linux-zen-desktop/drivers/target/target_core_spc.c

2435 lines
66 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* SCSI Primary Commands (SPC) parsing and emulation.
*
* (c) Copyright 2002-2013 Datera, Inc.
*
* Nicholas A. Bellinger <nab@kernel.org>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <asm/unaligned.h>
#include <scsi/scsi_proto.h>
#include <scsi/scsi_common.h>
#include <scsi/scsi_tcq.h>
#include <target/target_core_base.h>
#include <target/target_core_backend.h>
#include <target/target_core_fabric.h>
#include "target_core_internal.h"
#include "target_core_alua.h"
#include "target_core_pr.h"
#include "target_core_ua.h"
#include "target_core_xcopy.h"
static void spc_fill_alua_data(struct se_lun *lun, unsigned char *buf)
{
struct t10_alua_tg_pt_gp *tg_pt_gp;
/*
* Set SCCS for MAINTENANCE_IN + REPORT_TARGET_PORT_GROUPS.
*/
buf[5] = 0x80;
/*
* Set TPGS field for explicit and/or implicit ALUA access type
* and opteration.
*
* See spc4r17 section 6.4.2 Table 135
*/
rcu_read_lock();
tg_pt_gp = rcu_dereference(lun->lun_tg_pt_gp);
if (tg_pt_gp)
buf[5] |= tg_pt_gp->tg_pt_gp_alua_access_type;
rcu_read_unlock();
}
static u16
spc_find_scsi_transport_vd(int proto_id)
{
switch (proto_id) {
case SCSI_PROTOCOL_FCP:
return SCSI_VERSION_DESCRIPTOR_FCP4;
case SCSI_PROTOCOL_ISCSI:
return SCSI_VERSION_DESCRIPTOR_ISCSI;
case SCSI_PROTOCOL_SAS:
return SCSI_VERSION_DESCRIPTOR_SAS3;
case SCSI_PROTOCOL_SBP:
return SCSI_VERSION_DESCRIPTOR_SBP3;
case SCSI_PROTOCOL_SRP:
return SCSI_VERSION_DESCRIPTOR_SRP;
default:
pr_warn("Cannot find VERSION DESCRIPTOR value for unknown SCSI"
" transport PROTOCOL IDENTIFIER %#x\n", proto_id);
return 0;
}
}
sense_reason_t
spc_emulate_inquiry_std(struct se_cmd *cmd, unsigned char *buf)
{
struct se_lun *lun = cmd->se_lun;
struct se_portal_group *tpg = lun->lun_tpg;
struct se_device *dev = cmd->se_dev;
struct se_session *sess = cmd->se_sess;
/* Set RMB (removable media) for tape devices */
if (dev->transport->get_device_type(dev) == TYPE_TAPE)
buf[1] = 0x80;
buf[2] = 0x06; /* SPC-4 */
/*
* NORMACA and HISUP = 0, RESPONSE DATA FORMAT = 2
*
* SPC4 says:
* A RESPONSE DATA FORMAT field set to 2h indicates that the
* standard INQUIRY data is in the format defined in this
* standard. Response data format values less than 2h are
* obsolete. Response data format values greater than 2h are
* reserved.
*/
buf[3] = 2;
/*
* Enable SCCS and TPGS fields for Emulated ALUA
*/
spc_fill_alua_data(lun, buf);
/*
* Set Third-Party Copy (3PC) bit to indicate support for EXTENDED_COPY
*/
if (dev->dev_attrib.emulate_3pc)
buf[5] |= 0x8;
/*
* Set Protection (PROTECT) bit when DIF has been enabled on the
* device, and the fabric supports VERIFY + PASS. Also report
* PROTECT=1 if sess_prot_type has been configured to allow T10-PI
* to unprotected devices.
*/
if (sess->sup_prot_ops & (TARGET_PROT_DIN_PASS | TARGET_PROT_DOUT_PASS)) {
if (dev->dev_attrib.pi_prot_type || cmd->se_sess->sess_prot_type)
buf[5] |= 0x1;
}
/*
* Set MULTIP bit to indicate presence of multiple SCSI target ports
*/
if (dev->export_count > 1)
buf[6] |= 0x10;
buf[7] = 0x2; /* CmdQue=1 */
/*
* ASCII data fields described as being left-aligned shall have any
* unused bytes at the end of the field (i.e., highest offset) and the
* unused bytes shall be filled with ASCII space characters (20h).
*/
memset(&buf[8], 0x20,
INQUIRY_VENDOR_LEN + INQUIRY_MODEL_LEN + INQUIRY_REVISION_LEN);
memcpy(&buf[8], dev->t10_wwn.vendor,
strnlen(dev->t10_wwn.vendor, INQUIRY_VENDOR_LEN));
memcpy(&buf[16], dev->t10_wwn.model,
strnlen(dev->t10_wwn.model, INQUIRY_MODEL_LEN));
memcpy(&buf[32], dev->t10_wwn.revision,
strnlen(dev->t10_wwn.revision, INQUIRY_REVISION_LEN));
/*
* Set the VERSION DESCRIPTOR fields
*/
put_unaligned_be16(SCSI_VERSION_DESCRIPTOR_SAM5, &buf[58]);
put_unaligned_be16(spc_find_scsi_transport_vd(tpg->proto_id), &buf[60]);
put_unaligned_be16(SCSI_VERSION_DESCRIPTOR_SPC4, &buf[62]);
if (cmd->se_dev->transport->get_device_type(dev) == TYPE_DISK)
put_unaligned_be16(SCSI_VERSION_DESCRIPTOR_SBC3, &buf[64]);
buf[4] = 91; /* Set additional length to 91 */
return 0;
}
EXPORT_SYMBOL(spc_emulate_inquiry_std);
/* unit serial number */
static sense_reason_t
spc_emulate_evpd_80(struct se_cmd *cmd, unsigned char *buf)
{
struct se_device *dev = cmd->se_dev;
u16 len;
if (dev->dev_flags & DF_EMULATED_VPD_UNIT_SERIAL) {
len = sprintf(&buf[4], "%s", dev->t10_wwn.unit_serial);
len++; /* Extra Byte for NULL Terminator */
buf[3] = len;
}
return 0;
}
/*
* Generate NAA IEEE Registered Extended designator
*/
void spc_gen_naa_6h_vendor_specific(struct se_device *dev,
unsigned char *buf)
{
unsigned char *p = &dev->t10_wwn.unit_serial[0];
u32 company_id = dev->t10_wwn.company_id;
int cnt, off = 0;
bool next = true;
/*
* Start NAA IEEE Registered Extended Identifier/Designator
*/
buf[off] = 0x6 << 4;
/* IEEE COMPANY_ID */
buf[off++] |= (company_id >> 20) & 0xf;
buf[off++] = (company_id >> 12) & 0xff;
buf[off++] = (company_id >> 4) & 0xff;
buf[off] = (company_id & 0xf) << 4;
/*
* Generate up to 36 bits of VENDOR SPECIFIC IDENTIFIER starting on
* byte 3 bit 3-0 for NAA IEEE Registered Extended DESIGNATOR field
* format, followed by 64 bits of VENDOR SPECIFIC IDENTIFIER EXTENSION
* to complete the payload. These are based from VPD=0x80 PRODUCT SERIAL
* NUMBER set via vpd_unit_serial in target_core_configfs.c to ensure
* per device uniqeness.
*/
for (cnt = off + 13; *p && off < cnt; p++) {
int val = hex_to_bin(*p);
if (val < 0)
continue;
if (next) {
next = false;
buf[off++] |= val;
} else {
next = true;
buf[off] = val << 4;
}
}
}
/*
* Device identification VPD, for a complete list of
* DESIGNATOR TYPEs see spc4r17 Table 459.
*/
sense_reason_t
spc_emulate_evpd_83(struct se_cmd *cmd, unsigned char *buf)
{
struct se_device *dev = cmd->se_dev;
struct se_lun *lun = cmd->se_lun;
struct se_portal_group *tpg = NULL;
struct t10_alua_lu_gp_member *lu_gp_mem;
struct t10_alua_tg_pt_gp *tg_pt_gp;
unsigned char *prod = &dev->t10_wwn.model[0];
u32 off = 0;
u16 len = 0, id_len;
off = 4;
/*
* NAA IEEE Registered Extended Assigned designator format, see
* spc4r17 section 7.7.3.6.5
*
* We depend upon a target_core_mod/ConfigFS provided
* /sys/kernel/config/target/core/$HBA/$DEV/wwn/vpd_unit_serial
* value in order to return the NAA id.
*/
if (!(dev->dev_flags & DF_EMULATED_VPD_UNIT_SERIAL))
goto check_t10_vend_desc;
/* CODE SET == Binary */
buf[off++] = 0x1;
/* Set ASSOCIATION == addressed logical unit: 0)b */
buf[off] = 0x00;
/* Identifier/Designator type == NAA identifier */
buf[off++] |= 0x3;
off++;
/* Identifier/Designator length */
buf[off++] = 0x10;
/* NAA IEEE Registered Extended designator */
spc_gen_naa_6h_vendor_specific(dev, &buf[off]);
len = 20;
off = (len + 4);
check_t10_vend_desc:
/*
* T10 Vendor Identifier Page, see spc4r17 section 7.7.3.4
*/
id_len = 8; /* For Vendor field */
if (dev->dev_flags & DF_EMULATED_VPD_UNIT_SERIAL)
id_len += sprintf(&buf[off+12], "%s:%s", prod,
&dev->t10_wwn.unit_serial[0]);
buf[off] = 0x2; /* ASCII */
buf[off+1] = 0x1; /* T10 Vendor ID */
buf[off+2] = 0x0;
/* left align Vendor ID and pad with spaces */
memset(&buf[off+4], 0x20, INQUIRY_VENDOR_LEN);
memcpy(&buf[off+4], dev->t10_wwn.vendor,
strnlen(dev->t10_wwn.vendor, INQUIRY_VENDOR_LEN));
/* Extra Byte for NULL Terminator */
id_len++;
/* Identifier Length */
buf[off+3] = id_len;
/* Header size for Designation descriptor */
len += (id_len + 4);
off += (id_len + 4);
if (1) {
struct t10_alua_lu_gp *lu_gp;
u32 padding, scsi_name_len, scsi_target_len;
u16 lu_gp_id = 0;
u16 tg_pt_gp_id = 0;
u16 tpgt;
tpg = lun->lun_tpg;
/*
* Relative target port identifer, see spc4r17
* section 7.7.3.7
*
* Get the PROTOCOL IDENTIFIER as defined by spc4r17
* section 7.5.1 Table 362
*/
buf[off] = tpg->proto_id << 4;
buf[off++] |= 0x1; /* CODE SET == Binary */
buf[off] = 0x80; /* Set PIV=1 */
/* Set ASSOCIATION == target port: 01b */
buf[off] |= 0x10;
/* DESIGNATOR TYPE == Relative target port identifer */
buf[off++] |= 0x4;
off++; /* Skip over Reserved */
buf[off++] = 4; /* DESIGNATOR LENGTH */
/* Skip over Obsolete field in RTPI payload
* in Table 472 */
off += 2;
put_unaligned_be16(lun->lun_tpg->tpg_rtpi, &buf[off]);
off += 2;
len += 8; /* Header size + Designation descriptor */
/*
* Target port group identifier, see spc4r17
* section 7.7.3.8
*
* Get the PROTOCOL IDENTIFIER as defined by spc4r17
* section 7.5.1 Table 362
*/
rcu_read_lock();
tg_pt_gp = rcu_dereference(lun->lun_tg_pt_gp);
if (!tg_pt_gp) {
rcu_read_unlock();
goto check_lu_gp;
}
tg_pt_gp_id = tg_pt_gp->tg_pt_gp_id;
rcu_read_unlock();
buf[off] = tpg->proto_id << 4;
buf[off++] |= 0x1; /* CODE SET == Binary */
buf[off] = 0x80; /* Set PIV=1 */
/* Set ASSOCIATION == target port: 01b */
buf[off] |= 0x10;
/* DESIGNATOR TYPE == Target port group identifier */
buf[off++] |= 0x5;
off++; /* Skip over Reserved */
buf[off++] = 4; /* DESIGNATOR LENGTH */
off += 2; /* Skip over Reserved Field */
put_unaligned_be16(tg_pt_gp_id, &buf[off]);
off += 2;
len += 8; /* Header size + Designation descriptor */
/*
* Logical Unit Group identifier, see spc4r17
* section 7.7.3.8
*/
check_lu_gp:
lu_gp_mem = dev->dev_alua_lu_gp_mem;
if (!lu_gp_mem)
goto check_scsi_name;
spin_lock(&lu_gp_mem->lu_gp_mem_lock);
lu_gp = lu_gp_mem->lu_gp;
if (!lu_gp) {
spin_unlock(&lu_gp_mem->lu_gp_mem_lock);
goto check_scsi_name;
}
lu_gp_id = lu_gp->lu_gp_id;
spin_unlock(&lu_gp_mem->lu_gp_mem_lock);
buf[off++] |= 0x1; /* CODE SET == Binary */
/* DESIGNATOR TYPE == Logical Unit Group identifier */
buf[off++] |= 0x6;
off++; /* Skip over Reserved */
buf[off++] = 4; /* DESIGNATOR LENGTH */
off += 2; /* Skip over Reserved Field */
put_unaligned_be16(lu_gp_id, &buf[off]);
off += 2;
len += 8; /* Header size + Designation descriptor */
/*
* SCSI name string designator, see spc4r17
* section 7.7.3.11
*
* Get the PROTOCOL IDENTIFIER as defined by spc4r17
* section 7.5.1 Table 362
*/
check_scsi_name:
buf[off] = tpg->proto_id << 4;
buf[off++] |= 0x3; /* CODE SET == UTF-8 */
buf[off] = 0x80; /* Set PIV=1 */
/* Set ASSOCIATION == target port: 01b */
buf[off] |= 0x10;
/* DESIGNATOR TYPE == SCSI name string */
buf[off++] |= 0x8;
off += 2; /* Skip over Reserved and length */
/*
* SCSI name string identifer containing, $FABRIC_MOD
* dependent information. For LIO-Target and iSCSI
* Target Port, this means "<iSCSI name>,t,0x<TPGT> in
* UTF-8 encoding.
*/
tpgt = tpg->se_tpg_tfo->tpg_get_tag(tpg);
scsi_name_len = sprintf(&buf[off], "%s,t,0x%04x",
tpg->se_tpg_tfo->tpg_get_wwn(tpg), tpgt);
scsi_name_len += 1 /* Include NULL terminator */;
/*
* The null-terminated, null-padded (see 4.4.2) SCSI
* NAME STRING field contains a UTF-8 format string.
* The number of bytes in the SCSI NAME STRING field
* (i.e., the value in the DESIGNATOR LENGTH field)
* shall be no larger than 256 and shall be a multiple
* of four.
*/
padding = ((-scsi_name_len) & 3);
if (padding)
scsi_name_len += padding;
if (scsi_name_len > 256)
scsi_name_len = 256;
buf[off-1] = scsi_name_len;
off += scsi_name_len;
/* Header size + Designation descriptor */
len += (scsi_name_len + 4);
/*
* Target device designator
*/
buf[off] = tpg->proto_id << 4;
buf[off++] |= 0x3; /* CODE SET == UTF-8 */
buf[off] = 0x80; /* Set PIV=1 */
/* Set ASSOCIATION == target device: 10b */
buf[off] |= 0x20;
/* DESIGNATOR TYPE == SCSI name string */
buf[off++] |= 0x8;
off += 2; /* Skip over Reserved and length */
/*
* SCSI name string identifer containing, $FABRIC_MOD
* dependent information. For LIO-Target and iSCSI
* Target Port, this means "<iSCSI name>" in
* UTF-8 encoding.
*/
scsi_target_len = sprintf(&buf[off], "%s",
tpg->se_tpg_tfo->tpg_get_wwn(tpg));
scsi_target_len += 1 /* Include NULL terminator */;
/*
* The null-terminated, null-padded (see 4.4.2) SCSI
* NAME STRING field contains a UTF-8 format string.
* The number of bytes in the SCSI NAME STRING field
* (i.e., the value in the DESIGNATOR LENGTH field)
* shall be no larger than 256 and shall be a multiple
* of four.
*/
padding = ((-scsi_target_len) & 3);
if (padding)
scsi_target_len += padding;
if (scsi_target_len > 256)
scsi_target_len = 256;
buf[off-1] = scsi_target_len;
off += scsi_target_len;
/* Header size + Designation descriptor */
len += (scsi_target_len + 4);
}
put_unaligned_be16(len, &buf[2]); /* Page Length for VPD 0x83 */
return 0;
}
EXPORT_SYMBOL(spc_emulate_evpd_83);
/* Extended INQUIRY Data VPD Page */
static sense_reason_t
spc_emulate_evpd_86(struct se_cmd *cmd, unsigned char *buf)
{
struct se_device *dev = cmd->se_dev;
struct se_session *sess = cmd->se_sess;
buf[3] = 0x3c;
/*
* Set GRD_CHK + REF_CHK for TYPE1 protection, or GRD_CHK
* only for TYPE3 protection.
*/
if (sess->sup_prot_ops & (TARGET_PROT_DIN_PASS | TARGET_PROT_DOUT_PASS)) {
if (dev->dev_attrib.pi_prot_type == TARGET_DIF_TYPE1_PROT ||
cmd->se_sess->sess_prot_type == TARGET_DIF_TYPE1_PROT)
buf[4] = 0x5;
else if (dev->dev_attrib.pi_prot_type == TARGET_DIF_TYPE3_PROT ||
cmd->se_sess->sess_prot_type == TARGET_DIF_TYPE3_PROT)
buf[4] = 0x4;
}
/* logical unit supports type 1 and type 3 protection */
if ((dev->transport->get_device_type(dev) == TYPE_DISK) &&
(sess->sup_prot_ops & (TARGET_PROT_DIN_PASS | TARGET_PROT_DOUT_PASS)) &&
(dev->dev_attrib.pi_prot_type || cmd->se_sess->sess_prot_type)) {
buf[4] |= (0x3 << 3);
}
/* Set HEADSUP, ORDSUP, SIMPSUP */
buf[5] = 0x07;
/* If WriteCache emulation is enabled, set V_SUP */
if (target_check_wce(dev))
buf[6] = 0x01;
/* If an LBA map is present set R_SUP */
spin_lock(&cmd->se_dev->t10_alua.lba_map_lock);
if (!list_empty(&dev->t10_alua.lba_map_list))
buf[8] = 0x10;
spin_unlock(&cmd->se_dev->t10_alua.lba_map_lock);
return 0;
}
/* Block Limits VPD page */
static sense_reason_t
spc_emulate_evpd_b0(struct se_cmd *cmd, unsigned char *buf)
{
struct se_device *dev = cmd->se_dev;
u32 mtl = 0;
int have_tp = 0, opt, min;
u32 io_max_blocks;
/*
* Following spc3r22 section 6.5.3 Block Limits VPD page, when
* emulate_tpu=1 or emulate_tpws=1 we will be expect a
* different page length for Thin Provisioning.
*/
if (dev->dev_attrib.emulate_tpu || dev->dev_attrib.emulate_tpws)
have_tp = 1;
buf[0] = dev->transport->get_device_type(dev);
buf[3] = have_tp ? 0x3c : 0x10;
/* Set WSNZ to 1 */
buf[4] = 0x01;
/*
* Set MAXIMUM COMPARE AND WRITE LENGTH
*/
if (dev->dev_attrib.emulate_caw)
buf[5] = 0x01;
/*
* Set OPTIMAL TRANSFER LENGTH GRANULARITY
*/
if (dev->transport->get_io_min && (min = dev->transport->get_io_min(dev)))
put_unaligned_be16(min / dev->dev_attrib.block_size, &buf[6]);
else
put_unaligned_be16(1, &buf[6]);
/*
* Set MAXIMUM TRANSFER LENGTH
*
* XXX: Currently assumes single PAGE_SIZE per scatterlist for fabrics
* enforcing maximum HW scatter-gather-list entry limit
*/
if (cmd->se_tfo->max_data_sg_nents) {
mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE) /
dev->dev_attrib.block_size;
}
io_max_blocks = mult_frac(dev->dev_attrib.hw_max_sectors,
dev->dev_attrib.hw_block_size,
dev->dev_attrib.block_size);
put_unaligned_be32(min_not_zero(mtl, io_max_blocks), &buf[8]);
/*
* Set OPTIMAL TRANSFER LENGTH
*/
if (dev->transport->get_io_opt && (opt = dev->transport->get_io_opt(dev)))
put_unaligned_be32(opt / dev->dev_attrib.block_size, &buf[12]);
else
put_unaligned_be32(dev->dev_attrib.optimal_sectors, &buf[12]);
/*
* Exit now if we don't support TP.
*/
if (!have_tp)
goto max_write_same;
/*
* Set MAXIMUM UNMAP LBA COUNT
*/
put_unaligned_be32(dev->dev_attrib.max_unmap_lba_count, &buf[20]);
/*
* Set MAXIMUM UNMAP BLOCK DESCRIPTOR COUNT
*/
put_unaligned_be32(dev->dev_attrib.max_unmap_block_desc_count,
&buf[24]);
/*
* Set OPTIMAL UNMAP GRANULARITY
*/
put_unaligned_be32(dev->dev_attrib.unmap_granularity, &buf[28]);
/*
* UNMAP GRANULARITY ALIGNMENT
*/
put_unaligned_be32(dev->dev_attrib.unmap_granularity_alignment,
&buf[32]);
if (dev->dev_attrib.unmap_granularity_alignment != 0)
buf[32] |= 0x80; /* Set the UGAVALID bit */
/*
* MAXIMUM WRITE SAME LENGTH
*/
max_write_same:
put_unaligned_be64(dev->dev_attrib.max_write_same_len, &buf[36]);
return 0;
}
/* Block Device Characteristics VPD page */
static sense_reason_t
spc_emulate_evpd_b1(struct se_cmd *cmd, unsigned char *buf)
{
struct se_device *dev = cmd->se_dev;
buf[0] = dev->transport->get_device_type(dev);
buf[3] = 0x3c;
buf[5] = dev->dev_attrib.is_nonrot ? 1 : 0;
return 0;
}
/* Thin Provisioning VPD */
static sense_reason_t
spc_emulate_evpd_b2(struct se_cmd *cmd, unsigned char *buf)
{
struct se_device *dev = cmd->se_dev;
/*
* From spc3r22 section 6.5.4 Thin Provisioning VPD page:
*
* The PAGE LENGTH field is defined in SPC-4. If the DP bit is set to
* zero, then the page length shall be set to 0004h. If the DP bit
* is set to one, then the page length shall be set to the value
* defined in table 162.
*/
buf[0] = dev->transport->get_device_type(dev);
/*
* Set Hardcoded length mentioned above for DP=0
*/
put_unaligned_be16(0x0004, &buf[2]);
/*
* The THRESHOLD EXPONENT field indicates the threshold set size in
* LBAs as a power of 2 (i.e., the threshold set size is equal to
* 2(threshold exponent)).
*
* Note that this is currently set to 0x00 as mkp says it will be
* changing again. We can enable this once it has settled in T10
* and is actually used by Linux/SCSI ML code.
*/
buf[4] = 0x00;
/*
* A TPU bit set to one indicates that the device server supports
* the UNMAP command (see 5.25). A TPU bit set to zero indicates
* that the device server does not support the UNMAP command.
*/
if (dev->dev_attrib.emulate_tpu != 0)
buf[5] = 0x80;
/*
* A TPWS bit set to one indicates that the device server supports
* the use of the WRITE SAME (16) command (see 5.42) to unmap LBAs.
* A TPWS bit set to zero indicates that the device server does not
* support the use of the WRITE SAME (16) command to unmap LBAs.
*/
if (dev->dev_attrib.emulate_tpws != 0)
buf[5] |= 0x40 | 0x20;
/*
* The unmap_zeroes_data set means that the underlying device supports
* REQ_OP_DISCARD and has the discard_zeroes_data bit set. This
* satisfies the SBC requirements for LBPRZ, meaning that a subsequent
* read will return zeroes after an UNMAP or WRITE SAME (16) to an LBA
* See sbc4r36 6.6.4.
*/
if (((dev->dev_attrib.emulate_tpu != 0) ||
(dev->dev_attrib.emulate_tpws != 0)) &&
(dev->dev_attrib.unmap_zeroes_data != 0))
buf[5] |= 0x04;
return 0;
}
/* Referrals VPD page */
static sense_reason_t
spc_emulate_evpd_b3(struct se_cmd *cmd, unsigned char *buf)
{
struct se_device *dev = cmd->se_dev;
buf[0] = dev->transport->get_device_type(dev);
buf[3] = 0x0c;
put_unaligned_be32(dev->t10_alua.lba_map_segment_size, &buf[8]);
put_unaligned_be32(dev->t10_alua.lba_map_segment_multiplier, &buf[12]);
return 0;
}
static sense_reason_t
spc_emulate_evpd_00(struct se_cmd *cmd, unsigned char *buf);
static struct {
uint8_t page;
sense_reason_t (*emulate)(struct se_cmd *, unsigned char *);
} evpd_handlers[] = {
{ .page = 0x00, .emulate = spc_emulate_evpd_00 },
{ .page = 0x80, .emulate = spc_emulate_evpd_80 },
{ .page = 0x83, .emulate = spc_emulate_evpd_83 },
{ .page = 0x86, .emulate = spc_emulate_evpd_86 },
{ .page = 0xb0, .emulate = spc_emulate_evpd_b0 },
{ .page = 0xb1, .emulate = spc_emulate_evpd_b1 },
{ .page = 0xb2, .emulate = spc_emulate_evpd_b2 },
{ .page = 0xb3, .emulate = spc_emulate_evpd_b3 },
};
/* supported vital product data pages */
static sense_reason_t
spc_emulate_evpd_00(struct se_cmd *cmd, unsigned char *buf)
{
int p;
/*
* Only report the INQUIRY EVPD=1 pages after a valid NAA
* Registered Extended LUN WWN has been set via ConfigFS
* during device creation/restart.
*/
if (cmd->se_dev->dev_flags & DF_EMULATED_VPD_UNIT_SERIAL) {
buf[3] = ARRAY_SIZE(evpd_handlers);
for (p = 0; p < ARRAY_SIZE(evpd_handlers); ++p)
buf[p + 4] = evpd_handlers[p].page;
}
return 0;
}
static sense_reason_t
spc_emulate_inquiry(struct se_cmd *cmd)
{
struct se_device *dev = cmd->se_dev;
unsigned char *rbuf;
unsigned char *cdb = cmd->t_task_cdb;
unsigned char *buf;
sense_reason_t ret;
int p;
int len = 0;
buf = kzalloc(SE_INQUIRY_BUF, GFP_KERNEL);
if (!buf) {
pr_err("Unable to allocate response buffer for INQUIRY\n");
return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
}
buf[0] = dev->transport->get_device_type(dev);
if (!(cdb[1] & 0x1)) {
if (cdb[2]) {
pr_err("INQUIRY with EVPD==0 but PAGE CODE=%02x\n",
cdb[2]);
ret = TCM_INVALID_CDB_FIELD;
goto out;
}
ret = spc_emulate_inquiry_std(cmd, buf);
len = buf[4] + 5;
goto out;
}
for (p = 0; p < ARRAY_SIZE(evpd_handlers); ++p) {
if (cdb[2] == evpd_handlers[p].page) {
buf[1] = cdb[2];
ret = evpd_handlers[p].emulate(cmd, buf);
len = get_unaligned_be16(&buf[2]) + 4;
goto out;
}
}
pr_debug("Unknown VPD Code: 0x%02x\n", cdb[2]);
ret = TCM_INVALID_CDB_FIELD;
out:
rbuf = transport_kmap_data_sg(cmd);
if (rbuf) {
memcpy(rbuf, buf, min_t(u32, SE_INQUIRY_BUF, cmd->data_length));
transport_kunmap_data_sg(cmd);
}
kfree(buf);
if (!ret)
target_complete_cmd_with_length(cmd, SAM_STAT_GOOD, len);
return ret;
}
static int spc_modesense_rwrecovery(struct se_cmd *cmd, u8 pc, u8 *p)
{
p[0] = 0x01;
p[1] = 0x0a;
/* No changeable values for now */
if (pc == 1)
goto out;
out:
return 12;
}
static int spc_modesense_control(struct se_cmd *cmd, u8 pc, u8 *p)
{
struct se_device *dev = cmd->se_dev;
struct se_session *sess = cmd->se_sess;
p[0] = 0x0a;
p[1] = 0x0a;
/* No changeable values for now */
if (pc == 1)
goto out;
/* GLTSD: No implicit save of log parameters */
p[2] = (1 << 1);
if (target_sense_desc_format(dev))
/* D_SENSE: Descriptor format sense data for 64bit sectors */
p[2] |= (1 << 2);
/*
* From spc4r23, 7.4.7 Control mode page
*
* The QUEUE ALGORITHM MODIFIER field (see table 368) specifies
* restrictions on the algorithm used for reordering commands
* having the SIMPLE task attribute (see SAM-4).
*
* Table 368 -- QUEUE ALGORITHM MODIFIER field
* Code Description
* 0h Restricted reordering
* 1h Unrestricted reordering allowed
* 2h to 7h Reserved
* 8h to Fh Vendor specific
*
* A value of zero in the QUEUE ALGORITHM MODIFIER field specifies that
* the device server shall order the processing sequence of commands
* having the SIMPLE task attribute such that data integrity is maintained
* for that I_T nexus (i.e., if the transmission of new SCSI transport protocol
* requests is halted at any time, the final value of all data observable
* on the medium shall be the same as if all the commands had been processed
* with the ORDERED task attribute).
*
* A value of one in the QUEUE ALGORITHM MODIFIER field specifies that the
* device server may reorder the processing sequence of commands having the
* SIMPLE task attribute in any manner. Any data integrity exposures related to
* command sequence order shall be explicitly handled by the application client
* through the selection of appropriate ommands and task attributes.
*/
p[3] = (dev->dev_attrib.emulate_rest_reord == 1) ? 0x00 : 0x10;
/*
* From spc4r17, section 7.4.6 Control mode Page
*
* Unit Attention interlocks control (UN_INTLCK_CTRL) to code 00b
*
* 00b: The logical unit shall clear any unit attention condition
* reported in the same I_T_L_Q nexus transaction as a CHECK CONDITION
* status and shall not establish a unit attention condition when a com-
* mand is completed with BUSY, TASK SET FULL, or RESERVATION CONFLICT
* status.
*
* 10b: The logical unit shall not clear any unit attention condition
* reported in the same I_T_L_Q nexus transaction as a CHECK CONDITION
* status and shall not establish a unit attention condition when
* a command is completed with BUSY, TASK SET FULL, or RESERVATION
* CONFLICT status.
*
* 11b a The logical unit shall not clear any unit attention condition
* reported in the same I_T_L_Q nexus transaction as a CHECK CONDITION
* status and shall establish a unit attention condition for the
* initiator port associated with the I_T nexus on which the BUSY,
* TASK SET FULL, or RESERVATION CONFLICT status is being returned.
* Depending on the status, the additional sense code shall be set to
* PREVIOUS BUSY STATUS, PREVIOUS TASK SET FULL STATUS, or PREVIOUS
* RESERVATION CONFLICT STATUS. Until it is cleared by a REQUEST SENSE
* command, a unit attention condition shall be established only once
* for a BUSY, TASK SET FULL, or RESERVATION CONFLICT status regardless
* to the number of commands completed with one of those status codes.
*/
switch (dev->dev_attrib.emulate_ua_intlck_ctrl) {
case TARGET_UA_INTLCK_CTRL_ESTABLISH_UA:
p[4] = 0x30;
break;
case TARGET_UA_INTLCK_CTRL_NO_CLEAR:
p[4] = 0x20;
break;
default: /* TARGET_UA_INTLCK_CTRL_CLEAR */
p[4] = 0x00;
break;
}
/*
* From spc4r17, section 7.4.6 Control mode Page
*
* Task Aborted Status (TAS) bit set to zero.
*
* A task aborted status (TAS) bit set to zero specifies that aborted
* tasks shall be terminated by the device server without any response
* to the application client. A TAS bit set to one specifies that tasks
* aborted by the actions of an I_T nexus other than the I_T nexus on
* which the command was received shall be completed with TASK ABORTED
* status (see SAM-4).
*/
p[5] = (dev->dev_attrib.emulate_tas) ? 0x40 : 0x00;
/*
* From spc4r30, section 7.5.7 Control mode page
*
* Application Tag Owner (ATO) bit set to one.
*
* If the ATO bit is set to one the device server shall not modify the
* LOGICAL BLOCK APPLICATION TAG field and, depending on the protection
* type, shall not modify the contents of the LOGICAL BLOCK REFERENCE
* TAG field.
*/
if (sess->sup_prot_ops & (TARGET_PROT_DIN_PASS | TARGET_PROT_DOUT_PASS)) {
if (dev->dev_attrib.pi_prot_type || sess->sess_prot_type)
p[5] |= 0x80;
}
p[8] = 0xff;
p[9] = 0xff;
p[11] = 30;
out:
return 12;
}
static int spc_modesense_caching(struct se_cmd *cmd, u8 pc, u8 *p)
{
struct se_device *dev = cmd->se_dev;
p[0] = 0x08;
p[1] = 0x12;
/* No changeable values for now */
if (pc == 1)
goto out;
if (target_check_wce(dev))
p[2] = 0x04; /* Write Cache Enable */
p[12] = 0x20; /* Disabled Read Ahead */
out:
return 20;
}
static int spc_modesense_informational_exceptions(struct se_cmd *cmd, u8 pc, unsigned char *p)
{
p[0] = 0x1c;
p[1] = 0x0a;
/* No changeable values for now */
if (pc == 1)
goto out;
out:
return 12;
}
static struct {
uint8_t page;
uint8_t subpage;
int (*emulate)(struct se_cmd *, u8, unsigned char *);
} modesense_handlers[] = {
{ .page = 0x01, .subpage = 0x00, .emulate = spc_modesense_rwrecovery },
{ .page = 0x08, .subpage = 0x00, .emulate = spc_modesense_caching },
{ .page = 0x0a, .subpage = 0x00, .emulate = spc_modesense_control },
{ .page = 0x1c, .subpage = 0x00, .emulate = spc_modesense_informational_exceptions },
};
static void spc_modesense_write_protect(unsigned char *buf, int type)
{
/*
* I believe that the WP bit (bit 7) in the mode header is the same for
* all device types..
*/
switch (type) {
case TYPE_DISK:
case TYPE_TAPE:
default:
buf[0] |= 0x80; /* WP bit */
break;
}
}
static void spc_modesense_dpofua(unsigned char *buf, int type)
{
switch (type) {
case TYPE_DISK:
buf[0] |= 0x10; /* DPOFUA bit */
break;
default:
break;
}
}
static int spc_modesense_blockdesc(unsigned char *buf, u64 blocks, u32 block_size)
{
*buf++ = 8;
put_unaligned_be32(min(blocks, 0xffffffffull), buf);
buf += 4;
put_unaligned_be32(block_size, buf);
return 9;
}
static int spc_modesense_long_blockdesc(unsigned char *buf, u64 blocks, u32 block_size)
{
if (blocks <= 0xffffffff)
return spc_modesense_blockdesc(buf + 3, blocks, block_size) + 3;
*buf++ = 1; /* LONGLBA */
buf += 2;
*buf++ = 16;
put_unaligned_be64(blocks, buf);
buf += 12;
put_unaligned_be32(block_size, buf);
return 17;
}
static sense_reason_t spc_emulate_modesense(struct se_cmd *cmd)
{
struct se_device *dev = cmd->se_dev;
char *cdb = cmd->t_task_cdb;
unsigned char buf[SE_MODE_PAGE_BUF], *rbuf;
int type = dev->transport->get_device_type(dev);
int ten = (cmd->t_task_cdb[0] == MODE_SENSE_10);
bool dbd = !!(cdb[1] & 0x08);
bool llba = ten ? !!(cdb[1] & 0x10) : false;
u8 pc = cdb[2] >> 6;
u8 page = cdb[2] & 0x3f;
u8 subpage = cdb[3];
int length = 0;
int ret;
int i;
memset(buf, 0, SE_MODE_PAGE_BUF);
/*
* Skip over MODE DATA LENGTH + MEDIUM TYPE fields to byte 3 for
* MODE_SENSE_10 and byte 2 for MODE_SENSE (6).
*/
length = ten ? 3 : 2;
/* DEVICE-SPECIFIC PARAMETER */
if (cmd->se_lun->lun_access_ro || target_lun_is_rdonly(cmd))
spc_modesense_write_protect(&buf[length], type);
/*
* SBC only allows us to enable FUA and DPO together. Fortunately
* DPO is explicitly specified as a hint, so a noop is a perfectly
* valid implementation.
*/
if (target_check_fua(dev))
spc_modesense_dpofua(&buf[length], type);
++length;
/* BLOCK DESCRIPTOR */
/*
* For now we only include a block descriptor for disk (SBC)
* devices; other command sets use a slightly different format.
*/
if (!dbd && type == TYPE_DISK) {
u64 blocks = dev->transport->get_blocks(dev);
u32 block_size = dev->dev_attrib.block_size;
if (ten) {
if (llba) {
length += spc_modesense_long_blockdesc(&buf[length],
blocks, block_size);
} else {
length += 3;
length += spc_modesense_blockdesc(&buf[length],
blocks, block_size);
}
} else {
length += spc_modesense_blockdesc(&buf[length], blocks,
block_size);
}
} else {
if (ten)
length += 4;
else
length += 1;
}
if (page == 0x3f) {
if (subpage != 0x00 && subpage != 0xff) {
pr_warn("MODE_SENSE: Invalid subpage code: 0x%02x\n", subpage);
return TCM_INVALID_CDB_FIELD;
}
for (i = 0; i < ARRAY_SIZE(modesense_handlers); ++i) {
/*
* Tricky way to say all subpage 00h for
* subpage==0, all subpages for subpage==0xff
* (and we just checked above that those are
* the only two possibilities).
*/
if ((modesense_handlers[i].subpage & ~subpage) == 0) {
ret = modesense_handlers[i].emulate(cmd, pc, &buf[length]);
if (!ten && length + ret >= 255)
break;
length += ret;
}
}
goto set_length;
}
for (i = 0; i < ARRAY_SIZE(modesense_handlers); ++i)
if (modesense_handlers[i].page == page &&
modesense_handlers[i].subpage == subpage) {
length += modesense_handlers[i].emulate(cmd, pc, &buf[length]);
goto set_length;
}
/*
* We don't intend to implement:
* - obsolete page 03h "format parameters" (checked by Solaris)
*/
if (page != 0x03)
pr_err("MODE SENSE: unimplemented page/subpage: 0x%02x/0x%02x\n",
page, subpage);
return TCM_UNKNOWN_MODE_PAGE;
set_length:
if (ten)
put_unaligned_be16(length - 2, buf);
else
buf[0] = length - 1;
rbuf = transport_kmap_data_sg(cmd);
if (rbuf) {
memcpy(rbuf, buf, min_t(u32, SE_MODE_PAGE_BUF, cmd->data_length));
transport_kunmap_data_sg(cmd);
}
target_complete_cmd_with_length(cmd, SAM_STAT_GOOD, length);
return 0;
}
static sense_reason_t spc_emulate_modeselect(struct se_cmd *cmd)
{
char *cdb = cmd->t_task_cdb;
bool ten = cdb[0] == MODE_SELECT_10;
int off = ten ? 8 : 4;
bool pf = !!(cdb[1] & 0x10);
u8 page, subpage;
unsigned char *buf;
unsigned char tbuf[SE_MODE_PAGE_BUF];
int length;
sense_reason_t ret = 0;
int i;
if (!cmd->data_length) {
target_complete_cmd(cmd, SAM_STAT_GOOD);
return 0;
}
if (cmd->data_length < off + 2)
return TCM_PARAMETER_LIST_LENGTH_ERROR;
buf = transport_kmap_data_sg(cmd);
if (!buf)
return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
if (!pf) {
ret = TCM_INVALID_CDB_FIELD;
goto out;
}
page = buf[off] & 0x3f;
subpage = buf[off] & 0x40 ? buf[off + 1] : 0;
for (i = 0; i < ARRAY_SIZE(modesense_handlers); ++i)
if (modesense_handlers[i].page == page &&
modesense_handlers[i].subpage == subpage) {
memset(tbuf, 0, SE_MODE_PAGE_BUF);
length = modesense_handlers[i].emulate(cmd, 0, tbuf);
goto check_contents;
}
ret = TCM_UNKNOWN_MODE_PAGE;
goto out;
check_contents:
if (cmd->data_length < off + length) {
ret = TCM_PARAMETER_LIST_LENGTH_ERROR;
goto out;
}
if (memcmp(buf + off, tbuf, length))
ret = TCM_INVALID_PARAMETER_LIST;
out:
transport_kunmap_data_sg(cmd);
if (!ret)
target_complete_cmd(cmd, SAM_STAT_GOOD);
return ret;
}
static sense_reason_t spc_emulate_request_sense(struct se_cmd *cmd)
{
unsigned char *cdb = cmd->t_task_cdb;
unsigned char *rbuf;
u8 ua_asc = 0, ua_ascq = 0;
unsigned char buf[SE_SENSE_BUF];
bool desc_format = target_sense_desc_format(cmd->se_dev);
memset(buf, 0, SE_SENSE_BUF);
if (cdb[1] & 0x01) {
pr_err("REQUEST_SENSE description emulation not"
" supported\n");
return TCM_INVALID_CDB_FIELD;
}
rbuf = transport_kmap_data_sg(cmd);
if (!rbuf)
return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
if (!core_scsi3_ua_clear_for_request_sense(cmd, &ua_asc, &ua_ascq))
scsi_build_sense_buffer(desc_format, buf, UNIT_ATTENTION,
ua_asc, ua_ascq);
else
scsi_build_sense_buffer(desc_format, buf, NO_SENSE, 0x0, 0x0);
memcpy(rbuf, buf, min_t(u32, sizeof(buf), cmd->data_length));
transport_kunmap_data_sg(cmd);
target_complete_cmd(cmd, SAM_STAT_GOOD);
return 0;
}
sense_reason_t spc_emulate_report_luns(struct se_cmd *cmd)
{
struct se_dev_entry *deve;
struct se_session *sess = cmd->se_sess;
struct se_node_acl *nacl;
struct scsi_lun slun;
unsigned char *buf;
u32 lun_count = 0, offset = 8;
__be32 len;
buf = transport_kmap_data_sg(cmd);
if (cmd->data_length && !buf)
return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
/*
* If no struct se_session pointer is present, this struct se_cmd is
* coming via a target_core_mod PASSTHROUGH op, and not through
* a $FABRIC_MOD. In that case, report LUN=0 only.
*/
if (!sess)
goto done;
nacl = sess->se_node_acl;
rcu_read_lock();
hlist_for_each_entry_rcu(deve, &nacl->lun_entry_hlist, link) {
/*
* We determine the correct LUN LIST LENGTH even once we
* have reached the initial allocation length.
* See SPC2-R20 7.19.
*/
lun_count++;
if (offset >= cmd->data_length)
continue;
int_to_scsilun(deve->mapped_lun, &slun);
memcpy(buf + offset, &slun,
min(8u, cmd->data_length - offset));
offset += 8;
}
rcu_read_unlock();
/*
* See SPC3 r07, page 159.
*/
done:
/*
* If no LUNs are accessible, report virtual LUN 0.
*/
if (lun_count == 0) {
int_to_scsilun(0, &slun);
if (cmd->data_length > 8)
memcpy(buf + offset, &slun,
min(8u, cmd->data_length - offset));
lun_count = 1;
}
if (buf) {
len = cpu_to_be32(lun_count * 8);
memcpy(buf, &len, min_t(int, sizeof len, cmd->data_length));
transport_kunmap_data_sg(cmd);
}
target_complete_cmd_with_length(cmd, SAM_STAT_GOOD, 8 + lun_count * 8);
return 0;
}
EXPORT_SYMBOL(spc_emulate_report_luns);
static sense_reason_t
spc_emulate_testunitready(struct se_cmd *cmd)
{
target_complete_cmd(cmd, SAM_STAT_GOOD);
return 0;
}
static void set_dpofua_usage_bits(u8 *usage_bits, struct se_device *dev)
{
if (!target_check_fua(dev))
usage_bits[1] &= ~0x18;
else
usage_bits[1] |= 0x18;
}
static void set_dpofua_usage_bits32(u8 *usage_bits, struct se_device *dev)
{
if (!target_check_fua(dev))
usage_bits[10] &= ~0x18;
else
usage_bits[10] |= 0x18;
}
static struct target_opcode_descriptor tcm_opcode_read6 = {
.support = SCSI_SUPPORT_FULL,
.opcode = READ_6,
.cdb_size = 6,
.usage_bits = {READ_6, 0x1f, 0xff, 0xff,
0xff, SCSI_CONTROL_MASK},
};
static struct target_opcode_descriptor tcm_opcode_read10 = {
.support = SCSI_SUPPORT_FULL,
.opcode = READ_10,
.cdb_size = 10,
.usage_bits = {READ_10, 0xf8, 0xff, 0xff,
0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff,
0xff, SCSI_CONTROL_MASK},
.update_usage_bits = set_dpofua_usage_bits,
};
static struct target_opcode_descriptor tcm_opcode_read12 = {
.support = SCSI_SUPPORT_FULL,
.opcode = READ_12,
.cdb_size = 12,
.usage_bits = {READ_12, 0xf8, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
.update_usage_bits = set_dpofua_usage_bits,
};
static struct target_opcode_descriptor tcm_opcode_read16 = {
.support = SCSI_SUPPORT_FULL,
.opcode = READ_16,
.cdb_size = 16,
.usage_bits = {READ_16, 0xf8, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
.update_usage_bits = set_dpofua_usage_bits,
};
static struct target_opcode_descriptor tcm_opcode_write6 = {
.support = SCSI_SUPPORT_FULL,
.opcode = WRITE_6,
.cdb_size = 6,
.usage_bits = {WRITE_6, 0x1f, 0xff, 0xff,
0xff, SCSI_CONTROL_MASK},
};
static struct target_opcode_descriptor tcm_opcode_write10 = {
.support = SCSI_SUPPORT_FULL,
.opcode = WRITE_10,
.cdb_size = 10,
.usage_bits = {WRITE_10, 0xf8, 0xff, 0xff,
0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff,
0xff, SCSI_CONTROL_MASK},
.update_usage_bits = set_dpofua_usage_bits,
};
static struct target_opcode_descriptor tcm_opcode_write_verify10 = {
.support = SCSI_SUPPORT_FULL,
.opcode = WRITE_VERIFY,
.cdb_size = 10,
.usage_bits = {WRITE_VERIFY, 0xf0, 0xff, 0xff,
0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff,
0xff, SCSI_CONTROL_MASK},
.update_usage_bits = set_dpofua_usage_bits,
};
static struct target_opcode_descriptor tcm_opcode_write12 = {
.support = SCSI_SUPPORT_FULL,
.opcode = WRITE_12,
.cdb_size = 12,
.usage_bits = {WRITE_12, 0xf8, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
.update_usage_bits = set_dpofua_usage_bits,
};
static struct target_opcode_descriptor tcm_opcode_write16 = {
.support = SCSI_SUPPORT_FULL,
.opcode = WRITE_16,
.cdb_size = 16,
.usage_bits = {WRITE_16, 0xf8, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
.update_usage_bits = set_dpofua_usage_bits,
};
static struct target_opcode_descriptor tcm_opcode_write_verify16 = {
.support = SCSI_SUPPORT_FULL,
.opcode = WRITE_VERIFY_16,
.cdb_size = 16,
.usage_bits = {WRITE_VERIFY_16, 0xf0, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
.update_usage_bits = set_dpofua_usage_bits,
};
static bool tcm_is_ws_enabled(struct target_opcode_descriptor *descr,
struct se_cmd *cmd)
{
struct exec_cmd_ops *ops = cmd->protocol_data;
struct se_device *dev = cmd->se_dev;
return (dev->dev_attrib.emulate_tpws && !!ops->execute_unmap) ||
!!ops->execute_write_same;
}
static struct target_opcode_descriptor tcm_opcode_write_same32 = {
.support = SCSI_SUPPORT_FULL,
.serv_action_valid = 1,
.opcode = VARIABLE_LENGTH_CMD,
.service_action = WRITE_SAME_32,
.cdb_size = 32,
.usage_bits = {VARIABLE_LENGTH_CMD, SCSI_CONTROL_MASK, 0x00, 0x00,
0x00, 0x00, SCSI_GROUP_NUMBER_MASK, 0x18,
0x00, WRITE_SAME_32, 0xe8, 0x00,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0xff, 0xff, 0xff, 0xff},
.enabled = tcm_is_ws_enabled,
.update_usage_bits = set_dpofua_usage_bits32,
};
static bool tcm_is_caw_enabled(struct target_opcode_descriptor *descr,
struct se_cmd *cmd)
{
struct se_device *dev = cmd->se_dev;
return dev->dev_attrib.emulate_caw;
}
static struct target_opcode_descriptor tcm_opcode_compare_write = {
.support = SCSI_SUPPORT_FULL,
.opcode = COMPARE_AND_WRITE,
.cdb_size = 16,
.usage_bits = {COMPARE_AND_WRITE, 0x18, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0x00, 0x00,
0x00, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
.enabled = tcm_is_caw_enabled,
.update_usage_bits = set_dpofua_usage_bits,
};
static struct target_opcode_descriptor tcm_opcode_read_capacity = {
.support = SCSI_SUPPORT_FULL,
.opcode = READ_CAPACITY,
.cdb_size = 10,
.usage_bits = {READ_CAPACITY, 0x00, 0xff, 0xff,
0xff, 0xff, 0x00, 0x00,
0x01, SCSI_CONTROL_MASK},
};
static struct target_opcode_descriptor tcm_opcode_read_capacity16 = {
.support = SCSI_SUPPORT_FULL,
.serv_action_valid = 1,
.opcode = SERVICE_ACTION_IN_16,
.service_action = SAI_READ_CAPACITY_16,
.cdb_size = 16,
.usage_bits = {SERVICE_ACTION_IN_16, SAI_READ_CAPACITY_16, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0xff, 0xff,
0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
};
static bool tcm_is_rep_ref_enabled(struct target_opcode_descriptor *descr,
struct se_cmd *cmd)
{
struct se_device *dev = cmd->se_dev;
spin_lock(&dev->t10_alua.lba_map_lock);
if (list_empty(&dev->t10_alua.lba_map_list)) {
spin_unlock(&dev->t10_alua.lba_map_lock);
return false;
}
spin_unlock(&dev->t10_alua.lba_map_lock);
return true;
}
static struct target_opcode_descriptor tcm_opcode_read_report_refferals = {
.support = SCSI_SUPPORT_FULL,
.serv_action_valid = 1,
.opcode = SERVICE_ACTION_IN_16,
.service_action = SAI_REPORT_REFERRALS,
.cdb_size = 16,
.usage_bits = {SERVICE_ACTION_IN_16, SAI_REPORT_REFERRALS, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0xff, 0xff,
0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
.enabled = tcm_is_rep_ref_enabled,
};
static struct target_opcode_descriptor tcm_opcode_sync_cache = {
.support = SCSI_SUPPORT_FULL,
.opcode = SYNCHRONIZE_CACHE,
.cdb_size = 10,
.usage_bits = {SYNCHRONIZE_CACHE, 0x02, 0xff, 0xff,
0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff,
0xff, SCSI_CONTROL_MASK},
};
static struct target_opcode_descriptor tcm_opcode_sync_cache16 = {
.support = SCSI_SUPPORT_FULL,
.opcode = SYNCHRONIZE_CACHE_16,
.cdb_size = 16,
.usage_bits = {SYNCHRONIZE_CACHE_16, 0x02, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
};
static bool tcm_is_unmap_enabled(struct target_opcode_descriptor *descr,
struct se_cmd *cmd)
{
struct exec_cmd_ops *ops = cmd->protocol_data;
struct se_device *dev = cmd->se_dev;
return ops->execute_unmap && dev->dev_attrib.emulate_tpu;
}
static struct target_opcode_descriptor tcm_opcode_unmap = {
.support = SCSI_SUPPORT_FULL,
.opcode = UNMAP,
.cdb_size = 10,
.usage_bits = {UNMAP, 0x00, 0x00, 0x00,
0x00, 0x00, SCSI_GROUP_NUMBER_MASK, 0xff,
0xff, SCSI_CONTROL_MASK},
.enabled = tcm_is_unmap_enabled,
};
static struct target_opcode_descriptor tcm_opcode_write_same = {
.support = SCSI_SUPPORT_FULL,
.opcode = WRITE_SAME,
.cdb_size = 10,
.usage_bits = {WRITE_SAME, 0xe8, 0xff, 0xff,
0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff,
0xff, SCSI_CONTROL_MASK},
.enabled = tcm_is_ws_enabled,
};
static struct target_opcode_descriptor tcm_opcode_write_same16 = {
.support = SCSI_SUPPORT_FULL,
.opcode = WRITE_SAME_16,
.cdb_size = 16,
.usage_bits = {WRITE_SAME_16, 0xe8, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
.enabled = tcm_is_ws_enabled,
};
static struct target_opcode_descriptor tcm_opcode_verify = {
.support = SCSI_SUPPORT_FULL,
.opcode = VERIFY,
.cdb_size = 10,
.usage_bits = {VERIFY, 0x00, 0xff, 0xff,
0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff,
0xff, SCSI_CONTROL_MASK},
};
static struct target_opcode_descriptor tcm_opcode_verify16 = {
.support = SCSI_SUPPORT_FULL,
.opcode = VERIFY_16,
.cdb_size = 16,
.usage_bits = {VERIFY_16, 0x00, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
};
static struct target_opcode_descriptor tcm_opcode_start_stop = {
.support = SCSI_SUPPORT_FULL,
.opcode = START_STOP,
.cdb_size = 6,
.usage_bits = {START_STOP, 0x01, 0x00, 0x00,
0x01, SCSI_CONTROL_MASK},
};
static struct target_opcode_descriptor tcm_opcode_mode_select = {
.support = SCSI_SUPPORT_FULL,
.opcode = MODE_SELECT,
.cdb_size = 6,
.usage_bits = {MODE_SELECT, 0x10, 0x00, 0x00,
0xff, SCSI_CONTROL_MASK},
};
static struct target_opcode_descriptor tcm_opcode_mode_select10 = {
.support = SCSI_SUPPORT_FULL,
.opcode = MODE_SELECT_10,
.cdb_size = 10,
.usage_bits = {MODE_SELECT_10, 0x10, 0x00, 0x00,
0x00, 0x00, 0x00, 0xff,
0xff, SCSI_CONTROL_MASK},
};
static struct target_opcode_descriptor tcm_opcode_mode_sense = {
.support = SCSI_SUPPORT_FULL,
.opcode = MODE_SENSE,
.cdb_size = 6,
.usage_bits = {MODE_SENSE, 0x08, 0xff, 0xff,
0xff, SCSI_CONTROL_MASK},
};
static struct target_opcode_descriptor tcm_opcode_mode_sense10 = {
.support = SCSI_SUPPORT_FULL,
.opcode = MODE_SENSE_10,
.cdb_size = 10,
.usage_bits = {MODE_SENSE_10, 0x18, 0xff, 0xff,
0x00, 0x00, 0x00, 0xff,
0xff, SCSI_CONTROL_MASK},
};
static struct target_opcode_descriptor tcm_opcode_pri_read_keys = {
.support = SCSI_SUPPORT_FULL,
.serv_action_valid = 1,
.opcode = PERSISTENT_RESERVE_IN,
.service_action = PRI_READ_KEYS,
.cdb_size = 10,
.usage_bits = {PERSISTENT_RESERVE_IN, PRI_READ_KEYS, 0x00, 0x00,
0x00, 0x00, 0x00, 0xff,
0xff, SCSI_CONTROL_MASK},
};
static struct target_opcode_descriptor tcm_opcode_pri_read_resrv = {
.support = SCSI_SUPPORT_FULL,
.serv_action_valid = 1,
.opcode = PERSISTENT_RESERVE_IN,
.service_action = PRI_READ_RESERVATION,
.cdb_size = 10,
.usage_bits = {PERSISTENT_RESERVE_IN, PRI_READ_RESERVATION, 0x00, 0x00,
0x00, 0x00, 0x00, 0xff,
0xff, SCSI_CONTROL_MASK},
};
static bool tcm_is_pr_enabled(struct target_opcode_descriptor *descr,
struct se_cmd *cmd)
{
struct se_device *dev = cmd->se_dev;
if (!dev->dev_attrib.emulate_pr)
return false;
if (!(dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH_PGR))
return true;
switch (descr->opcode) {
case RESERVE:
case RESERVE_10:
case RELEASE:
case RELEASE_10:
/*
* The pr_ops which are used by the backend modules don't
* support these commands.
*/
return false;
case PERSISTENT_RESERVE_OUT:
switch (descr->service_action) {
case PRO_REGISTER_AND_MOVE:
case PRO_REPLACE_LOST_RESERVATION:
/*
* The backend modules don't have access to ports and
* I_T nexuses so they can't handle these type of
* requests.
*/
return false;
}
break;
case PERSISTENT_RESERVE_IN:
if (descr->service_action == PRI_READ_FULL_STATUS)
return false;
break;
}
return true;
}
static struct target_opcode_descriptor tcm_opcode_pri_read_caps = {
.support = SCSI_SUPPORT_FULL,
.serv_action_valid = 1,
.opcode = PERSISTENT_RESERVE_IN,
.service_action = PRI_REPORT_CAPABILITIES,
.cdb_size = 10,
.usage_bits = {PERSISTENT_RESERVE_IN, PRI_REPORT_CAPABILITIES, 0x00, 0x00,
0x00, 0x00, 0x00, 0xff,
0xff, SCSI_CONTROL_MASK},
.enabled = tcm_is_pr_enabled,
};
static struct target_opcode_descriptor tcm_opcode_pri_read_full_status = {
.support = SCSI_SUPPORT_FULL,
.serv_action_valid = 1,
.opcode = PERSISTENT_RESERVE_IN,
.service_action = PRI_READ_FULL_STATUS,
.cdb_size = 10,
.usage_bits = {PERSISTENT_RESERVE_IN, PRI_READ_FULL_STATUS, 0x00, 0x00,
0x00, 0x00, 0x00, 0xff,
0xff, SCSI_CONTROL_MASK},
.enabled = tcm_is_pr_enabled,
};
static struct target_opcode_descriptor tcm_opcode_pro_register = {
.support = SCSI_SUPPORT_FULL,
.serv_action_valid = 1,
.opcode = PERSISTENT_RESERVE_OUT,
.service_action = PRO_REGISTER,
.cdb_size = 10,
.usage_bits = {PERSISTENT_RESERVE_OUT, PRO_REGISTER, 0xff, 0x00,
0x00, 0xff, 0xff, 0xff,
0xff, SCSI_CONTROL_MASK},
.enabled = tcm_is_pr_enabled,
};
static struct target_opcode_descriptor tcm_opcode_pro_reserve = {
.support = SCSI_SUPPORT_FULL,
.serv_action_valid = 1,
.opcode = PERSISTENT_RESERVE_OUT,
.service_action = PRO_RESERVE,
.cdb_size = 10,
.usage_bits = {PERSISTENT_RESERVE_OUT, PRO_RESERVE, 0xff, 0x00,
0x00, 0xff, 0xff, 0xff,
0xff, SCSI_CONTROL_MASK},
.enabled = tcm_is_pr_enabled,
};
static struct target_opcode_descriptor tcm_opcode_pro_release = {
.support = SCSI_SUPPORT_FULL,
.serv_action_valid = 1,
.opcode = PERSISTENT_RESERVE_OUT,
.service_action = PRO_RELEASE,
.cdb_size = 10,
.usage_bits = {PERSISTENT_RESERVE_OUT, PRO_RELEASE, 0xff, 0x00,
0x00, 0xff, 0xff, 0xff,
0xff, SCSI_CONTROL_MASK},
.enabled = tcm_is_pr_enabled,
};
static struct target_opcode_descriptor tcm_opcode_pro_clear = {
.support = SCSI_SUPPORT_FULL,
.serv_action_valid = 1,
.opcode = PERSISTENT_RESERVE_OUT,
.service_action = PRO_CLEAR,
.cdb_size = 10,
.usage_bits = {PERSISTENT_RESERVE_OUT, PRO_CLEAR, 0xff, 0x00,
0x00, 0xff, 0xff, 0xff,
0xff, SCSI_CONTROL_MASK},
.enabled = tcm_is_pr_enabled,
};
static struct target_opcode_descriptor tcm_opcode_pro_preempt = {
.support = SCSI_SUPPORT_FULL,
.serv_action_valid = 1,
.opcode = PERSISTENT_RESERVE_OUT,
.service_action = PRO_PREEMPT,
.cdb_size = 10,
.usage_bits = {PERSISTENT_RESERVE_OUT, PRO_PREEMPT, 0xff, 0x00,
0x00, 0xff, 0xff, 0xff,
0xff, SCSI_CONTROL_MASK},
.enabled = tcm_is_pr_enabled,
};
static struct target_opcode_descriptor tcm_opcode_pro_preempt_abort = {
.support = SCSI_SUPPORT_FULL,
.serv_action_valid = 1,
.opcode = PERSISTENT_RESERVE_OUT,
.service_action = PRO_PREEMPT_AND_ABORT,
.cdb_size = 10,
.usage_bits = {PERSISTENT_RESERVE_OUT, PRO_PREEMPT_AND_ABORT, 0xff, 0x00,
0x00, 0xff, 0xff, 0xff,
0xff, SCSI_CONTROL_MASK},
.enabled = tcm_is_pr_enabled,
};
static struct target_opcode_descriptor tcm_opcode_pro_reg_ign_exist = {
.support = SCSI_SUPPORT_FULL,
.serv_action_valid = 1,
.opcode = PERSISTENT_RESERVE_OUT,
.service_action = PRO_REGISTER_AND_IGNORE_EXISTING_KEY,
.cdb_size = 10,
.usage_bits = {
PERSISTENT_RESERVE_OUT, PRO_REGISTER_AND_IGNORE_EXISTING_KEY,
0xff, 0x00,
0x00, 0xff, 0xff, 0xff,
0xff, SCSI_CONTROL_MASK},
.enabled = tcm_is_pr_enabled,
};
static struct target_opcode_descriptor tcm_opcode_pro_register_move = {
.support = SCSI_SUPPORT_FULL,
.serv_action_valid = 1,
.opcode = PERSISTENT_RESERVE_OUT,
.service_action = PRO_REGISTER_AND_MOVE,
.cdb_size = 10,
.usage_bits = {PERSISTENT_RESERVE_OUT, PRO_REGISTER_AND_MOVE, 0xff, 0x00,
0x00, 0xff, 0xff, 0xff,
0xff, SCSI_CONTROL_MASK},
.enabled = tcm_is_pr_enabled,
};
static struct target_opcode_descriptor tcm_opcode_release = {
.support = SCSI_SUPPORT_FULL,
.opcode = RELEASE,
.cdb_size = 6,
.usage_bits = {RELEASE, 0x00, 0x00, 0x00,
0x00, SCSI_CONTROL_MASK},
.enabled = tcm_is_pr_enabled,
};
static struct target_opcode_descriptor tcm_opcode_release10 = {
.support = SCSI_SUPPORT_FULL,
.opcode = RELEASE_10,
.cdb_size = 10,
.usage_bits = {RELEASE_10, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0xff,
0xff, SCSI_CONTROL_MASK},
.enabled = tcm_is_pr_enabled,
};
static struct target_opcode_descriptor tcm_opcode_reserve = {
.support = SCSI_SUPPORT_FULL,
.opcode = RESERVE,
.cdb_size = 6,
.usage_bits = {RESERVE, 0x00, 0x00, 0x00,
0x00, SCSI_CONTROL_MASK},
.enabled = tcm_is_pr_enabled,
};
static struct target_opcode_descriptor tcm_opcode_reserve10 = {
.support = SCSI_SUPPORT_FULL,
.opcode = RESERVE_10,
.cdb_size = 10,
.usage_bits = {RESERVE_10, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0xff,
0xff, SCSI_CONTROL_MASK},
.enabled = tcm_is_pr_enabled,
};
static struct target_opcode_descriptor tcm_opcode_request_sense = {
.support = SCSI_SUPPORT_FULL,
.opcode = REQUEST_SENSE,
.cdb_size = 6,
.usage_bits = {REQUEST_SENSE, 0x00, 0x00, 0x00,
0xff, SCSI_CONTROL_MASK},
};
static struct target_opcode_descriptor tcm_opcode_inquiry = {
.support = SCSI_SUPPORT_FULL,
.opcode = INQUIRY,
.cdb_size = 6,
.usage_bits = {INQUIRY, 0x01, 0xff, 0xff,
0xff, SCSI_CONTROL_MASK},
};
static bool tcm_is_3pc_enabled(struct target_opcode_descriptor *descr,
struct se_cmd *cmd)
{
struct se_device *dev = cmd->se_dev;
return dev->dev_attrib.emulate_3pc;
}
static struct target_opcode_descriptor tcm_opcode_extended_copy_lid1 = {
.support = SCSI_SUPPORT_FULL,
.serv_action_valid = 1,
.opcode = EXTENDED_COPY,
.cdb_size = 16,
.usage_bits = {EXTENDED_COPY, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0xff, 0xff,
0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
.enabled = tcm_is_3pc_enabled,
};
static struct target_opcode_descriptor tcm_opcode_rcv_copy_res_op_params = {
.support = SCSI_SUPPORT_FULL,
.serv_action_valid = 1,
.opcode = RECEIVE_COPY_RESULTS,
.service_action = RCR_SA_OPERATING_PARAMETERS,
.cdb_size = 16,
.usage_bits = {RECEIVE_COPY_RESULTS, RCR_SA_OPERATING_PARAMETERS,
0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0xff, 0xff,
0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
.enabled = tcm_is_3pc_enabled,
};
static struct target_opcode_descriptor tcm_opcode_report_luns = {
.support = SCSI_SUPPORT_FULL,
.opcode = REPORT_LUNS,
.cdb_size = 12,
.usage_bits = {REPORT_LUNS, 0x00, 0xff, 0x00,
0x00, 0x00, 0xff, 0xff,
0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
};
static struct target_opcode_descriptor tcm_opcode_test_unit_ready = {
.support = SCSI_SUPPORT_FULL,
.opcode = TEST_UNIT_READY,
.cdb_size = 6,
.usage_bits = {TEST_UNIT_READY, 0x00, 0x00, 0x00,
0x00, SCSI_CONTROL_MASK},
};
static struct target_opcode_descriptor tcm_opcode_report_target_pgs = {
.support = SCSI_SUPPORT_FULL,
.serv_action_valid = 1,
.opcode = MAINTENANCE_IN,
.service_action = MI_REPORT_TARGET_PGS,
.cdb_size = 12,
.usage_bits = {MAINTENANCE_IN, 0xE0 | MI_REPORT_TARGET_PGS, 0x00, 0x00,
0x00, 0x00, 0xff, 0xff,
0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
};
static bool spc_rsoc_enabled(struct target_opcode_descriptor *descr,
struct se_cmd *cmd)
{
struct se_device *dev = cmd->se_dev;
return dev->dev_attrib.emulate_rsoc;
}
static struct target_opcode_descriptor tcm_opcode_report_supp_opcodes = {
.support = SCSI_SUPPORT_FULL,
.serv_action_valid = 1,
.opcode = MAINTENANCE_IN,
.service_action = MI_REPORT_SUPPORTED_OPERATION_CODES,
.cdb_size = 12,
.usage_bits = {MAINTENANCE_IN, MI_REPORT_SUPPORTED_OPERATION_CODES,
0x87, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
.enabled = spc_rsoc_enabled,
};
static bool tcm_is_set_tpg_enabled(struct target_opcode_descriptor *descr,
struct se_cmd *cmd)
{
struct t10_alua_tg_pt_gp *l_tg_pt_gp;
struct se_lun *l_lun = cmd->se_lun;
rcu_read_lock();
l_tg_pt_gp = rcu_dereference(l_lun->lun_tg_pt_gp);
if (!l_tg_pt_gp) {
rcu_read_unlock();
return false;
}
if (!(l_tg_pt_gp->tg_pt_gp_alua_access_type & TPGS_EXPLICIT_ALUA)) {
rcu_read_unlock();
return false;
}
rcu_read_unlock();
return true;
}
static struct target_opcode_descriptor tcm_opcode_set_tpg = {
.support = SCSI_SUPPORT_FULL,
.serv_action_valid = 1,
.opcode = MAINTENANCE_OUT,
.service_action = MO_SET_TARGET_PGS,
.cdb_size = 12,
.usage_bits = {MAINTENANCE_OUT, MO_SET_TARGET_PGS, 0x00, 0x00,
0x00, 0x00, 0xff, 0xff,
0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
.enabled = tcm_is_set_tpg_enabled,
};
static struct target_opcode_descriptor *tcm_supported_opcodes[] = {
&tcm_opcode_read6,
&tcm_opcode_read10,
&tcm_opcode_read12,
&tcm_opcode_read16,
&tcm_opcode_write6,
&tcm_opcode_write10,
&tcm_opcode_write_verify10,
&tcm_opcode_write12,
&tcm_opcode_write16,
&tcm_opcode_write_verify16,
&tcm_opcode_write_same32,
&tcm_opcode_compare_write,
&tcm_opcode_read_capacity,
&tcm_opcode_read_capacity16,
&tcm_opcode_read_report_refferals,
&tcm_opcode_sync_cache,
&tcm_opcode_sync_cache16,
&tcm_opcode_unmap,
&tcm_opcode_write_same,
&tcm_opcode_write_same16,
&tcm_opcode_verify,
&tcm_opcode_verify16,
&tcm_opcode_start_stop,
&tcm_opcode_mode_select,
&tcm_opcode_mode_select10,
&tcm_opcode_mode_sense,
&tcm_opcode_mode_sense10,
&tcm_opcode_pri_read_keys,
&tcm_opcode_pri_read_resrv,
&tcm_opcode_pri_read_caps,
&tcm_opcode_pri_read_full_status,
&tcm_opcode_pro_register,
&tcm_opcode_pro_reserve,
&tcm_opcode_pro_release,
&tcm_opcode_pro_clear,
&tcm_opcode_pro_preempt,
&tcm_opcode_pro_preempt_abort,
&tcm_opcode_pro_reg_ign_exist,
&tcm_opcode_pro_register_move,
&tcm_opcode_release,
&tcm_opcode_release10,
&tcm_opcode_reserve,
&tcm_opcode_reserve10,
&tcm_opcode_request_sense,
&tcm_opcode_inquiry,
&tcm_opcode_extended_copy_lid1,
&tcm_opcode_rcv_copy_res_op_params,
&tcm_opcode_report_luns,
&tcm_opcode_test_unit_ready,
&tcm_opcode_report_target_pgs,
&tcm_opcode_report_supp_opcodes,
&tcm_opcode_set_tpg,
};
static int
spc_rsoc_encode_command_timeouts_descriptor(unsigned char *buf, u8 ctdp,
struct target_opcode_descriptor *descr)
{
if (!ctdp)
return 0;
put_unaligned_be16(0xa, buf);
buf[3] = descr->specific_timeout;
put_unaligned_be32(descr->nominal_timeout, &buf[4]);
put_unaligned_be32(descr->recommended_timeout, &buf[8]);
return 12;
}
static int
spc_rsoc_encode_command_descriptor(unsigned char *buf, u8 ctdp,
struct target_opcode_descriptor *descr)
{
int td_size = 0;
buf[0] = descr->opcode;
put_unaligned_be16(descr->service_action, &buf[2]);
buf[5] = (ctdp << 1) | descr->serv_action_valid;
put_unaligned_be16(descr->cdb_size, &buf[6]);
td_size = spc_rsoc_encode_command_timeouts_descriptor(&buf[8], ctdp,
descr);
return 8 + td_size;
}
static int
spc_rsoc_encode_one_command_descriptor(unsigned char *buf, u8 ctdp,
struct target_opcode_descriptor *descr,
struct se_device *dev)
{
int td_size = 0;
if (!descr) {
buf[1] = (ctdp << 7) | SCSI_SUPPORT_NOT_SUPPORTED;
return 2;
}
buf[1] = (ctdp << 7) | SCSI_SUPPORT_FULL;
put_unaligned_be16(descr->cdb_size, &buf[2]);
memcpy(&buf[4], descr->usage_bits, descr->cdb_size);
if (descr->update_usage_bits)
descr->update_usage_bits(&buf[4], dev);
td_size = spc_rsoc_encode_command_timeouts_descriptor(
&buf[4 + descr->cdb_size], ctdp, descr);
return 4 + descr->cdb_size + td_size;
}
static sense_reason_t
spc_rsoc_get_descr(struct se_cmd *cmd, struct target_opcode_descriptor **opcode)
{
struct target_opcode_descriptor *descr;
struct se_session *sess = cmd->se_sess;
unsigned char *cdb = cmd->t_task_cdb;
u8 opts = cdb[2] & 0x3;
u8 requested_opcode;
u16 requested_sa;
int i;
requested_opcode = cdb[3];
requested_sa = ((u16)cdb[4]) << 8 | cdb[5];
*opcode = NULL;
if (opts > 3) {
pr_debug("TARGET_CORE[%s]: Invalid REPORT SUPPORTED OPERATION CODES"
" with unsupported REPORTING OPTIONS %#x for 0x%08llx from %s\n",
cmd->se_tfo->fabric_name, opts,
cmd->se_lun->unpacked_lun,
sess->se_node_acl->initiatorname);
return TCM_INVALID_CDB_FIELD;
}
for (i = 0; i < ARRAY_SIZE(tcm_supported_opcodes); i++) {
descr = tcm_supported_opcodes[i];
if (descr->opcode != requested_opcode)
continue;
switch (opts) {
case 0x1:
/*
* If the REQUESTED OPERATION CODE field specifies an
* operation code for which the device server implements
* service actions, then the device server shall
* terminate the command with CHECK CONDITION status,
* with the sense key set to ILLEGAL REQUEST, and the
* additional sense code set to INVALID FIELD IN CDB
*/
if (descr->serv_action_valid)
return TCM_INVALID_CDB_FIELD;
if (!descr->enabled || descr->enabled(descr, cmd))
*opcode = descr;
break;
case 0x2:
/*
* If the REQUESTED OPERATION CODE field specifies an
* operation code for which the device server does not
* implement service actions, then the device server
* shall terminate the command with CHECK CONDITION
* status, with the sense key set to ILLEGAL REQUEST,
* and the additional sense code set to INVALID FIELD IN CDB.
*/
if (descr->serv_action_valid &&
descr->service_action == requested_sa) {
if (!descr->enabled || descr->enabled(descr,
cmd))
*opcode = descr;
} else if (!descr->serv_action_valid)
return TCM_INVALID_CDB_FIELD;
break;
case 0x3:
/*
* The command support data for the operation code and
* service action a specified in the REQUESTED OPERATION
* CODE field and REQUESTED SERVICE ACTION field shall
* be returned in the one_command parameter data format.
*/
if (descr->service_action == requested_sa)
if (!descr->enabled || descr->enabled(descr,
cmd))
*opcode = descr;
break;
}
}
return 0;
}
static sense_reason_t
spc_emulate_report_supp_op_codes(struct se_cmd *cmd)
{
int descr_num = ARRAY_SIZE(tcm_supported_opcodes);
struct target_opcode_descriptor *descr = NULL;
unsigned char *cdb = cmd->t_task_cdb;
u8 rctd = (cdb[2] >> 7) & 0x1;
unsigned char *buf = NULL;
int response_length = 0;
u8 opts = cdb[2] & 0x3;
unsigned char *rbuf;
sense_reason_t ret = 0;
int i;
if (!cmd->se_dev->dev_attrib.emulate_rsoc)
return TCM_UNSUPPORTED_SCSI_OPCODE;
rbuf = transport_kmap_data_sg(cmd);
if (cmd->data_length && !rbuf) {
ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
goto out;
}
if (opts == 0)
response_length = 4 + (8 + rctd * 12) * descr_num;
else {
ret = spc_rsoc_get_descr(cmd, &descr);
if (ret)
goto out;
if (descr)
response_length = 4 + descr->cdb_size + rctd * 12;
else
response_length = 2;
}
buf = kzalloc(response_length, GFP_KERNEL);
if (!buf) {
ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
goto out;
}
response_length = 0;
if (opts == 0) {
response_length += 4;
for (i = 0; i < ARRAY_SIZE(tcm_supported_opcodes); i++) {
descr = tcm_supported_opcodes[i];
if (descr->enabled && !descr->enabled(descr, cmd))
continue;
response_length += spc_rsoc_encode_command_descriptor(
&buf[response_length], rctd, descr);
}
put_unaligned_be32(response_length - 3, buf);
} else {
response_length = spc_rsoc_encode_one_command_descriptor(
&buf[response_length], rctd, descr,
cmd->se_dev);
}
memcpy(rbuf, buf, min_t(u32, response_length, cmd->data_length));
out:
kfree(buf);
transport_kunmap_data_sg(cmd);
if (!ret)
target_complete_cmd_with_length(cmd, SAM_STAT_GOOD, response_length);
return ret;
}
sense_reason_t
spc_parse_cdb(struct se_cmd *cmd, unsigned int *size)
{
struct se_device *dev = cmd->se_dev;
unsigned char *cdb = cmd->t_task_cdb;
switch (cdb[0]) {
case RESERVE:
case RESERVE_10:
case RELEASE:
case RELEASE_10:
if (!dev->dev_attrib.emulate_pr)
return TCM_UNSUPPORTED_SCSI_OPCODE;
if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH_PGR)
return TCM_UNSUPPORTED_SCSI_OPCODE;
break;
case PERSISTENT_RESERVE_IN:
case PERSISTENT_RESERVE_OUT:
if (!dev->dev_attrib.emulate_pr)
return TCM_UNSUPPORTED_SCSI_OPCODE;
break;
}
switch (cdb[0]) {
case MODE_SELECT:
*size = cdb[4];
cmd->execute_cmd = spc_emulate_modeselect;
break;
case MODE_SELECT_10:
*size = get_unaligned_be16(&cdb[7]);
cmd->execute_cmd = spc_emulate_modeselect;
break;
case MODE_SENSE:
*size = cdb[4];
cmd->execute_cmd = spc_emulate_modesense;
break;
case MODE_SENSE_10:
*size = get_unaligned_be16(&cdb[7]);
cmd->execute_cmd = spc_emulate_modesense;
break;
case LOG_SELECT:
case LOG_SENSE:
*size = get_unaligned_be16(&cdb[7]);
break;
case PERSISTENT_RESERVE_IN:
*size = get_unaligned_be16(&cdb[7]);
cmd->execute_cmd = target_scsi3_emulate_pr_in;
break;
case PERSISTENT_RESERVE_OUT:
*size = get_unaligned_be32(&cdb[5]);
cmd->execute_cmd = target_scsi3_emulate_pr_out;
break;
case RELEASE:
case RELEASE_10:
if (cdb[0] == RELEASE_10)
*size = get_unaligned_be16(&cdb[7]);
else
*size = cmd->data_length;
cmd->execute_cmd = target_scsi2_reservation_release;
break;
case RESERVE:
case RESERVE_10:
/*
* The SPC-2 RESERVE does not contain a size in the SCSI CDB.
* Assume the passthrough or $FABRIC_MOD will tell us about it.
*/
if (cdb[0] == RESERVE_10)
*size = get_unaligned_be16(&cdb[7]);
else
*size = cmd->data_length;
cmd->execute_cmd = target_scsi2_reservation_reserve;
break;
case REQUEST_SENSE:
*size = cdb[4];
cmd->execute_cmd = spc_emulate_request_sense;
break;
case INQUIRY:
*size = get_unaligned_be16(&cdb[3]);
/*
* Do implicit HEAD_OF_QUEUE processing for INQUIRY.
* See spc4r17 section 5.3
*/
cmd->sam_task_attr = TCM_HEAD_TAG;
cmd->execute_cmd = spc_emulate_inquiry;
break;
case SECURITY_PROTOCOL_IN:
case SECURITY_PROTOCOL_OUT:
*size = get_unaligned_be32(&cdb[6]);
break;
case EXTENDED_COPY:
*size = get_unaligned_be32(&cdb[10]);
cmd->execute_cmd = target_do_xcopy;
break;
case RECEIVE_COPY_RESULTS:
*size = get_unaligned_be32(&cdb[10]);
cmd->execute_cmd = target_do_receive_copy_results;
break;
case READ_ATTRIBUTE:
case WRITE_ATTRIBUTE:
*size = get_unaligned_be32(&cdb[10]);
break;
case RECEIVE_DIAGNOSTIC:
case SEND_DIAGNOSTIC:
*size = get_unaligned_be16(&cdb[3]);
break;
case WRITE_BUFFER:
*size = get_unaligned_be24(&cdb[6]);
break;
case REPORT_LUNS:
cmd->execute_cmd = spc_emulate_report_luns;
*size = get_unaligned_be32(&cdb[6]);
/*
* Do implicit HEAD_OF_QUEUE processing for REPORT_LUNS
* See spc4r17 section 5.3
*/
cmd->sam_task_attr = TCM_HEAD_TAG;
break;
case TEST_UNIT_READY:
cmd->execute_cmd = spc_emulate_testunitready;
*size = 0;
break;
case MAINTENANCE_IN:
if (dev->transport->get_device_type(dev) != TYPE_ROM) {
/*
* MAINTENANCE_IN from SCC-2
* Check for emulated MI_REPORT_TARGET_PGS
*/
if ((cdb[1] & 0x1f) == MI_REPORT_TARGET_PGS) {
cmd->execute_cmd =
target_emulate_report_target_port_groups;
}
if ((cdb[1] & 0x1f) ==
MI_REPORT_SUPPORTED_OPERATION_CODES)
cmd->execute_cmd =
spc_emulate_report_supp_op_codes;
*size = get_unaligned_be32(&cdb[6]);
} else {
/*
* GPCMD_SEND_KEY from multi media commands
*/
*size = get_unaligned_be16(&cdb[8]);
}
break;
case MAINTENANCE_OUT:
if (dev->transport->get_device_type(dev) != TYPE_ROM) {
/*
* MAINTENANCE_OUT from SCC-2
* Check for emulated MO_SET_TARGET_PGS.
*/
if (cdb[1] == MO_SET_TARGET_PGS) {
cmd->execute_cmd =
target_emulate_set_target_port_groups;
}
*size = get_unaligned_be32(&cdb[6]);
} else {
/*
* GPCMD_SEND_KEY from multi media commands
*/
*size = get_unaligned_be16(&cdb[8]);
}
break;
default:
return TCM_UNSUPPORTED_SCSI_OPCODE;
}
return 0;
}
EXPORT_SYMBOL(spc_parse_cdb);