linux-zen-desktop/drivers/scsi/sym53c8xx_2/sym_hipd.h

1214 lines
33 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
* of PCI-SCSI IO processors.
*
* Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
*
* This driver is derived from the Linux sym53c8xx driver.
* Copyright (C) 1998-2000 Gerard Roudier
*
* The sym53c8xx driver is derived from the ncr53c8xx driver that had been
* a port of the FreeBSD ncr driver to Linux-1.2.13.
*
* The original ncr driver has been written for 386bsd and FreeBSD by
* Wolfgang Stanglmeier <wolf@cologne.de>
* Stefan Esser <se@mi.Uni-Koeln.de>
* Copyright (C) 1994 Wolfgang Stanglmeier
*
* Other major contributions:
*
* NVRAM detection and reading.
* Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
*
*-----------------------------------------------------------------------------
*/
#include <linux/gfp.h>
#ifndef SYM_HIPD_H
#define SYM_HIPD_H
/*
* Generic driver options.
*
* They may be defined in platform specific headers, if they
* are useful.
*
* SYM_OPT_HANDLE_DEVICE_QUEUEING
* When this option is set, the driver will use a queue per
* device and handle QUEUE FULL status requeuing internally.
*
* SYM_OPT_LIMIT_COMMAND_REORDERING
* When this option is set, the driver tries to limit tagged
* command reordering to some reasonable value.
* (set for Linux)
*/
#if 0
#define SYM_OPT_HANDLE_DEVICE_QUEUEING
#define SYM_OPT_LIMIT_COMMAND_REORDERING
#endif
/*
* Active debugging tags and verbosity.
* Both DEBUG_FLAGS and sym_verbose can be redefined
* by the platform specific code to something else.
*/
#define DEBUG_ALLOC (0x0001)
#define DEBUG_PHASE (0x0002)
#define DEBUG_POLL (0x0004)
#define DEBUG_QUEUE (0x0008)
#define DEBUG_RESULT (0x0010)
#define DEBUG_SCATTER (0x0020)
#define DEBUG_SCRIPT (0x0040)
#define DEBUG_TINY (0x0080)
#define DEBUG_TIMING (0x0100)
#define DEBUG_NEGO (0x0200)
#define DEBUG_TAGS (0x0400)
#define DEBUG_POINTER (0x0800)
#ifndef DEBUG_FLAGS
#define DEBUG_FLAGS (0x0000)
#endif
#ifndef sym_verbose
#define sym_verbose (np->verbose)
#endif
/*
* These ones should have been already defined.
*/
#ifndef assert
#define assert(expression) { \
if (!(expression)) { \
(void)panic( \
"assertion \"%s\" failed: file \"%s\", line %d\n", \
#expression, \
__FILE__, __LINE__); \
} \
}
#endif
/*
* Number of tasks per device we want to handle.
*/
#if SYM_CONF_MAX_TAG_ORDER > 8
#error "more than 256 tags per logical unit not allowed."
#endif
#define SYM_CONF_MAX_TASK (1<<SYM_CONF_MAX_TAG_ORDER)
/*
* Donnot use more tasks that we can handle.
*/
#ifndef SYM_CONF_MAX_TAG
#define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK
#endif
#if SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
#undef SYM_CONF_MAX_TAG
#define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK
#endif
/*
* This one means 'NO TAG for this job'
*/
#define NO_TAG (256)
/*
* Number of SCSI targets.
*/
#if SYM_CONF_MAX_TARGET > 16
#error "more than 16 targets not allowed."
#endif
/*
* Number of logical units per target.
*/
#if SYM_CONF_MAX_LUN > 64
#error "more than 64 logical units per target not allowed."
#endif
/*
* Asynchronous pre-scaler (ns). Shall be 40 for
* the SCSI timings to be compliant.
*/
#define SYM_CONF_MIN_ASYNC (40)
/*
* MEMORY ALLOCATOR.
*/
#define SYM_MEM_WARN 1 /* Warn on failed operations */
#define SYM_MEM_PAGE_ORDER 0 /* 1 PAGE maximum */
#define SYM_MEM_CLUSTER_SHIFT (PAGE_SHIFT+SYM_MEM_PAGE_ORDER)
#define SYM_MEM_FREE_UNUSED /* Free unused pages immediately */
/*
* Shortest memory chunk is (1<<SYM_MEM_SHIFT), currently 16.
* Actual allocations happen as SYM_MEM_CLUSTER_SIZE sized.
* (1 PAGE at a time is just fine).
*/
#define SYM_MEM_SHIFT 4
#define SYM_MEM_CLUSTER_SIZE (1UL << SYM_MEM_CLUSTER_SHIFT)
#define SYM_MEM_CLUSTER_MASK (SYM_MEM_CLUSTER_SIZE-1)
/*
* Number of entries in the START and DONE queues.
*
* We limit to 1 PAGE in order to succeed allocation of
* these queues. Each entry is 8 bytes long (2 DWORDS).
*/
#ifdef SYM_CONF_MAX_START
#define SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
#else
#define SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
#define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
#endif
#if SYM_CONF_MAX_QUEUE > SYM_MEM_CLUSTER_SIZE/8
#undef SYM_CONF_MAX_QUEUE
#define SYM_CONF_MAX_QUEUE (SYM_MEM_CLUSTER_SIZE/8)
#undef SYM_CONF_MAX_START
#define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
#endif
/*
* For this one, we want a short name :-)
*/
#define MAX_QUEUE SYM_CONF_MAX_QUEUE
/*
* Common definitions for both bus space based and legacy IO methods.
*/
#define INB_OFF(np, o) ioread8(np->s.ioaddr + (o))
#define INW_OFF(np, o) ioread16(np->s.ioaddr + (o))
#define INL_OFF(np, o) ioread32(np->s.ioaddr + (o))
#define OUTB_OFF(np, o, val) iowrite8((val), np->s.ioaddr + (o))
#define OUTW_OFF(np, o, val) iowrite16((val), np->s.ioaddr + (o))
#define OUTL_OFF(np, o, val) iowrite32((val), np->s.ioaddr + (o))
#define INB(np, r) INB_OFF(np, offsetof(struct sym_reg, r))
#define INW(np, r) INW_OFF(np, offsetof(struct sym_reg, r))
#define INL(np, r) INL_OFF(np, offsetof(struct sym_reg, r))
#define OUTB(np, r, v) OUTB_OFF(np, offsetof(struct sym_reg, r), (v))
#define OUTW(np, r, v) OUTW_OFF(np, offsetof(struct sym_reg, r), (v))
#define OUTL(np, r, v) OUTL_OFF(np, offsetof(struct sym_reg, r), (v))
#define OUTONB(np, r, m) OUTB(np, r, INB(np, r) | (m))
#define OUTOFFB(np, r, m) OUTB(np, r, INB(np, r) & ~(m))
#define OUTONW(np, r, m) OUTW(np, r, INW(np, r) | (m))
#define OUTOFFW(np, r, m) OUTW(np, r, INW(np, r) & ~(m))
#define OUTONL(np, r, m) OUTL(np, r, INL(np, r) | (m))
#define OUTOFFL(np, r, m) OUTL(np, r, INL(np, r) & ~(m))
/*
* We normally want the chip to have a consistent view
* of driver internal data structures when we restart it.
* Thus these macros.
*/
#define OUTL_DSP(np, v) \
do { \
MEMORY_WRITE_BARRIER(); \
OUTL(np, nc_dsp, (v)); \
} while (0)
#define OUTONB_STD() \
do { \
MEMORY_WRITE_BARRIER(); \
OUTONB(np, nc_dcntl, (STD|NOCOM)); \
} while (0)
/*
* Command control block states.
*/
#define HS_IDLE (0)
#define HS_BUSY (1)
#define HS_NEGOTIATE (2) /* sync/wide data transfer*/
#define HS_DISCONNECT (3) /* Disconnected by target */
#define HS_WAIT (4) /* waiting for resource */
#define HS_DONEMASK (0x80)
#define HS_COMPLETE (4|HS_DONEMASK)
#define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */
#define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */
#define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */
/*
* Software Interrupt Codes
*/
#define SIR_BAD_SCSI_STATUS (1)
#define SIR_SEL_ATN_NO_MSG_OUT (2)
#define SIR_MSG_RECEIVED (3)
#define SIR_MSG_WEIRD (4)
#define SIR_NEGO_FAILED (5)
#define SIR_NEGO_PROTO (6)
#define SIR_SCRIPT_STOPPED (7)
#define SIR_REJECT_TO_SEND (8)
#define SIR_SWIDE_OVERRUN (9)
#define SIR_SODL_UNDERRUN (10)
#define SIR_RESEL_NO_MSG_IN (11)
#define SIR_RESEL_NO_IDENTIFY (12)
#define SIR_RESEL_BAD_LUN (13)
#define SIR_TARGET_SELECTED (14)
#define SIR_RESEL_BAD_I_T_L (15)
#define SIR_RESEL_BAD_I_T_L_Q (16)
#define SIR_ABORT_SENT (17)
#define SIR_RESEL_ABORTED (18)
#define SIR_MSG_OUT_DONE (19)
#define SIR_COMPLETE_ERROR (20)
#define SIR_DATA_OVERRUN (21)
#define SIR_BAD_PHASE (22)
#if SYM_CONF_DMA_ADDRESSING_MODE == 2
#define SIR_DMAP_DIRTY (23)
#define SIR_MAX (23)
#else
#define SIR_MAX (22)
#endif
/*
* Extended error bit codes.
* xerr_status field of struct sym_ccb.
*/
#define XE_EXTRA_DATA (1) /* unexpected data phase */
#define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */
#define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */
#define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */
#define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */
/*
* Negotiation status.
* nego_status field of struct sym_ccb.
*/
#define NS_SYNC (1)
#define NS_WIDE (2)
#define NS_PPR (3)
/*
* A CCB hashed table is used to retrieve CCB address
* from DSA value.
*/
#define CCB_HASH_SHIFT 8
#define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT)
#define CCB_HASH_MASK (CCB_HASH_SIZE-1)
#if 1
#define CCB_HASH_CODE(dsa) \
(((dsa) >> (_LGRU16_(sizeof(struct sym_ccb)))) & CCB_HASH_MASK)
#else
#define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK)
#endif
#if SYM_CONF_DMA_ADDRESSING_MODE == 2
/*
* We may want to use segment registers for 64 bit DMA.
* 16 segments registers -> up to 64 GB addressable.
*/
#define SYM_DMAP_SHIFT (4)
#define SYM_DMAP_SIZE (1u<<SYM_DMAP_SHIFT)
#define SYM_DMAP_MASK (SYM_DMAP_SIZE-1)
#endif
/*
* Device flags.
*/
#define SYM_DISC_ENABLED (1)
#define SYM_TAGS_ENABLED (1<<1)
#define SYM_SCAN_BOOT_DISABLED (1<<2)
#define SYM_SCAN_LUNS_DISABLED (1<<3)
/*
* Host adapter miscellaneous flags.
*/
#define SYM_AVOID_BUS_RESET (1)
/*
* Misc.
*/
#define SYM_SNOOP_TIMEOUT (10000000)
#define BUS_8_BIT 0
#define BUS_16_BIT 1
/*
* Gather negotiable parameters value
*/
struct sym_trans {
u8 period;
u8 offset;
unsigned int width:1;
unsigned int iu:1;
unsigned int dt:1;
unsigned int qas:1;
unsigned int check_nego:1;
unsigned int renego:2;
};
/*
* Global TCB HEADER.
*
* Due to lack of indirect addressing on earlier NCR chips,
* this substructure is copied from the TCB to a global
* address after selection.
* For SYMBIOS chips that support LOAD/STORE this copy is
* not needed and thus not performed.
*/
struct sym_tcbh {
/*
* Scripts bus addresses of LUN table accessed from scripts.
* LUN #0 is a special case, since multi-lun devices are rare,
* and we we want to speed-up the general case and not waste
* resources.
*/
u32 luntbl_sa; /* bus address of this table */
u32 lun0_sa; /* bus address of LCB #0 */
/*
* Actual SYNC/WIDE IO registers value for this target.
* 'sval', 'wval' and 'uval' are read from SCRIPTS and
* so have alignment constraints.
*/
/*0*/ u_char uval; /* -> SCNTL4 register */
/*1*/ u_char sval; /* -> SXFER io register */
/*2*/ u_char filler1;
/*3*/ u_char wval; /* -> SCNTL3 io register */
};
/*
* Target Control Block
*/
struct sym_tcb {
/*
* TCB header.
* Assumed at offset 0.
*/
/*0*/ struct sym_tcbh head;
/*
* LUN table used by the SCRIPTS processor.
* An array of bus addresses is used on reselection.
*/
u32 *luntbl; /* LCBs bus address table */
int nlcb; /* Number of valid LCBs (including LUN #0) */
/*
* LUN table used by the C code.
*/
struct sym_lcb *lun0p; /* LCB of LUN #0 (usual case) */
#if SYM_CONF_MAX_LUN > 1
struct sym_lcb **lunmp; /* Other LCBs [1..MAX_LUN] */
#endif
#ifdef SYM_HAVE_STCB
/*
* O/S specific data structure.
*/
struct sym_stcb s;
#endif
/* Transfer goal */
struct sym_trans tgoal;
/* Last printed transfer speed */
struct sym_trans tprint;
/*
* Keep track of the CCB used for the negotiation in order
* to ensure that only 1 negotiation is queued at a time.
*/
struct sym_ccb * nego_cp; /* CCB used for the nego */
/*
* Set when we want to reset the device.
*/
u_char to_reset;
/*
* Other user settable limits and options.
* These limits are read from the NVRAM if present.
*/
unsigned char usrflags;
unsigned char usr_period;
unsigned char usr_width;
unsigned short usrtags;
struct scsi_target *starget;
};
/*
* Global LCB HEADER.
*
* Due to lack of indirect addressing on earlier NCR chips,
* this substructure is copied from the LCB to a global
* address after selection.
* For SYMBIOS chips that support LOAD/STORE this copy is
* not needed and thus not performed.
*/
struct sym_lcbh {
/*
* SCRIPTS address jumped by SCRIPTS on reselection.
* For not probed logical units, this address points to
* SCRIPTS that deal with bad LU handling (must be at
* offset zero of the LCB for that reason).
*/
/*0*/ u32 resel_sa;
/*
* Task (bus address of a CCB) read from SCRIPTS that points
* to the unique ITL nexus allowed to be disconnected.
*/
u32 itl_task_sa;
/*
* Task table bus address (read from SCRIPTS).
*/
u32 itlq_tbl_sa;
};
/*
* Logical Unit Control Block
*/
struct sym_lcb {
/*
* TCB header.
* Assumed at offset 0.
*/
/*0*/ struct sym_lcbh head;
/*
* Task table read from SCRIPTS that contains pointers to
* ITLQ nexuses. The bus address read from SCRIPTS is
* inside the header.
*/
u32 *itlq_tbl; /* Kernel virtual address */
/*
* Busy CCBs management.
*/
u_short busy_itlq; /* Number of busy tagged CCBs */
u_short busy_itl; /* Number of busy untagged CCBs */
/*
* Circular tag allocation buffer.
*/
u_short ia_tag; /* Tag allocation index */
u_short if_tag; /* Tag release index */
u_char *cb_tags; /* Circular tags buffer */
/*
* O/S specific data structure.
*/
#ifdef SYM_HAVE_SLCB
struct sym_slcb s;
#endif
#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
/*
* Optionnaly the driver can handle device queueing,
* and requeues internally command to redo.
*/
SYM_QUEHEAD waiting_ccbq;
SYM_QUEHEAD started_ccbq;
int num_sgood;
u_short started_tags;
u_short started_no_tag;
u_short started_max;
u_short started_limit;
#endif
#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
/*
* Optionally the driver can try to prevent SCSI
* IOs from being reordered too much.
*/
u_char tags_si; /* Current index to tags sum */
u_short tags_sum[2]; /* Tags sum counters */
u_short tags_since; /* # of tags since last switch */
#endif
/*
* Set when we want to clear all tasks.
*/
u_char to_clear;
/*
* Capabilities.
*/
u_char user_flags;
u_char curr_flags;
};
/*
* Action from SCRIPTS on a task.
* Is part of the CCB, but is also used separately to plug
* error handling action to perform from SCRIPTS.
*/
struct sym_actscr {
u32 start; /* Jumped by SCRIPTS after selection */
u32 restart; /* Jumped by SCRIPTS on relection */
};
/*
* Phase mismatch context.
*
* It is part of the CCB and is used as parameters for the
* DATA pointer. We need two contexts to handle correctly the
* SAVED DATA POINTER.
*/
struct sym_pmc {
struct sym_tblmove sg; /* Updated interrupted SG block */
u32 ret; /* SCRIPT return address */
};
/*
* LUN control block lookup.
* We use a direct pointer for LUN #0, and a table of
* pointers which is only allocated for devices that support
* LUN(s) > 0.
*/
#if SYM_CONF_MAX_LUN <= 1
#define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : NULL
#else
#define sym_lp(tp, lun) \
(!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[((u8)lun)] : NULL
#endif
/*
* Status are used by the host and the script processor.
*
* The last four bytes (status[4]) are copied to the
* scratchb register (declared as scr0..scr3) just after the
* select/reselect, and copied back just after disconnecting.
* Inside the script the XX_REG are used.
*/
/*
* Last four bytes (script)
*/
#define HX_REG scr0
#define HX_PRT nc_scr0
#define HS_REG scr1
#define HS_PRT nc_scr1
#define SS_REG scr2
#define SS_PRT nc_scr2
#define HF_REG scr3
#define HF_PRT nc_scr3
/*
* Last four bytes (host)
*/
#define host_xflags phys.head.status[0]
#define host_status phys.head.status[1]
#define ssss_status phys.head.status[2]
#define host_flags phys.head.status[3]
/*
* Host flags
*/
#define HF_IN_PM0 1u
#define HF_IN_PM1 (1u<<1)
#define HF_ACT_PM (1u<<2)
#define HF_DP_SAVED (1u<<3)
#define HF_SENSE (1u<<4)
#define HF_EXT_ERR (1u<<5)
#define HF_DATA_IN (1u<<6)
#ifdef SYM_CONF_IARB_SUPPORT
#define HF_HINT_IARB (1u<<7)
#endif
/*
* More host flags
*/
#if SYM_CONF_DMA_ADDRESSING_MODE == 2
#define HX_DMAP_DIRTY (1u<<7)
#endif
/*
* Global CCB HEADER.
*
* Due to lack of indirect addressing on earlier NCR chips,
* this substructure is copied from the ccb to a global
* address after selection (or reselection) and copied back
* before disconnect.
* For SYMBIOS chips that support LOAD/STORE this copy is
* not needed and thus not performed.
*/
struct sym_ccbh {
/*
* Start and restart SCRIPTS addresses (must be at 0).
*/
/*0*/ struct sym_actscr go;
/*
* SCRIPTS jump address that deal with data pointers.
* 'savep' points to the position in the script responsible
* for the actual transfer of data.
* It's written on reception of a SAVE_DATA_POINTER message.
*/
u32 savep; /* Jump address to saved data pointer */
u32 lastp; /* SCRIPTS address at end of data */
/*
* Status fields.
*/
u8 status[4];
};
/*
* GET/SET the value of the data pointer used by SCRIPTS.
*
* We must distinguish between the LOAD/STORE-based SCRIPTS
* that use directly the header in the CCB, and the NCR-GENERIC
* SCRIPTS that use the copy of the header in the HCB.
*/
#if SYM_CONF_GENERIC_SUPPORT
#define sym_set_script_dp(np, cp, dp) \
do { \
if (np->features & FE_LDSTR) \
cp->phys.head.lastp = cpu_to_scr(dp); \
else \
np->ccb_head.lastp = cpu_to_scr(dp); \
} while (0)
#define sym_get_script_dp(np, cp) \
scr_to_cpu((np->features & FE_LDSTR) ? \
cp->phys.head.lastp : np->ccb_head.lastp)
#else
#define sym_set_script_dp(np, cp, dp) \
do { \
cp->phys.head.lastp = cpu_to_scr(dp); \
} while (0)
#define sym_get_script_dp(np, cp) (cp->phys.head.lastp)
#endif
/*
* Data Structure Block
*
* During execution of a ccb by the script processor, the
* DSA (data structure address) register points to this
* substructure of the ccb.
*/
struct sym_dsb {
/*
* CCB header.
* Also assumed at offset 0 of the sym_ccb structure.
*/
/*0*/ struct sym_ccbh head;
/*
* Phase mismatch contexts.
* We need two to handle correctly the SAVED DATA POINTER.
* MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic
* for address calculation from SCRIPTS.
*/
struct sym_pmc pm0;
struct sym_pmc pm1;
/*
* Table data for Script
*/
struct sym_tblsel select;
struct sym_tblmove smsg;
struct sym_tblmove smsg_ext;
struct sym_tblmove cmd;
struct sym_tblmove sense;
struct sym_tblmove wresid;
struct sym_tblmove data [SYM_CONF_MAX_SG];
};
/*
* Our Command Control Block
*/
struct sym_ccb {
/*
* This is the data structure which is pointed by the DSA
* register when it is executed by the script processor.
* It must be the first entry.
*/
struct sym_dsb phys;
/*
* Pointer to CAM ccb and related stuff.
*/
struct scsi_cmnd *cmd; /* CAM scsiio ccb */
u8 cdb_buf[16]; /* Copy of CDB */
#define SYM_SNS_BBUF_LEN 32
u8 sns_bbuf[SYM_SNS_BBUF_LEN]; /* Bounce buffer for sense data */
int data_len; /* Total data length */
int segments; /* Number of SG segments */
u8 order; /* Tag type (if tagged command) */
unsigned char odd_byte_adjustment; /* odd-sized req on wide bus */
u_char nego_status; /* Negotiation status */
u_char xerr_status; /* Extended error flags */
u32 extra_bytes; /* Extraneous bytes transferred */
/*
* Message areas.
* We prepare a message to be sent after selection.
* We may use a second one if the command is rescheduled
* due to CHECK_CONDITION or COMMAND TERMINATED.
* Contents are IDENTIFY and SIMPLE_TAG.
* While negotiating sync or wide transfer,
* a SDTR or WDTR message is appended.
*/
u_char scsi_smsg [12];
u_char scsi_smsg2[12];
/*
* Auto request sense related fields.
*/
u_char sensecmd[6]; /* Request Sense command */
u_char sv_scsi_status; /* Saved SCSI status */
u_char sv_xerr_status; /* Saved extended status */
int sv_resid; /* Saved residual */
/*
* Other fields.
*/
u32 ccb_ba; /* BUS address of this CCB */
u_short tag; /* Tag for this transfer */
/* NO_TAG means no tag */
u_char target;
u_char lun;
struct sym_ccb *link_ccbh; /* Host adapter CCB hash chain */
SYM_QUEHEAD link_ccbq; /* Link to free/busy CCB queue */
u32 startp; /* Initial data pointer */
u32 goalp; /* Expected last data pointer */
int ext_sg; /* Extreme data pointer, used */
int ext_ofs; /* to calculate the residual. */
#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
SYM_QUEHEAD link2_ccbq; /* Link for device queueing */
u_char started; /* CCB queued to the squeue */
#endif
u_char to_abort; /* Want this IO to be aborted */
#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
u_char tags_si; /* Lun tags sum index (0,1) */
#endif
};
#define CCB_BA(cp,lbl) cpu_to_scr(cp->ccb_ba + offsetof(struct sym_ccb, lbl))
typedef struct device *m_pool_ident_t;
/*
* Host Control Block
*/
struct sym_hcb {
/*
* Global headers.
* Due to poorness of addressing capabilities, earlier
* chips (810, 815, 825) copy part of the data structures
* (CCB, TCB and LCB) in fixed areas.
*/
#if SYM_CONF_GENERIC_SUPPORT
struct sym_ccbh ccb_head;
struct sym_tcbh tcb_head;
struct sym_lcbh lcb_head;
#endif
/*
* Idle task and invalid task actions and
* their bus addresses.
*/
struct sym_actscr idletask, notask, bad_itl, bad_itlq;
u32 idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
/*
* Dummy lun table to protect us against target
* returning bad lun number on reselection.
*/
u32 *badluntbl; /* Table physical address */
u32 badlun_sa; /* SCRIPT handler BUS address */
/*
* Bus address of this host control block.
*/
u32 hcb_ba;
/*
* Bit 32-63 of the on-chip RAM bus address in LE format.
* The START_RAM64 script loads the MMRS and MMWS from this
* field.
*/
u32 scr_ram_seg;
/*
* Initial value of some IO register bits.
* These values are assumed to have been set by BIOS, and may
* be used to probe adapter implementation differences.
*/
u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
sv_stest1;
/*
* Actual initial value of IO register bits used by the
* driver. They are loaded at initialisation according to
* features that are to be enabled/disabled.
*/
u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
/*
* Target data.
*/
struct sym_tcb target[SYM_CONF_MAX_TARGET];
/*
* Target control block bus address array used by the SCRIPT
* on reselection.
*/
u32 *targtbl;
u32 targtbl_ba;
/*
* DMA pool handle for this HBA.
*/
m_pool_ident_t bus_dmat;
/*
* O/S specific data structure
*/
struct sym_shcb s;
/*
* Physical bus addresses of the chip.
*/
u32 mmio_ba; /* MMIO 32 bit BUS address */
u32 ram_ba; /* RAM 32 bit BUS address */
/*
* SCRIPTS virtual and physical bus addresses.
* 'script' is loaded in the on-chip RAM if present.
* 'scripth' stays in main memory for all chips except the
* 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
*/
u_char *scripta0; /* Copy of scripts A, B, Z */
u_char *scriptb0;
u_char *scriptz0;
u32 scripta_ba; /* Actual scripts A, B, Z */
u32 scriptb_ba; /* 32 bit bus addresses. */
u32 scriptz_ba;
u_short scripta_sz; /* Actual size of script A, B, Z*/
u_short scriptb_sz;
u_short scriptz_sz;
/*
* Bus addresses, setup and patch methods for
* the selected firmware.
*/
struct sym_fwa_ba fwa_bas; /* Useful SCRIPTA bus addresses */
struct sym_fwb_ba fwb_bas; /* Useful SCRIPTB bus addresses */
struct sym_fwz_ba fwz_bas; /* Useful SCRIPTZ bus addresses */
void (*fw_setup)(struct sym_hcb *np, struct sym_fw *fw);
void (*fw_patch)(struct Scsi_Host *);
char *fw_name;
/*
* General controller parameters and configuration.
*/
u_int features; /* Chip features map */
u_char myaddr; /* SCSI id of the adapter */
u_char maxburst; /* log base 2 of dwords burst */
u_char maxwide; /* Maximum transfer width */
u_char minsync; /* Min sync period factor (ST) */
u_char maxsync; /* Max sync period factor (ST) */
u_char maxoffs; /* Max scsi offset (ST) */
u_char minsync_dt; /* Min sync period factor (DT) */
u_char maxsync_dt; /* Max sync period factor (DT) */
u_char maxoffs_dt; /* Max scsi offset (DT) */
u_char multiplier; /* Clock multiplier (1,2,4) */
u_char clock_divn; /* Number of clock divisors */
u32 clock_khz; /* SCSI clock frequency in KHz */
u32 pciclk_khz; /* Estimated PCI clock in KHz */
/*
* Start queue management.
* It is filled up by the host processor and accessed by the
* SCRIPTS processor in order to start SCSI commands.
*/
volatile /* Prevent code optimizations */
u32 *squeue; /* Start queue virtual address */
u32 squeue_ba; /* Start queue BUS address */
u_short squeueput; /* Next free slot of the queue */
u_short actccbs; /* Number of allocated CCBs */
/*
* Command completion queue.
* It is the same size as the start queue to avoid overflow.
*/
u_short dqueueget; /* Next position to scan */
volatile /* Prevent code optimizations */
u32 *dqueue; /* Completion (done) queue */
u32 dqueue_ba; /* Done queue BUS address */
/*
* Miscellaneous buffers accessed by the scripts-processor.
* They shall be DWORD aligned, because they may be read or
* written with a script command.
*/
u_char msgout[8]; /* Buffer for MESSAGE OUT */
u_char msgin [8]; /* Buffer for MESSAGE IN */
u32 lastmsg; /* Last SCSI message sent */
u32 scratch; /* Scratch for SCSI receive */
/* Also used for cache test */
/*
* Miscellaneous configuration and status parameters.
*/
u_char usrflags; /* Miscellaneous user flags */
u_char scsi_mode; /* Current SCSI BUS mode */
u_char verbose; /* Verbosity for this controller*/
/*
* CCB lists and queue.
*/
struct sym_ccb **ccbh; /* CCBs hashed by DSA value */
/* CCB_HASH_SIZE lists of CCBs */
SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */
SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */
/*
* During error handling and/or recovery,
* active CCBs that are to be completed with
* error or requeued are moved from the busy_ccbq
* to the comp_ccbq prior to completion.
*/
SYM_QUEHEAD comp_ccbq;
#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
SYM_QUEHEAD dummy_ccbq;
#endif
/*
* IMMEDIATE ARBITRATION (IARB) control.
*
* We keep track in 'last_cp' of the last CCB that has been
* queued to the SCRIPTS processor and clear 'last_cp' when
* this CCB completes. If last_cp is not zero at the moment
* we queue a new CCB, we set a flag in 'last_cp' that is
* used by the SCRIPTS as a hint for setting IARB.
* We donnot set more than 'iarb_max' consecutive hints for
* IARB in order to leave devices a chance to reselect.
* By the way, any non zero value of 'iarb_max' is unfair. :)
*/
#ifdef SYM_CONF_IARB_SUPPORT
u_short iarb_max; /* Max. # consecutive IARB hints*/
u_short iarb_count; /* Actual # of these hints */
struct sym_ccb * last_cp;
#endif
/*
* Command abort handling.
* We need to synchronize tightly with the SCRIPTS
* processor in order to handle things correctly.
*/
u_char abrt_msg[4]; /* Message to send buffer */
struct sym_tblmove abrt_tbl; /* Table for the MOV of it */
struct sym_tblsel abrt_sel; /* Sync params for selection */
u_char istat_sem; /* Tells the chip to stop (SEM) */
/*
* 64 bit DMA handling.
*/
#if SYM_CONF_DMA_ADDRESSING_MODE != 0
u_char use_dac; /* Use PCI DAC cycles */
#if SYM_CONF_DMA_ADDRESSING_MODE == 2
u_char dmap_dirty; /* Dma segments registers dirty */
u32 dmap_bah[SYM_DMAP_SIZE];/* Segment registers map */
#endif
#endif
};
#if SYM_CONF_DMA_ADDRESSING_MODE == 0
#define use_dac(np) 0
#define set_dac(np) do { } while (0)
#else
#define use_dac(np) (np)->use_dac
#define set_dac(np) (np)->use_dac = 1
#endif
#define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl))
/*
* FIRMWARES (sym_fw.c)
*/
struct sym_fw * sym_find_firmware(struct sym_chip *chip);
void sym_fw_bind_script(struct sym_hcb *np, u32 *start, int len);
/*
* Driver methods called from O/S specific code.
*/
char *sym_driver_name(void);
void sym_print_xerr(struct scsi_cmnd *cmd, int x_status);
int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int);
struct sym_chip *sym_lookup_chip_table(u_short device_id, u_char revision);
#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn);
#else
void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp);
#endif
void sym_start_up(struct Scsi_Host *, int reason);
irqreturn_t sym_interrupt(struct Scsi_Host *);
int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task);
struct sym_ccb *sym_get_ccb(struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order);
void sym_free_ccb(struct sym_hcb *np, struct sym_ccb *cp);
struct sym_lcb *sym_alloc_lcb(struct sym_hcb *np, u_char tn, u_char ln);
int sym_free_lcb(struct sym_hcb *np, u_char tn, u_char ln);
int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *csio, struct sym_ccb *cp);
int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *ccb, int timed_out);
int sym_reset_scsi_target(struct sym_hcb *np, int target);
void sym_hcb_free(struct sym_hcb *np);
int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram);
/*
* Build a scatter/gather entry.
*
* For 64 bit systems, we use the 8 upper bits of the size field
* to provide bus address bits 32-39 to the SCRIPTS processor.
* This allows the 895A, 896, 1010 to address up to 1 TB of memory.
*/
#if SYM_CONF_DMA_ADDRESSING_MODE == 0
#define DMA_DAC_MASK DMA_BIT_MASK(32)
#define sym_build_sge(np, data, badd, len) \
do { \
(data)->addr = cpu_to_scr(badd); \
(data)->size = cpu_to_scr(len); \
} while (0)
#elif SYM_CONF_DMA_ADDRESSING_MODE == 1
#define DMA_DAC_MASK DMA_BIT_MASK(40)
#define sym_build_sge(np, data, badd, len) \
do { \
(data)->addr = cpu_to_scr(badd); \
(data)->size = cpu_to_scr((((badd) >> 8) & 0xff000000) + len); \
} while (0)
#elif SYM_CONF_DMA_ADDRESSING_MODE == 2
#define DMA_DAC_MASK DMA_BIT_MASK(64)
int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s);
static inline void
sym_build_sge(struct sym_hcb *np, struct sym_tblmove *data, u64 badd, int len)
{
u32 h = (badd>>32);
int s = (h&SYM_DMAP_MASK);
if (h != np->dmap_bah[s])
goto bad;
good:
(data)->addr = cpu_to_scr(badd);
(data)->size = cpu_to_scr((s<<24) + len);
return;
bad:
s = sym_lookup_dmap(np, h, s);
goto good;
}
#else
#error "Unsupported DMA addressing mode"
#endif
/*
* MEMORY ALLOCATOR.
*/
#define sym_get_mem_cluster() \
(void *) __get_free_pages(GFP_ATOMIC, SYM_MEM_PAGE_ORDER)
#define sym_free_mem_cluster(p) \
free_pages((unsigned long)p, SYM_MEM_PAGE_ORDER)
/*
* Link between free memory chunks of a given size.
*/
typedef struct sym_m_link {
struct sym_m_link *next;
} *m_link_p;
/*
* Virtual to bus physical translation for a given cluster.
* Such a structure is only useful with DMA abstraction.
*/
typedef struct sym_m_vtob { /* Virtual to Bus address translation */
struct sym_m_vtob *next;
void *vaddr; /* Virtual address */
dma_addr_t baddr; /* Bus physical address */
} *m_vtob_p;
/* Hash this stuff a bit to speed up translations */
#define VTOB_HASH_SHIFT 5
#define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT)
#define VTOB_HASH_MASK (VTOB_HASH_SIZE-1)
#define VTOB_HASH_CODE(m) \
((((unsigned long)(m)) >> SYM_MEM_CLUSTER_SHIFT) & VTOB_HASH_MASK)
/*
* Memory pool of a given kind.
* Ideally, we want to use:
* 1) 1 pool for memory we donnot need to involve in DMA.
* 2) The same pool for controllers that require same DMA
* constraints and features.
* The OS specific m_pool_id_t thing and the sym_m_pool_match()
* method are expected to tell the driver about.
*/
typedef struct sym_m_pool {
m_pool_ident_t dev_dmat; /* Identifies the pool (see above) */
void * (*get_mem_cluster)(struct sym_m_pool *);
#ifdef SYM_MEM_FREE_UNUSED
void (*free_mem_cluster)(struct sym_m_pool *, void *);
#endif
#define M_GET_MEM_CLUSTER() mp->get_mem_cluster(mp)
#define M_FREE_MEM_CLUSTER(p) mp->free_mem_cluster(mp, p)
int nump;
m_vtob_p vtob[VTOB_HASH_SIZE];
struct sym_m_pool *next;
struct sym_m_link h[SYM_MEM_CLUSTER_SHIFT - SYM_MEM_SHIFT + 1];
} *m_pool_p;
/*
* Alloc, free and translate addresses to bus physical
* for DMAable memory.
*/
void *__sym_calloc_dma(m_pool_ident_t dev_dmat, int size, char *name);
void __sym_mfree_dma(m_pool_ident_t dev_dmat, void *m, int size, char *name);
dma_addr_t __vtobus(m_pool_ident_t dev_dmat, void *m);
/*
* Verbs used by the driver code for DMAable memory handling.
* The _uvptv_ macro avoids a nasty warning about pointer to volatile
* being discarded.
*/
#define _uvptv_(p) ((void *)((u_long)(p)))
#define _sym_calloc_dma(np, l, n) __sym_calloc_dma(np->bus_dmat, l, n)
#define _sym_mfree_dma(np, p, l, n) \
__sym_mfree_dma(np->bus_dmat, _uvptv_(p), l, n)
#define sym_calloc_dma(l, n) _sym_calloc_dma(np, l, n)
#define sym_mfree_dma(p, l, n) _sym_mfree_dma(np, p, l, n)
#define vtobus(p) __vtobus(np->bus_dmat, _uvptv_(p))
/*
* We have to provide the driver memory allocator with methods for
* it to maintain virtual to bus physical address translations.
*/
#define sym_m_pool_match(mp_id1, mp_id2) (mp_id1 == mp_id2)
static inline void *sym_m_get_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp)
{
void *vaddr = NULL;
dma_addr_t baddr = 0;
vaddr = dma_alloc_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, &baddr,
GFP_ATOMIC);
if (vaddr) {
vbp->vaddr = vaddr;
vbp->baddr = baddr;
}
return vaddr;
}
static inline void sym_m_free_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp)
{
dma_free_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, vbp->vaddr,
vbp->baddr);
}
#endif /* SYM_HIPD_H */