225 lines
7.4 KiB
C
225 lines
7.4 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
/*
|
|
* Copyright (C) 2008 Oracle. All rights reserved.
|
|
*/
|
|
|
|
#ifndef BTRFS_LOCKING_H
|
|
#define BTRFS_LOCKING_H
|
|
|
|
#include <linux/atomic.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/percpu_counter.h>
|
|
#include "extent_io.h"
|
|
|
|
#define BTRFS_WRITE_LOCK 1
|
|
#define BTRFS_READ_LOCK 2
|
|
|
|
/*
|
|
* We are limited in number of subclasses by MAX_LOCKDEP_SUBCLASSES, which at
|
|
* the time of this patch is 8, which is how many we use. Keep this in mind if
|
|
* you decide you want to add another subclass.
|
|
*/
|
|
enum btrfs_lock_nesting {
|
|
BTRFS_NESTING_NORMAL,
|
|
|
|
/*
|
|
* When we COW a block we are holding the lock on the original block,
|
|
* and since our lockdep maps are rootid+level, this confuses lockdep
|
|
* when we lock the newly allocated COW'd block. Handle this by having
|
|
* a subclass for COW'ed blocks so that lockdep doesn't complain.
|
|
*/
|
|
BTRFS_NESTING_COW,
|
|
|
|
/*
|
|
* Oftentimes we need to lock adjacent nodes on the same level while
|
|
* still holding the lock on the original node we searched to, such as
|
|
* for searching forward or for split/balance.
|
|
*
|
|
* Because of this we need to indicate to lockdep that this is
|
|
* acceptable by having a different subclass for each of these
|
|
* operations.
|
|
*/
|
|
BTRFS_NESTING_LEFT,
|
|
BTRFS_NESTING_RIGHT,
|
|
|
|
/*
|
|
* When splitting we will be holding a lock on the left/right node when
|
|
* we need to cow that node, thus we need a new set of subclasses for
|
|
* these two operations.
|
|
*/
|
|
BTRFS_NESTING_LEFT_COW,
|
|
BTRFS_NESTING_RIGHT_COW,
|
|
|
|
/*
|
|
* When splitting we may push nodes to the left or right, but still use
|
|
* the subsequent nodes in our path, keeping our locks on those adjacent
|
|
* blocks. Thus when we go to allocate a new split block we've already
|
|
* used up all of our available subclasses, so this subclass exists to
|
|
* handle this case where we need to allocate a new split block.
|
|
*/
|
|
BTRFS_NESTING_SPLIT,
|
|
|
|
/*
|
|
* When promoting a new block to a root we need to have a special
|
|
* subclass so we don't confuse lockdep, as it will appear that we are
|
|
* locking a higher level node before a lower level one. Copying also
|
|
* has this problem as it appears we're locking the same block again
|
|
* when we make a snapshot of an existing root.
|
|
*/
|
|
BTRFS_NESTING_NEW_ROOT,
|
|
|
|
/*
|
|
* We are limited to MAX_LOCKDEP_SUBLCLASSES number of subclasses, so
|
|
* add this in here and add a static_assert to keep us from going over
|
|
* the limit. As of this writing we're limited to 8, and we're
|
|
* definitely using 8, hence this check to keep us from messing up in
|
|
* the future.
|
|
*/
|
|
BTRFS_NESTING_MAX,
|
|
};
|
|
|
|
enum btrfs_lockdep_trans_states {
|
|
BTRFS_LOCKDEP_TRANS_COMMIT_START,
|
|
BTRFS_LOCKDEP_TRANS_UNBLOCKED,
|
|
BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED,
|
|
BTRFS_LOCKDEP_TRANS_COMPLETED,
|
|
};
|
|
|
|
/*
|
|
* Lockdep annotation for wait events.
|
|
*
|
|
* @owner: The struct where the lockdep map is defined
|
|
* @lock: The lockdep map corresponding to a wait event
|
|
*
|
|
* This macro is used to annotate a wait event. In this case a thread acquires
|
|
* the lockdep map as writer (exclusive lock) because it has to block until all
|
|
* the threads that hold the lock as readers signal the condition for the wait
|
|
* event and release their locks.
|
|
*/
|
|
#define btrfs_might_wait_for_event(owner, lock) \
|
|
do { \
|
|
rwsem_acquire(&owner->lock##_map, 0, 0, _THIS_IP_); \
|
|
rwsem_release(&owner->lock##_map, _THIS_IP_); \
|
|
} while (0)
|
|
|
|
/*
|
|
* Protection for the resource/condition of a wait event.
|
|
*
|
|
* @owner: The struct where the lockdep map is defined
|
|
* @lock: The lockdep map corresponding to a wait event
|
|
*
|
|
* Many threads can modify the condition for the wait event at the same time
|
|
* and signal the threads that block on the wait event. The threads that modify
|
|
* the condition and do the signaling acquire the lock as readers (shared
|
|
* lock).
|
|
*/
|
|
#define btrfs_lockdep_acquire(owner, lock) \
|
|
rwsem_acquire_read(&owner->lock##_map, 0, 0, _THIS_IP_)
|
|
|
|
/*
|
|
* Used after signaling the condition for a wait event to release the lockdep
|
|
* map held by a reader thread.
|
|
*/
|
|
#define btrfs_lockdep_release(owner, lock) \
|
|
rwsem_release(&owner->lock##_map, _THIS_IP_)
|
|
|
|
/*
|
|
* Macros for the transaction states wait events, similar to the generic wait
|
|
* event macros.
|
|
*/
|
|
#define btrfs_might_wait_for_state(owner, i) \
|
|
do { \
|
|
rwsem_acquire(&owner->btrfs_state_change_map[i], 0, 0, _THIS_IP_); \
|
|
rwsem_release(&owner->btrfs_state_change_map[i], _THIS_IP_); \
|
|
} while (0)
|
|
|
|
#define btrfs_trans_state_lockdep_acquire(owner, i) \
|
|
rwsem_acquire_read(&owner->btrfs_state_change_map[i], 0, 0, _THIS_IP_)
|
|
|
|
#define btrfs_trans_state_lockdep_release(owner, i) \
|
|
rwsem_release(&owner->btrfs_state_change_map[i], _THIS_IP_)
|
|
|
|
/* Initialization of the lockdep map */
|
|
#define btrfs_lockdep_init_map(owner, lock) \
|
|
do { \
|
|
static struct lock_class_key lock##_key; \
|
|
lockdep_init_map(&owner->lock##_map, #lock, &lock##_key, 0); \
|
|
} while (0)
|
|
|
|
/* Initialization of the transaction states lockdep maps. */
|
|
#define btrfs_state_lockdep_init_map(owner, lock, state) \
|
|
do { \
|
|
static struct lock_class_key lock##_key; \
|
|
lockdep_init_map(&owner->btrfs_state_change_map[state], #lock, \
|
|
&lock##_key, 0); \
|
|
} while (0)
|
|
|
|
static_assert(BTRFS_NESTING_MAX <= MAX_LOCKDEP_SUBCLASSES,
|
|
"too many lock subclasses defined");
|
|
|
|
struct btrfs_path;
|
|
|
|
void __btrfs_tree_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest);
|
|
void btrfs_tree_lock(struct extent_buffer *eb);
|
|
void btrfs_tree_unlock(struct extent_buffer *eb);
|
|
|
|
void __btrfs_tree_read_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest);
|
|
void btrfs_tree_read_lock(struct extent_buffer *eb);
|
|
void btrfs_tree_read_unlock(struct extent_buffer *eb);
|
|
int btrfs_try_tree_read_lock(struct extent_buffer *eb);
|
|
int btrfs_try_tree_write_lock(struct extent_buffer *eb);
|
|
struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root);
|
|
struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root);
|
|
struct extent_buffer *btrfs_try_read_lock_root_node(struct btrfs_root *root);
|
|
|
|
#ifdef CONFIG_BTRFS_DEBUG
|
|
static inline void btrfs_assert_tree_write_locked(struct extent_buffer *eb)
|
|
{
|
|
lockdep_assert_held_write(&eb->lock);
|
|
}
|
|
#else
|
|
static inline void btrfs_assert_tree_write_locked(struct extent_buffer *eb) { }
|
|
#endif
|
|
|
|
void btrfs_unlock_up_safe(struct btrfs_path *path, int level);
|
|
|
|
static inline void btrfs_tree_unlock_rw(struct extent_buffer *eb, int rw)
|
|
{
|
|
if (rw == BTRFS_WRITE_LOCK)
|
|
btrfs_tree_unlock(eb);
|
|
else if (rw == BTRFS_READ_LOCK)
|
|
btrfs_tree_read_unlock(eb);
|
|
else
|
|
BUG();
|
|
}
|
|
|
|
struct btrfs_drew_lock {
|
|
atomic_t readers;
|
|
atomic_t writers;
|
|
wait_queue_head_t pending_writers;
|
|
wait_queue_head_t pending_readers;
|
|
};
|
|
|
|
void btrfs_drew_lock_init(struct btrfs_drew_lock *lock);
|
|
void btrfs_drew_write_lock(struct btrfs_drew_lock *lock);
|
|
bool btrfs_drew_try_write_lock(struct btrfs_drew_lock *lock);
|
|
void btrfs_drew_write_unlock(struct btrfs_drew_lock *lock);
|
|
void btrfs_drew_read_lock(struct btrfs_drew_lock *lock);
|
|
void btrfs_drew_read_unlock(struct btrfs_drew_lock *lock);
|
|
|
|
#ifdef CONFIG_DEBUG_LOCK_ALLOC
|
|
void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, int level);
|
|
void btrfs_maybe_reset_lockdep_class(struct btrfs_root *root, struct extent_buffer *eb);
|
|
#else
|
|
static inline void btrfs_set_buffer_lockdep_class(u64 objectid,
|
|
struct extent_buffer *eb, int level)
|
|
{
|
|
}
|
|
static inline void btrfs_maybe_reset_lockdep_class(struct btrfs_root *root,
|
|
struct extent_buffer *eb)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
#endif
|