASE_LEN + \
MLXSW_REG_MTPPTR_REC_LEN * MLXSW_REG_MTPPTR_REC_MAX_COUNT)
MLXSW_REG_DEFINE(mtpptr, MLXSW_REG_MTPPTR_ID, MLXSW_REG_MTPPTR_LEN);
/* reg_mtpptr_local_port
* Not supported for CPU port.
* Access: Index
*/
MLXSW_ITEM32_LP(reg, mtpptr, 0x00, 16, 0x00, 12);
enum mlxsw_reg_mtpptr_dir {
MLXSW_REG_MTPPTR_DIR_INGRESS,
MLXSW_REG_MTPPTR_DIR_EGRESS,
};
/* reg_mtpptr_dir
* Direction.
* Access: Index
*/
MLXSW_ITEM32(reg, mtpptr, dir, 0x00, 0, 1);
/* reg_mtpptr_clr
* Clear the records.
* Access: OP
*/
MLXSW_ITEM32(reg, mtpptr, clr, 0x04, 31, 1);
/* reg_mtpptr_num_rec
* Number of valid records in the response
* Range 0.. cap_ptp_timestamp_fifo
* Access: RO
*/
MLXSW_ITEM32(reg, mtpptr, num_rec, 0x08, 0, 4);
/* reg_mtpptr_rec_message_type
* MessageType field as defined by IEEE 1588 Each bit corresponds to a value
* (e.g. Bit0: Sync, Bit1: Delay_Req)
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_message_type,
MLXSW_REG_MTPPTR_BASE_LEN, 8, 4,
MLXSW_REG_MTPPTR_REC_LEN, 0, false);
/* reg_mtpptr_rec_domain_number
* DomainNumber field as defined by IEEE 1588
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_domain_number,
MLXSW_REG_MTPPTR_BASE_LEN, 0, 8,
MLXSW_REG_MTPPTR_REC_LEN, 0, false);
/* reg_mtpptr_rec_sequence_id
* SequenceId field as defined by IEEE 1588
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_sequence_id,
MLXSW_REG_MTPPTR_BASE_LEN, 0, 16,
MLXSW_REG_MTPPTR_REC_LEN, 0x4, false);
/* reg_mtpptr_rec_timestamp_high
* Timestamp of when the PTP packet has passed through the port Units of PLL
* clock time.
* For Spectrum-1 the PLL clock is 156.25Mhz and PLL clock time is 6.4nSec.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_timestamp_high,
MLXSW_REG_MTPPTR_BASE_LEN, 0, 32,
MLXSW_REG_MTPPTR_REC_LEN, 0x8, false);
/* reg_mtpptr_rec_timestamp_low
* See rec_timestamp_high.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_timestamp_low,
MLXSW_REG_MTPPTR_BASE_LEN, 0, 32,
MLXSW_REG_MTPPTR_REC_LEN, 0xC, false);
static inline void mlxsw_reg_mtpptr_unpack(const char *payload,
unsigned int rec,
u8 *p_message_type,
u8 *p_domain_number,
u16 *p_sequence_id,
u64 *p_timestamp)
{
u32 timestamp_high, timestamp_low;
*p_message_type = mlxsw_reg_mtpptr_rec_message_type_get(payload, rec);
*p_domain_number = mlxsw_reg_mtpptr_rec_domain_number_get(payload, rec);
*p_sequence_id = mlxsw_reg_mtpptr_rec_sequence_id_get(payload, rec);
timestamp_high = mlxsw_reg_mtpptr_rec_timestamp_high_get(payload, rec);
timestamp_low = mlxsw_reg_mtpptr_rec_timestamp_low_get(payload, rec);
*p_timestamp = (u64)timestamp_high << 32 | timestamp_low;
}
/* MTPTPT - Monitoring Precision Time Protocol Trap Register
* ---------------------------------------------------------
* This register is used for configuring under which trap to deliver PTP
* packets depending on type of the packet.
*/
#define MLXSW_REG_MTPTPT_ID 0x9092
#define MLXSW_REG_MTPTPT_LEN 0x08
MLXSW_REG_DEFINE(mtptpt, MLXSW_REG_MTPTPT_ID, MLXSW_REG_MTPTPT_LEN);
enum mlxsw_reg_mtptpt_trap_id {
MLXSW_REG_MTPTPT_TRAP_ID_PTP0,
MLXSW_REG_MTPTPT_TRAP_ID_PTP1,
};
/* reg_mtptpt_trap_id
* Trap id.
* Access: Index
*/
MLXSW_ITEM32(reg, mtptpt, trap_id, 0x00, 0, 4);
/* reg_mtptpt_message_type
* Bitwise vector of PTP message types to trap. This is a necessary but
* non-sufficient condition since need to enable also per port. See MTPPPC.
* Message types are defined by IEEE 1588 Each bit corresponds to a value (e.g.
* Bit0: Sync, Bit1: Delay_Req)
*/
MLXSW_ITEM32(reg, mtptpt, message_type, 0x04, 0, 16);
static inline void mlxsw_reg_mtptpt_pack(char *payload,
enum mlxsw_reg_mtptpt_trap_id trap_id,
u16 message_type)
{
MLXSW_REG_ZERO(mtptpt, payload);
mlxsw_reg_mtptpt_trap_id_set(payload, trap_id);
mlxsw_reg_mtptpt_message_type_set(payload, message_type);
}
/* MTPCPC - Monitoring Time Precision Correction Port Configuration Register
* -------------------------------------------------------------------------
*/
#define MLXSW_REG_MTPCPC_ID 0x9093
#define MLXSW_REG_MTPCPC_LEN 0x2C
MLXSW_REG_DEFINE(mtpcpc, MLXSW_REG_MTPCPC_ID, MLXSW_REG_MTPCPC_LEN);
/* reg_mtpcpc_pport
* Per port:
* 0: config is global. When reading - the local_port is 1.
* 1: config is per port.
* Access: Index
*/
MLXSW_ITEM32(reg, mtpcpc, pport, 0x00, 31, 1);
/* reg_mtpcpc_local_port
* Local port number.
* Supported to/from CPU port.
* Reserved when pport = 0.
* Access: Index
*/
MLXSW_ITEM32_LP(reg, mtpcpc, 0x00, 16, 0x00, 12);
/* reg_mtpcpc_ptp_trap_en
* Enable PTP traps.
* The trap_id is configured by MTPTPT.
* Access: RW
*/
MLXSW_ITEM32(reg, mtpcpc, ptp_trap_en, 0x04, 0, 1);
/* reg_mtpcpc_ing_correction_message_type
* Bitwise vector of PTP message types to update correction-field at ingress.
* MessageType field as defined by IEEE 1588 Each bit corresponds to a value
* (e.g. Bit0: Sync, Bit1: Delay_Req). Supported also from CPU port.
* Default all 0
* Access: RW
*/
MLXSW_ITEM32(reg, mtpcpc, ing_correction_message_type, 0x10, 0, 16);
/* reg_mtpcpc_egr_correction_message_type
* Bitwise vector of PTP message types to update correction-field at egress.
* MessageType field as defined by IEEE 1588 Each bit corresponds to a value
* (e.g. Bit0: Sync, Bit1: Delay_Req). Supported also from CPU port.
* Default all 0
* Access: RW
*/
MLXSW_ITEM32(reg, mtpcpc, egr_correction_message_type, 0x14, 0, 16);
static inline void mlxsw_reg_mtpcpc_pack(char *payload, bool pport,
u16 local_port, bool ptp_trap_en,
u16 ing, u16 egr)
{
MLXSW_REG_ZERO(mtpcpc, payload);
mlxsw_reg_mtpcpc_pport_set(payload, pport);
mlxsw_reg_mtpcpc_local_port_set(payload, pport ? local_port : 0);
mlxsw_reg_mtpcpc_ptp_trap_en_set(payload, ptp_trap_en);
mlxsw_reg_mtpcpc_ing_correction_message_type_set(payload, ing);
mlxsw_reg_mtpcpc_egr_correction_message_type_set(payload, egr);
}
/* MFGD - Monitoring FW General Debug Register
* -------------------------------------------
*/
#define MLXSW_REG_MFGD_ID 0x90F0
#define MLXSW_REG_MFGD_LEN 0x0C
MLXSW_REG_DEFINE(mfgd, MLXSW_REG_MFGD_ID, MLXSW_REG_MFGD_LEN);
/* reg_mfgd_fw_fatal_event_mode
* 0 - don't check FW fatal (default)
* 1 - check FW fatal - enable MFDE trap
* Access: RW
*/
MLXSW_ITEM32(reg, mfgd, fatal_event_mode, 0x00, 9, 2);
/* reg_mfgd_trigger_test
* Access: WO
*/
MLXSW_ITEM32(reg, mfgd, trigger_test, 0x00, 11, 1);
/* MGPIR - Management General Peripheral Information Register
* ----------------------------------------------------------
* MGPIR register allows software to query the hardware and
* firmware general information of peripheral entities.
*/
#define MLXSW_REG_MGPIR_ID 0x9100
#define MLXSW_REG_MGPIR_LEN 0xA0
MLXSW_REG_DEFINE(mgpir, MLXSW_REG_MGPIR_ID, MLXSW_REG_MGPIR_LEN);
enum mlxsw_reg_mgpir_device_type {
MLXSW_REG_MGPIR_DEVICE_TYPE_NONE,
MLXSW_REG_MGPIR_DEVICE_TYPE_GEARBOX_DIE,
};
/* mgpir_slot_index
* Slot index (0: Main board).
* Access: Index
*/
MLXSW_ITEM32(reg, mgpir, slot_index, 0x00, 28, 4);
/* mgpir_device_type
* Access: RO
*/
MLXSW_ITEM32(reg, mgpir, device_type, 0x00, 24, 4);
/* mgpir_devices_per_flash
* Number of devices of device_type per flash (can be shared by few devices).
* Access: RO
*/
MLXSW_ITEM32(reg, mgpir, devices_per_flash, 0x00, 16, 8);
/* mgpir_num_of_devices
* Number of devices of device_type.
* Access: RO
*/
MLXSW_ITEM32(reg, mgpir, num_of_devices, 0x00, 0, 8);
/* max_modules_per_slot
* Maximum number of modules that can be connected per slot.
* Access: RO
*/
MLXSW_ITEM32(reg, mgpir, max_modules_per_slot, 0x04, 16, 8);
/* mgpir_num_of_slots
* Number of slots in the system.
* Access: RO
*/
MLXSW_ITEM32(reg, mgpir, num_of_slots, 0x04, 8, 8);
/* mgpir_num_of_modules
* Number of modules.
* Access: RO
*/
MLXSW_ITEM32(reg, mgpir, num_of_modules, 0x04, 0, 8);
static inline void mlxsw_reg_mgpir_pack(char *payload, u8 slot_index)
{
MLXSW_REG_ZERO(mgpir, payload);
mlxsw_reg_mgpir_slot_index_set(payload, slot_index);
}
static inline void
mlxsw_reg_mgpir_unpack(char *payload, u8 *num_of_devices,
enum mlxsw_reg_mgpir_device_type *device_type,
u8 *devices_per_flash, u8 *num_of_modules,
u8 *num_of_slots)
{
if (num_of_devices)
*num_of_devices = mlxsw_reg_mgpir_num_of_devices_get(payload);
if (device_type)
*device_type = mlxsw_reg_mgpir_device_type_get(payload);
if (devices_per_flash)
*devices_per_flash =
mlxsw_reg_mgpir_devices_per_flash_get(payload);
if (num_of_modules)
*num_of_modules = mlxsw_reg_mgpir_num_of_modules_get(payload);
if (num_of_slots)
*num_of_slots = mlxsw_reg_mgpir_num_of_slots_get(payload);
}
/* MBCT - Management Binary Code Transfer Register
* -----------------------------------------------
* This register allows to transfer binary codes from the host to
* the management FW by transferring it by chunks of maximum 1KB.
*/
#define MLXSW_REG_MBCT_ID 0x9120
#define MLXSW_REG_MBCT_LEN 0x420
MLXSW_REG_DEFINE(mbct, MLXSW_REG_MBCT_ID, MLXSW_REG_MBCT_LEN);
/* reg_mbct_slot_index
* Slot index. 0 is reserved.
* Access: Index
*/
MLXSW_ITEM32(reg, mbct, slot_index, 0x00, 0, 4);
/* reg_mbct_data_size
* Actual data field size in bytes for the current data transfer.
* Access: WO
*/
MLXSW_ITEM32(reg, mbct, data_size, 0x04, 0, 11);
enum mlxsw_reg_mbct_op {
MLXSW_REG_MBCT_OP_ERASE_INI_IMAGE = 1,
MLXSW_REG_MBCT_OP_DATA_TRANSFER, /* Download */
MLXSW_REG_MBCT_OP_ACTIVATE,
MLXSW_REG_MBCT_OP_CLEAR_ERRORS = 6,
MLXSW_REG_MBCT_OP_QUERY_STATUS,
};
/* reg_mbct_op
* Access: WO
*/
MLXSW_ITEM32(reg, mbct, op, 0x08, 28, 4);
/* reg_mbct_last
* Indicates that the current data field is the last chunk of the INI.
* Access: WO
*/
MLXSW_ITEM32(reg, mbct, last, 0x08, 26, 1);
/* reg_mbct_oee
* Opcode Event Enable. When set a BCTOE event will be sent once the opcode
* was executed and the fsm_state has changed.
* Access: WO
*/
MLXSW_ITEM32(reg, mbct, oee, 0x08, 25, 1);
enum mlxsw_reg_mbct_status {
/* Partial data transfer completed successfully and ready for next
* data transfer.
*/
MLXSW_REG_MBCT_STATUS_PART_DATA = 2,
MLXSW_REG_MBCT_STATUS_LAST_DATA,
MLXSW_REG_MBCT_STATUS_ERASE_COMPLETE,
/* Error - trying to erase INI while it being used. */
MLXSW_REG_MBCT_STATUS_ERROR_INI_IN_USE,
/* Last data transfer completed, applying magic pattern. */
MLXSW_REG_MBCT_STATUS_ERASE_FAILED = 7,
MLXSW_REG_MBCT_STATUS_INI_ERROR,
MLXSW_REG_MBCT_STATUS_ACTIVATION_FAILED,
MLXSW_REG_MBCT_STATUS_ILLEGAL_OPERATION = 11,
};
/* reg_mbct_status
* Status.
* Access: RO
*/
MLXSW_ITEM32(reg, mbct, status, 0x0C, 24, 5);
enum mlxsw_reg_mbct_fsm_state {
MLXSW_REG_MBCT_FSM_STATE_INI_IN_USE = 5,
MLXSW_REG_MBCT_FSM_STATE_ERROR,
};
/* reg_mbct_fsm_state
* FSM state.
* Access: RO
*/
MLXSW_ITEM32(reg, mbct, fsm_state, 0x0C, 16, 4);
#define MLXSW_REG_MBCT_DATA_LEN 1024
/* reg_mbct_data
* Up to 1KB of data.
* Access: WO
*/
MLXSW_ITEM_BUF(reg, mbct, data, 0x20, MLXSW_REG_MBCT_DATA_LEN);
static inline void mlxsw_reg_mbct_pack(char *payload, u8 slot_index,
enum mlxsw_reg_mbct_op op, bool oee)
{
MLXSW_REG_ZERO(mbct, payload);
mlxsw_reg_mbct_slot_index_set(payload, slot_index);
mlxsw_reg_mbct_op_set(payload, op);
mlxsw_reg_mbct_oee_set(payload, oee);
}
static inline void mlxsw_reg_mbct_dt_pack(char *payload,
u16 data_size, bool last,
const char *data)
{
if (WARN_ON(data_size > MLXSW_REG_MBCT_DATA_LEN))
return;
mlxsw_reg_mbct_data_size_set(payload, data_size);
mlxsw_reg_mbct_last_set(payload, last);
mlxsw_reg_mbct_data_memcpy_to(payload, data);
}
static inline void
mlxsw_reg_mbct_unpack(const char *payload, u8 *p_slot_index,
enum mlxsw_reg_mbct_status *p_status,
enum mlxsw_reg_mbct_fsm_state *p_fsm_state)
{
if (p_slot_index)
*p_slot_index = mlxsw_reg_mbct_slot_index_get(payload);
*p_status = mlxsw_reg_mbct_status_get(payload);
if (p_fsm_state)
*p_fsm_state = mlxsw_reg_mbct_fsm_state_get(payload);
}
/* MDDT - Management DownStream Device Tunneling Register
* ------------------------------------------------------
* This register allows to deliver query and request messages (PRM registers,
* commands) to a DownStream device.
*/
#define MLXSW_REG_MDDT_ID 0x9160
#define MLXSW_REG_MDDT_LEN 0x110
MLXSW_REG_DEFINE(mddt, MLXSW_REG_MDDT_ID, MLXSW_REG_MDDT_LEN);
/* reg_mddt_slot_index
* Slot index.
* Access: Index
*/
MLXSW_ITEM32(reg, mddt, slot_index, 0x00, 8, 4);
/* reg_mddt_device_index
* Device index.
* Access: Index
*/
MLXSW_ITEM32(reg, mddt, device_index, 0x00, 0, 8);
/* reg_mddt_read_size
* Read size in D-Words.
* Access: OP
*/
MLXSW_ITEM32(reg, mddt, read_size, 0x04, 24, 8);
/* reg_mddt_write_size
* Write size in D-Words.
* Access: OP
*/
MLXSW_ITEM32(reg, mddt, write_size, 0x04, 16, 8);
enum mlxsw_reg_mddt_status {
MLXSW_REG_MDDT_STATUS_OK,
};
/* reg_mddt_status
* Return code of the Downstream Device to the register that was sent.
* Access: RO
*/
MLXSW_ITEM32(reg, mddt, status, 0x0C, 24, 8);
enum mlxsw_reg_mddt_method {
MLXSW_REG_MDDT_METHOD_QUERY,
MLXSW_REG_MDDT_METHOD_WRITE,
};
/* reg_mddt_method
* Access: OP
*/
MLXSW_ITEM32(reg, mddt, method, 0x0C, 22, 2);
/* reg_mddt_register_id
* Access: Index
*/
MLXSW_ITEM32(reg, mddt, register_id, 0x0C, 0, 16);
#define MLXSW_REG_MDDT_PAYLOAD_OFFSET 0x0C
#define MLXSW_REG_MDDT_PRM_REGISTER_HEADER_LEN 4
static inline char *mlxsw_reg_mddt_inner_payload(char *payload)
{
return payload + MLXSW_REG_MDDT_PAYLOAD_OFFSET +
MLXSW_REG_MDDT_PRM_REGISTER_HEADER_LEN;
}
static inline void mlxsw_reg_mddt_pack(char *payload, u8 slot_index,
u8 device_index,
enum mlxsw_reg_mddt_method method,
const struct mlxsw_reg_info *reg,
char **inner_payload)
{
int len = reg->len + MLXSW_REG_MDDT_PRM_REGISTER_HEADER_LEN;
if (WARN_ON(len + MLXSW_REG_MDDT_PAYLOAD_OFFSET > MLXSW_REG_MDDT_LEN))
len = MLXSW_REG_MDDT_LEN - MLXSW_REG_MDDT_PAYLOAD_OFFSET;
MLXSW_REG_ZERO(mddt, payload);
mlxsw_reg_mddt_slot_index_set(payload, slot_index);
mlxsw_reg_mddt_device_index_set(payload, device_index);
mlxsw_reg_mddt_method_set(payload, method);
mlxsw_reg_mddt_register_id_set(payload, reg->id);
mlxsw_reg_mddt_read_size_set(payload, len / 4);
mlxsw_reg_mddt_write_size_set(payload, len / 4);
*inner_payload = mlxsw_reg_mddt_inner_payload(payload);
}
/* MDDQ - Management DownStream Device Query Register
* --------------------------------------------------
* This register allows to query the DownStream device properties. The desired
* information is chosen upon the query_type field and is delivered by 32B
* of data blocks.
*/
#define MLXSW_REG_MDDQ_ID 0x9161
#define MLXSW_REG_MDDQ_LEN 0x30
MLXSW_REG_DEFINE(mddq, MLXSW_REG_MDDQ_ID, MLXSW_REG_MDDQ_LEN);
/* reg_mddq_sie
* Slot info event enable.
* When set to '1', each change in the slot_info.provisioned / sr_valid /
* active / ready will generate a DSDSC event.
* Access: RW
*/
MLXSW_ITEM32(reg, mddq, sie, 0x00, 31, 1);
enum mlxsw_reg_mddq_query_type {
MLXSW_REG_MDDQ_QUERY_TYPE_SLOT_INFO = 1,
MLXSW_REG_MDDQ_QUERY_TYPE_DEVICE_INFO, /* If there are no devices
* on the slot, data_valid
* will be '0'.
*/
MLXSW_REG_MDDQ_QUERY_TYPE_SLOT_NAME,
};
/* reg_mddq_query_type
* Access: Index
*/
MLXSW_ITEM32(reg, mddq, query_type, 0x00, 16, 8);
/* reg_mddq_slot_index
* Slot index. 0 is reserved.
* Access: Index
*/
MLXSW_ITEM32(reg, mddq, slot_index, 0x00, 0, 4);
/* reg_mddq_response_msg_seq
* Response message sequential number. For a specific request, the response
* message sequential number is the following one. In addition, the last
* message should be 0.
* Access: RO
*/
MLXSW_ITEM32(reg, mddq, response_msg_seq, 0x04, 16, 8);
/* reg_mddq_request_msg_seq
* Request message sequential number.
* The first message number should be 0.
* Access: Index
*/
MLXSW_ITEM32(reg, mddq, request_msg_seq, 0x04, 0, 8);
/* reg_mddq_data_valid
* If set, the data in the data field is valid and contain the information
* for the queried index.
* Access: RO
*/
MLXSW_ITEM32(reg, mddq, data_valid, 0x08, 31, 1);
/* reg_mddq_slot_info_provisioned
* If set, the INI file is applied and the card is provisioned.
* Access: RO
*/
MLXSW_ITEM32(reg, mddq, slot_info_provisioned, 0x10, 31, 1);
/* reg_mddq_slot_info_sr_valid
* If set, Shift Register is valid (after being provisioned) and data
* can be sent from the switch ASIC to the line-card CPLD over Shift-Register.
* Access: RO
*/
MLXSW_ITEM32(reg, mddq, slot_info_sr_valid, 0x10, 30, 1);
enum mlxsw_reg_mddq_slot_info_ready {
MLXSW_REG_MDDQ_SLOT_INFO_READY_NOT_READY,
MLXSW_REG_MDDQ_SLOT_INFO_READY_READY,
MLXSW_REG_MDDQ_SLOT_INFO_READY_ERROR,
};
/* reg_mddq_slot_info_lc_ready
* If set, the LC is powered on, matching the INI version and a new FW
* version can be burnt (if necessary).
* Access: RO
*/
MLXSW_ITEM32(reg, mddq, slot_info_lc_ready, 0x10, 28, 2);
/* reg_mddq_slot_info_active
* If set, the FW has completed the MDDC.device_enable command.
* Access: RO
*/
MLXSW_ITEM32(reg, mddq, slot_info_active, 0x10, 27, 1);
/* reg_mddq_slot_info_hw_revision
* Major user-configured version number of the current INI file.
* Valid only when active or ready are '1'.
* Access: RO
*/
MLXSW_ITEM32(reg, mddq, slot_info_hw_revision, 0x14, 16, 16);
/* reg_mddq_slot_info_ini_file_version
* User-configured version number of the current INI file.
* Valid only when active or lc_ready are '1'.
* Access: RO
*/
MLXSW_ITEM32(reg, mddq, slot_info_ini_file_version, 0x14, 0, 16);
/* reg_mddq_slot_info_card_type
* Access: RO
*/
MLXSW_ITEM32(reg, mddq, slot_info_card_type, 0x18, 0, 8);
static inline void
__mlxsw_reg_mddq_pack(char *payload, u8 slot_index,
enum mlxsw_reg_mddq_query_type query_type)
{
MLXSW_REG_ZERO(mddq, payload);
mlxsw_reg_mddq_slot_index_set(payload, slot_index);
mlxsw_reg_mddq_query_type_set(payload, query_type);
}
static inline void
mlxsw_reg_mddq_slot_info_pack(char *payload, u8 slot_index, bool sie)
{
__mlxsw_reg_mddq_pack(payload, slot_index,
MLXSW_REG_MDDQ_QUERY_TYPE_SLOT_INFO);
mlxsw_reg_mddq_sie_set(payload, sie);
}
static inline void
mlxsw_reg_mddq_slot_info_unpack(const char *payload, u8 *p_slot_index,
bool *p_provisioned, bool *p_sr_valid,
enum mlxsw_reg_mddq_slot_info_ready *p_lc_ready,
bool *p_active, u16 *p_hw_revision,
u16 *p_ini_file_version,
u8 *p_card_type)
{
*p_slot_index = mlxsw_reg_mddq_slot_index_get(payload);
*p_provisioned = mlxsw_reg_mddq_slot_info_provisioned_get(payload);
*p_sr_valid = mlxsw_reg_mddq_slot_info_sr_valid_get(payload);
*p_lc_ready = mlxsw_reg_mddq_slot_info_lc_ready_get(payload);
*p_active = mlxsw_reg_mddq_slot_info_active_get(payload);
*p_hw_revision = mlxsw_reg_mddq_slot_info_hw_revision_get(payload);
*p_ini_file_version = mlxsw_reg_mddq_slot_info_ini_file_version_get(payload);
*p_card_type = mlxsw_reg_mddq_slot_info_card_type_get(payload);
}
/* reg_mddq_device_info_flash_owner
* If set, the device is the flash owner. Otherwise, a shared flash
* is used by this device (another device is the flash owner).
* Access: RO
*/
MLXSW_ITEM32(reg, mddq, device_info_flash_owner, 0x10, 30, 1);
/* reg_mddq_device_info_device_index
* Device index. The first device should number 0.
* Access: RO
*/
MLXSW_ITEM32(reg, mddq, device_info_device_index, 0x10, 0, 8);
/* reg_mddq_device_info_fw_major
* Major FW version number.
* Access: RO
*/
MLXSW_ITEM32(reg, mddq, device_info_fw_major, 0x14, 16, 16);
/* reg_mddq_device_info_fw_minor
* Minor FW version number.
* Access: RO
*/
MLXSW_ITEM32(reg, mddq, device_info_fw_minor, 0x18, 16, 16);
/* reg_mddq_device_info_fw_sub_minor
* Sub-minor FW version number.
* Access: RO
*/
MLXSW_ITEM32(reg, mddq, device_info_fw_sub_minor, 0x18, 0, 16);
static inline void
mlxsw_reg_mddq_device_info_pack(char *payload, u8 slot_index,
u8 request_msg_seq)
{
__mlxsw_reg_mddq_pack(payload, slot_index,
MLXSW_REG_MDDQ_QUERY_TYPE_DEVICE_INFO);
mlxsw_reg_mddq_request_msg_seq_set(payload, request_msg_seq);
}
static inline void
mlxsw_reg_mddq_device_info_unpack(const char *payload, u8 *p_response_msg_seq,
bool *p_data_valid, bool *p_flash_owner,
u8 *p_device_index, u16 *p_fw_major,
u16 *p_fw_minor, u16 *p_fw_sub_minor)
{
*p_response_msg_seq = mlxsw_reg_mddq_response_msg_seq_get(payload);
*p_data_valid = mlxsw_reg_mddq_data_valid_get(payload);
*p_flash_owner = mlxsw_reg_mddq_device_info_flash_owner_get(payload);
*p_device_index = mlxsw_reg_mddq_device_info_device_index_get(payload);
*p_fw_major = mlxsw_reg_mddq_device_info_fw_major_get(payload);
*p_fw_minor = mlxsw_reg_mddq_device_info_fw_minor_get(payload);
*p_fw_sub_minor = mlxsw_reg_mddq_device_info_fw_sub_minor_get(payload);
}
#define MLXSW_REG_MDDQ_SLOT_ASCII_NAME_LEN 20
/* reg_mddq_slot_ascii_name
* Slot's ASCII name.
* Access: RO
*/
MLXSW_ITEM_BUF(reg, mddq, slot_ascii_name, 0x10,
MLXSW_REG_MDDQ_SLOT_ASCII_NAME_LEN);
static inline void
mlxsw_reg_mddq_slot_name_pack(char *payload, u8 slot_index)
{
__mlxsw_reg_mddq_pack(payload, slot_index,
MLXSW_REG_MDDQ_QUERY_TYPE_SLOT_NAME);
}
static inline void
mlxsw_reg_mddq_slot_name_unpack(const char *payload, char *slot_ascii_name)
{
mlxsw_reg_mddq_slot_ascii_name_memcpy_from(payload, slot_ascii_name);
}
/* MDDC - Management DownStream Device Control Register
* ----------------------------------------------------
* This register allows to control downstream devices and line cards.
*/
#define MLXSW_REG_MDDC_ID 0x9163
#define MLXSW_REG_MDDC_LEN 0x30
MLXSW_REG_DEFINE(mddc, MLXSW_REG_MDDC_ID, MLXSW_REG_MDDC_LEN);
/* reg_mddc_slot_index
* Slot index. 0 is reserved.
* Access: Index
*/
MLXSW_ITEM32(reg, mddc, slot_index, 0x00, 0, 4);
/* reg_mddc_rst
* Reset request.
* Access: OP
*/
MLXSW_ITEM32(reg, mddc, rst, 0x04, 29, 1);
/* reg_mddc_device_enable
* When set, FW is the manager and allowed to program the downstream device.
* Access: RW
*/
MLXSW_ITEM32(reg, mddc, device_enable, 0x04, 28, 1);
static inline void mlxsw_reg_mddc_pack(char *payload, u8 slot_index, bool rst,
bool device_enable)
{
MLXSW_REG_ZERO(mddc, payload);
mlxsw_reg_mddc_slot_index_set(payload, slot_index);
mlxsw_reg_mddc_rst_set(payload, rst);
mlxsw_reg_mddc_device_enable_set(payload, device_enable);
}
/* MFDE - Monitoring FW Debug Register
* -----------------------------------
*/
#define MLXSW_REG_MFDE_ID 0x9200
#define MLXSW_REG_MFDE_LEN 0x30
MLXSW_REG_DEFINE(mfde, MLXSW_REG_MFDE_ID, MLXSW_REG_MFDE_LEN);
/* reg_mfde_irisc_id
* Which irisc triggered the event
* Access: RO
*/
MLXSW_ITEM32(reg, mfde, irisc_id, 0x00, 24, 8);
enum mlxsw_reg_mfde_severity {
/* Unrecoverable switch behavior */
MLXSW_REG_MFDE_SEVERITY_FATL = 2,
/* Unexpected state with possible systemic failure */
MLXSW_REG_MFDE_SEVERITY_NRML = 3,
/* Unexpected state without systemic failure */
MLXSW_REG_MFDE_SEVERITY_INTR = 5,
};
/* reg_mfde_severity
* The severity of the event.
* Access: RO
*/
MLXSW_ITEM32(reg, mfde, severity, 0x00, 16, 8);
enum mlxsw_reg_mfde_event_id {
/* CRspace timeout */
MLXSW_REG_MFDE_EVENT_ID_CRSPACE_TO = 1,
/* KVD insertion machine stopped */
MLXSW_REG_MFDE_EVENT_ID_KVD_IM_STOP,
/* Triggered by MFGD.trigger_test */
MLXSW_REG_MFDE_EVENT_ID_TEST,
/* Triggered when firmware hits an assert */
MLXSW_REG_MFDE_EVENT_ID_FW_ASSERT,
/* Fatal error interrupt from hardware */
MLXSW_REG_MFDE_EVENT_ID_FATAL_CAUSE,
};
/* reg_mfde_event_id
* Access: RO
*/
MLXSW_ITEM32(reg, mfde, event_id, 0x00, 0, 16);
enum mlxsw_reg_mfde_method {
MLXSW_REG_MFDE_METHOD_QUERY,
MLXSW_REG_MFDE_METHOD_WRITE,
};
/* reg_mfde_method
* Access: RO
*/
MLXSW_ITEM32(reg, mfde, method, 0x04, 29, 1);
/* reg_mfde_long_process
* Indicates if the command is in long_process mode.
* Access: RO
*/
MLXSW_ITEM32(reg, mfde, long_process, 0x04, 28, 1);
enum mlxsw_reg_mfde_command_type {
MLXSW_REG_MFDE_COMMAND_TYPE_MAD,
MLXSW_REG_MFDE_COMMAND_TYPE_EMAD,
MLXSW_REG_MFDE_COMMAND_TYPE_CMDIF,
};
/* reg_mfde_command_type
* Access: RO
*/
MLXSW_ITEM32(reg, mfde, command_type, 0x04, 24, 2);
/* reg_mfde_reg_attr_id
* EMAD - register id, MAD - attibute id
* Access: RO
*/
MLXSW_ITEM32(reg, mfde, reg_attr_id, 0x04, 0, 16);
/* reg_mfde_crspace_to_log_address
* crspace address accessed, which resulted in timeout.
* Access: RO
*/
MLXSW_ITEM32(reg, mfde, crspace_to_log_address, 0x10, 0, 32);
/* reg_mfde_crspace_to_oe
* 0 - New event
* 1 - Old event, occurred before MFGD activation.
* Access: RO
*/
MLXSW_ITEM32(reg, mfde, crspace_to_oe, 0x14, 24, 1);
/* reg_mfde_crspace_to_log_id
* Which irisc triggered the timeout.
* Access: RO
*/
MLXSW_ITEM32(reg, mfde, crspace_to_log_id, 0x14, 0, 4);
/* reg_mfde_crspace_to_log_ip
* IP (instruction pointer) that triggered the timeout.
* Access: RO
*/
MLXSW_ITEM64(reg, mfde, crspace_to_log_ip, 0x18, 0, 64);
/* reg_mfde_kvd_im_stop_oe
* 0 - New event
* 1 - Old event, occurred before MFGD activation.
* Access: RO
*/
MLXSW_ITEM32(reg, mfde, kvd_im_stop_oe, 0x10, 24, 1);
/* reg_mfde_kvd_im_stop_pipes_mask
* Bit per kvh pipe.
* Access: RO
*/
MLXSW_ITEM32(reg, mfde, kvd_im_stop_pipes_mask, 0x10, 0, 16);
/* reg_mfde_fw_assert_var0-4
* Variables passed to assert.
* Access: RO
*/
MLXSW_ITEM32(reg, mfde, fw_assert_var0, 0x10, 0, 32);
MLXSW_ITEM32(reg, mfde, fw_assert_var1, 0x14, 0, 32);
MLXSW_ITEM32(reg, mfde, fw_assert_var2, 0x18, 0, 32);
MLXSW_ITEM32(reg, mfde, fw_assert_var3, 0x1C, 0, 32);
MLXSW_ITEM32(reg, mfde, fw_assert_var4, 0x20, 0, 32);
/* reg_mfde_fw_assert_existptr
* The instruction pointer when assert was triggered.
* Access: RO
*/
MLXSW_ITEM32(reg, mfde, fw_assert_existptr, 0x24, 0, 32);
/* reg_mfde_fw_assert_callra
* The return address after triggering assert.
* Access: RO
*/
MLXSW_ITEM32(reg, mfde, fw_assert_callra, 0x28, 0, 32);
/* reg_mfde_fw_assert_oe
* 0 - New event
* 1 - Old event, occurred before MFGD activation.
* Access: RO
*/
MLXSW_ITEM32(reg, mfde, fw_assert_oe, 0x2C, 24, 1);
/* reg_mfde_fw_assert_tile_v
* 0: The assert was from main
* 1: The assert was from a tile
* Access: RO
*/
MLXSW_ITEM32(reg, mfde, fw_assert_tile_v, 0x2C, 23, 1);
/* reg_mfde_fw_assert_tile_index
* When tile_v=1, the tile_index that caused the assert.
* Access: RO
*/
MLXSW_ITEM32(reg, mfde, fw_assert_tile_index, 0x2C, 16, 6);
/* reg_mfde_fw_assert_ext_synd
* A generated one-to-one identifier which is specific per-assert.
* Access: RO
*/
MLXSW_ITEM32(reg, mfde, fw_assert_ext_synd, 0x2C, 0, 16);
/* reg_mfde_fatal_cause_id
* HW interrupt cause id.
* Access: RO
*/
MLXSW_ITEM32(reg, mfde, fatal_cause_id, 0x10, 0, 18);
/* reg_mfde_fatal_cause_tile_v
* 0: The assert was from main
* 1: The assert was from a tile
* Access: RO
*/
MLXSW_ITEM32(reg, mfde, fatal_cause_tile_v, 0x14, 23, 1);
/* reg_mfde_fatal_cause_tile_index
* When tile_v=1, the tile_index that caused the assert.
* Access: RO
*/
MLXSW_ITEM32(reg, mfde, fatal_cause_tile_index, 0x14, 16, 6);
/* TNGCR - Tunneling NVE General Configuration Register
* ----------------------------------------------------
* The TNGCR register is used for setting up the NVE Tunneling configuration.
*/
#define MLXSW_REG_TNGCR_ID 0xA001
#define MLXSW_REG_TNGCR_LEN 0x44
MLXSW_REG_DEFINE(tngcr, MLXSW_REG_TNGCR_ID, MLXSW_REG_TNGCR_LEN);
enum mlxsw_reg_tngcr_type {
MLXSW_REG_TNGCR_TYPE_VXLAN,
MLXSW_REG_TNGCR_TYPE_VXLAN_GPE,
MLXSW_REG_TNGCR_TYPE_GENEVE,
MLXSW_REG_TNGCR_TYPE_NVGRE,
};
/* reg_tngcr_type
* Tunnel type for encapsulation and decapsulation. The types are mutually
* exclusive.
* Note: For Spectrum the NVE parsing must be enabled in MPRS.
* Access: RW
*/
MLXSW_ITEM32(reg, tngcr, type, 0x00, 0, 4);
/* reg_tngcr_nve_valid
* The VTEP is valid. Allows adding FDB entries for tunnel encapsulation.
* Access: RW
*/
MLXSW_ITEM32(reg, tngcr, nve_valid, 0x04, 31, 1);
/* reg_tngcr_nve_ttl_uc
* The TTL for NVE tunnel encapsulation underlay unicast packets.
* Access: RW
*/
MLXSW_ITEM32(reg, tngcr, nve_ttl_uc, 0x04, 0, 8);
/* reg_tngcr_nve_ttl_mc
* The TTL for NVE tunnel encapsulation underlay multicast packets.
* Access: RW
*/
MLXSW_ITEM32(reg, tngcr, nve_ttl_mc, 0x08, 0, 8);
enum {
/* Do not copy flow label. Calculate flow label using nve_flh. */
MLXSW_REG_TNGCR_FL_NO_COPY,
/* Copy flow label from inner packet if packet is IPv6 and
* encapsulation is by IPv6. Otherwise, calculate flow label using
* nve_flh.
*/
MLXSW_REG_TNGCR_FL_COPY,
};
/* reg_tngcr_nve_flc
* For NVE tunnel encapsulation: Flow label copy from inner packet.
* Access: RW
*/
MLXSW_ITEM32(reg, tngcr, nve_flc, 0x0C, 25, 1);
enum {
/* Flow label is static. In Spectrum this means '0'. Spectrum-2
* uses {nve_fl_prefix, nve_fl_suffix}.
*/
MLXSW_REG_TNGCR_FL_NO_HASH,
/* 8 LSBs of the flow label are calculated from ECMP hash of the
* inner packet. 12 MSBs are configured by nve_fl_prefix.
*/
MLXSW_REG_TNGCR_FL_HASH,
};
/* reg_tngcr_nve_flh
* NVE flow label hash.
* Access: RW
*/
MLXSW_ITEM32(reg, tngcr, nve_flh, 0x0C, 24, 1);
/* reg_tngcr_nve_fl_prefix
* NVE flow label prefix. Constant 12 MSBs of the flow label.
* Access: RW
*/
MLXSW_ITEM32(reg, tngcr, nve_fl_prefix, 0x0C, 8, 12);
/* reg_tngcr_nve_fl_suffix
* NVE flow label suffix. Constant 8 LSBs of the flow label.
* Reserved when nve_flh=1 and for Spectrum.
* Access: RW
*/
MLXSW_ITEM32(reg, tngcr, nve_fl_suffix, 0x0C, 0, 8);
enum {
/* Source UDP port is fixed (default '0') */
MLXSW_REG_TNGCR_UDP_SPORT_NO_HASH,
/* Source UDP port is calculated based on hash */
MLXSW_REG_TNGCR_UDP_SPORT_HASH,
};
/* reg_tngcr_nve_udp_sport_type
* NVE UDP source port type.
* Spectrum uses LAG hash (SLCRv2). Spectrum-2 uses ECMP hash (RECRv2).
* When the source UDP port is calculated based on hash, then the 8 LSBs
* are calculated from hash the 8 MSBs are configured by
* nve_udp_sport_prefix.
* Access: RW
*/
MLXSW_ITEM32(reg, tngcr, nve_udp_sport_type, 0x10, 24, 1);
/* reg_tngcr_nve_udp_sport_prefix
* NVE UDP source port prefix. Constant 8 MSBs of the UDP source port.
* Reserved when NVE type is NVGRE.
* Access: RW
*/
MLXSW_ITEM32(reg, tngcr, nve_udp_sport_prefix, 0x10, 8, 8);
/* reg_tngcr_nve_group_size_mc
* The amount of sequential linked lists of MC entries. The first linked
* list is configured by SFD.underlay_mc_ptr.
* Valid values: 1, 2, 4, 8, 16, 32, 64
* The linked list are configured by TNUMT.
* The hash is set by LAG hash.
* Access: RW
*/
MLXSW_ITEM32(reg, tngcr, nve_group_size_mc, 0x18, 0, 8);
/* reg_tngcr_nve_group_size_flood
* The amount of sequential linked lists of flooding entries. The first
* linked list is configured by SFMR.nve_tunnel_flood_ptr
* Valid values: 1, 2, 4, 8, 16, 32, 64
* The linked list are configured by TNUMT.
* The hash is set by LAG hash.
* Access: RW
*/
MLXSW_ITEM32(reg, tngcr, nve_group_size_flood, 0x1C, 0, 8);
/* reg_tngcr_learn_enable
* During decapsulation, whether to learn from NVE port.
* Reserved when Spectrum-2. See TNPC.
* Access: RW
*/
MLXSW_ITEM32(reg, tngcr, learn_enable, 0x20, 31, 1);
/* reg_tngcr_underlay_virtual_router
* Underlay virtual router.
* Reserved when Spectrum-2.
* Access: RW
*/
MLXSW_ITEM32(reg, tngcr, underlay_virtual_router, 0x20, 0, 16);
/* reg_tngcr_underlay_rif
* Underlay ingress router interface. RIF type should be loopback generic.
* Reserved when Spectrum.
* Access: RW
*/
MLXSW_ITEM32(reg, tngcr, underlay_rif, 0x24, 0, 16);
/* reg_tngcr_usipv4
* Underlay source IPv4 address of the NVE.
* Access: RW
*/
MLXSW_ITEM32(reg, tngcr, usipv4, 0x28, 0, 32);
/* reg_tngcr_usipv6
* Underlay source IPv6 address of the NVE. For Spectrum, must not be
* modified under traffic of NVE tunneling encapsulation.
* Access: RW
*/
MLXSW_ITEM_BUF(reg, tngcr, usipv6, 0x30, 16);
static inline void mlxsw_reg_tngcr_pack(char *payload,
enum mlxsw_reg_tngcr_type type,
bool valid, u8 ttl)
{
MLXSW_REG_ZERO(tngcr, payload);
mlxsw_reg_tngcr_type_set(payload, type);
mlxsw_reg_tngcr_nve_valid_set(payload, valid);
mlxsw_reg_tngcr_nve_ttl_uc_set(payload, ttl);
mlxsw_reg_tngcr_nve_ttl_mc_set(payload, ttl);
mlxsw_reg_tngcr_nve_flc_set(payload, MLXSW_REG_TNGCR_FL_NO_COPY);
mlxsw_reg_tngcr_nve_flh_set(payload, 0);
mlxsw_reg_tngcr_nve_udp_sport_type_set(payload,
MLXSW_REG_TNGCR_UDP_SPORT_HASH);
mlxsw_reg_tngcr_nve_udp_sport_prefix_set(payload, 0);
mlxsw_reg_tngcr_nve_group_size_mc_set(payload, 1);
mlxsw_reg_tngcr_nve_group_size_flood_set(payload, 1);
}
/* TNUMT - Tunneling NVE Underlay Multicast Table Register
* -------------------------------------------------------
* The TNUMT register is for building the underlay MC table. It is used
* for MC, flooding and BC traffic into the NVE tunnel.
*/
#define MLXSW_REG_TNUMT_ID 0xA003
#define MLXSW_REG_TNUMT_LEN 0x20
MLXSW_REG_DEFINE(tnumt, MLXSW_REG_TNUMT_ID, MLXSW_REG_TNUMT_LEN);
enum mlxsw_reg_tnumt_record_type {
MLXSW_REG_TNUMT_RECORD_TYPE_IPV4,
MLXSW_REG_TNUMT_RECORD_TYPE_IPV6,
MLXSW_REG_TNUMT_RECORD_TYPE_LABEL,
};
/* reg_tnumt_record_type
* Record type.
* Access: RW
*/
MLXSW_ITEM32(reg, tnumt, record_type, 0x00, 28, 4);
/* reg_tnumt_tunnel_port
* Tunnel port.
* Access: RW
*/
MLXSW_ITEM32(reg, tnumt, tunnel_port, 0x00, 24, 4);
/* reg_tnumt_underlay_mc_ptr
* Index to the underlay multicast table.
* For Spectrum the index is to the KVD linear.
* Access: Index
*/
MLXSW_ITEM32(reg, tnumt, underlay_mc_ptr, 0x00, 0, 24);
/* reg_tnumt_vnext
* The next_underlay_mc_ptr is valid.
* Access: RW
*/
MLXSW_ITEM32(reg, tnumt, vnext, 0x04, 31, 1);
/* reg_tnumt_next_underlay_mc_ptr
* The next index to the underlay multicast table.
* Access: RW
*/
MLXSW_ITEM32(reg, tnumt, next_underlay_mc_ptr, 0x04, 0, 24);
/* reg_tnumt_record_size
* Number of IP addresses in the record.
* Range is 1..cap_max_nve_mc_entries_ipv{4,6}
* Access: RW
*/
MLXSW_ITEM32(reg, tnumt, record_size, 0x08, 0, 3);
/* reg_tnumt_udip
* The underlay IPv4 addresses. udip[i] is reserved if i >= size
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, tnumt, udip, 0x0C, 0, 32, 0x04, 0x00, false);
/* reg_tnumt_udip_ptr
* The pointer to the underlay IPv6 addresses. udip_ptr[i] is reserved if
* i >= size. The IPv6 addresses are configured by RIPS.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, tnumt, udip_ptr, 0x0C, 0, 24, 0x04, 0x00, false);
static inline void mlxsw_reg_tnumt_pack(char *payload,
enum mlxsw_reg_tnumt_record_type type,
enum mlxsw_reg_tunnel_port tport,
u32 underlay_mc_ptr, bool vnext,
u32 next_underlay_mc_ptr,
u8 record_size)
{
MLXSW_REG_ZERO(tnumt, payload);
mlxsw_reg_tnumt_record_type_set(payload, type);
mlxsw_reg_tnumt_tunnel_port_set(payload, tport);
mlxsw_reg_tnumt_underlay_mc_ptr_set(payload, underlay_mc_ptr);
mlxsw_reg_tnumt_vnext_set(payload, vnext);
mlxsw_reg_tnumt_next_underlay_mc_ptr_set(payload, next_underlay_mc_ptr);
mlxsw_reg_tnumt_record_size_set(payload, record_size);
}
/* TNQCR - Tunneling NVE QoS Configuration Register
* ------------------------------------------------
* The TNQCR register configures how QoS is set in encapsulation into the
* underlay network.
*/
#define MLXSW_REG_TNQCR_ID 0xA010
#define MLXSW_REG_TNQCR_LEN 0x0C
MLXSW_REG_DEFINE(tnqcr, MLXSW_REG_TNQCR_ID, MLXSW_REG_TNQCR_LEN);
/* reg_tnqcr_enc_set_dscp
* For encapsulation: How to set DSCP field:
* 0 - Copy the DSCP from the overlay (inner) IP header to the underlay
* (outer) IP header. If there is no IP header, use TNQDR.dscp
* 1 - Set the DSCP field as TNQDR.dscp
* Access: RW
*/
MLXSW_ITEM32(reg, tnqcr, enc_set_dscp, 0x04, 28, 1);
static inline void mlxsw_reg_tnqcr_pack(char *payload)
{
MLXSW_REG_ZERO(tnqcr, payload);
mlxsw_reg_tnqcr_enc_set_dscp_set(payload, 0);
}
/* TNQDR - Tunneling NVE QoS Default Register
* ------------------------------------------
* The TNQDR register configures the default QoS settings for NVE
* encapsulation.
*/
#define MLXSW_REG_TNQDR_ID 0xA011
#define MLXSW_REG_TNQDR_LEN 0x08
MLXSW_REG_DEFINE(tnqdr, MLXSW_REG_TNQDR_ID, MLXSW_REG_TNQDR_LEN);
/* reg_tnqdr_local_port
* Local port number (receive port). CPU port is supported.
* Access: Index
*/
MLXSW_ITEM32_LP(reg, tnqdr, 0x00, 16, 0x00, 12);
/* reg_tnqdr_dscp
* For encapsulation, the default DSCP.
* Access: RW
*/
MLXSW_ITEM32(reg, tnqdr, dscp, 0x04, 0, 6);
static inline void mlxsw_reg_tnqdr_pack(char *payload, u16 local_port)
{
MLXSW_REG_ZERO(tnqdr, payload);
mlxsw_reg_tnqdr_local_port_set(payload, local_port);
mlxsw_reg_tnqdr_dscp_set(payload, 0);
}
/* TNEEM - Tunneling NVE Encapsulation ECN Mapping Register
* --------------------------------------------------------
* The TNEEM register maps ECN of the IP header at the ingress to the
* encapsulation to the ECN of the underlay network.
*/
#define MLXSW_REG_TNEEM_ID 0xA012
#define MLXSW_REG_TNEEM_LEN 0x0C
MLXSW_REG_DEFINE(tneem, MLXSW_REG_TNEEM_ID, MLXSW_REG_TNEEM_LEN);
/* reg_tneem_overlay_ecn
* ECN of the IP header in the overlay network.
* Access: Index
*/
MLXSW_ITEM32(reg, tneem, overlay_ecn, 0x04, 24, 2);
/* reg_tneem_underlay_ecn
* ECN of the IP header in the underlay network.
* Access: RW
*/
MLXSW_ITEM32(reg, tneem, underlay_ecn, 0x04, 16, 2);
static inline void mlxsw_reg_tneem_pack(char *payload, u8 overlay_ecn,
u8 underlay_ecn)
{
MLXSW_REG_ZERO(tneem, payload);
mlxsw_reg_tneem_overlay_ecn_set(payload, overlay_ecn);
mlxsw_reg_tneem_underlay_ecn_set(payload, underlay_ecn);
}
/* TNDEM - Tunneling NVE Decapsulation ECN Mapping Register
* --------------------------------------------------------
* The TNDEM register configures the actions that are done in the
* decapsulation.
*/
#define MLXSW_REG_TNDEM_ID 0xA013
#define MLXSW_REG_TNDEM_LEN 0x0C
MLXSW_REG_DEFINE(tndem, MLXSW_REG_TNDEM_ID, MLXSW_REG_TNDEM_LEN);
/* reg_tndem_underlay_ecn
* ECN field of the IP header in the underlay network.
* Access: Index
*/
MLXSW_ITEM32(reg, tndem, underlay_ecn, 0x04, 24, 2);
/* reg_tndem_overlay_ecn
* ECN field of the IP header in the overlay network.
* Access: Index
*/
MLXSW_ITEM32(reg, tndem, overlay_ecn, 0x04, 16, 2);
/* reg_tndem_eip_ecn
* Egress IP ECN. ECN field of the IP header of the packet which goes out
* from the decapsulation.
* Access: RW
*/
MLXSW_ITEM32(reg, tndem, eip_ecn, 0x04, 8, 2);
/* reg_tndem_trap_en
* Trap enable:
* 0 - No trap due to decap ECN
* 1 - Trap enable with trap_id
* Access: RW
*/
MLXSW_ITEM32(reg, tndem, trap_en, 0x08, 28, 4);
/* reg_tndem_trap_id
* Trap ID. Either DECAP_ECN0 or DECAP_ECN1.
* Reserved when trap_en is '0'.
* Access: RW
*/
MLXSW_ITEM32(reg, tndem, trap_id, 0x08, 0, 9);
static inline void mlxsw_reg_tndem_pack(char *payload, u8 underlay_ecn,
u8 overlay_ecn, u8 ecn, bool trap_en,
u16 trap_id)
{
MLXSW_REG_ZERO(tndem, payload);
mlxsw_reg_tndem_underlay_ecn_set(payload, underlay_ecn);
mlxsw_reg_tndem_overlay_ecn_set(payload, overlay_ecn);
mlxsw_reg_tndem_eip_ecn_set(payload, ecn);
mlxsw_reg_tndem_trap_en_set(payload, trap_en);
mlxsw_reg_tndem_trap_id_set(payload, trap_id);
}
/* TNPC - Tunnel Port Configuration Register
* -----------------------------------------
* The TNPC register is used for tunnel port configuration.
* Reserved when Spectrum.
*/
#define MLXSW_REG_TNPC_ID 0xA020
#define MLXSW_REG_TNPC_LEN 0x18
MLXSW_REG_DEFINE(tnpc, MLXSW_REG_TNPC_ID, MLXSW_REG_TNPC_LEN);
/* reg_tnpc_tunnel_port
* Tunnel port.
* Access: Index
*/
MLXSW_ITEM32(reg, tnpc, tunnel_port, 0x00, 0, 4);
/* reg_tnpc_learn_enable_v6
* During IPv6 underlay decapsulation, whether to learn from tunnel port.
* Access: RW
*/
MLXSW_ITEM32(reg, tnpc, learn_enable_v6, 0x04, 1, 1);
/* reg_tnpc_learn_enable_v4
* During IPv4 underlay decapsulation, whether to learn from tunnel port.
* Access: RW
*/
MLXSW_ITEM32(reg, tnpc, learn_enable_v4, 0x04, 0, 1);
static inline void mlxsw_reg_tnpc_pack(char *payload,
enum mlxsw_reg_tunnel_port tport,
bool learn_enable)
{
MLXSW_REG_ZERO(tnpc, payload);
mlxsw_reg_tnpc_tunnel_port_set(payload, tport);
mlxsw_reg_tnpc_learn_enable_v4_set(payload, learn_enable);
mlxsw_reg_tnpc_learn_enable_v6_set(payload, learn_enable);
}
/* TIGCR - Tunneling IPinIP General Configuration Register
* -------------------------------------------------------
* The TIGCR register is used for setting up the IPinIP Tunnel configuration.
*/
#define MLXSW_REG_TIGCR_ID 0xA801
#define MLXSW_REG_TIGCR_LEN 0x10
MLXSW_REG_DEFINE(tigcr, MLXSW_REG_TIGCR_ID, MLXSW_REG_TIGCR_LEN);
/* reg_tigcr_ipip_ttlc
* For IPinIP Tunnel encapsulation: whether to copy the ttl from the packet
* header.
* Access: RW
*/
MLXSW_ITEM32(reg, tigcr, ttlc, 0x04, 8, 1);
/* reg_tigcr_ipip_ttl_uc
* The TTL for IPinIP Tunnel encapsulation of unicast packets if
* reg_tigcr_ipip_ttlc is unset.
* Access: RW
*/
MLXSW_ITEM32(reg, tigcr, ttl_uc, 0x04, 0, 8);
static inline void mlxsw_reg_tigcr_pack(char *payload, bool ttlc, u8 ttl_uc)
{
MLXSW_REG_ZERO(tigcr, payload);
mlxsw_reg_tigcr_ttlc_set(payload, ttlc);
mlxsw_reg_tigcr_ttl_uc_set(payload, ttl_uc);
}
/* TIEEM - Tunneling IPinIP Encapsulation ECN Mapping Register
* -----------------------------------------------------------
* The TIEEM register maps ECN of the IP header at the ingress to the
* encapsulation to the ECN of the underlay network.
*/
#define MLXSW_REG_TIEEM_ID 0xA812
#define MLXSW_REG_TIEEM_LEN 0x0C
MLXSW_REG_DEFINE(tieem, MLXSW_REG_TIEEM_ID, MLXSW_REG_TIEEM_LEN);
/* reg_tieem_overlay_ecn
* ECN of the IP header in the overlay network.
* Access: Index
*/
MLXSW_ITEM32(reg, tieem, overlay_ecn, 0x04, 24, 2);
/* reg_tineem_underlay_ecn
* ECN of the IP header in the underlay network.
* Access: RW
*/
MLXSW_ITEM32(reg, tieem, underlay_ecn, 0x04, 16, 2);
static inline void mlxsw_reg_tieem_pack(char *payload, u8 overlay_ecn,
u8 underlay_ecn)
{
MLXSW_REG_ZERO(tieem, payload);
mlxsw_reg_tieem_overlay_ecn_set(payload, overlay_ecn);
mlxsw_reg_tieem_underlay_ecn_set(payload, underlay_ecn);
}
/* TIDEM - Tunneling IPinIP Decapsulation ECN Mapping Register
* -----------------------------------------------------------
* The TIDEM register configures the actions that are done in the
* decapsulation.
*/
#define MLXSW_REG_TIDEM_ID 0xA813
#define MLXSW_REG_TIDEM_LEN 0x0C
MLXSW_REG_DEFINE(tidem, MLXSW_REG_TIDEM_ID, MLXSW_REG_TIDEM_LEN);
/* reg_tidem_underlay_ecn
* ECN field of the IP header in the underlay network.
* Access: Index
*/
MLXSW_ITEM32(reg, tidem, underlay_ecn, 0x04, 24, 2);
/* reg_tidem_overlay_ecn
* ECN field of the IP header in the overlay network.
* Access: Index
*/
MLXSW_ITEM32(reg, tidem, overlay_ecn, 0x04, 16, 2);
/* reg_tidem_eip_ecn
* Egress IP ECN. ECN field of the IP header of the packet which goes out
* from the decapsulation.
* Access: RW
*/
MLXSW_ITEM32(reg, tidem, eip_ecn, 0x04, 8, 2);
/* reg_tidem_trap_en
* Trap enable:
* 0 - No trap due to decap ECN
* 1 - Trap enable with trap_id
* Access: RW
*/
MLXSW_ITEM32(reg, tidem, trap_en, 0x08, 28, 4);
/* reg_tidem_trap_id
* Trap ID. Either DECAP_ECN0 or DECAP_ECN1.
* Reserved when trap_en is '0'.
* Access: RW
*/
MLXSW_ITEM32(reg, tidem, trap_id, 0x08, 0, 9);
static inline void mlxsw_reg_tidem_pack(char *payload, u8 underlay_ecn,
u8 overlay_ecn, u8 eip_ecn,
bool trap_en, u16 trap_id)
{
MLXSW_REG_ZERO(tidem, payload);
mlxsw_reg_tidem_underlay_ecn_set(payload, underlay_ecn);
mlxsw_reg_tidem_overlay_ecn_set(payload, overlay_ecn);
mlxsw_reg_tidem_eip_ecn_set(payload, eip_ecn);
mlxsw_reg_tidem_trap_en_set(payload, trap_en);
mlxsw_reg_tidem_trap_id_set(payload, trap_id);
}
/* SBPR - Shared Buffer Pools Register
* -----------------------------------
* The SBPR configures and retrieves the shared buffer pools and configuration.
*/
#define MLXSW_REG_SBPR_ID 0xB001
#define MLXSW_REG_SBPR_LEN 0x14
MLXSW_REG_DEFINE(sbpr, MLXSW_REG_SBPR_ID, MLXSW_REG_SBPR_LEN);
/* reg_sbpr_desc
* When set, configures descriptor buffer.
* Access: Index
*/
MLXSW_ITEM32(reg, sbpr, desc, 0x00, 31, 1);
/* shared direstion enum for SBPR, SBCM, SBPM */
enum mlxsw_reg_sbxx_dir {
MLXSW_REG_SBXX_DIR_INGRESS,
MLXSW_REG_SBXX_DIR_EGRESS,
};
/* reg_sbpr_dir
* Direction.
* Access: Index
*/
MLXSW_ITEM32(reg, sbpr, dir, 0x00, 24, 2);
/* reg_sbpr_pool
* Pool index.
* Access: Index
*/
MLXSW_ITEM32(reg, sbpr, pool, 0x00, 0, 4);
/* reg_sbpr_infi_size
* Size is infinite.
* Access: RW
*/
MLXSW_ITEM32(reg, sbpr, infi_size, 0x04, 31, 1);
/* reg_sbpr_size
* Pool size in buffer cells.
* Reserved when infi_size = 1.
* Access: RW
*/
MLXSW_ITEM32(reg, sbpr, size, 0x04, 0, 24);
enum mlxsw_reg_sbpr_mode {
MLXSW_REG_SBPR_MODE_STATIC,
MLXSW_REG_SBPR_MODE_DYNAMIC,
};
/* reg_sbpr_mode
* Pool quota calculation mode.
* Access: RW
*/
MLXSW_ITEM32(reg, sbpr, mode, 0x08, 0, 4);
static inline void mlxsw_reg_sbpr_pack(char *payload, u8 pool,
enum mlxsw_reg_sbxx_dir dir,
enum mlxsw_reg_sbpr_mode mode, u32 size,
bool infi_size)
{
MLXSW_REG_ZERO(sbpr, payload);
mlxsw_reg_sbpr_pool_set(payload, pool);
mlxsw_reg_sbpr_dir_set(payload, dir);
mlxsw_reg_sbpr_mode_set(payload, mode);
mlxsw_reg_sbpr_size_set(payload, size);
mlxsw_reg_sbpr_infi_size_set(payload, infi_size);
}
/* SBCM - Shared Buffer Class Management Register
* ----------------------------------------------
* The SBCM register configures and retrieves the shared buffer allocation
* and configuration according to Port-PG, including the binding to pool
* and definition of the associated quota.
*/
#define MLXSW_REG_SBCM_ID 0xB002
#define MLXSW_REG_SBCM_LEN 0x28
MLXSW_REG_DEFINE(sbcm, MLXSW_REG_SBCM_ID, MLXSW_REG_SBCM_LEN);
/* reg_sbcm_local_port
* Local port number.
* For Ingress: excludes CPU port and Router port
* For Egress: excludes IP Router
* Access: Index
*/
MLXSW_ITEM32_LP(reg, sbcm, 0x00, 16, 0x00, 4);
/* reg_sbcm_pg_buff
* PG buffer - Port PG (dir=ingress) / traffic class (dir=egress)
* For PG buffer: range is 0..cap_max_pg_buffers - 1
* For traffic class: range is 0..cap_max_tclass - 1
* Note that when traffic class is in MC aware mode then the traffic
* classes which are MC aware cannot be configured.
* Access: Index
*/
MLXSW_ITEM32(reg, sbcm, pg_buff, 0x00, 8, 6);
/* reg_sbcm_dir
* Direction.
* Access: Index
*/
MLXSW_ITEM32(reg, sbcm, dir, 0x00, 0, 2);
/* reg_sbcm_min_buff
* Minimum buffer size for the limiter, in cells.
* Access: RW
*/
MLXSW_ITEM32(reg, sbcm, min_buff, 0x18, 0, 24);
/* shared max_buff limits for dynamic threshold for SBCM, SBPM */
#define MLXSW_REG_SBXX_DYN_MAX_BUFF_MIN 1
#define MLXSW_REG_SBXX_DYN_MAX_BUFF_MAX 14
/* reg_sbcm_infi_max
* Max buffer is infinite.
* Access: RW
*/
MLXSW_ITEM32(reg, sbcm, infi_max, 0x1C, 31, 1);
/* reg_sbcm_max_buff
* When the pool associated to the port-pg/tclass is configured to
* static, Maximum buffer size for the limiter configured in cells.
* When the pool associated to the port-pg/tclass is configured to
* dynamic, the max_buff holds the "alpha" parameter, supporting
* the following values:
* 0: 0
* i: (1/128)*2^(i-1), for i=1..14
* 0xFF: Infinity
* Reserved when infi_max = 1.
* Access: RW
*/
MLXSW_ITEM32(reg, sbcm, max_buff, 0x1C, 0, 24);
/* reg_sbcm_pool
* Association of the port-priority to a pool.
* Access: RW
*/
MLXSW_ITEM32(reg, sbcm, pool, 0x24, 0, 4);
static inline void mlxsw_reg_sbcm_pack(char *payload, u16 local_port, u8 pg_buff,
enum mlxsw_reg_sbxx_dir dir,
u32 min_buff, u32 max_buff,
bool infi_max, u8 pool)
{
MLXSW_REG_ZERO(sbcm, payload);
mlxsw_reg_sbcm_local_port_set(payload, local_port);
mlxsw_reg_sbcm_pg_buff_set(payload, pg_buff);
mlxsw_reg_sbcm_dir_set(payload, dir);
mlxsw_reg_sbcm_min_buff_set(payload, min_buff);
mlxsw_reg_sbcm_max_buff_set(payload, max_buff);
mlxsw_reg_sbcm_infi_max_set(payload, infi_max);
mlxsw_reg_sbcm_pool_set(payload, pool);
}
/* SBPM - Shared Buffer Port Management Register
* ---------------------------------------------
* The SBPM register configures and retrieves the shared buffer allocation
* and configuration according to Port-Pool, including the definition
* of the associated quota.
*/
#define MLXSW_REG_SBPM_ID 0xB003
#define MLXSW_REG_SBPM_LEN 0x28
MLXSW_REG_DEFINE(sbpm, MLXSW_REG_SBPM_ID, MLXSW_REG_SBPM_LEN);
/* reg_sbpm_local_port
* Local port number.
* For Ingress: excludes CPU port and Router port
* For Egress: excludes IP Router
* Access: Index
*/
MLXSW_ITEM32_LP(reg, sbpm, 0x00, 16, 0x00, 12);
/* reg_sbpm_pool
* The pool associated to quota counting on the local_port.
* Access: Index
*/
MLXSW_ITEM32(reg, sbpm, pool, 0x00, 8, 4);
/* reg_sbpm_dir
* Direction.
* Access: Index
*/
MLXSW_ITEM32(reg, sbpm, dir, 0x00, 0, 2);
/* reg_sbpm_buff_occupancy
* Current buffer occupancy in cells.
* Access: RO
*/
MLXSW_ITEM32(reg, sbpm, buff_occupancy, 0x10, 0, 24);
/* reg_sbpm_clr
* Clear Max Buffer Occupancy
* When this bit is set, max_buff_occupancy field is cleared (and a
* new max value is tracked from the time the clear was performed).
* Access: OP
*/
MLXSW_ITEM32(reg, sbpm, clr, 0x14, 31, 1);
/* reg_sbpm_max_buff_occupancy
* Maximum value of buffer occupancy in cells monitored. Cleared by
* writing to the clr field.
* Access: RO
*/
MLXSW_ITEM32(reg, sbpm, max_buff_occupancy, 0x14, 0, 24);
/* reg_sbpm_min_buff
* Minimum buffer size for the limiter, in cells.
* Access: RW
*/
MLXSW_ITEM32(reg, sbpm, min_buff, 0x18, 0, 24);
/* reg_sbpm_max_buff
* When the pool associated to the port-pg/tclass is configured to
* static, Maximum buffer size for the limiter configured in cells.
* When the pool associated to the port-pg/tclass is configured to
* dynamic, the max_buff holds the "alpha" parameter, supporting
* the following values:
* 0: 0
* i: (1/128)*2^(i-1), for i=1..14
* 0xFF: Infinity
* Access: RW
*/
MLXSW_ITEM32(reg, sbpm, max_buff, 0x1C, 0, 24);
static inline void mlxsw_reg_sbpm_pack(char *payload, u16 local_port, u8 pool,
enum mlxsw_reg_sbxx_dir dir, bool clr,
u32 min_buff, u32 max_buff)
{
MLXSW_REG_ZERO(sbpm, payload);
mlxsw_reg_sbpm_local_port_set(payload, local_port);
mlxsw_reg_sbpm_pool_set(payload, pool);
mlxsw_reg_sbpm_dir_set(payload, dir);
mlxsw_reg_sbpm_clr_set(payload, clr);
mlxsw_reg_sbpm_min_buff_set(payload, min_buff);
mlxsw_reg_sbpm_max_buff_set(payload, max_buff);
}
static inline void mlxsw_reg_sbpm_unpack(char *payload, u32 *p_buff_occupancy,
u32 *p_max_buff_occupancy)
{
*p_buff_occupancy = mlxsw_reg_sbpm_buff_occupancy_get(payload);
*p_max_buff_occupancy = mlxsw_reg_sbpm_max_buff_occupancy_get(payload);
}
/* SBMM - Shared Buffer Multicast Management Register
* --------------------------------------------------
* The SBMM register configures and retrieves the shared buffer allocation
* and configuration for MC packets according to Switch-Priority, including
* the binding to pool and definition of the associated quota.
*/
#define MLXSW_REG_SBMM_ID 0xB004
#define MLXSW_REG_SBMM_LEN 0x28
MLXSW_REG_DEFINE(sbmm, MLXSW_REG_SBMM_ID, MLXSW_REG_SBMM_LEN);
/* reg_sbmm_prio
* Switch Priority.
* Access: Index
*/
MLXSW_ITEM32(reg, sbmm, prio, 0x00, 8, 4);
/* reg_sbmm_min_buff
* Minimum buffer size for the limiter, in cells.
* Access: RW
*/
MLXSW_ITEM32(reg, sbmm, min_buff, 0x18, 0, 24);
/* reg_sbmm_max_buff
* When the pool associated to the port-pg/tclass is configured to
* static, Maximum buffer size for the limiter configured in cells.
* When the pool associated to the port-pg/tclass is configured to
* dynamic, the max_buff holds the "alpha" parameter, supporting
* the following values:
* 0: 0
* i: (1/128)*2^(i-1), for i=1..14
* 0xFF: Infinity
* Access: RW
*/
MLXSW_ITEM32(reg, sbmm, max_buff, 0x1C, 0, 24);
/* reg_sbmm_pool
* Association of the port-priority to a pool.
* Access: RW
*/
MLXSW_ITEM32(reg, sbmm, pool, 0x24, 0, 4);
static inline void mlxsw_reg_sbmm_pack(char *payload, u8 prio, u32 min_buff,
u32 max_buff, u8 pool)
{
MLXSW_REG_ZERO(sbmm, payload);
mlxsw_reg_sbmm_prio_set(payload, prio);
mlxsw_reg_sbmm_min_buff_set(payload, min_buff);
mlxsw_reg_sbmm_max_buff_set(payload, max_buff);
mlxsw_reg_sbmm_pool_set(payload, pool);
}
/* SBSR - Shared Buffer Status Register
* ------------------------------------
* The SBSR register retrieves the shared buffer occupancy according to
* Port-Pool. Note that this register enables reading a large amount of data.
* It is the user's responsibility to limit the amount of data to ensure the
* response can match the maximum transfer unit. In case the response exceeds
* the maximum transport unit, it will be truncated with no special notice.
*/
#define MLXSW_REG_SBSR_ID 0xB005
#define MLXSW_REG_SBSR_BASE_LEN 0x5C /* base length, without records */
#define MLXSW_REG_SBSR_REC_LEN 0x8 /* record length */
#define MLXSW_REG_SBSR_REC_MAX_COUNT 120
#define MLXSW_REG_SBSR_LEN (MLXSW_REG_SBSR_BASE_LEN + \
MLXSW_REG_SBSR_REC_LEN * \
MLXSW_REG_SBSR_REC_MAX_COUNT)
MLXSW_REG_DEFINE(sbsr, MLXSW_REG_SBSR_ID, MLXSW_REG_SBSR_LEN);
/* reg_sbsr_clr
* Clear Max Buffer Occupancy. When this bit is set, the max_buff_occupancy
* field is cleared (and a new max value is tracked from the time the clear
* was performed).
* Access: OP
*/
MLXSW_ITEM32(reg, sbsr, clr, 0x00, 31, 1);
#define MLXSW_REG_SBSR_NUM_PORTS_IN_PAGE 256
/* reg_sbsr_port_page
* Determines the range of the ports specified in the 'ingress_port_mask'
* and 'egress_port_mask' bit masks.
* {ingress,egress}_port_mask[x] is (256 * port_page) + x
* Access: Index
*/
MLXSW_ITEM32(reg, sbsr, port_page, 0x04, 0, 4);
/* reg_sbsr_ingress_port_mask
* Bit vector for all ingress network ports.
* Indicates which of the ports (for which the relevant bit is set)
* are affected by the set operation. Configuration of any other port
* does not change.
* Access: Index
*/
MLXSW_ITEM_BIT_ARRAY(reg, sbsr, ingress_port_mask, 0x10, 0x20, 1);
/* reg_sbsr_pg_buff_mask
* Bit vector for all switch priority groups.
* Indicates which of the priorities (for which the relevant bit is set)
* are affected by the set operation. Configuration of any other priority
* does not change.
* Range is 0..cap_max_pg_buffers - 1
* Access: Index
*/
MLXSW_ITEM_BIT_ARRAY(reg, sbsr, pg_buff_mask, 0x30, 0x4, 1);
/* reg_sbsr_egress_port_mask
* Bit vector for all egress network ports.
* Indicates which of the ports (for which the relevant bit is set)
* are affected by the set operation. Configuration of any other port
* does not change.
* Access: Index
*/
MLXSW_ITEM_BIT_ARRAY(reg, sbsr, egress_port_mask, 0x34, 0x20, 1);
/* reg_sbsr_tclass_mask
* Bit vector for all traffic classes.
* Indicates which of the traffic classes (for which the relevant bit is
* set) are affected by the set operation. Configuration of any other
* traffic class does not change.
* Range is 0..cap_max_tclass - 1
* Access: Index
*/
MLXSW_ITEM_BIT_ARRAY(reg, sbsr, tclass_mask, 0x54, 0x8, 1);
static inline void mlxsw_reg_sbsr_pack(char *payload, bool clr)
{
MLXSW_REG_ZERO(sbsr, payload);
mlxsw_reg_sbsr_clr_set(payload, clr);
}
/* reg_sbsr_rec_buff_occupancy
* Current buffer occupancy in cells.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, sbsr, rec_buff_occupancy, MLXSW_REG_SBSR_BASE_LEN,
0, 24, MLXSW_REG_SBSR_REC_LEN, 0x00, false);
/* reg_sbsr_rec_max_buff_occupancy
* Maximum value of buffer occupancy in cells monitored. Cleared by
* writing to the clr field.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, sbsr, rec_max_buff_occupancy, MLXSW_REG_SBSR_BASE_LEN,
0, 24, MLXSW_REG_SBSR_REC_LEN, 0x04, false);
static inline void mlxsw_reg_sbsr_rec_unpack(char *payload, int rec_index,
u32 *p_buff_occupancy,
u32 *p_max_buff_occupancy)
{
*p_buff_occupancy =
mlxsw_reg_sbsr_rec_buff_occupancy_get(payload, rec_index);
*p_max_buff_occupancy =
mlxsw_reg_sbsr_rec_max_buff_occupancy_get(payload, rec_index);
}
/* SBIB - Shared Buffer Internal Buffer Register
* ---------------------------------------------
* The SBIB register configures per port buffers for internal use. The internal
* buffers consume memory on the port buffers (note that the port buffers are
* used also by PBMC).
*
* For Spectrum this is used for egress mirroring.
*/
#define MLXSW_REG_SBIB_ID 0xB006
#define MLXSW_REG_SBIB_LEN 0x10
MLXSW_REG_DEFINE(sbib, MLXSW_REG_SBIB_ID, MLXSW_REG_SBIB_LEN);
/* reg_sbib_local_port
* Local port number
* Not supported for CPU port and router port
* Access: Index
*/
MLXSW_ITEM32_LP(reg, sbib, 0x00, 16, 0x00, 12);
/* reg_sbib_buff_size
* Units represented in cells
* Allowed range is 0 to (cap_max_headroom_size - 1)
* Default is 0
* Access: RW
*/
MLXSW_ITEM32(reg, sbib, buff_size, 0x08, 0, 24);
static inline void mlxsw_reg_sbib_pack(char *payload, u16 local_port,
u32 buff_size)
{
MLXSW_REG_ZERO(sbib, payload);
mlxsw_reg_sbib_local_port_set(payload, local_port);
mlxsw_reg_sbib_buff_size_set(payload, buff_size);
}
static const struct mlxsw_reg_info *mlxsw_reg_infos[] = {
MLXSW_REG(sgcr),
MLXSW_REG(spad),
MLXSW_REG(sspr),
MLXSW_REG(sfdat),
MLXSW_REG(sfd),
MLXSW_REG(sfn),
MLXSW_REG(spms),
MLXSW_REG(spvid),
MLXSW_REG(spvm),
MLXSW_REG(spaft),
MLXSW_REG(sfgc),
MLXSW_REG(sfdf),
MLXSW_REG(sldr),
MLXSW_REG(slcr),
MLXSW_REG(slcor),
MLXSW_REG(spmlr),
MLXSW_REG(svfa),
MLXSW_REG(spvtr),
MLXSW_REG(svpe),
MLXSW_REG(sfmr),
MLXSW_REG(spvmlr),
MLXSW_REG(spfsr),
MLXSW_REG(spvc),
MLXSW_REG(spevet),
MLXSW_REG(smpe),
MLXSW_REG(smid2),
MLXSW_REG(cwtp),
MLXSW_REG(cwtpm),
MLXSW_REG(pgcr),
MLXSW_REG(ppbt),
MLXSW_REG(pacl),
MLXSW_REG(pagt),
MLXSW_REG(ptar),
MLXSW_REG(ppbs),
MLXSW_REG(prcr),
MLXSW_REG(pefa),
MLXSW_REG(pemrbt),
MLXSW_REG(ptce2),
MLXSW_REG(perpt),
MLXSW_REG(peabfe),
MLXSW_REG(perar),
MLXSW_REG(ptce3),
MLXSW_REG(percr),
MLXSW_REG(pererp),
MLXSW_REG(iedr),
MLXSW_REG(qpts),
MLXSW_REG(qpcr),
MLXSW_REG(qtct),
MLXSW_REG(qeec),
MLXSW_REG(qrwe),
MLXSW_REG(qpdsm),
MLXSW_REG(qpdp),
MLXSW_REG(qpdpm),
MLXSW_REG(qtctm),
MLXSW_REG(qpsc),
MLXSW_REG(pmlp),
MLXSW_REG(pmtu),
MLXSW_REG(ptys),
MLXSW_REG(ppad),
MLXSW_REG(paos),
MLXSW_REG(pfcc),
MLXSW_REG(ppcnt),
MLXSW_REG(pptb),
MLXSW_REG(pbmc),
MLXSW_REG(pspa),
MLXSW_REG(pmaos),
MLXSW_REG(pplr),
MLXSW_REG(pmtdb),
MLXSW_REG(pmecr),
MLXSW_REG(pmpe),
MLXSW_REG(pddr),
MLXSW_REG(pmmp),
MLXSW_REG(pllp),
MLXSW_REG(pmtm),
MLXSW_REG(htgt),
MLXSW_REG(hpkt),
MLXSW_REG(rgcr),
MLXSW_REG(ritr),
MLXSW_REG(rtar),
MLXSW_REG(ratr),
MLXSW_REG(rtdp),
MLXSW_REG(rips),
MLXSW_REG(ratrad),
MLXSW_REG(rdpm),
MLXSW_REG(ricnt),
MLXSW_REG(rrcr),
MLXSW_REG(ralta),
MLXSW_REG(ralst),
MLXSW_REG(raltb),
MLXSW_REG(ralue),
MLXSW_REG(rauht),
MLXSW_REG(raleu),
MLXSW_REG(rauhtd),
MLXSW_REG(rigr2),
MLXSW_REG(recr2),
MLXSW_REG(rmft2),
MLXSW_REG(reiv),
MLXSW_REG(mfcr),
MLXSW_REG(mfsc),
MLXSW_REG(mfsm),
MLXSW_REG(mfsl),
MLXSW_REG(fore),
MLXSW_REG(mtcap),
MLXSW_REG(mtmp),
MLXSW_REG(mtwe),
MLXSW_REG(mtbr),
MLXSW_REG(mcia),
MLXSW_REG(mpat),
MLXSW_REG(mpar),
MLXSW_REG(mgir),
MLXSW_REG(mrsr),
MLXSW_REG(mlcr),
MLXSW_REG(mcion),
MLXSW_REG(mtpps),
MLXSW_REG(mtutc),
MLXSW_REG(mpsc),
MLXSW_REG(mcqi),
MLXSW_REG(mcc),
MLXSW_REG(mcda),
MLXSW_REG(mgpc),
MLXSW_REG(mprs),
MLXSW_REG(mogcr),
MLXSW_REG(mpagr),
MLXSW_REG(momte),
MLXSW_REG(mtpppc),
MLXSW_REG(mtpptr),
MLXSW_REG(mtptpt),
MLXSW_REG(mtpcpc),
MLXSW_REG(mfgd),
MLXSW_REG(mgpir),
MLXSW_REG(mbct),
MLXSW_REG(mddt),
MLXSW_REG(mddq),
MLXSW_REG(mddc),
MLXSW_REG(mfde),
MLXSW_REG(tngcr),
MLXSW_REG(tnumt),
MLXSW_REG(tnqcr),
MLXSW_REG(tnqdr),
MLXSW_REG(tneem),
MLXSW_REG(tndem),
MLXSW_REG(tnpc),
MLXSW_REG(tigcr),
MLXSW_REG(tieem),
MLXSW_REG(tidem),
MLXSW_REG(sbpr),
MLXSW_REG(sbcm),
MLXSW_REG(sbpm),
MLXSW_REG(sbmm),
MLXSW_REG(sbsr),
MLXSW_REG(sbib),
};
static inline const char *mlxsw_reg_id_str(u16 reg_id)
{
const struct mlxsw_reg_info *reg_info;
int i;
for (i = 0; i < ARRAY_SIZE(mlxsw_reg_infos); i++) {
reg_info = mlxsw_reg_infos[i];
if (reg_info->id == reg_id)
return reg_info->name;
}
return "*UNKNOWN*";
}
/* PUDE - Port Up / Down Event
* ---------------------------
* Reports the operational state change of a port.
*/
#define MLXSW_REG_PUDE_LEN 0x10
/* reg_pude_swid
* Switch partition ID with which to associate the port.
* Access: Index
*/
MLXSW_ITEM32(reg, pude, swid, 0x00, 24, 8);
/* reg_pude_local_port
* Local port number.
* Access: Index
*/
MLXSW_ITEM32_LP(reg, pude, 0x00, 16, 0x00, 12);
/* reg_pude_admin_status
* Port administrative state (the desired state).
* 1 - Up.
* 2 - Down.
* 3 - Up once. This means that in case of link failure, the port won't go
* into polling mode, but will wait to be re-enabled by software.
* 4 - Disabled by system. Can only be set by hardware.
* Access: RO
*/
MLXSW_ITEM32(reg, pude, admin_status, 0x00, 8, 4);
/* reg_pude_oper_status
* Port operatioanl state.
* 1 - Up.
* 2 - Down.
* 3 - Down by port failure. This means that the device will not let the
* port up again until explicitly specified by software.
* Access: RO
*/
MLXSW_ITEM32(reg, pude, oper_status, 0x00, 0, 4);
#endif