8083 lines
216 KiB
C
8083 lines
216 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*/
|
|
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/semaphore.h>
|
|
#include <linux/uuid.h>
|
|
#include <linux/list_sort.h>
|
|
#include <linux/namei.h>
|
|
#include "misc.h"
|
|
#include "ctree.h"
|
|
#include "extent_map.h"
|
|
#include "disk-io.h"
|
|
#include "transaction.h"
|
|
#include "print-tree.h"
|
|
#include "volumes.h"
|
|
#include "raid56.h"
|
|
#include "rcu-string.h"
|
|
#include "dev-replace.h"
|
|
#include "sysfs.h"
|
|
#include "tree-checker.h"
|
|
#include "space-info.h"
|
|
#include "block-group.h"
|
|
#include "discard.h"
|
|
#include "zoned.h"
|
|
#include "fs.h"
|
|
#include "accessors.h"
|
|
#include "uuid-tree.h"
|
|
#include "ioctl.h"
|
|
#include "relocation.h"
|
|
#include "scrub.h"
|
|
#include "super.h"
|
|
|
|
#define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
|
|
BTRFS_BLOCK_GROUP_RAID10 | \
|
|
BTRFS_BLOCK_GROUP_RAID56_MASK)
|
|
|
|
const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
|
|
[BTRFS_RAID_RAID10] = {
|
|
.sub_stripes = 2,
|
|
.dev_stripes = 1,
|
|
.devs_max = 0, /* 0 == as many as possible */
|
|
.devs_min = 2,
|
|
.tolerated_failures = 1,
|
|
.devs_increment = 2,
|
|
.ncopies = 2,
|
|
.nparity = 0,
|
|
.raid_name = "raid10",
|
|
.bg_flag = BTRFS_BLOCK_GROUP_RAID10,
|
|
.mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
|
|
},
|
|
[BTRFS_RAID_RAID1] = {
|
|
.sub_stripes = 1,
|
|
.dev_stripes = 1,
|
|
.devs_max = 2,
|
|
.devs_min = 2,
|
|
.tolerated_failures = 1,
|
|
.devs_increment = 2,
|
|
.ncopies = 2,
|
|
.nparity = 0,
|
|
.raid_name = "raid1",
|
|
.bg_flag = BTRFS_BLOCK_GROUP_RAID1,
|
|
.mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
|
|
},
|
|
[BTRFS_RAID_RAID1C3] = {
|
|
.sub_stripes = 1,
|
|
.dev_stripes = 1,
|
|
.devs_max = 3,
|
|
.devs_min = 3,
|
|
.tolerated_failures = 2,
|
|
.devs_increment = 3,
|
|
.ncopies = 3,
|
|
.nparity = 0,
|
|
.raid_name = "raid1c3",
|
|
.bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
|
|
.mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
|
|
},
|
|
[BTRFS_RAID_RAID1C4] = {
|
|
.sub_stripes = 1,
|
|
.dev_stripes = 1,
|
|
.devs_max = 4,
|
|
.devs_min = 4,
|
|
.tolerated_failures = 3,
|
|
.devs_increment = 4,
|
|
.ncopies = 4,
|
|
.nparity = 0,
|
|
.raid_name = "raid1c4",
|
|
.bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
|
|
.mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
|
|
},
|
|
[BTRFS_RAID_DUP] = {
|
|
.sub_stripes = 1,
|
|
.dev_stripes = 2,
|
|
.devs_max = 1,
|
|
.devs_min = 1,
|
|
.tolerated_failures = 0,
|
|
.devs_increment = 1,
|
|
.ncopies = 2,
|
|
.nparity = 0,
|
|
.raid_name = "dup",
|
|
.bg_flag = BTRFS_BLOCK_GROUP_DUP,
|
|
.mindev_error = 0,
|
|
},
|
|
[BTRFS_RAID_RAID0] = {
|
|
.sub_stripes = 1,
|
|
.dev_stripes = 1,
|
|
.devs_max = 0,
|
|
.devs_min = 1,
|
|
.tolerated_failures = 0,
|
|
.devs_increment = 1,
|
|
.ncopies = 1,
|
|
.nparity = 0,
|
|
.raid_name = "raid0",
|
|
.bg_flag = BTRFS_BLOCK_GROUP_RAID0,
|
|
.mindev_error = 0,
|
|
},
|
|
[BTRFS_RAID_SINGLE] = {
|
|
.sub_stripes = 1,
|
|
.dev_stripes = 1,
|
|
.devs_max = 1,
|
|
.devs_min = 1,
|
|
.tolerated_failures = 0,
|
|
.devs_increment = 1,
|
|
.ncopies = 1,
|
|
.nparity = 0,
|
|
.raid_name = "single",
|
|
.bg_flag = 0,
|
|
.mindev_error = 0,
|
|
},
|
|
[BTRFS_RAID_RAID5] = {
|
|
.sub_stripes = 1,
|
|
.dev_stripes = 1,
|
|
.devs_max = 0,
|
|
.devs_min = 2,
|
|
.tolerated_failures = 1,
|
|
.devs_increment = 1,
|
|
.ncopies = 1,
|
|
.nparity = 1,
|
|
.raid_name = "raid5",
|
|
.bg_flag = BTRFS_BLOCK_GROUP_RAID5,
|
|
.mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
|
|
},
|
|
[BTRFS_RAID_RAID6] = {
|
|
.sub_stripes = 1,
|
|
.dev_stripes = 1,
|
|
.devs_max = 0,
|
|
.devs_min = 3,
|
|
.tolerated_failures = 2,
|
|
.devs_increment = 1,
|
|
.ncopies = 1,
|
|
.nparity = 2,
|
|
.raid_name = "raid6",
|
|
.bg_flag = BTRFS_BLOCK_GROUP_RAID6,
|
|
.mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
|
|
},
|
|
};
|
|
|
|
/*
|
|
* Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
|
|
* can be used as index to access btrfs_raid_array[].
|
|
*/
|
|
enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
|
|
{
|
|
const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
|
|
|
|
if (!profile)
|
|
return BTRFS_RAID_SINGLE;
|
|
|
|
return BTRFS_BG_FLAG_TO_INDEX(profile);
|
|
}
|
|
|
|
const char *btrfs_bg_type_to_raid_name(u64 flags)
|
|
{
|
|
const int index = btrfs_bg_flags_to_raid_index(flags);
|
|
|
|
if (index >= BTRFS_NR_RAID_TYPES)
|
|
return NULL;
|
|
|
|
return btrfs_raid_array[index].raid_name;
|
|
}
|
|
|
|
int btrfs_nr_parity_stripes(u64 type)
|
|
{
|
|
enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
|
|
|
|
return btrfs_raid_array[index].nparity;
|
|
}
|
|
|
|
/*
|
|
* Fill @buf with textual description of @bg_flags, no more than @size_buf
|
|
* bytes including terminating null byte.
|
|
*/
|
|
void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
|
|
{
|
|
int i;
|
|
int ret;
|
|
char *bp = buf;
|
|
u64 flags = bg_flags;
|
|
u32 size_bp = size_buf;
|
|
|
|
if (!flags) {
|
|
strcpy(bp, "NONE");
|
|
return;
|
|
}
|
|
|
|
#define DESCRIBE_FLAG(flag, desc) \
|
|
do { \
|
|
if (flags & (flag)) { \
|
|
ret = snprintf(bp, size_bp, "%s|", (desc)); \
|
|
if (ret < 0 || ret >= size_bp) \
|
|
goto out_overflow; \
|
|
size_bp -= ret; \
|
|
bp += ret; \
|
|
flags &= ~(flag); \
|
|
} \
|
|
} while (0)
|
|
|
|
DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
|
|
DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
|
|
DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
|
|
|
|
DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
|
|
for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
|
|
DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
|
|
btrfs_raid_array[i].raid_name);
|
|
#undef DESCRIBE_FLAG
|
|
|
|
if (flags) {
|
|
ret = snprintf(bp, size_bp, "0x%llx|", flags);
|
|
size_bp -= ret;
|
|
}
|
|
|
|
if (size_bp < size_buf)
|
|
buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
|
|
|
|
/*
|
|
* The text is trimmed, it's up to the caller to provide sufficiently
|
|
* large buffer
|
|
*/
|
|
out_overflow:;
|
|
}
|
|
|
|
static int init_first_rw_device(struct btrfs_trans_handle *trans);
|
|
static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
|
|
static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
|
|
|
|
/*
|
|
* Device locking
|
|
* ==============
|
|
*
|
|
* There are several mutexes that protect manipulation of devices and low-level
|
|
* structures like chunks but not block groups, extents or files
|
|
*
|
|
* uuid_mutex (global lock)
|
|
* ------------------------
|
|
* protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
|
|
* the SCAN_DEV ioctl registration or from mount either implicitly (the first
|
|
* device) or requested by the device= mount option
|
|
*
|
|
* the mutex can be very coarse and can cover long-running operations
|
|
*
|
|
* protects: updates to fs_devices counters like missing devices, rw devices,
|
|
* seeding, structure cloning, opening/closing devices at mount/umount time
|
|
*
|
|
* global::fs_devs - add, remove, updates to the global list
|
|
*
|
|
* does not protect: manipulation of the fs_devices::devices list in general
|
|
* but in mount context it could be used to exclude list modifications by eg.
|
|
* scan ioctl
|
|
*
|
|
* btrfs_device::name - renames (write side), read is RCU
|
|
*
|
|
* fs_devices::device_list_mutex (per-fs, with RCU)
|
|
* ------------------------------------------------
|
|
* protects updates to fs_devices::devices, ie. adding and deleting
|
|
*
|
|
* simple list traversal with read-only actions can be done with RCU protection
|
|
*
|
|
* may be used to exclude some operations from running concurrently without any
|
|
* modifications to the list (see write_all_supers)
|
|
*
|
|
* Is not required at mount and close times, because our device list is
|
|
* protected by the uuid_mutex at that point.
|
|
*
|
|
* balance_mutex
|
|
* -------------
|
|
* protects balance structures (status, state) and context accessed from
|
|
* several places (internally, ioctl)
|
|
*
|
|
* chunk_mutex
|
|
* -----------
|
|
* protects chunks, adding or removing during allocation, trim or when a new
|
|
* device is added/removed. Additionally it also protects post_commit_list of
|
|
* individual devices, since they can be added to the transaction's
|
|
* post_commit_list only with chunk_mutex held.
|
|
*
|
|
* cleaner_mutex
|
|
* -------------
|
|
* a big lock that is held by the cleaner thread and prevents running subvolume
|
|
* cleaning together with relocation or delayed iputs
|
|
*
|
|
*
|
|
* Lock nesting
|
|
* ============
|
|
*
|
|
* uuid_mutex
|
|
* device_list_mutex
|
|
* chunk_mutex
|
|
* balance_mutex
|
|
*
|
|
*
|
|
* Exclusive operations
|
|
* ====================
|
|
*
|
|
* Maintains the exclusivity of the following operations that apply to the
|
|
* whole filesystem and cannot run in parallel.
|
|
*
|
|
* - Balance (*)
|
|
* - Device add
|
|
* - Device remove
|
|
* - Device replace (*)
|
|
* - Resize
|
|
*
|
|
* The device operations (as above) can be in one of the following states:
|
|
*
|
|
* - Running state
|
|
* - Paused state
|
|
* - Completed state
|
|
*
|
|
* Only device operations marked with (*) can go into the Paused state for the
|
|
* following reasons:
|
|
*
|
|
* - ioctl (only Balance can be Paused through ioctl)
|
|
* - filesystem remounted as read-only
|
|
* - filesystem unmounted and mounted as read-only
|
|
* - system power-cycle and filesystem mounted as read-only
|
|
* - filesystem or device errors leading to forced read-only
|
|
*
|
|
* The status of exclusive operation is set and cleared atomically.
|
|
* During the course of Paused state, fs_info::exclusive_operation remains set.
|
|
* A device operation in Paused or Running state can be canceled or resumed
|
|
* either by ioctl (Balance only) or when remounted as read-write.
|
|
* The exclusive status is cleared when the device operation is canceled or
|
|
* completed.
|
|
*/
|
|
|
|
DEFINE_MUTEX(uuid_mutex);
|
|
static LIST_HEAD(fs_uuids);
|
|
struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
|
|
{
|
|
return &fs_uuids;
|
|
}
|
|
|
|
/*
|
|
* alloc_fs_devices - allocate struct btrfs_fs_devices
|
|
* @fsid: if not NULL, copy the UUID to fs_devices::fsid
|
|
* @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
|
|
*
|
|
* Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
|
|
* The returned struct is not linked onto any lists and can be destroyed with
|
|
* kfree() right away.
|
|
*/
|
|
static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
|
|
const u8 *metadata_fsid)
|
|
{
|
|
struct btrfs_fs_devices *fs_devs;
|
|
|
|
ASSERT(fsid || !metadata_fsid);
|
|
|
|
fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
|
|
if (!fs_devs)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
mutex_init(&fs_devs->device_list_mutex);
|
|
|
|
INIT_LIST_HEAD(&fs_devs->devices);
|
|
INIT_LIST_HEAD(&fs_devs->alloc_list);
|
|
INIT_LIST_HEAD(&fs_devs->fs_list);
|
|
INIT_LIST_HEAD(&fs_devs->seed_list);
|
|
|
|
if (fsid) {
|
|
memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
|
|
memcpy(fs_devs->metadata_uuid,
|
|
metadata_fsid ?: fsid, BTRFS_FSID_SIZE);
|
|
}
|
|
|
|
return fs_devs;
|
|
}
|
|
|
|
static void btrfs_free_device(struct btrfs_device *device)
|
|
{
|
|
WARN_ON(!list_empty(&device->post_commit_list));
|
|
rcu_string_free(device->name);
|
|
extent_io_tree_release(&device->alloc_state);
|
|
btrfs_destroy_dev_zone_info(device);
|
|
kfree(device);
|
|
}
|
|
|
|
static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
|
|
{
|
|
struct btrfs_device *device;
|
|
|
|
WARN_ON(fs_devices->opened);
|
|
while (!list_empty(&fs_devices->devices)) {
|
|
device = list_entry(fs_devices->devices.next,
|
|
struct btrfs_device, dev_list);
|
|
list_del(&device->dev_list);
|
|
btrfs_free_device(device);
|
|
}
|
|
kfree(fs_devices);
|
|
}
|
|
|
|
void __exit btrfs_cleanup_fs_uuids(void)
|
|
{
|
|
struct btrfs_fs_devices *fs_devices;
|
|
|
|
while (!list_empty(&fs_uuids)) {
|
|
fs_devices = list_entry(fs_uuids.next,
|
|
struct btrfs_fs_devices, fs_list);
|
|
list_del(&fs_devices->fs_list);
|
|
free_fs_devices(fs_devices);
|
|
}
|
|
}
|
|
|
|
static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
|
|
const u8 *fsid, const u8 *metadata_fsid)
|
|
{
|
|
if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
|
|
return false;
|
|
|
|
if (!metadata_fsid)
|
|
return true;
|
|
|
|
if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static noinline struct btrfs_fs_devices *find_fsid(
|
|
const u8 *fsid, const u8 *metadata_fsid)
|
|
{
|
|
struct btrfs_fs_devices *fs_devices;
|
|
|
|
ASSERT(fsid);
|
|
|
|
/* Handle non-split brain cases */
|
|
list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
|
|
if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
|
|
return fs_devices;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* First check if the metadata_uuid is different from the fsid in the given
|
|
* fs_devices. Then check if the given fsid is the same as the metadata_uuid
|
|
* in the fs_devices. If it is, return true; otherwise, return false.
|
|
*/
|
|
static inline bool check_fsid_changed(const struct btrfs_fs_devices *fs_devices,
|
|
const u8 *fsid)
|
|
{
|
|
return memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
|
|
BTRFS_FSID_SIZE) != 0 &&
|
|
memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE) == 0;
|
|
}
|
|
|
|
static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
|
|
struct btrfs_super_block *disk_super)
|
|
{
|
|
|
|
struct btrfs_fs_devices *fs_devices;
|
|
|
|
/*
|
|
* Handle scanned device having completed its fsid change but
|
|
* belonging to a fs_devices that was created by first scanning
|
|
* a device which didn't have its fsid/metadata_uuid changed
|
|
* at all and the CHANGING_FSID_V2 flag set.
|
|
*/
|
|
list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
|
|
if (!fs_devices->fsid_change)
|
|
continue;
|
|
|
|
if (match_fsid_fs_devices(fs_devices, disk_super->metadata_uuid,
|
|
fs_devices->fsid))
|
|
return fs_devices;
|
|
}
|
|
|
|
/*
|
|
* Handle scanned device having completed its fsid change but
|
|
* belonging to a fs_devices that was created by a device that
|
|
* has an outdated pair of fsid/metadata_uuid and
|
|
* CHANGING_FSID_V2 flag set.
|
|
*/
|
|
list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
|
|
if (!fs_devices->fsid_change)
|
|
continue;
|
|
|
|
if (check_fsid_changed(fs_devices, disk_super->metadata_uuid))
|
|
return fs_devices;
|
|
}
|
|
|
|
return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
|
|
}
|
|
|
|
|
|
static int
|
|
btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
|
|
int flush, struct block_device **bdev,
|
|
struct btrfs_super_block **disk_super)
|
|
{
|
|
int ret;
|
|
|
|
*bdev = blkdev_get_by_path(device_path, flags, holder, NULL);
|
|
|
|
if (IS_ERR(*bdev)) {
|
|
ret = PTR_ERR(*bdev);
|
|
goto error;
|
|
}
|
|
|
|
if (flush)
|
|
sync_blockdev(*bdev);
|
|
ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
|
|
if (ret) {
|
|
blkdev_put(*bdev, holder);
|
|
goto error;
|
|
}
|
|
invalidate_bdev(*bdev);
|
|
*disk_super = btrfs_read_dev_super(*bdev);
|
|
if (IS_ERR(*disk_super)) {
|
|
ret = PTR_ERR(*disk_super);
|
|
blkdev_put(*bdev, holder);
|
|
goto error;
|
|
}
|
|
|
|
return 0;
|
|
|
|
error:
|
|
*bdev = NULL;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Search and remove all stale devices (which are not mounted). When both
|
|
* inputs are NULL, it will search and release all stale devices.
|
|
*
|
|
* @devt: Optional. When provided will it release all unmounted devices
|
|
* matching this devt only.
|
|
* @skip_device: Optional. Will skip this device when searching for the stale
|
|
* devices.
|
|
*
|
|
* Return: 0 for success or if @devt is 0.
|
|
* -EBUSY if @devt is a mounted device.
|
|
* -ENOENT if @devt does not match any device in the list.
|
|
*/
|
|
static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
|
|
{
|
|
struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
|
|
struct btrfs_device *device, *tmp_device;
|
|
int ret = 0;
|
|
|
|
lockdep_assert_held(&uuid_mutex);
|
|
|
|
if (devt)
|
|
ret = -ENOENT;
|
|
|
|
list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
|
|
|
|
mutex_lock(&fs_devices->device_list_mutex);
|
|
list_for_each_entry_safe(device, tmp_device,
|
|
&fs_devices->devices, dev_list) {
|
|
if (skip_device && skip_device == device)
|
|
continue;
|
|
if (devt && devt != device->devt)
|
|
continue;
|
|
if (fs_devices->opened) {
|
|
/* for an already deleted device return 0 */
|
|
if (devt && ret != 0)
|
|
ret = -EBUSY;
|
|
break;
|
|
}
|
|
|
|
/* delete the stale device */
|
|
fs_devices->num_devices--;
|
|
list_del(&device->dev_list);
|
|
btrfs_free_device(device);
|
|
|
|
ret = 0;
|
|
}
|
|
mutex_unlock(&fs_devices->device_list_mutex);
|
|
|
|
if (fs_devices->num_devices == 0) {
|
|
btrfs_sysfs_remove_fsid(fs_devices);
|
|
list_del(&fs_devices->fs_list);
|
|
free_fs_devices(fs_devices);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This is only used on mount, and we are protected from competing things
|
|
* messing with our fs_devices by the uuid_mutex, thus we do not need the
|
|
* fs_devices->device_list_mutex here.
|
|
*/
|
|
static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
|
|
struct btrfs_device *device, blk_mode_t flags,
|
|
void *holder)
|
|
{
|
|
struct block_device *bdev;
|
|
struct btrfs_super_block *disk_super;
|
|
u64 devid;
|
|
int ret;
|
|
|
|
if (device->bdev)
|
|
return -EINVAL;
|
|
if (!device->name)
|
|
return -EINVAL;
|
|
|
|
ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
|
|
&bdev, &disk_super);
|
|
if (ret)
|
|
return ret;
|
|
|
|
devid = btrfs_stack_device_id(&disk_super->dev_item);
|
|
if (devid != device->devid)
|
|
goto error_free_page;
|
|
|
|
if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
|
|
goto error_free_page;
|
|
|
|
device->generation = btrfs_super_generation(disk_super);
|
|
|
|
if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
|
|
if (btrfs_super_incompat_flags(disk_super) &
|
|
BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
|
|
pr_err(
|
|
"BTRFS: Invalid seeding and uuid-changed device detected\n");
|
|
goto error_free_page;
|
|
}
|
|
|
|
clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
|
|
fs_devices->seeding = true;
|
|
} else {
|
|
if (bdev_read_only(bdev))
|
|
clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
|
|
else
|
|
set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
|
|
}
|
|
|
|
if (!bdev_nonrot(bdev))
|
|
fs_devices->rotating = true;
|
|
|
|
if (bdev_max_discard_sectors(bdev))
|
|
fs_devices->discardable = true;
|
|
|
|
device->bdev = bdev;
|
|
clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
|
|
device->holder = holder;
|
|
|
|
fs_devices->open_devices++;
|
|
if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
|
|
device->devid != BTRFS_DEV_REPLACE_DEVID) {
|
|
fs_devices->rw_devices++;
|
|
list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
|
|
}
|
|
btrfs_release_disk_super(disk_super);
|
|
|
|
return 0;
|
|
|
|
error_free_page:
|
|
btrfs_release_disk_super(disk_super);
|
|
blkdev_put(bdev, holder);
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb)
|
|
{
|
|
bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
|
|
BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
|
|
|
|
return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
|
|
}
|
|
|
|
/*
|
|
* Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
|
|
* being created with a disk that has already completed its fsid change. Such
|
|
* disk can belong to an fs which has its FSID changed or to one which doesn't.
|
|
* Handle both cases here.
|
|
*/
|
|
static struct btrfs_fs_devices *find_fsid_inprogress(
|
|
struct btrfs_super_block *disk_super)
|
|
{
|
|
struct btrfs_fs_devices *fs_devices;
|
|
|
|
list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
|
|
if (fs_devices->fsid_change)
|
|
continue;
|
|
|
|
if (check_fsid_changed(fs_devices, disk_super->fsid))
|
|
return fs_devices;
|
|
}
|
|
|
|
return find_fsid(disk_super->fsid, NULL);
|
|
}
|
|
|
|
static struct btrfs_fs_devices *find_fsid_changed(
|
|
struct btrfs_super_block *disk_super)
|
|
{
|
|
struct btrfs_fs_devices *fs_devices;
|
|
|
|
/*
|
|
* Handles the case where scanned device is part of an fs that had
|
|
* multiple successful changes of FSID but currently device didn't
|
|
* observe it. Meaning our fsid will be different than theirs. We need
|
|
* to handle two subcases :
|
|
* 1 - The fs still continues to have different METADATA/FSID uuids.
|
|
* 2 - The fs is switched back to its original FSID (METADATA/FSID
|
|
* are equal).
|
|
*/
|
|
list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
|
|
/* Changed UUIDs */
|
|
if (check_fsid_changed(fs_devices, disk_super->metadata_uuid) &&
|
|
memcmp(fs_devices->fsid, disk_super->fsid,
|
|
BTRFS_FSID_SIZE) != 0)
|
|
return fs_devices;
|
|
|
|
/* Unchanged UUIDs */
|
|
if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
|
|
BTRFS_FSID_SIZE) == 0 &&
|
|
memcmp(fs_devices->fsid, disk_super->metadata_uuid,
|
|
BTRFS_FSID_SIZE) == 0)
|
|
return fs_devices;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct btrfs_fs_devices *find_fsid_reverted_metadata(
|
|
struct btrfs_super_block *disk_super)
|
|
{
|
|
struct btrfs_fs_devices *fs_devices;
|
|
|
|
/*
|
|
* Handle the case where the scanned device is part of an fs whose last
|
|
* metadata UUID change reverted it to the original FSID. At the same
|
|
* time fs_devices was first created by another constituent device
|
|
* which didn't fully observe the operation. This results in an
|
|
* btrfs_fs_devices created with metadata/fsid different AND
|
|
* btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
|
|
* fs_devices equal to the FSID of the disk.
|
|
*/
|
|
list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
|
|
if (!fs_devices->fsid_change)
|
|
continue;
|
|
|
|
if (check_fsid_changed(fs_devices, disk_super->fsid))
|
|
return fs_devices;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
/*
|
|
* Add new device to list of registered devices
|
|
*
|
|
* Returns:
|
|
* device pointer which was just added or updated when successful
|
|
* error pointer when failed
|
|
*/
|
|
static noinline struct btrfs_device *device_list_add(const char *path,
|
|
struct btrfs_super_block *disk_super,
|
|
bool *new_device_added)
|
|
{
|
|
struct btrfs_device *device;
|
|
struct btrfs_fs_devices *fs_devices = NULL;
|
|
struct rcu_string *name;
|
|
u64 found_transid = btrfs_super_generation(disk_super);
|
|
u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
|
|
dev_t path_devt;
|
|
int error;
|
|
bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
|
|
BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
|
|
bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
|
|
BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
|
|
|
|
error = lookup_bdev(path, &path_devt);
|
|
if (error) {
|
|
btrfs_err(NULL, "failed to lookup block device for path %s: %d",
|
|
path, error);
|
|
return ERR_PTR(error);
|
|
}
|
|
|
|
if (fsid_change_in_progress) {
|
|
if (!has_metadata_uuid)
|
|
fs_devices = find_fsid_inprogress(disk_super);
|
|
else
|
|
fs_devices = find_fsid_changed(disk_super);
|
|
} else if (has_metadata_uuid) {
|
|
fs_devices = find_fsid_with_metadata_uuid(disk_super);
|
|
} else {
|
|
fs_devices = find_fsid_reverted_metadata(disk_super);
|
|
if (!fs_devices)
|
|
fs_devices = find_fsid(disk_super->fsid, NULL);
|
|
}
|
|
|
|
|
|
if (!fs_devices) {
|
|
fs_devices = alloc_fs_devices(disk_super->fsid,
|
|
has_metadata_uuid ? disk_super->metadata_uuid : NULL);
|
|
if (IS_ERR(fs_devices))
|
|
return ERR_CAST(fs_devices);
|
|
|
|
fs_devices->fsid_change = fsid_change_in_progress;
|
|
|
|
mutex_lock(&fs_devices->device_list_mutex);
|
|
list_add(&fs_devices->fs_list, &fs_uuids);
|
|
|
|
device = NULL;
|
|
} else {
|
|
struct btrfs_dev_lookup_args args = {
|
|
.devid = devid,
|
|
.uuid = disk_super->dev_item.uuid,
|
|
};
|
|
|
|
mutex_lock(&fs_devices->device_list_mutex);
|
|
device = btrfs_find_device(fs_devices, &args);
|
|
|
|
/*
|
|
* If this disk has been pulled into an fs devices created by
|
|
* a device which had the CHANGING_FSID_V2 flag then replace the
|
|
* metadata_uuid/fsid values of the fs_devices.
|
|
*/
|
|
if (fs_devices->fsid_change &&
|
|
found_transid > fs_devices->latest_generation) {
|
|
memcpy(fs_devices->fsid, disk_super->fsid,
|
|
BTRFS_FSID_SIZE);
|
|
|
|
if (has_metadata_uuid)
|
|
memcpy(fs_devices->metadata_uuid,
|
|
disk_super->metadata_uuid,
|
|
BTRFS_FSID_SIZE);
|
|
else
|
|
memcpy(fs_devices->metadata_uuid,
|
|
disk_super->fsid, BTRFS_FSID_SIZE);
|
|
|
|
fs_devices->fsid_change = false;
|
|
}
|
|
}
|
|
|
|
if (!device) {
|
|
unsigned int nofs_flag;
|
|
|
|
if (fs_devices->opened) {
|
|
btrfs_err(NULL,
|
|
"device %s belongs to fsid %pU, and the fs is already mounted",
|
|
path, fs_devices->fsid);
|
|
mutex_unlock(&fs_devices->device_list_mutex);
|
|
return ERR_PTR(-EBUSY);
|
|
}
|
|
|
|
nofs_flag = memalloc_nofs_save();
|
|
device = btrfs_alloc_device(NULL, &devid,
|
|
disk_super->dev_item.uuid, path);
|
|
memalloc_nofs_restore(nofs_flag);
|
|
if (IS_ERR(device)) {
|
|
mutex_unlock(&fs_devices->device_list_mutex);
|
|
/* we can safely leave the fs_devices entry around */
|
|
return device;
|
|
}
|
|
|
|
device->devt = path_devt;
|
|
|
|
list_add_rcu(&device->dev_list, &fs_devices->devices);
|
|
fs_devices->num_devices++;
|
|
|
|
device->fs_devices = fs_devices;
|
|
*new_device_added = true;
|
|
|
|
if (disk_super->label[0])
|
|
pr_info(
|
|
"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
|
|
disk_super->label, devid, found_transid, path,
|
|
current->comm, task_pid_nr(current));
|
|
else
|
|
pr_info(
|
|
"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
|
|
disk_super->fsid, devid, found_transid, path,
|
|
current->comm, task_pid_nr(current));
|
|
|
|
} else if (!device->name || strcmp(device->name->str, path)) {
|
|
/*
|
|
* When FS is already mounted.
|
|
* 1. If you are here and if the device->name is NULL that
|
|
* means this device was missing at time of FS mount.
|
|
* 2. If you are here and if the device->name is different
|
|
* from 'path' that means either
|
|
* a. The same device disappeared and reappeared with
|
|
* different name. or
|
|
* b. The missing-disk-which-was-replaced, has
|
|
* reappeared now.
|
|
*
|
|
* We must allow 1 and 2a above. But 2b would be a spurious
|
|
* and unintentional.
|
|
*
|
|
* Further in case of 1 and 2a above, the disk at 'path'
|
|
* would have missed some transaction when it was away and
|
|
* in case of 2a the stale bdev has to be updated as well.
|
|
* 2b must not be allowed at all time.
|
|
*/
|
|
|
|
/*
|
|
* For now, we do allow update to btrfs_fs_device through the
|
|
* btrfs dev scan cli after FS has been mounted. We're still
|
|
* tracking a problem where systems fail mount by subvolume id
|
|
* when we reject replacement on a mounted FS.
|
|
*/
|
|
if (!fs_devices->opened && found_transid < device->generation) {
|
|
/*
|
|
* That is if the FS is _not_ mounted and if you
|
|
* are here, that means there is more than one
|
|
* disk with same uuid and devid.We keep the one
|
|
* with larger generation number or the last-in if
|
|
* generation are equal.
|
|
*/
|
|
mutex_unlock(&fs_devices->device_list_mutex);
|
|
btrfs_err(NULL,
|
|
"device %s already registered with a higher generation, found %llu expect %llu",
|
|
path, found_transid, device->generation);
|
|
return ERR_PTR(-EEXIST);
|
|
}
|
|
|
|
/*
|
|
* We are going to replace the device path for a given devid,
|
|
* make sure it's the same device if the device is mounted
|
|
*
|
|
* NOTE: the device->fs_info may not be reliable here so pass
|
|
* in a NULL to message helpers instead. This avoids a possible
|
|
* use-after-free when the fs_info and fs_info->sb are already
|
|
* torn down.
|
|
*/
|
|
if (device->bdev) {
|
|
if (device->devt != path_devt) {
|
|
mutex_unlock(&fs_devices->device_list_mutex);
|
|
btrfs_warn_in_rcu(NULL,
|
|
"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
|
|
path, devid, found_transid,
|
|
current->comm,
|
|
task_pid_nr(current));
|
|
return ERR_PTR(-EEXIST);
|
|
}
|
|
btrfs_info_in_rcu(NULL,
|
|
"devid %llu device path %s changed to %s scanned by %s (%d)",
|
|
devid, btrfs_dev_name(device),
|
|
path, current->comm,
|
|
task_pid_nr(current));
|
|
}
|
|
|
|
name = rcu_string_strdup(path, GFP_NOFS);
|
|
if (!name) {
|
|
mutex_unlock(&fs_devices->device_list_mutex);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
rcu_string_free(device->name);
|
|
rcu_assign_pointer(device->name, name);
|
|
if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
|
|
fs_devices->missing_devices--;
|
|
clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
|
|
}
|
|
device->devt = path_devt;
|
|
}
|
|
|
|
/*
|
|
* Unmount does not free the btrfs_device struct but would zero
|
|
* generation along with most of the other members. So just update
|
|
* it back. We need it to pick the disk with largest generation
|
|
* (as above).
|
|
*/
|
|
if (!fs_devices->opened) {
|
|
device->generation = found_transid;
|
|
fs_devices->latest_generation = max_t(u64, found_transid,
|
|
fs_devices->latest_generation);
|
|
}
|
|
|
|
fs_devices->total_devices = btrfs_super_num_devices(disk_super);
|
|
|
|
mutex_unlock(&fs_devices->device_list_mutex);
|
|
return device;
|
|
}
|
|
|
|
static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
|
|
{
|
|
struct btrfs_fs_devices *fs_devices;
|
|
struct btrfs_device *device;
|
|
struct btrfs_device *orig_dev;
|
|
int ret = 0;
|
|
|
|
lockdep_assert_held(&uuid_mutex);
|
|
|
|
fs_devices = alloc_fs_devices(orig->fsid, NULL);
|
|
if (IS_ERR(fs_devices))
|
|
return fs_devices;
|
|
|
|
fs_devices->total_devices = orig->total_devices;
|
|
|
|
list_for_each_entry(orig_dev, &orig->devices, dev_list) {
|
|
const char *dev_path = NULL;
|
|
|
|
/*
|
|
* This is ok to do without RCU read locked because we hold the
|
|
* uuid mutex so nothing we touch in here is going to disappear.
|
|
*/
|
|
if (orig_dev->name)
|
|
dev_path = orig_dev->name->str;
|
|
|
|
device = btrfs_alloc_device(NULL, &orig_dev->devid,
|
|
orig_dev->uuid, dev_path);
|
|
if (IS_ERR(device)) {
|
|
ret = PTR_ERR(device);
|
|
goto error;
|
|
}
|
|
|
|
if (orig_dev->zone_info) {
|
|
struct btrfs_zoned_device_info *zone_info;
|
|
|
|
zone_info = btrfs_clone_dev_zone_info(orig_dev);
|
|
if (!zone_info) {
|
|
btrfs_free_device(device);
|
|
ret = -ENOMEM;
|
|
goto error;
|
|
}
|
|
device->zone_info = zone_info;
|
|
}
|
|
|
|
list_add(&device->dev_list, &fs_devices->devices);
|
|
device->fs_devices = fs_devices;
|
|
fs_devices->num_devices++;
|
|
}
|
|
return fs_devices;
|
|
error:
|
|
free_fs_devices(fs_devices);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
|
|
struct btrfs_device **latest_dev)
|
|
{
|
|
struct btrfs_device *device, *next;
|
|
|
|
/* This is the initialized path, it is safe to release the devices. */
|
|
list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
|
|
if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
|
|
if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
|
|
&device->dev_state) &&
|
|
!test_bit(BTRFS_DEV_STATE_MISSING,
|
|
&device->dev_state) &&
|
|
(!*latest_dev ||
|
|
device->generation > (*latest_dev)->generation)) {
|
|
*latest_dev = device;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
|
|
* in btrfs_init_dev_replace() so just continue.
|
|
*/
|
|
if (device->devid == BTRFS_DEV_REPLACE_DEVID)
|
|
continue;
|
|
|
|
if (device->bdev) {
|
|
blkdev_put(device->bdev, device->holder);
|
|
device->bdev = NULL;
|
|
fs_devices->open_devices--;
|
|
}
|
|
if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
|
|
list_del_init(&device->dev_alloc_list);
|
|
clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
|
|
fs_devices->rw_devices--;
|
|
}
|
|
list_del_init(&device->dev_list);
|
|
fs_devices->num_devices--;
|
|
btrfs_free_device(device);
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* After we have read the system tree and know devids belonging to this
|
|
* filesystem, remove the device which does not belong there.
|
|
*/
|
|
void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
|
|
{
|
|
struct btrfs_device *latest_dev = NULL;
|
|
struct btrfs_fs_devices *seed_dev;
|
|
|
|
mutex_lock(&uuid_mutex);
|
|
__btrfs_free_extra_devids(fs_devices, &latest_dev);
|
|
|
|
list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
|
|
__btrfs_free_extra_devids(seed_dev, &latest_dev);
|
|
|
|
fs_devices->latest_dev = latest_dev;
|
|
|
|
mutex_unlock(&uuid_mutex);
|
|
}
|
|
|
|
static void btrfs_close_bdev(struct btrfs_device *device)
|
|
{
|
|
if (!device->bdev)
|
|
return;
|
|
|
|
if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
|
|
sync_blockdev(device->bdev);
|
|
invalidate_bdev(device->bdev);
|
|
}
|
|
|
|
blkdev_put(device->bdev, device->holder);
|
|
}
|
|
|
|
static void btrfs_close_one_device(struct btrfs_device *device)
|
|
{
|
|
struct btrfs_fs_devices *fs_devices = device->fs_devices;
|
|
|
|
if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
|
|
device->devid != BTRFS_DEV_REPLACE_DEVID) {
|
|
list_del_init(&device->dev_alloc_list);
|
|
fs_devices->rw_devices--;
|
|
}
|
|
|
|
if (device->devid == BTRFS_DEV_REPLACE_DEVID)
|
|
clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
|
|
|
|
if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
|
|
clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
|
|
fs_devices->missing_devices--;
|
|
}
|
|
|
|
btrfs_close_bdev(device);
|
|
if (device->bdev) {
|
|
fs_devices->open_devices--;
|
|
device->bdev = NULL;
|
|
}
|
|
clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
|
|
btrfs_destroy_dev_zone_info(device);
|
|
|
|
device->fs_info = NULL;
|
|
atomic_set(&device->dev_stats_ccnt, 0);
|
|
extent_io_tree_release(&device->alloc_state);
|
|
|
|
/*
|
|
* Reset the flush error record. We might have a transient flush error
|
|
* in this mount, and if so we aborted the current transaction and set
|
|
* the fs to an error state, guaranteeing no super blocks can be further
|
|
* committed. However that error might be transient and if we unmount the
|
|
* filesystem and mount it again, we should allow the mount to succeed
|
|
* (btrfs_check_rw_degradable() should not fail) - if after mounting the
|
|
* filesystem again we still get flush errors, then we will again abort
|
|
* any transaction and set the error state, guaranteeing no commits of
|
|
* unsafe super blocks.
|
|
*/
|
|
device->last_flush_error = 0;
|
|
|
|
/* Verify the device is back in a pristine state */
|
|
WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
|
|
WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
|
|
WARN_ON(!list_empty(&device->dev_alloc_list));
|
|
WARN_ON(!list_empty(&device->post_commit_list));
|
|
}
|
|
|
|
static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
|
|
{
|
|
struct btrfs_device *device, *tmp;
|
|
|
|
lockdep_assert_held(&uuid_mutex);
|
|
|
|
if (--fs_devices->opened > 0)
|
|
return;
|
|
|
|
list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
|
|
btrfs_close_one_device(device);
|
|
|
|
WARN_ON(fs_devices->open_devices);
|
|
WARN_ON(fs_devices->rw_devices);
|
|
fs_devices->opened = 0;
|
|
fs_devices->seeding = false;
|
|
fs_devices->fs_info = NULL;
|
|
}
|
|
|
|
void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
|
|
{
|
|
LIST_HEAD(list);
|
|
struct btrfs_fs_devices *tmp;
|
|
|
|
mutex_lock(&uuid_mutex);
|
|
close_fs_devices(fs_devices);
|
|
if (!fs_devices->opened) {
|
|
list_splice_init(&fs_devices->seed_list, &list);
|
|
|
|
/*
|
|
* If the struct btrfs_fs_devices is not assembled with any
|
|
* other device, it can be re-initialized during the next mount
|
|
* without the needing device-scan step. Therefore, it can be
|
|
* fully freed.
|
|
*/
|
|
if (fs_devices->num_devices == 1) {
|
|
list_del(&fs_devices->fs_list);
|
|
free_fs_devices(fs_devices);
|
|
}
|
|
}
|
|
|
|
|
|
list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
|
|
close_fs_devices(fs_devices);
|
|
list_del(&fs_devices->seed_list);
|
|
free_fs_devices(fs_devices);
|
|
}
|
|
mutex_unlock(&uuid_mutex);
|
|
}
|
|
|
|
static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
|
|
blk_mode_t flags, void *holder)
|
|
{
|
|
struct btrfs_device *device;
|
|
struct btrfs_device *latest_dev = NULL;
|
|
struct btrfs_device *tmp_device;
|
|
|
|
list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
|
|
dev_list) {
|
|
int ret;
|
|
|
|
ret = btrfs_open_one_device(fs_devices, device, flags, holder);
|
|
if (ret == 0 &&
|
|
(!latest_dev || device->generation > latest_dev->generation)) {
|
|
latest_dev = device;
|
|
} else if (ret == -ENODATA) {
|
|
fs_devices->num_devices--;
|
|
list_del(&device->dev_list);
|
|
btrfs_free_device(device);
|
|
}
|
|
}
|
|
if (fs_devices->open_devices == 0)
|
|
return -EINVAL;
|
|
|
|
fs_devices->opened = 1;
|
|
fs_devices->latest_dev = latest_dev;
|
|
fs_devices->total_rw_bytes = 0;
|
|
fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
|
|
fs_devices->read_policy = BTRFS_READ_POLICY_PID;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int devid_cmp(void *priv, const struct list_head *a,
|
|
const struct list_head *b)
|
|
{
|
|
const struct btrfs_device *dev1, *dev2;
|
|
|
|
dev1 = list_entry(a, struct btrfs_device, dev_list);
|
|
dev2 = list_entry(b, struct btrfs_device, dev_list);
|
|
|
|
if (dev1->devid < dev2->devid)
|
|
return -1;
|
|
else if (dev1->devid > dev2->devid)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
|
|
blk_mode_t flags, void *holder)
|
|
{
|
|
int ret;
|
|
|
|
lockdep_assert_held(&uuid_mutex);
|
|
/*
|
|
* The device_list_mutex cannot be taken here in case opening the
|
|
* underlying device takes further locks like open_mutex.
|
|
*
|
|
* We also don't need the lock here as this is called during mount and
|
|
* exclusion is provided by uuid_mutex
|
|
*/
|
|
|
|
if (fs_devices->opened) {
|
|
fs_devices->opened++;
|
|
ret = 0;
|
|
} else {
|
|
list_sort(NULL, &fs_devices->devices, devid_cmp);
|
|
ret = open_fs_devices(fs_devices, flags, holder);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void btrfs_release_disk_super(struct btrfs_super_block *super)
|
|
{
|
|
struct page *page = virt_to_page(super);
|
|
|
|
put_page(page);
|
|
}
|
|
|
|
static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
|
|
u64 bytenr, u64 bytenr_orig)
|
|
{
|
|
struct btrfs_super_block *disk_super;
|
|
struct page *page;
|
|
void *p;
|
|
pgoff_t index;
|
|
|
|
/* make sure our super fits in the device */
|
|
if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
/* make sure our super fits in the page */
|
|
if (sizeof(*disk_super) > PAGE_SIZE)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
/* make sure our super doesn't straddle pages on disk */
|
|
index = bytenr >> PAGE_SHIFT;
|
|
if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
/* pull in the page with our super */
|
|
page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
|
|
|
|
if (IS_ERR(page))
|
|
return ERR_CAST(page);
|
|
|
|
p = page_address(page);
|
|
|
|
/* align our pointer to the offset of the super block */
|
|
disk_super = p + offset_in_page(bytenr);
|
|
|
|
if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
|
|
btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
|
|
btrfs_release_disk_super(p);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
|
|
disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
|
|
|
|
return disk_super;
|
|
}
|
|
|
|
int btrfs_forget_devices(dev_t devt)
|
|
{
|
|
int ret;
|
|
|
|
mutex_lock(&uuid_mutex);
|
|
ret = btrfs_free_stale_devices(devt, NULL);
|
|
mutex_unlock(&uuid_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Look for a btrfs signature on a device. This may be called out of the mount path
|
|
* and we are not allowed to call set_blocksize during the scan. The superblock
|
|
* is read via pagecache
|
|
*/
|
|
struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags)
|
|
{
|
|
struct btrfs_super_block *disk_super;
|
|
bool new_device_added = false;
|
|
struct btrfs_device *device = NULL;
|
|
struct block_device *bdev;
|
|
u64 bytenr, bytenr_orig;
|
|
int ret;
|
|
|
|
lockdep_assert_held(&uuid_mutex);
|
|
|
|
/*
|
|
* we would like to check all the supers, but that would make
|
|
* a btrfs mount succeed after a mkfs from a different FS.
|
|
* So, we need to add a special mount option to scan for
|
|
* later supers, using BTRFS_SUPER_MIRROR_MAX instead
|
|
*/
|
|
|
|
/*
|
|
* Avoid an exclusive open here, as the systemd-udev may initiate the
|
|
* device scan which may race with the user's mount or mkfs command,
|
|
* resulting in failure.
|
|
* Since the device scan is solely for reading purposes, there is no
|
|
* need for an exclusive open. Additionally, the devices are read again
|
|
* during the mount process. It is ok to get some inconsistent
|
|
* values temporarily, as the device paths of the fsid are the only
|
|
* required information for assembling the volume.
|
|
*/
|
|
bdev = blkdev_get_by_path(path, flags, NULL, NULL);
|
|
if (IS_ERR(bdev))
|
|
return ERR_CAST(bdev);
|
|
|
|
bytenr_orig = btrfs_sb_offset(0);
|
|
ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
|
|
if (ret) {
|
|
device = ERR_PTR(ret);
|
|
goto error_bdev_put;
|
|
}
|
|
|
|
disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
|
|
if (IS_ERR(disk_super)) {
|
|
device = ERR_CAST(disk_super);
|
|
goto error_bdev_put;
|
|
}
|
|
|
|
device = device_list_add(path, disk_super, &new_device_added);
|
|
if (!IS_ERR(device) && new_device_added)
|
|
btrfs_free_stale_devices(device->devt, device);
|
|
|
|
btrfs_release_disk_super(disk_super);
|
|
|
|
error_bdev_put:
|
|
blkdev_put(bdev, NULL);
|
|
|
|
return device;
|
|
}
|
|
|
|
/*
|
|
* Try to find a chunk that intersects [start, start + len] range and when one
|
|
* such is found, record the end of it in *start
|
|
*/
|
|
static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
|
|
u64 len)
|
|
{
|
|
u64 physical_start, physical_end;
|
|
|
|
lockdep_assert_held(&device->fs_info->chunk_mutex);
|
|
|
|
if (!find_first_extent_bit(&device->alloc_state, *start,
|
|
&physical_start, &physical_end,
|
|
CHUNK_ALLOCATED, NULL)) {
|
|
|
|
if (in_range(physical_start, *start, len) ||
|
|
in_range(*start, physical_start,
|
|
physical_end - physical_start)) {
|
|
*start = physical_end + 1;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
|
|
{
|
|
switch (device->fs_devices->chunk_alloc_policy) {
|
|
case BTRFS_CHUNK_ALLOC_REGULAR:
|
|
return max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
|
|
case BTRFS_CHUNK_ALLOC_ZONED:
|
|
/*
|
|
* We don't care about the starting region like regular
|
|
* allocator, because we anyway use/reserve the first two zones
|
|
* for superblock logging.
|
|
*/
|
|
return ALIGN(start, device->zone_info->zone_size);
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
|
|
u64 *hole_start, u64 *hole_size,
|
|
u64 num_bytes)
|
|
{
|
|
u64 zone_size = device->zone_info->zone_size;
|
|
u64 pos;
|
|
int ret;
|
|
bool changed = false;
|
|
|
|
ASSERT(IS_ALIGNED(*hole_start, zone_size));
|
|
|
|
while (*hole_size > 0) {
|
|
pos = btrfs_find_allocatable_zones(device, *hole_start,
|
|
*hole_start + *hole_size,
|
|
num_bytes);
|
|
if (pos != *hole_start) {
|
|
*hole_size = *hole_start + *hole_size - pos;
|
|
*hole_start = pos;
|
|
changed = true;
|
|
if (*hole_size < num_bytes)
|
|
break;
|
|
}
|
|
|
|
ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
|
|
|
|
/* Range is ensured to be empty */
|
|
if (!ret)
|
|
return changed;
|
|
|
|
/* Given hole range was invalid (outside of device) */
|
|
if (ret == -ERANGE) {
|
|
*hole_start += *hole_size;
|
|
*hole_size = 0;
|
|
return true;
|
|
}
|
|
|
|
*hole_start += zone_size;
|
|
*hole_size -= zone_size;
|
|
changed = true;
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
/*
|
|
* Check if specified hole is suitable for allocation.
|
|
*
|
|
* @device: the device which we have the hole
|
|
* @hole_start: starting position of the hole
|
|
* @hole_size: the size of the hole
|
|
* @num_bytes: the size of the free space that we need
|
|
*
|
|
* This function may modify @hole_start and @hole_size to reflect the suitable
|
|
* position for allocation. Returns 1 if hole position is updated, 0 otherwise.
|
|
*/
|
|
static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
|
|
u64 *hole_size, u64 num_bytes)
|
|
{
|
|
bool changed = false;
|
|
u64 hole_end = *hole_start + *hole_size;
|
|
|
|
for (;;) {
|
|
/*
|
|
* Check before we set max_hole_start, otherwise we could end up
|
|
* sending back this offset anyway.
|
|
*/
|
|
if (contains_pending_extent(device, hole_start, *hole_size)) {
|
|
if (hole_end >= *hole_start)
|
|
*hole_size = hole_end - *hole_start;
|
|
else
|
|
*hole_size = 0;
|
|
changed = true;
|
|
}
|
|
|
|
switch (device->fs_devices->chunk_alloc_policy) {
|
|
case BTRFS_CHUNK_ALLOC_REGULAR:
|
|
/* No extra check */
|
|
break;
|
|
case BTRFS_CHUNK_ALLOC_ZONED:
|
|
if (dev_extent_hole_check_zoned(device, hole_start,
|
|
hole_size, num_bytes)) {
|
|
changed = true;
|
|
/*
|
|
* The changed hole can contain pending extent.
|
|
* Loop again to check that.
|
|
*/
|
|
continue;
|
|
}
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
/*
|
|
* Find free space in the specified device.
|
|
*
|
|
* @device: the device which we search the free space in
|
|
* @num_bytes: the size of the free space that we need
|
|
* @search_start: the position from which to begin the search
|
|
* @start: store the start of the free space.
|
|
* @len: the size of the free space. that we find, or the size
|
|
* of the max free space if we don't find suitable free space
|
|
*
|
|
* This does a pretty simple search, the expectation is that it is called very
|
|
* infrequently and that a given device has a small number of extents.
|
|
*
|
|
* @start is used to store the start of the free space if we find. But if we
|
|
* don't find suitable free space, it will be used to store the start position
|
|
* of the max free space.
|
|
*
|
|
* @len is used to store the size of the free space that we find.
|
|
* But if we don't find suitable free space, it is used to store the size of
|
|
* the max free space.
|
|
*
|
|
* NOTE: This function will search *commit* root of device tree, and does extra
|
|
* check to ensure dev extents are not double allocated.
|
|
* This makes the function safe to allocate dev extents but may not report
|
|
* correct usable device space, as device extent freed in current transaction
|
|
* is not reported as available.
|
|
*/
|
|
static int find_free_dev_extent_start(struct btrfs_device *device,
|
|
u64 num_bytes, u64 search_start, u64 *start,
|
|
u64 *len)
|
|
{
|
|
struct btrfs_fs_info *fs_info = device->fs_info;
|
|
struct btrfs_root *root = fs_info->dev_root;
|
|
struct btrfs_key key;
|
|
struct btrfs_dev_extent *dev_extent;
|
|
struct btrfs_path *path;
|
|
u64 hole_size;
|
|
u64 max_hole_start;
|
|
u64 max_hole_size;
|
|
u64 extent_end;
|
|
u64 search_end = device->total_bytes;
|
|
int ret;
|
|
int slot;
|
|
struct extent_buffer *l;
|
|
|
|
search_start = dev_extent_search_start(device, search_start);
|
|
|
|
WARN_ON(device->zone_info &&
|
|
!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
max_hole_start = search_start;
|
|
max_hole_size = 0;
|
|
|
|
again:
|
|
if (search_start >= search_end ||
|
|
test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
|
|
ret = -ENOSPC;
|
|
goto out;
|
|
}
|
|
|
|
path->reada = READA_FORWARD;
|
|
path->search_commit_root = 1;
|
|
path->skip_locking = 1;
|
|
|
|
key.objectid = device->devid;
|
|
key.offset = search_start;
|
|
key.type = BTRFS_DEV_EXTENT_KEY;
|
|
|
|
ret = btrfs_search_backwards(root, &key, path);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
while (search_start < search_end) {
|
|
l = path->nodes[0];
|
|
slot = path->slots[0];
|
|
if (slot >= btrfs_header_nritems(l)) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret == 0)
|
|
continue;
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
break;
|
|
}
|
|
btrfs_item_key_to_cpu(l, &key, slot);
|
|
|
|
if (key.objectid < device->devid)
|
|
goto next;
|
|
|
|
if (key.objectid > device->devid)
|
|
break;
|
|
|
|
if (key.type != BTRFS_DEV_EXTENT_KEY)
|
|
goto next;
|
|
|
|
if (key.offset > search_end)
|
|
break;
|
|
|
|
if (key.offset > search_start) {
|
|
hole_size = key.offset - search_start;
|
|
dev_extent_hole_check(device, &search_start, &hole_size,
|
|
num_bytes);
|
|
|
|
if (hole_size > max_hole_size) {
|
|
max_hole_start = search_start;
|
|
max_hole_size = hole_size;
|
|
}
|
|
|
|
/*
|
|
* If this free space is greater than which we need,
|
|
* it must be the max free space that we have found
|
|
* until now, so max_hole_start must point to the start
|
|
* of this free space and the length of this free space
|
|
* is stored in max_hole_size. Thus, we return
|
|
* max_hole_start and max_hole_size and go back to the
|
|
* caller.
|
|
*/
|
|
if (hole_size >= num_bytes) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
|
|
extent_end = key.offset + btrfs_dev_extent_length(l,
|
|
dev_extent);
|
|
if (extent_end > search_start)
|
|
search_start = extent_end;
|
|
next:
|
|
path->slots[0]++;
|
|
cond_resched();
|
|
}
|
|
|
|
/*
|
|
* At this point, search_start should be the end of
|
|
* allocated dev extents, and when shrinking the device,
|
|
* search_end may be smaller than search_start.
|
|
*/
|
|
if (search_end > search_start) {
|
|
hole_size = search_end - search_start;
|
|
if (dev_extent_hole_check(device, &search_start, &hole_size,
|
|
num_bytes)) {
|
|
btrfs_release_path(path);
|
|
goto again;
|
|
}
|
|
|
|
if (hole_size > max_hole_size) {
|
|
max_hole_start = search_start;
|
|
max_hole_size = hole_size;
|
|
}
|
|
}
|
|
|
|
/* See above. */
|
|
if (max_hole_size < num_bytes)
|
|
ret = -ENOSPC;
|
|
else
|
|
ret = 0;
|
|
|
|
ASSERT(max_hole_start + max_hole_size <= search_end);
|
|
out:
|
|
btrfs_free_path(path);
|
|
*start = max_hole_start;
|
|
if (len)
|
|
*len = max_hole_size;
|
|
return ret;
|
|
}
|
|
|
|
int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
|
|
u64 *start, u64 *len)
|
|
{
|
|
/* FIXME use last free of some kind */
|
|
return find_free_dev_extent_start(device, num_bytes, 0, start, len);
|
|
}
|
|
|
|
static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_device *device,
|
|
u64 start, u64 *dev_extent_len)
|
|
{
|
|
struct btrfs_fs_info *fs_info = device->fs_info;
|
|
struct btrfs_root *root = fs_info->dev_root;
|
|
int ret;
|
|
struct btrfs_path *path;
|
|
struct btrfs_key key;
|
|
struct btrfs_key found_key;
|
|
struct extent_buffer *leaf = NULL;
|
|
struct btrfs_dev_extent *extent = NULL;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
key.objectid = device->devid;
|
|
key.offset = start;
|
|
key.type = BTRFS_DEV_EXTENT_KEY;
|
|
again:
|
|
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
|
|
if (ret > 0) {
|
|
ret = btrfs_previous_item(root, path, key.objectid,
|
|
BTRFS_DEV_EXTENT_KEY);
|
|
if (ret)
|
|
goto out;
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
extent = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_dev_extent);
|
|
BUG_ON(found_key.offset > start || found_key.offset +
|
|
btrfs_dev_extent_length(leaf, extent) < start);
|
|
key = found_key;
|
|
btrfs_release_path(path);
|
|
goto again;
|
|
} else if (ret == 0) {
|
|
leaf = path->nodes[0];
|
|
extent = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_dev_extent);
|
|
} else {
|
|
goto out;
|
|
}
|
|
|
|
*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
|
|
|
|
ret = btrfs_del_item(trans, root, path);
|
|
if (ret == 0)
|
|
set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct extent_map_tree *em_tree;
|
|
struct extent_map *em;
|
|
struct rb_node *n;
|
|
u64 ret = 0;
|
|
|
|
em_tree = &fs_info->mapping_tree;
|
|
read_lock(&em_tree->lock);
|
|
n = rb_last(&em_tree->map.rb_root);
|
|
if (n) {
|
|
em = rb_entry(n, struct extent_map, rb_node);
|
|
ret = em->start + em->len;
|
|
}
|
|
read_unlock(&em_tree->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
|
|
u64 *devid_ret)
|
|
{
|
|
int ret;
|
|
struct btrfs_key key;
|
|
struct btrfs_key found_key;
|
|
struct btrfs_path *path;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
|
|
key.type = BTRFS_DEV_ITEM_KEY;
|
|
key.offset = (u64)-1;
|
|
|
|
ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
if (ret == 0) {
|
|
/* Corruption */
|
|
btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
|
|
ret = -EUCLEAN;
|
|
goto error;
|
|
}
|
|
|
|
ret = btrfs_previous_item(fs_info->chunk_root, path,
|
|
BTRFS_DEV_ITEMS_OBJECTID,
|
|
BTRFS_DEV_ITEM_KEY);
|
|
if (ret) {
|
|
*devid_ret = 1;
|
|
} else {
|
|
btrfs_item_key_to_cpu(path->nodes[0], &found_key,
|
|
path->slots[0]);
|
|
*devid_ret = found_key.offset + 1;
|
|
}
|
|
ret = 0;
|
|
error:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* the device information is stored in the chunk root
|
|
* the btrfs_device struct should be fully filled in
|
|
*/
|
|
static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
|
|
struct btrfs_device *device)
|
|
{
|
|
int ret;
|
|
struct btrfs_path *path;
|
|
struct btrfs_dev_item *dev_item;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
unsigned long ptr;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
|
|
key.type = BTRFS_DEV_ITEM_KEY;
|
|
key.offset = device->devid;
|
|
|
|
btrfs_reserve_chunk_metadata(trans, true);
|
|
ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
|
|
&key, sizeof(*dev_item));
|
|
btrfs_trans_release_chunk_metadata(trans);
|
|
if (ret)
|
|
goto out;
|
|
|
|
leaf = path->nodes[0];
|
|
dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
|
|
|
|
btrfs_set_device_id(leaf, dev_item, device->devid);
|
|
btrfs_set_device_generation(leaf, dev_item, 0);
|
|
btrfs_set_device_type(leaf, dev_item, device->type);
|
|
btrfs_set_device_io_align(leaf, dev_item, device->io_align);
|
|
btrfs_set_device_io_width(leaf, dev_item, device->io_width);
|
|
btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
|
|
btrfs_set_device_total_bytes(leaf, dev_item,
|
|
btrfs_device_get_disk_total_bytes(device));
|
|
btrfs_set_device_bytes_used(leaf, dev_item,
|
|
btrfs_device_get_bytes_used(device));
|
|
btrfs_set_device_group(leaf, dev_item, 0);
|
|
btrfs_set_device_seek_speed(leaf, dev_item, 0);
|
|
btrfs_set_device_bandwidth(leaf, dev_item, 0);
|
|
btrfs_set_device_start_offset(leaf, dev_item, 0);
|
|
|
|
ptr = btrfs_device_uuid(dev_item);
|
|
write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
|
|
ptr = btrfs_device_fsid(dev_item);
|
|
write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
|
|
ptr, BTRFS_FSID_SIZE);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
|
|
ret = 0;
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Function to update ctime/mtime for a given device path.
|
|
* Mainly used for ctime/mtime based probe like libblkid.
|
|
*
|
|
* We don't care about errors here, this is just to be kind to userspace.
|
|
*/
|
|
static void update_dev_time(const char *device_path)
|
|
{
|
|
struct path path;
|
|
struct timespec64 now;
|
|
int ret;
|
|
|
|
ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
|
|
if (ret)
|
|
return;
|
|
|
|
now = current_time(d_inode(path.dentry));
|
|
inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME | S_VERSION);
|
|
path_put(&path);
|
|
}
|
|
|
|
static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
|
|
struct btrfs_device *device)
|
|
{
|
|
struct btrfs_root *root = device->fs_info->chunk_root;
|
|
int ret;
|
|
struct btrfs_path *path;
|
|
struct btrfs_key key;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
|
|
key.type = BTRFS_DEV_ITEM_KEY;
|
|
key.offset = device->devid;
|
|
|
|
btrfs_reserve_chunk_metadata(trans, false);
|
|
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
|
|
btrfs_trans_release_chunk_metadata(trans);
|
|
if (ret) {
|
|
if (ret > 0)
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
ret = btrfs_del_item(trans, root, path);
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Verify that @num_devices satisfies the RAID profile constraints in the whole
|
|
* filesystem. It's up to the caller to adjust that number regarding eg. device
|
|
* replace.
|
|
*/
|
|
static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
|
|
u64 num_devices)
|
|
{
|
|
u64 all_avail;
|
|
unsigned seq;
|
|
int i;
|
|
|
|
do {
|
|
seq = read_seqbegin(&fs_info->profiles_lock);
|
|
|
|
all_avail = fs_info->avail_data_alloc_bits |
|
|
fs_info->avail_system_alloc_bits |
|
|
fs_info->avail_metadata_alloc_bits;
|
|
} while (read_seqretry(&fs_info->profiles_lock, seq));
|
|
|
|
for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
|
|
if (!(all_avail & btrfs_raid_array[i].bg_flag))
|
|
continue;
|
|
|
|
if (num_devices < btrfs_raid_array[i].devs_min)
|
|
return btrfs_raid_array[i].mindev_error;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct btrfs_device * btrfs_find_next_active_device(
|
|
struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
|
|
{
|
|
struct btrfs_device *next_device;
|
|
|
|
list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
|
|
if (next_device != device &&
|
|
!test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
|
|
&& next_device->bdev)
|
|
return next_device;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Helper function to check if the given device is part of s_bdev / latest_dev
|
|
* and replace it with the provided or the next active device, in the context
|
|
* where this function called, there should be always be another device (or
|
|
* this_dev) which is active.
|
|
*/
|
|
void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
|
|
struct btrfs_device *next_device)
|
|
{
|
|
struct btrfs_fs_info *fs_info = device->fs_info;
|
|
|
|
if (!next_device)
|
|
next_device = btrfs_find_next_active_device(fs_info->fs_devices,
|
|
device);
|
|
ASSERT(next_device);
|
|
|
|
if (fs_info->sb->s_bdev &&
|
|
(fs_info->sb->s_bdev == device->bdev))
|
|
fs_info->sb->s_bdev = next_device->bdev;
|
|
|
|
if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
|
|
fs_info->fs_devices->latest_dev = next_device;
|
|
}
|
|
|
|
/*
|
|
* Return btrfs_fs_devices::num_devices excluding the device that's being
|
|
* currently replaced.
|
|
*/
|
|
static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
|
|
{
|
|
u64 num_devices = fs_info->fs_devices->num_devices;
|
|
|
|
down_read(&fs_info->dev_replace.rwsem);
|
|
if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
|
|
ASSERT(num_devices > 1);
|
|
num_devices--;
|
|
}
|
|
up_read(&fs_info->dev_replace.rwsem);
|
|
|
|
return num_devices;
|
|
}
|
|
|
|
static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
|
|
struct block_device *bdev, int copy_num)
|
|
{
|
|
struct btrfs_super_block *disk_super;
|
|
const size_t len = sizeof(disk_super->magic);
|
|
const u64 bytenr = btrfs_sb_offset(copy_num);
|
|
int ret;
|
|
|
|
disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
|
|
if (IS_ERR(disk_super))
|
|
return;
|
|
|
|
memset(&disk_super->magic, 0, len);
|
|
folio_mark_dirty(virt_to_folio(disk_super));
|
|
btrfs_release_disk_super(disk_super);
|
|
|
|
ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
|
|
if (ret)
|
|
btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
|
|
copy_num, ret);
|
|
}
|
|
|
|
void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
|
|
struct block_device *bdev,
|
|
const char *device_path)
|
|
{
|
|
int copy_num;
|
|
|
|
if (!bdev)
|
|
return;
|
|
|
|
for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
|
|
if (bdev_is_zoned(bdev))
|
|
btrfs_reset_sb_log_zones(bdev, copy_num);
|
|
else
|
|
btrfs_scratch_superblock(fs_info, bdev, copy_num);
|
|
}
|
|
|
|
/* Notify udev that device has changed */
|
|
btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
|
|
|
|
/* Update ctime/mtime for device path for libblkid */
|
|
update_dev_time(device_path);
|
|
}
|
|
|
|
int btrfs_rm_device(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_dev_lookup_args *args,
|
|
struct block_device **bdev, void **holder)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_device *device;
|
|
struct btrfs_fs_devices *cur_devices;
|
|
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
|
|
u64 num_devices;
|
|
int ret = 0;
|
|
|
|
if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
|
|
btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* The device list in fs_devices is accessed without locks (neither
|
|
* uuid_mutex nor device_list_mutex) as it won't change on a mounted
|
|
* filesystem and another device rm cannot run.
|
|
*/
|
|
num_devices = btrfs_num_devices(fs_info);
|
|
|
|
ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
device = btrfs_find_device(fs_info->fs_devices, args);
|
|
if (!device) {
|
|
if (args->missing)
|
|
ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
|
|
else
|
|
ret = -ENOENT;
|
|
return ret;
|
|
}
|
|
|
|
if (btrfs_pinned_by_swapfile(fs_info, device)) {
|
|
btrfs_warn_in_rcu(fs_info,
|
|
"cannot remove device %s (devid %llu) due to active swapfile",
|
|
btrfs_dev_name(device), device->devid);
|
|
return -ETXTBSY;
|
|
}
|
|
|
|
if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
|
|
return BTRFS_ERROR_DEV_TGT_REPLACE;
|
|
|
|
if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
|
|
fs_info->fs_devices->rw_devices == 1)
|
|
return BTRFS_ERROR_DEV_ONLY_WRITABLE;
|
|
|
|
if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
|
|
mutex_lock(&fs_info->chunk_mutex);
|
|
list_del_init(&device->dev_alloc_list);
|
|
device->fs_devices->rw_devices--;
|
|
mutex_unlock(&fs_info->chunk_mutex);
|
|
}
|
|
|
|
ret = btrfs_shrink_device(device, 0);
|
|
if (ret)
|
|
goto error_undo;
|
|
|
|
trans = btrfs_start_transaction(fs_info->chunk_root, 0);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto error_undo;
|
|
}
|
|
|
|
ret = btrfs_rm_dev_item(trans, device);
|
|
if (ret) {
|
|
/* Any error in dev item removal is critical */
|
|
btrfs_crit(fs_info,
|
|
"failed to remove device item for devid %llu: %d",
|
|
device->devid, ret);
|
|
btrfs_abort_transaction(trans, ret);
|
|
btrfs_end_transaction(trans);
|
|
return ret;
|
|
}
|
|
|
|
clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
|
|
btrfs_scrub_cancel_dev(device);
|
|
|
|
/*
|
|
* the device list mutex makes sure that we don't change
|
|
* the device list while someone else is writing out all
|
|
* the device supers. Whoever is writing all supers, should
|
|
* lock the device list mutex before getting the number of
|
|
* devices in the super block (super_copy). Conversely,
|
|
* whoever updates the number of devices in the super block
|
|
* (super_copy) should hold the device list mutex.
|
|
*/
|
|
|
|
/*
|
|
* In normal cases the cur_devices == fs_devices. But in case
|
|
* of deleting a seed device, the cur_devices should point to
|
|
* its own fs_devices listed under the fs_devices->seed_list.
|
|
*/
|
|
cur_devices = device->fs_devices;
|
|
mutex_lock(&fs_devices->device_list_mutex);
|
|
list_del_rcu(&device->dev_list);
|
|
|
|
cur_devices->num_devices--;
|
|
cur_devices->total_devices--;
|
|
/* Update total_devices of the parent fs_devices if it's seed */
|
|
if (cur_devices != fs_devices)
|
|
fs_devices->total_devices--;
|
|
|
|
if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
|
|
cur_devices->missing_devices--;
|
|
|
|
btrfs_assign_next_active_device(device, NULL);
|
|
|
|
if (device->bdev) {
|
|
cur_devices->open_devices--;
|
|
/* remove sysfs entry */
|
|
btrfs_sysfs_remove_device(device);
|
|
}
|
|
|
|
num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
|
|
btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
|
|
mutex_unlock(&fs_devices->device_list_mutex);
|
|
|
|
/*
|
|
* At this point, the device is zero sized and detached from the
|
|
* devices list. All that's left is to zero out the old supers and
|
|
* free the device.
|
|
*
|
|
* We cannot call btrfs_close_bdev() here because we're holding the sb
|
|
* write lock, and blkdev_put() will pull in the ->open_mutex on the
|
|
* block device and it's dependencies. Instead just flush the device
|
|
* and let the caller do the final blkdev_put.
|
|
*/
|
|
if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
|
|
btrfs_scratch_superblocks(fs_info, device->bdev,
|
|
device->name->str);
|
|
if (device->bdev) {
|
|
sync_blockdev(device->bdev);
|
|
invalidate_bdev(device->bdev);
|
|
}
|
|
}
|
|
|
|
*bdev = device->bdev;
|
|
*holder = device->holder;
|
|
synchronize_rcu();
|
|
btrfs_free_device(device);
|
|
|
|
/*
|
|
* This can happen if cur_devices is the private seed devices list. We
|
|
* cannot call close_fs_devices() here because it expects the uuid_mutex
|
|
* to be held, but in fact we don't need that for the private
|
|
* seed_devices, we can simply decrement cur_devices->opened and then
|
|
* remove it from our list and free the fs_devices.
|
|
*/
|
|
if (cur_devices->num_devices == 0) {
|
|
list_del_init(&cur_devices->seed_list);
|
|
ASSERT(cur_devices->opened == 1);
|
|
cur_devices->opened--;
|
|
free_fs_devices(cur_devices);
|
|
}
|
|
|
|
ret = btrfs_commit_transaction(trans);
|
|
|
|
return ret;
|
|
|
|
error_undo:
|
|
if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
|
|
mutex_lock(&fs_info->chunk_mutex);
|
|
list_add(&device->dev_alloc_list,
|
|
&fs_devices->alloc_list);
|
|
device->fs_devices->rw_devices++;
|
|
mutex_unlock(&fs_info->chunk_mutex);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
|
|
{
|
|
struct btrfs_fs_devices *fs_devices;
|
|
|
|
lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
|
|
|
|
/*
|
|
* in case of fs with no seed, srcdev->fs_devices will point
|
|
* to fs_devices of fs_info. However when the dev being replaced is
|
|
* a seed dev it will point to the seed's local fs_devices. In short
|
|
* srcdev will have its correct fs_devices in both the cases.
|
|
*/
|
|
fs_devices = srcdev->fs_devices;
|
|
|
|
list_del_rcu(&srcdev->dev_list);
|
|
list_del(&srcdev->dev_alloc_list);
|
|
fs_devices->num_devices--;
|
|
if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
|
|
fs_devices->missing_devices--;
|
|
|
|
if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
|
|
fs_devices->rw_devices--;
|
|
|
|
if (srcdev->bdev)
|
|
fs_devices->open_devices--;
|
|
}
|
|
|
|
void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
|
|
{
|
|
struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
|
|
|
|
mutex_lock(&uuid_mutex);
|
|
|
|
btrfs_close_bdev(srcdev);
|
|
synchronize_rcu();
|
|
btrfs_free_device(srcdev);
|
|
|
|
/* if this is no devs we rather delete the fs_devices */
|
|
if (!fs_devices->num_devices) {
|
|
/*
|
|
* On a mounted FS, num_devices can't be zero unless it's a
|
|
* seed. In case of a seed device being replaced, the replace
|
|
* target added to the sprout FS, so there will be no more
|
|
* device left under the seed FS.
|
|
*/
|
|
ASSERT(fs_devices->seeding);
|
|
|
|
list_del_init(&fs_devices->seed_list);
|
|
close_fs_devices(fs_devices);
|
|
free_fs_devices(fs_devices);
|
|
}
|
|
mutex_unlock(&uuid_mutex);
|
|
}
|
|
|
|
void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
|
|
{
|
|
struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
|
|
|
|
mutex_lock(&fs_devices->device_list_mutex);
|
|
|
|
btrfs_sysfs_remove_device(tgtdev);
|
|
|
|
if (tgtdev->bdev)
|
|
fs_devices->open_devices--;
|
|
|
|
fs_devices->num_devices--;
|
|
|
|
btrfs_assign_next_active_device(tgtdev, NULL);
|
|
|
|
list_del_rcu(&tgtdev->dev_list);
|
|
|
|
mutex_unlock(&fs_devices->device_list_mutex);
|
|
|
|
btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
|
|
tgtdev->name->str);
|
|
|
|
btrfs_close_bdev(tgtdev);
|
|
synchronize_rcu();
|
|
btrfs_free_device(tgtdev);
|
|
}
|
|
|
|
/*
|
|
* Populate args from device at path.
|
|
*
|
|
* @fs_info: the filesystem
|
|
* @args: the args to populate
|
|
* @path: the path to the device
|
|
*
|
|
* This will read the super block of the device at @path and populate @args with
|
|
* the devid, fsid, and uuid. This is meant to be used for ioctls that need to
|
|
* lookup a device to operate on, but need to do it before we take any locks.
|
|
* This properly handles the special case of "missing" that a user may pass in,
|
|
* and does some basic sanity checks. The caller must make sure that @path is
|
|
* properly NUL terminated before calling in, and must call
|
|
* btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
|
|
* uuid buffers.
|
|
*
|
|
* Return: 0 for success, -errno for failure
|
|
*/
|
|
int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_dev_lookup_args *args,
|
|
const char *path)
|
|
{
|
|
struct btrfs_super_block *disk_super;
|
|
struct block_device *bdev;
|
|
int ret;
|
|
|
|
if (!path || !path[0])
|
|
return -EINVAL;
|
|
if (!strcmp(path, "missing")) {
|
|
args->missing = true;
|
|
return 0;
|
|
}
|
|
|
|
args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
|
|
args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
|
|
if (!args->uuid || !args->fsid) {
|
|
btrfs_put_dev_args_from_path(args);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
|
|
&bdev, &disk_super);
|
|
if (ret) {
|
|
btrfs_put_dev_args_from_path(args);
|
|
return ret;
|
|
}
|
|
|
|
args->devid = btrfs_stack_device_id(&disk_super->dev_item);
|
|
memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
|
|
if (btrfs_fs_incompat(fs_info, METADATA_UUID))
|
|
memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
|
|
else
|
|
memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
|
|
btrfs_release_disk_super(disk_super);
|
|
blkdev_put(bdev, NULL);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Only use this jointly with btrfs_get_dev_args_from_path() because we will
|
|
* allocate our ->uuid and ->fsid pointers, everybody else uses local variables
|
|
* that don't need to be freed.
|
|
*/
|
|
void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
|
|
{
|
|
kfree(args->uuid);
|
|
kfree(args->fsid);
|
|
args->uuid = NULL;
|
|
args->fsid = NULL;
|
|
}
|
|
|
|
struct btrfs_device *btrfs_find_device_by_devspec(
|
|
struct btrfs_fs_info *fs_info, u64 devid,
|
|
const char *device_path)
|
|
{
|
|
BTRFS_DEV_LOOKUP_ARGS(args);
|
|
struct btrfs_device *device;
|
|
int ret;
|
|
|
|
if (devid) {
|
|
args.devid = devid;
|
|
device = btrfs_find_device(fs_info->fs_devices, &args);
|
|
if (!device)
|
|
return ERR_PTR(-ENOENT);
|
|
return device;
|
|
}
|
|
|
|
ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
device = btrfs_find_device(fs_info->fs_devices, &args);
|
|
btrfs_put_dev_args_from_path(&args);
|
|
if (!device)
|
|
return ERR_PTR(-ENOENT);
|
|
return device;
|
|
}
|
|
|
|
static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
|
|
struct btrfs_fs_devices *old_devices;
|
|
struct btrfs_fs_devices *seed_devices;
|
|
|
|
lockdep_assert_held(&uuid_mutex);
|
|
if (!fs_devices->seeding)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
/*
|
|
* Private copy of the seed devices, anchored at
|
|
* fs_info->fs_devices->seed_list
|
|
*/
|
|
seed_devices = alloc_fs_devices(NULL, NULL);
|
|
if (IS_ERR(seed_devices))
|
|
return seed_devices;
|
|
|
|
/*
|
|
* It's necessary to retain a copy of the original seed fs_devices in
|
|
* fs_uuids so that filesystems which have been seeded can successfully
|
|
* reference the seed device from open_seed_devices. This also supports
|
|
* multiple fs seed.
|
|
*/
|
|
old_devices = clone_fs_devices(fs_devices);
|
|
if (IS_ERR(old_devices)) {
|
|
kfree(seed_devices);
|
|
return old_devices;
|
|
}
|
|
|
|
list_add(&old_devices->fs_list, &fs_uuids);
|
|
|
|
memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
|
|
seed_devices->opened = 1;
|
|
INIT_LIST_HEAD(&seed_devices->devices);
|
|
INIT_LIST_HEAD(&seed_devices->alloc_list);
|
|
mutex_init(&seed_devices->device_list_mutex);
|
|
|
|
return seed_devices;
|
|
}
|
|
|
|
/*
|
|
* Splice seed devices into the sprout fs_devices.
|
|
* Generate a new fsid for the sprouted read-write filesystem.
|
|
*/
|
|
static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_fs_devices *seed_devices)
|
|
{
|
|
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
|
|
struct btrfs_super_block *disk_super = fs_info->super_copy;
|
|
struct btrfs_device *device;
|
|
u64 super_flags;
|
|
|
|
/*
|
|
* We are updating the fsid, the thread leading to device_list_add()
|
|
* could race, so uuid_mutex is needed.
|
|
*/
|
|
lockdep_assert_held(&uuid_mutex);
|
|
|
|
/*
|
|
* The threads listed below may traverse dev_list but can do that without
|
|
* device_list_mutex:
|
|
* - All device ops and balance - as we are in btrfs_exclop_start.
|
|
* - Various dev_list readers - are using RCU.
|
|
* - btrfs_ioctl_fitrim() - is using RCU.
|
|
*
|
|
* For-read threads as below are using device_list_mutex:
|
|
* - Readonly scrub btrfs_scrub_dev()
|
|
* - Readonly scrub btrfs_scrub_progress()
|
|
* - btrfs_get_dev_stats()
|
|
*/
|
|
lockdep_assert_held(&fs_devices->device_list_mutex);
|
|
|
|
list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
|
|
synchronize_rcu);
|
|
list_for_each_entry(device, &seed_devices->devices, dev_list)
|
|
device->fs_devices = seed_devices;
|
|
|
|
fs_devices->seeding = false;
|
|
fs_devices->num_devices = 0;
|
|
fs_devices->open_devices = 0;
|
|
fs_devices->missing_devices = 0;
|
|
fs_devices->rotating = false;
|
|
list_add(&seed_devices->seed_list, &fs_devices->seed_list);
|
|
|
|
generate_random_uuid(fs_devices->fsid);
|
|
memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
|
|
memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
|
|
|
|
super_flags = btrfs_super_flags(disk_super) &
|
|
~BTRFS_SUPER_FLAG_SEEDING;
|
|
btrfs_set_super_flags(disk_super, super_flags);
|
|
}
|
|
|
|
/*
|
|
* Store the expected generation for seed devices in device items.
|
|
*/
|
|
static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
|
|
{
|
|
BTRFS_DEV_LOOKUP_ARGS(args);
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_root *root = fs_info->chunk_root;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_dev_item *dev_item;
|
|
struct btrfs_device *device;
|
|
struct btrfs_key key;
|
|
u8 fs_uuid[BTRFS_FSID_SIZE];
|
|
u8 dev_uuid[BTRFS_UUID_SIZE];
|
|
int ret;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
|
|
key.offset = 0;
|
|
key.type = BTRFS_DEV_ITEM_KEY;
|
|
|
|
while (1) {
|
|
btrfs_reserve_chunk_metadata(trans, false);
|
|
ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
|
|
btrfs_trans_release_chunk_metadata(trans);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
leaf = path->nodes[0];
|
|
next_slot:
|
|
if (path->slots[0] >= btrfs_header_nritems(leaf)) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret > 0)
|
|
break;
|
|
if (ret < 0)
|
|
goto error;
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
btrfs_release_path(path);
|
|
continue;
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
|
|
key.type != BTRFS_DEV_ITEM_KEY)
|
|
break;
|
|
|
|
dev_item = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_dev_item);
|
|
args.devid = btrfs_device_id(leaf, dev_item);
|
|
read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
|
|
BTRFS_UUID_SIZE);
|
|
read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
|
|
BTRFS_FSID_SIZE);
|
|
args.uuid = dev_uuid;
|
|
args.fsid = fs_uuid;
|
|
device = btrfs_find_device(fs_info->fs_devices, &args);
|
|
BUG_ON(!device); /* Logic error */
|
|
|
|
if (device->fs_devices->seeding) {
|
|
btrfs_set_device_generation(leaf, dev_item,
|
|
device->generation);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
}
|
|
|
|
path->slots[0]++;
|
|
goto next_slot;
|
|
}
|
|
ret = 0;
|
|
error:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
|
|
{
|
|
struct btrfs_root *root = fs_info->dev_root;
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_device *device;
|
|
struct block_device *bdev;
|
|
struct super_block *sb = fs_info->sb;
|
|
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
|
|
struct btrfs_fs_devices *seed_devices = NULL;
|
|
u64 orig_super_total_bytes;
|
|
u64 orig_super_num_devices;
|
|
int ret = 0;
|
|
bool seeding_dev = false;
|
|
bool locked = false;
|
|
|
|
if (sb_rdonly(sb) && !fs_devices->seeding)
|
|
return -EROFS;
|
|
|
|
bdev = blkdev_get_by_path(device_path, BLK_OPEN_WRITE,
|
|
fs_info->bdev_holder, NULL);
|
|
if (IS_ERR(bdev))
|
|
return PTR_ERR(bdev);
|
|
|
|
if (!btrfs_check_device_zone_type(fs_info, bdev)) {
|
|
ret = -EINVAL;
|
|
goto error;
|
|
}
|
|
|
|
if (fs_devices->seeding) {
|
|
seeding_dev = true;
|
|
down_write(&sb->s_umount);
|
|
mutex_lock(&uuid_mutex);
|
|
locked = true;
|
|
}
|
|
|
|
sync_blockdev(bdev);
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
|
|
if (device->bdev == bdev) {
|
|
ret = -EEXIST;
|
|
rcu_read_unlock();
|
|
goto error;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
|
|
if (IS_ERR(device)) {
|
|
/* we can safely leave the fs_devices entry around */
|
|
ret = PTR_ERR(device);
|
|
goto error;
|
|
}
|
|
|
|
device->fs_info = fs_info;
|
|
device->bdev = bdev;
|
|
ret = lookup_bdev(device_path, &device->devt);
|
|
if (ret)
|
|
goto error_free_device;
|
|
|
|
ret = btrfs_get_dev_zone_info(device, false);
|
|
if (ret)
|
|
goto error_free_device;
|
|
|
|
trans = btrfs_start_transaction(root, 0);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto error_free_zone;
|
|
}
|
|
|
|
set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
|
|
device->generation = trans->transid;
|
|
device->io_width = fs_info->sectorsize;
|
|
device->io_align = fs_info->sectorsize;
|
|
device->sector_size = fs_info->sectorsize;
|
|
device->total_bytes =
|
|
round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
|
|
device->disk_total_bytes = device->total_bytes;
|
|
device->commit_total_bytes = device->total_bytes;
|
|
set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
|
|
clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
|
|
device->holder = fs_info->bdev_holder;
|
|
device->dev_stats_valid = 1;
|
|
set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
|
|
|
|
if (seeding_dev) {
|
|
btrfs_clear_sb_rdonly(sb);
|
|
|
|
/* GFP_KERNEL allocation must not be under device_list_mutex */
|
|
seed_devices = btrfs_init_sprout(fs_info);
|
|
if (IS_ERR(seed_devices)) {
|
|
ret = PTR_ERR(seed_devices);
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto error_trans;
|
|
}
|
|
}
|
|
|
|
mutex_lock(&fs_devices->device_list_mutex);
|
|
if (seeding_dev) {
|
|
btrfs_setup_sprout(fs_info, seed_devices);
|
|
btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
|
|
device);
|
|
}
|
|
|
|
device->fs_devices = fs_devices;
|
|
|
|
mutex_lock(&fs_info->chunk_mutex);
|
|
list_add_rcu(&device->dev_list, &fs_devices->devices);
|
|
list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
|
|
fs_devices->num_devices++;
|
|
fs_devices->open_devices++;
|
|
fs_devices->rw_devices++;
|
|
fs_devices->total_devices++;
|
|
fs_devices->total_rw_bytes += device->total_bytes;
|
|
|
|
atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
|
|
|
|
if (!bdev_nonrot(bdev))
|
|
fs_devices->rotating = true;
|
|
|
|
orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
|
|
btrfs_set_super_total_bytes(fs_info->super_copy,
|
|
round_down(orig_super_total_bytes + device->total_bytes,
|
|
fs_info->sectorsize));
|
|
|
|
orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
|
|
btrfs_set_super_num_devices(fs_info->super_copy,
|
|
orig_super_num_devices + 1);
|
|
|
|
/*
|
|
* we've got more storage, clear any full flags on the space
|
|
* infos
|
|
*/
|
|
btrfs_clear_space_info_full(fs_info);
|
|
|
|
mutex_unlock(&fs_info->chunk_mutex);
|
|
|
|
/* Add sysfs device entry */
|
|
btrfs_sysfs_add_device(device);
|
|
|
|
mutex_unlock(&fs_devices->device_list_mutex);
|
|
|
|
if (seeding_dev) {
|
|
mutex_lock(&fs_info->chunk_mutex);
|
|
ret = init_first_rw_device(trans);
|
|
mutex_unlock(&fs_info->chunk_mutex);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto error_sysfs;
|
|
}
|
|
}
|
|
|
|
ret = btrfs_add_dev_item(trans, device);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto error_sysfs;
|
|
}
|
|
|
|
if (seeding_dev) {
|
|
ret = btrfs_finish_sprout(trans);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto error_sysfs;
|
|
}
|
|
|
|
/*
|
|
* fs_devices now represents the newly sprouted filesystem and
|
|
* its fsid has been changed by btrfs_sprout_splice().
|
|
*/
|
|
btrfs_sysfs_update_sprout_fsid(fs_devices);
|
|
}
|
|
|
|
ret = btrfs_commit_transaction(trans);
|
|
|
|
if (seeding_dev) {
|
|
mutex_unlock(&uuid_mutex);
|
|
up_write(&sb->s_umount);
|
|
locked = false;
|
|
|
|
if (ret) /* transaction commit */
|
|
return ret;
|
|
|
|
ret = btrfs_relocate_sys_chunks(fs_info);
|
|
if (ret < 0)
|
|
btrfs_handle_fs_error(fs_info, ret,
|
|
"Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
|
|
trans = btrfs_attach_transaction(root);
|
|
if (IS_ERR(trans)) {
|
|
if (PTR_ERR(trans) == -ENOENT)
|
|
return 0;
|
|
ret = PTR_ERR(trans);
|
|
trans = NULL;
|
|
goto error_sysfs;
|
|
}
|
|
ret = btrfs_commit_transaction(trans);
|
|
}
|
|
|
|
/*
|
|
* Now that we have written a new super block to this device, check all
|
|
* other fs_devices list if device_path alienates any other scanned
|
|
* device.
|
|
* We can ignore the return value as it typically returns -EINVAL and
|
|
* only succeeds if the device was an alien.
|
|
*/
|
|
btrfs_forget_devices(device->devt);
|
|
|
|
/* Update ctime/mtime for blkid or udev */
|
|
update_dev_time(device_path);
|
|
|
|
return ret;
|
|
|
|
error_sysfs:
|
|
btrfs_sysfs_remove_device(device);
|
|
mutex_lock(&fs_info->fs_devices->device_list_mutex);
|
|
mutex_lock(&fs_info->chunk_mutex);
|
|
list_del_rcu(&device->dev_list);
|
|
list_del(&device->dev_alloc_list);
|
|
fs_info->fs_devices->num_devices--;
|
|
fs_info->fs_devices->open_devices--;
|
|
fs_info->fs_devices->rw_devices--;
|
|
fs_info->fs_devices->total_devices--;
|
|
fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
|
|
atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
|
|
btrfs_set_super_total_bytes(fs_info->super_copy,
|
|
orig_super_total_bytes);
|
|
btrfs_set_super_num_devices(fs_info->super_copy,
|
|
orig_super_num_devices);
|
|
mutex_unlock(&fs_info->chunk_mutex);
|
|
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
|
|
error_trans:
|
|
if (seeding_dev)
|
|
btrfs_set_sb_rdonly(sb);
|
|
if (trans)
|
|
btrfs_end_transaction(trans);
|
|
error_free_zone:
|
|
btrfs_destroy_dev_zone_info(device);
|
|
error_free_device:
|
|
btrfs_free_device(device);
|
|
error:
|
|
blkdev_put(bdev, fs_info->bdev_holder);
|
|
if (locked) {
|
|
mutex_unlock(&uuid_mutex);
|
|
up_write(&sb->s_umount);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
|
|
struct btrfs_device *device)
|
|
{
|
|
int ret;
|
|
struct btrfs_path *path;
|
|
struct btrfs_root *root = device->fs_info->chunk_root;
|
|
struct btrfs_dev_item *dev_item;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
|
|
key.type = BTRFS_DEV_ITEM_KEY;
|
|
key.offset = device->devid;
|
|
|
|
ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
if (ret > 0) {
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
|
|
|
|
btrfs_set_device_id(leaf, dev_item, device->devid);
|
|
btrfs_set_device_type(leaf, dev_item, device->type);
|
|
btrfs_set_device_io_align(leaf, dev_item, device->io_align);
|
|
btrfs_set_device_io_width(leaf, dev_item, device->io_width);
|
|
btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
|
|
btrfs_set_device_total_bytes(leaf, dev_item,
|
|
btrfs_device_get_disk_total_bytes(device));
|
|
btrfs_set_device_bytes_used(leaf, dev_item,
|
|
btrfs_device_get_bytes_used(device));
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_grow_device(struct btrfs_trans_handle *trans,
|
|
struct btrfs_device *device, u64 new_size)
|
|
{
|
|
struct btrfs_fs_info *fs_info = device->fs_info;
|
|
struct btrfs_super_block *super_copy = fs_info->super_copy;
|
|
u64 old_total;
|
|
u64 diff;
|
|
int ret;
|
|
|
|
if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
|
|
return -EACCES;
|
|
|
|
new_size = round_down(new_size, fs_info->sectorsize);
|
|
|
|
mutex_lock(&fs_info->chunk_mutex);
|
|
old_total = btrfs_super_total_bytes(super_copy);
|
|
diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
|
|
|
|
if (new_size <= device->total_bytes ||
|
|
test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
|
|
mutex_unlock(&fs_info->chunk_mutex);
|
|
return -EINVAL;
|
|
}
|
|
|
|
btrfs_set_super_total_bytes(super_copy,
|
|
round_down(old_total + diff, fs_info->sectorsize));
|
|
device->fs_devices->total_rw_bytes += diff;
|
|
|
|
btrfs_device_set_total_bytes(device, new_size);
|
|
btrfs_device_set_disk_total_bytes(device, new_size);
|
|
btrfs_clear_space_info_full(device->fs_info);
|
|
if (list_empty(&device->post_commit_list))
|
|
list_add_tail(&device->post_commit_list,
|
|
&trans->transaction->dev_update_list);
|
|
mutex_unlock(&fs_info->chunk_mutex);
|
|
|
|
btrfs_reserve_chunk_metadata(trans, false);
|
|
ret = btrfs_update_device(trans, device);
|
|
btrfs_trans_release_chunk_metadata(trans);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_root *root = fs_info->chunk_root;
|
|
int ret;
|
|
struct btrfs_path *path;
|
|
struct btrfs_key key;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
|
|
key.offset = chunk_offset;
|
|
key.type = BTRFS_CHUNK_ITEM_KEY;
|
|
|
|
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
|
|
if (ret < 0)
|
|
goto out;
|
|
else if (ret > 0) { /* Logic error or corruption */
|
|
btrfs_handle_fs_error(fs_info, -ENOENT,
|
|
"Failed lookup while freeing chunk.");
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
ret = btrfs_del_item(trans, root, path);
|
|
if (ret < 0)
|
|
btrfs_handle_fs_error(fs_info, ret,
|
|
"Failed to delete chunk item.");
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
|
|
{
|
|
struct btrfs_super_block *super_copy = fs_info->super_copy;
|
|
struct btrfs_disk_key *disk_key;
|
|
struct btrfs_chunk *chunk;
|
|
u8 *ptr;
|
|
int ret = 0;
|
|
u32 num_stripes;
|
|
u32 array_size;
|
|
u32 len = 0;
|
|
u32 cur;
|
|
struct btrfs_key key;
|
|
|
|
lockdep_assert_held(&fs_info->chunk_mutex);
|
|
array_size = btrfs_super_sys_array_size(super_copy);
|
|
|
|
ptr = super_copy->sys_chunk_array;
|
|
cur = 0;
|
|
|
|
while (cur < array_size) {
|
|
disk_key = (struct btrfs_disk_key *)ptr;
|
|
btrfs_disk_key_to_cpu(&key, disk_key);
|
|
|
|
len = sizeof(*disk_key);
|
|
|
|
if (key.type == BTRFS_CHUNK_ITEM_KEY) {
|
|
chunk = (struct btrfs_chunk *)(ptr + len);
|
|
num_stripes = btrfs_stack_chunk_num_stripes(chunk);
|
|
len += btrfs_chunk_item_size(num_stripes);
|
|
} else {
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
|
|
key.offset == chunk_offset) {
|
|
memmove(ptr, ptr + len, array_size - (cur + len));
|
|
array_size -= len;
|
|
btrfs_set_super_sys_array_size(super_copy, array_size);
|
|
} else {
|
|
ptr += len;
|
|
cur += len;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
|
|
* @logical: Logical block offset in bytes.
|
|
* @length: Length of extent in bytes.
|
|
*
|
|
* Return: Chunk mapping or ERR_PTR.
|
|
*/
|
|
struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
|
|
u64 logical, u64 length)
|
|
{
|
|
struct extent_map_tree *em_tree;
|
|
struct extent_map *em;
|
|
|
|
em_tree = &fs_info->mapping_tree;
|
|
read_lock(&em_tree->lock);
|
|
em = lookup_extent_mapping(em_tree, logical, length);
|
|
read_unlock(&em_tree->lock);
|
|
|
|
if (!em) {
|
|
btrfs_crit(fs_info, "unable to find logical %llu length %llu",
|
|
logical, length);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
if (em->start > logical || em->start + em->len < logical) {
|
|
btrfs_crit(fs_info,
|
|
"found a bad mapping, wanted %llu-%llu, found %llu-%llu",
|
|
logical, length, em->start, em->start + em->len);
|
|
free_extent_map(em);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
/* callers are responsible for dropping em's ref. */
|
|
return em;
|
|
}
|
|
|
|
static int remove_chunk_item(struct btrfs_trans_handle *trans,
|
|
struct map_lookup *map, u64 chunk_offset)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Removing chunk items and updating the device items in the chunks btree
|
|
* requires holding the chunk_mutex.
|
|
* See the comment at btrfs_chunk_alloc() for the details.
|
|
*/
|
|
lockdep_assert_held(&trans->fs_info->chunk_mutex);
|
|
|
|
for (i = 0; i < map->num_stripes; i++) {
|
|
int ret;
|
|
|
|
ret = btrfs_update_device(trans, map->stripes[i].dev);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return btrfs_free_chunk(trans, chunk_offset);
|
|
}
|
|
|
|
int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct extent_map *em;
|
|
struct map_lookup *map;
|
|
u64 dev_extent_len = 0;
|
|
int i, ret = 0;
|
|
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
|
|
|
|
em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
|
|
if (IS_ERR(em)) {
|
|
/*
|
|
* This is a logic error, but we don't want to just rely on the
|
|
* user having built with ASSERT enabled, so if ASSERT doesn't
|
|
* do anything we still error out.
|
|
*/
|
|
ASSERT(0);
|
|
return PTR_ERR(em);
|
|
}
|
|
map = em->map_lookup;
|
|
|
|
/*
|
|
* First delete the device extent items from the devices btree.
|
|
* We take the device_list_mutex to avoid racing with the finishing phase
|
|
* of a device replace operation. See the comment below before acquiring
|
|
* fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
|
|
* because that can result in a deadlock when deleting the device extent
|
|
* items from the devices btree - COWing an extent buffer from the btree
|
|
* may result in allocating a new metadata chunk, which would attempt to
|
|
* lock again fs_info->chunk_mutex.
|
|
*/
|
|
mutex_lock(&fs_devices->device_list_mutex);
|
|
for (i = 0; i < map->num_stripes; i++) {
|
|
struct btrfs_device *device = map->stripes[i].dev;
|
|
ret = btrfs_free_dev_extent(trans, device,
|
|
map->stripes[i].physical,
|
|
&dev_extent_len);
|
|
if (ret) {
|
|
mutex_unlock(&fs_devices->device_list_mutex);
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
|
|
if (device->bytes_used > 0) {
|
|
mutex_lock(&fs_info->chunk_mutex);
|
|
btrfs_device_set_bytes_used(device,
|
|
device->bytes_used - dev_extent_len);
|
|
atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
|
|
btrfs_clear_space_info_full(fs_info);
|
|
mutex_unlock(&fs_info->chunk_mutex);
|
|
}
|
|
}
|
|
mutex_unlock(&fs_devices->device_list_mutex);
|
|
|
|
/*
|
|
* We acquire fs_info->chunk_mutex for 2 reasons:
|
|
*
|
|
* 1) Just like with the first phase of the chunk allocation, we must
|
|
* reserve system space, do all chunk btree updates and deletions, and
|
|
* update the system chunk array in the superblock while holding this
|
|
* mutex. This is for similar reasons as explained on the comment at
|
|
* the top of btrfs_chunk_alloc();
|
|
*
|
|
* 2) Prevent races with the final phase of a device replace operation
|
|
* that replaces the device object associated with the map's stripes,
|
|
* because the device object's id can change at any time during that
|
|
* final phase of the device replace operation
|
|
* (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
|
|
* replaced device and then see it with an ID of
|
|
* BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
|
|
* the device item, which does not exists on the chunk btree.
|
|
* The finishing phase of device replace acquires both the
|
|
* device_list_mutex and the chunk_mutex, in that order, so we are
|
|
* safe by just acquiring the chunk_mutex.
|
|
*/
|
|
trans->removing_chunk = true;
|
|
mutex_lock(&fs_info->chunk_mutex);
|
|
|
|
check_system_chunk(trans, map->type);
|
|
|
|
ret = remove_chunk_item(trans, map, chunk_offset);
|
|
/*
|
|
* Normally we should not get -ENOSPC since we reserved space before
|
|
* through the call to check_system_chunk().
|
|
*
|
|
* Despite our system space_info having enough free space, we may not
|
|
* be able to allocate extents from its block groups, because all have
|
|
* an incompatible profile, which will force us to allocate a new system
|
|
* block group with the right profile, or right after we called
|
|
* check_system_space() above, a scrub turned the only system block group
|
|
* with enough free space into RO mode.
|
|
* This is explained with more detail at do_chunk_alloc().
|
|
*
|
|
* So if we get -ENOSPC, allocate a new system chunk and retry once.
|
|
*/
|
|
if (ret == -ENOSPC) {
|
|
const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
|
|
struct btrfs_block_group *sys_bg;
|
|
|
|
sys_bg = btrfs_create_chunk(trans, sys_flags);
|
|
if (IS_ERR(sys_bg)) {
|
|
ret = PTR_ERR(sys_bg);
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
|
|
ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
|
|
ret = remove_chunk_item(trans, map, chunk_offset);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
} else if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
|
|
trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
|
|
|
|
if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
|
|
ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&fs_info->chunk_mutex);
|
|
trans->removing_chunk = false;
|
|
|
|
/*
|
|
* We are done with chunk btree updates and deletions, so release the
|
|
* system space we previously reserved (with check_system_chunk()).
|
|
*/
|
|
btrfs_trans_release_chunk_metadata(trans);
|
|
|
|
ret = btrfs_remove_block_group(trans, chunk_offset, em);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
if (trans->removing_chunk) {
|
|
mutex_unlock(&fs_info->chunk_mutex);
|
|
trans->removing_chunk = false;
|
|
}
|
|
/* once for us */
|
|
free_extent_map(em);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
|
|
{
|
|
struct btrfs_root *root = fs_info->chunk_root;
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_block_group *block_group;
|
|
u64 length;
|
|
int ret;
|
|
|
|
if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
|
|
btrfs_err(fs_info,
|
|
"relocate: not supported on extent tree v2 yet");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Prevent races with automatic removal of unused block groups.
|
|
* After we relocate and before we remove the chunk with offset
|
|
* chunk_offset, automatic removal of the block group can kick in,
|
|
* resulting in a failure when calling btrfs_remove_chunk() below.
|
|
*
|
|
* Make sure to acquire this mutex before doing a tree search (dev
|
|
* or chunk trees) to find chunks. Otherwise the cleaner kthread might
|
|
* call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
|
|
* we release the path used to search the chunk/dev tree and before
|
|
* the current task acquires this mutex and calls us.
|
|
*/
|
|
lockdep_assert_held(&fs_info->reclaim_bgs_lock);
|
|
|
|
/* step one, relocate all the extents inside this chunk */
|
|
btrfs_scrub_pause(fs_info);
|
|
ret = btrfs_relocate_block_group(fs_info, chunk_offset);
|
|
btrfs_scrub_continue(fs_info);
|
|
if (ret) {
|
|
/*
|
|
* If we had a transaction abort, stop all running scrubs.
|
|
* See transaction.c:cleanup_transaction() why we do it here.
|
|
*/
|
|
if (BTRFS_FS_ERROR(fs_info))
|
|
btrfs_scrub_cancel(fs_info);
|
|
return ret;
|
|
}
|
|
|
|
block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
|
|
if (!block_group)
|
|
return -ENOENT;
|
|
btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
|
|
length = block_group->length;
|
|
btrfs_put_block_group(block_group);
|
|
|
|
/*
|
|
* On a zoned file system, discard the whole block group, this will
|
|
* trigger a REQ_OP_ZONE_RESET operation on the device zone. If
|
|
* resetting the zone fails, don't treat it as a fatal problem from the
|
|
* filesystem's point of view.
|
|
*/
|
|
if (btrfs_is_zoned(fs_info)) {
|
|
ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
|
|
if (ret)
|
|
btrfs_info(fs_info,
|
|
"failed to reset zone %llu after relocation",
|
|
chunk_offset);
|
|
}
|
|
|
|
trans = btrfs_start_trans_remove_block_group(root->fs_info,
|
|
chunk_offset);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
btrfs_handle_fs_error(root->fs_info, ret, NULL);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* step two, delete the device extents and the
|
|
* chunk tree entries
|
|
*/
|
|
ret = btrfs_remove_chunk(trans, chunk_offset);
|
|
btrfs_end_transaction(trans);
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_root *chunk_root = fs_info->chunk_root;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_chunk *chunk;
|
|
struct btrfs_key key;
|
|
struct btrfs_key found_key;
|
|
u64 chunk_type;
|
|
bool retried = false;
|
|
int failed = 0;
|
|
int ret;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
again:
|
|
key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
|
|
key.offset = (u64)-1;
|
|
key.type = BTRFS_CHUNK_ITEM_KEY;
|
|
|
|
while (1) {
|
|
mutex_lock(&fs_info->reclaim_bgs_lock);
|
|
ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
|
|
if (ret < 0) {
|
|
mutex_unlock(&fs_info->reclaim_bgs_lock);
|
|
goto error;
|
|
}
|
|
BUG_ON(ret == 0); /* Corruption */
|
|
|
|
ret = btrfs_previous_item(chunk_root, path, key.objectid,
|
|
key.type);
|
|
if (ret)
|
|
mutex_unlock(&fs_info->reclaim_bgs_lock);
|
|
if (ret < 0)
|
|
goto error;
|
|
if (ret > 0)
|
|
break;
|
|
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
|
|
chunk = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_chunk);
|
|
chunk_type = btrfs_chunk_type(leaf, chunk);
|
|
btrfs_release_path(path);
|
|
|
|
if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
|
|
ret = btrfs_relocate_chunk(fs_info, found_key.offset);
|
|
if (ret == -ENOSPC)
|
|
failed++;
|
|
else
|
|
BUG_ON(ret);
|
|
}
|
|
mutex_unlock(&fs_info->reclaim_bgs_lock);
|
|
|
|
if (found_key.offset == 0)
|
|
break;
|
|
key.offset = found_key.offset - 1;
|
|
}
|
|
ret = 0;
|
|
if (failed && !retried) {
|
|
failed = 0;
|
|
retried = true;
|
|
goto again;
|
|
} else if (WARN_ON(failed && retried)) {
|
|
ret = -ENOSPC;
|
|
}
|
|
error:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* return 1 : allocate a data chunk successfully,
|
|
* return <0: errors during allocating a data chunk,
|
|
* return 0 : no need to allocate a data chunk.
|
|
*/
|
|
static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
|
|
u64 chunk_offset)
|
|
{
|
|
struct btrfs_block_group *cache;
|
|
u64 bytes_used;
|
|
u64 chunk_type;
|
|
|
|
cache = btrfs_lookup_block_group(fs_info, chunk_offset);
|
|
ASSERT(cache);
|
|
chunk_type = cache->flags;
|
|
btrfs_put_block_group(cache);
|
|
|
|
if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
|
|
return 0;
|
|
|
|
spin_lock(&fs_info->data_sinfo->lock);
|
|
bytes_used = fs_info->data_sinfo->bytes_used;
|
|
spin_unlock(&fs_info->data_sinfo->lock);
|
|
|
|
if (!bytes_used) {
|
|
struct btrfs_trans_handle *trans;
|
|
int ret;
|
|
|
|
trans = btrfs_join_transaction(fs_info->tree_root);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
|
|
ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
|
|
btrfs_end_transaction(trans);
|
|
if (ret < 0)
|
|
return ret;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int insert_balance_item(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_balance_control *bctl)
|
|
{
|
|
struct btrfs_root *root = fs_info->tree_root;
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_balance_item *item;
|
|
struct btrfs_disk_balance_args disk_bargs;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
int ret, err;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
trans = btrfs_start_transaction(root, 0);
|
|
if (IS_ERR(trans)) {
|
|
btrfs_free_path(path);
|
|
return PTR_ERR(trans);
|
|
}
|
|
|
|
key.objectid = BTRFS_BALANCE_OBJECTID;
|
|
key.type = BTRFS_TEMPORARY_ITEM_KEY;
|
|
key.offset = 0;
|
|
|
|
ret = btrfs_insert_empty_item(trans, root, path, &key,
|
|
sizeof(*item));
|
|
if (ret)
|
|
goto out;
|
|
|
|
leaf = path->nodes[0];
|
|
item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
|
|
|
|
memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
|
|
|
|
btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
|
|
btrfs_set_balance_data(leaf, item, &disk_bargs);
|
|
btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
|
|
btrfs_set_balance_meta(leaf, item, &disk_bargs);
|
|
btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
|
|
btrfs_set_balance_sys(leaf, item, &disk_bargs);
|
|
|
|
btrfs_set_balance_flags(leaf, item, bctl->flags);
|
|
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
out:
|
|
btrfs_free_path(path);
|
|
err = btrfs_commit_transaction(trans);
|
|
if (err && !ret)
|
|
ret = err;
|
|
return ret;
|
|
}
|
|
|
|
static int del_balance_item(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_root *root = fs_info->tree_root;
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_path *path;
|
|
struct btrfs_key key;
|
|
int ret, err;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
|
|
if (IS_ERR(trans)) {
|
|
btrfs_free_path(path);
|
|
return PTR_ERR(trans);
|
|
}
|
|
|
|
key.objectid = BTRFS_BALANCE_OBJECTID;
|
|
key.type = BTRFS_TEMPORARY_ITEM_KEY;
|
|
key.offset = 0;
|
|
|
|
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (ret > 0) {
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
ret = btrfs_del_item(trans, root, path);
|
|
out:
|
|
btrfs_free_path(path);
|
|
err = btrfs_commit_transaction(trans);
|
|
if (err && !ret)
|
|
ret = err;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This is a heuristic used to reduce the number of chunks balanced on
|
|
* resume after balance was interrupted.
|
|
*/
|
|
static void update_balance_args(struct btrfs_balance_control *bctl)
|
|
{
|
|
/*
|
|
* Turn on soft mode for chunk types that were being converted.
|
|
*/
|
|
if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
|
|
bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
|
|
if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
|
|
bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
|
|
if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
|
|
bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
|
|
|
|
/*
|
|
* Turn on usage filter if is not already used. The idea is
|
|
* that chunks that we have already balanced should be
|
|
* reasonably full. Don't do it for chunks that are being
|
|
* converted - that will keep us from relocating unconverted
|
|
* (albeit full) chunks.
|
|
*/
|
|
if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
|
|
!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
|
|
!(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
|
|
bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
|
|
bctl->data.usage = 90;
|
|
}
|
|
if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
|
|
!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
|
|
!(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
|
|
bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
|
|
bctl->sys.usage = 90;
|
|
}
|
|
if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
|
|
!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
|
|
!(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
|
|
bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
|
|
bctl->meta.usage = 90;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Clear the balance status in fs_info and delete the balance item from disk.
|
|
*/
|
|
static void reset_balance_state(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_balance_control *bctl = fs_info->balance_ctl;
|
|
int ret;
|
|
|
|
BUG_ON(!fs_info->balance_ctl);
|
|
|
|
spin_lock(&fs_info->balance_lock);
|
|
fs_info->balance_ctl = NULL;
|
|
spin_unlock(&fs_info->balance_lock);
|
|
|
|
kfree(bctl);
|
|
ret = del_balance_item(fs_info);
|
|
if (ret)
|
|
btrfs_handle_fs_error(fs_info, ret, NULL);
|
|
}
|
|
|
|
/*
|
|
* Balance filters. Return 1 if chunk should be filtered out
|
|
* (should not be balanced).
|
|
*/
|
|
static int chunk_profiles_filter(u64 chunk_type,
|
|
struct btrfs_balance_args *bargs)
|
|
{
|
|
chunk_type = chunk_to_extended(chunk_type) &
|
|
BTRFS_EXTENDED_PROFILE_MASK;
|
|
|
|
if (bargs->profiles & chunk_type)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
|
|
struct btrfs_balance_args *bargs)
|
|
{
|
|
struct btrfs_block_group *cache;
|
|
u64 chunk_used;
|
|
u64 user_thresh_min;
|
|
u64 user_thresh_max;
|
|
int ret = 1;
|
|
|
|
cache = btrfs_lookup_block_group(fs_info, chunk_offset);
|
|
chunk_used = cache->used;
|
|
|
|
if (bargs->usage_min == 0)
|
|
user_thresh_min = 0;
|
|
else
|
|
user_thresh_min = mult_perc(cache->length, bargs->usage_min);
|
|
|
|
if (bargs->usage_max == 0)
|
|
user_thresh_max = 1;
|
|
else if (bargs->usage_max > 100)
|
|
user_thresh_max = cache->length;
|
|
else
|
|
user_thresh_max = mult_perc(cache->length, bargs->usage_max);
|
|
|
|
if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
|
|
ret = 0;
|
|
|
|
btrfs_put_block_group(cache);
|
|
return ret;
|
|
}
|
|
|
|
static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
|
|
u64 chunk_offset, struct btrfs_balance_args *bargs)
|
|
{
|
|
struct btrfs_block_group *cache;
|
|
u64 chunk_used, user_thresh;
|
|
int ret = 1;
|
|
|
|
cache = btrfs_lookup_block_group(fs_info, chunk_offset);
|
|
chunk_used = cache->used;
|
|
|
|
if (bargs->usage_min == 0)
|
|
user_thresh = 1;
|
|
else if (bargs->usage > 100)
|
|
user_thresh = cache->length;
|
|
else
|
|
user_thresh = mult_perc(cache->length, bargs->usage);
|
|
|
|
if (chunk_used < user_thresh)
|
|
ret = 0;
|
|
|
|
btrfs_put_block_group(cache);
|
|
return ret;
|
|
}
|
|
|
|
static int chunk_devid_filter(struct extent_buffer *leaf,
|
|
struct btrfs_chunk *chunk,
|
|
struct btrfs_balance_args *bargs)
|
|
{
|
|
struct btrfs_stripe *stripe;
|
|
int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
|
|
int i;
|
|
|
|
for (i = 0; i < num_stripes; i++) {
|
|
stripe = btrfs_stripe_nr(chunk, i);
|
|
if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static u64 calc_data_stripes(u64 type, int num_stripes)
|
|
{
|
|
const int index = btrfs_bg_flags_to_raid_index(type);
|
|
const int ncopies = btrfs_raid_array[index].ncopies;
|
|
const int nparity = btrfs_raid_array[index].nparity;
|
|
|
|
return (num_stripes - nparity) / ncopies;
|
|
}
|
|
|
|
/* [pstart, pend) */
|
|
static int chunk_drange_filter(struct extent_buffer *leaf,
|
|
struct btrfs_chunk *chunk,
|
|
struct btrfs_balance_args *bargs)
|
|
{
|
|
struct btrfs_stripe *stripe;
|
|
int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
|
|
u64 stripe_offset;
|
|
u64 stripe_length;
|
|
u64 type;
|
|
int factor;
|
|
int i;
|
|
|
|
if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
|
|
return 0;
|
|
|
|
type = btrfs_chunk_type(leaf, chunk);
|
|
factor = calc_data_stripes(type, num_stripes);
|
|
|
|
for (i = 0; i < num_stripes; i++) {
|
|
stripe = btrfs_stripe_nr(chunk, i);
|
|
if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
|
|
continue;
|
|
|
|
stripe_offset = btrfs_stripe_offset(leaf, stripe);
|
|
stripe_length = btrfs_chunk_length(leaf, chunk);
|
|
stripe_length = div_u64(stripe_length, factor);
|
|
|
|
if (stripe_offset < bargs->pend &&
|
|
stripe_offset + stripe_length > bargs->pstart)
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* [vstart, vend) */
|
|
static int chunk_vrange_filter(struct extent_buffer *leaf,
|
|
struct btrfs_chunk *chunk,
|
|
u64 chunk_offset,
|
|
struct btrfs_balance_args *bargs)
|
|
{
|
|
if (chunk_offset < bargs->vend &&
|
|
chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
|
|
/* at least part of the chunk is inside this vrange */
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int chunk_stripes_range_filter(struct extent_buffer *leaf,
|
|
struct btrfs_chunk *chunk,
|
|
struct btrfs_balance_args *bargs)
|
|
{
|
|
int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
|
|
|
|
if (bargs->stripes_min <= num_stripes
|
|
&& num_stripes <= bargs->stripes_max)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int chunk_soft_convert_filter(u64 chunk_type,
|
|
struct btrfs_balance_args *bargs)
|
|
{
|
|
if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
|
|
return 0;
|
|
|
|
chunk_type = chunk_to_extended(chunk_type) &
|
|
BTRFS_EXTENDED_PROFILE_MASK;
|
|
|
|
if (bargs->target == chunk_type)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int should_balance_chunk(struct extent_buffer *leaf,
|
|
struct btrfs_chunk *chunk, u64 chunk_offset)
|
|
{
|
|
struct btrfs_fs_info *fs_info = leaf->fs_info;
|
|
struct btrfs_balance_control *bctl = fs_info->balance_ctl;
|
|
struct btrfs_balance_args *bargs = NULL;
|
|
u64 chunk_type = btrfs_chunk_type(leaf, chunk);
|
|
|
|
/* type filter */
|
|
if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
|
|
(bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
|
|
return 0;
|
|
}
|
|
|
|
if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
|
|
bargs = &bctl->data;
|
|
else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
|
|
bargs = &bctl->sys;
|
|
else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
|
|
bargs = &bctl->meta;
|
|
|
|
/* profiles filter */
|
|
if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
|
|
chunk_profiles_filter(chunk_type, bargs)) {
|
|
return 0;
|
|
}
|
|
|
|
/* usage filter */
|
|
if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
|
|
chunk_usage_filter(fs_info, chunk_offset, bargs)) {
|
|
return 0;
|
|
} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
|
|
chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
|
|
return 0;
|
|
}
|
|
|
|
/* devid filter */
|
|
if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
|
|
chunk_devid_filter(leaf, chunk, bargs)) {
|
|
return 0;
|
|
}
|
|
|
|
/* drange filter, makes sense only with devid filter */
|
|
if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
|
|
chunk_drange_filter(leaf, chunk, bargs)) {
|
|
return 0;
|
|
}
|
|
|
|
/* vrange filter */
|
|
if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
|
|
chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
|
|
return 0;
|
|
}
|
|
|
|
/* stripes filter */
|
|
if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
|
|
chunk_stripes_range_filter(leaf, chunk, bargs)) {
|
|
return 0;
|
|
}
|
|
|
|
/* soft profile changing mode */
|
|
if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
|
|
chunk_soft_convert_filter(chunk_type, bargs)) {
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* limited by count, must be the last filter
|
|
*/
|
|
if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
|
|
if (bargs->limit == 0)
|
|
return 0;
|
|
else
|
|
bargs->limit--;
|
|
} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
|
|
/*
|
|
* Same logic as the 'limit' filter; the minimum cannot be
|
|
* determined here because we do not have the global information
|
|
* about the count of all chunks that satisfy the filters.
|
|
*/
|
|
if (bargs->limit_max == 0)
|
|
return 0;
|
|
else
|
|
bargs->limit_max--;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int __btrfs_balance(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_balance_control *bctl = fs_info->balance_ctl;
|
|
struct btrfs_root *chunk_root = fs_info->chunk_root;
|
|
u64 chunk_type;
|
|
struct btrfs_chunk *chunk;
|
|
struct btrfs_path *path = NULL;
|
|
struct btrfs_key key;
|
|
struct btrfs_key found_key;
|
|
struct extent_buffer *leaf;
|
|
int slot;
|
|
int ret;
|
|
int enospc_errors = 0;
|
|
bool counting = true;
|
|
/* The single value limit and min/max limits use the same bytes in the */
|
|
u64 limit_data = bctl->data.limit;
|
|
u64 limit_meta = bctl->meta.limit;
|
|
u64 limit_sys = bctl->sys.limit;
|
|
u32 count_data = 0;
|
|
u32 count_meta = 0;
|
|
u32 count_sys = 0;
|
|
int chunk_reserved = 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
ret = -ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
/* zero out stat counters */
|
|
spin_lock(&fs_info->balance_lock);
|
|
memset(&bctl->stat, 0, sizeof(bctl->stat));
|
|
spin_unlock(&fs_info->balance_lock);
|
|
again:
|
|
if (!counting) {
|
|
/*
|
|
* The single value limit and min/max limits use the same bytes
|
|
* in the
|
|
*/
|
|
bctl->data.limit = limit_data;
|
|
bctl->meta.limit = limit_meta;
|
|
bctl->sys.limit = limit_sys;
|
|
}
|
|
key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
|
|
key.offset = (u64)-1;
|
|
key.type = BTRFS_CHUNK_ITEM_KEY;
|
|
|
|
while (1) {
|
|
if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
|
|
atomic_read(&fs_info->balance_cancel_req)) {
|
|
ret = -ECANCELED;
|
|
goto error;
|
|
}
|
|
|
|
mutex_lock(&fs_info->reclaim_bgs_lock);
|
|
ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
|
|
if (ret < 0) {
|
|
mutex_unlock(&fs_info->reclaim_bgs_lock);
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* this shouldn't happen, it means the last relocate
|
|
* failed
|
|
*/
|
|
if (ret == 0)
|
|
BUG(); /* FIXME break ? */
|
|
|
|
ret = btrfs_previous_item(chunk_root, path, 0,
|
|
BTRFS_CHUNK_ITEM_KEY);
|
|
if (ret) {
|
|
mutex_unlock(&fs_info->reclaim_bgs_lock);
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
btrfs_item_key_to_cpu(leaf, &found_key, slot);
|
|
|
|
if (found_key.objectid != key.objectid) {
|
|
mutex_unlock(&fs_info->reclaim_bgs_lock);
|
|
break;
|
|
}
|
|
|
|
chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
|
|
chunk_type = btrfs_chunk_type(leaf, chunk);
|
|
|
|
if (!counting) {
|
|
spin_lock(&fs_info->balance_lock);
|
|
bctl->stat.considered++;
|
|
spin_unlock(&fs_info->balance_lock);
|
|
}
|
|
|
|
ret = should_balance_chunk(leaf, chunk, found_key.offset);
|
|
|
|
btrfs_release_path(path);
|
|
if (!ret) {
|
|
mutex_unlock(&fs_info->reclaim_bgs_lock);
|
|
goto loop;
|
|
}
|
|
|
|
if (counting) {
|
|
mutex_unlock(&fs_info->reclaim_bgs_lock);
|
|
spin_lock(&fs_info->balance_lock);
|
|
bctl->stat.expected++;
|
|
spin_unlock(&fs_info->balance_lock);
|
|
|
|
if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
|
|
count_data++;
|
|
else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
|
|
count_sys++;
|
|
else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
|
|
count_meta++;
|
|
|
|
goto loop;
|
|
}
|
|
|
|
/*
|
|
* Apply limit_min filter, no need to check if the LIMITS
|
|
* filter is used, limit_min is 0 by default
|
|
*/
|
|
if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
|
|
count_data < bctl->data.limit_min)
|
|
|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
|
|
count_meta < bctl->meta.limit_min)
|
|
|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
|
|
count_sys < bctl->sys.limit_min)) {
|
|
mutex_unlock(&fs_info->reclaim_bgs_lock);
|
|
goto loop;
|
|
}
|
|
|
|
if (!chunk_reserved) {
|
|
/*
|
|
* We may be relocating the only data chunk we have,
|
|
* which could potentially end up with losing data's
|
|
* raid profile, so lets allocate an empty one in
|
|
* advance.
|
|
*/
|
|
ret = btrfs_may_alloc_data_chunk(fs_info,
|
|
found_key.offset);
|
|
if (ret < 0) {
|
|
mutex_unlock(&fs_info->reclaim_bgs_lock);
|
|
goto error;
|
|
} else if (ret == 1) {
|
|
chunk_reserved = 1;
|
|
}
|
|
}
|
|
|
|
ret = btrfs_relocate_chunk(fs_info, found_key.offset);
|
|
mutex_unlock(&fs_info->reclaim_bgs_lock);
|
|
if (ret == -ENOSPC) {
|
|
enospc_errors++;
|
|
} else if (ret == -ETXTBSY) {
|
|
btrfs_info(fs_info,
|
|
"skipping relocation of block group %llu due to active swapfile",
|
|
found_key.offset);
|
|
ret = 0;
|
|
} else if (ret) {
|
|
goto error;
|
|
} else {
|
|
spin_lock(&fs_info->balance_lock);
|
|
bctl->stat.completed++;
|
|
spin_unlock(&fs_info->balance_lock);
|
|
}
|
|
loop:
|
|
if (found_key.offset == 0)
|
|
break;
|
|
key.offset = found_key.offset - 1;
|
|
}
|
|
|
|
if (counting) {
|
|
btrfs_release_path(path);
|
|
counting = false;
|
|
goto again;
|
|
}
|
|
error:
|
|
btrfs_free_path(path);
|
|
if (enospc_errors) {
|
|
btrfs_info(fs_info, "%d enospc errors during balance",
|
|
enospc_errors);
|
|
if (!ret)
|
|
ret = -ENOSPC;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* See if a given profile is valid and reduced.
|
|
*
|
|
* @flags: profile to validate
|
|
* @extended: if true @flags is treated as an extended profile
|
|
*/
|
|
static int alloc_profile_is_valid(u64 flags, int extended)
|
|
{
|
|
u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
|
|
BTRFS_BLOCK_GROUP_PROFILE_MASK);
|
|
|
|
flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
|
|
|
|
/* 1) check that all other bits are zeroed */
|
|
if (flags & ~mask)
|
|
return 0;
|
|
|
|
/* 2) see if profile is reduced */
|
|
if (flags == 0)
|
|
return !extended; /* "0" is valid for usual profiles */
|
|
|
|
return has_single_bit_set(flags);
|
|
}
|
|
|
|
/*
|
|
* Validate target profile against allowed profiles and return true if it's OK.
|
|
* Otherwise print the error message and return false.
|
|
*/
|
|
static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
|
|
const struct btrfs_balance_args *bargs,
|
|
u64 allowed, const char *type)
|
|
{
|
|
if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
|
|
return true;
|
|
|
|
/* Profile is valid and does not have bits outside of the allowed set */
|
|
if (alloc_profile_is_valid(bargs->target, 1) &&
|
|
(bargs->target & ~allowed) == 0)
|
|
return true;
|
|
|
|
btrfs_err(fs_info, "balance: invalid convert %s profile %s",
|
|
type, btrfs_bg_type_to_raid_name(bargs->target));
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Fill @buf with textual description of balance filter flags @bargs, up to
|
|
* @size_buf including the terminating null. The output may be trimmed if it
|
|
* does not fit into the provided buffer.
|
|
*/
|
|
static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
|
|
u32 size_buf)
|
|
{
|
|
int ret;
|
|
u32 size_bp = size_buf;
|
|
char *bp = buf;
|
|
u64 flags = bargs->flags;
|
|
char tmp_buf[128] = {'\0'};
|
|
|
|
if (!flags)
|
|
return;
|
|
|
|
#define CHECK_APPEND_NOARG(a) \
|
|
do { \
|
|
ret = snprintf(bp, size_bp, (a)); \
|
|
if (ret < 0 || ret >= size_bp) \
|
|
goto out_overflow; \
|
|
size_bp -= ret; \
|
|
bp += ret; \
|
|
} while (0)
|
|
|
|
#define CHECK_APPEND_1ARG(a, v1) \
|
|
do { \
|
|
ret = snprintf(bp, size_bp, (a), (v1)); \
|
|
if (ret < 0 || ret >= size_bp) \
|
|
goto out_overflow; \
|
|
size_bp -= ret; \
|
|
bp += ret; \
|
|
} while (0)
|
|
|
|
#define CHECK_APPEND_2ARG(a, v1, v2) \
|
|
do { \
|
|
ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
|
|
if (ret < 0 || ret >= size_bp) \
|
|
goto out_overflow; \
|
|
size_bp -= ret; \
|
|
bp += ret; \
|
|
} while (0)
|
|
|
|
if (flags & BTRFS_BALANCE_ARGS_CONVERT)
|
|
CHECK_APPEND_1ARG("convert=%s,",
|
|
btrfs_bg_type_to_raid_name(bargs->target));
|
|
|
|
if (flags & BTRFS_BALANCE_ARGS_SOFT)
|
|
CHECK_APPEND_NOARG("soft,");
|
|
|
|
if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
|
|
btrfs_describe_block_groups(bargs->profiles, tmp_buf,
|
|
sizeof(tmp_buf));
|
|
CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
|
|
}
|
|
|
|
if (flags & BTRFS_BALANCE_ARGS_USAGE)
|
|
CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
|
|
|
|
if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
|
|
CHECK_APPEND_2ARG("usage=%u..%u,",
|
|
bargs->usage_min, bargs->usage_max);
|
|
|
|
if (flags & BTRFS_BALANCE_ARGS_DEVID)
|
|
CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
|
|
|
|
if (flags & BTRFS_BALANCE_ARGS_DRANGE)
|
|
CHECK_APPEND_2ARG("drange=%llu..%llu,",
|
|
bargs->pstart, bargs->pend);
|
|
|
|
if (flags & BTRFS_BALANCE_ARGS_VRANGE)
|
|
CHECK_APPEND_2ARG("vrange=%llu..%llu,",
|
|
bargs->vstart, bargs->vend);
|
|
|
|
if (flags & BTRFS_BALANCE_ARGS_LIMIT)
|
|
CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
|
|
|
|
if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
|
|
CHECK_APPEND_2ARG("limit=%u..%u,",
|
|
bargs->limit_min, bargs->limit_max);
|
|
|
|
if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
|
|
CHECK_APPEND_2ARG("stripes=%u..%u,",
|
|
bargs->stripes_min, bargs->stripes_max);
|
|
|
|
#undef CHECK_APPEND_2ARG
|
|
#undef CHECK_APPEND_1ARG
|
|
#undef CHECK_APPEND_NOARG
|
|
|
|
out_overflow:
|
|
|
|
if (size_bp < size_buf)
|
|
buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
|
|
else
|
|
buf[0] = '\0';
|
|
}
|
|
|
|
static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
|
|
{
|
|
u32 size_buf = 1024;
|
|
char tmp_buf[192] = {'\0'};
|
|
char *buf;
|
|
char *bp;
|
|
u32 size_bp = size_buf;
|
|
int ret;
|
|
struct btrfs_balance_control *bctl = fs_info->balance_ctl;
|
|
|
|
buf = kzalloc(size_buf, GFP_KERNEL);
|
|
if (!buf)
|
|
return;
|
|
|
|
bp = buf;
|
|
|
|
#define CHECK_APPEND_1ARG(a, v1) \
|
|
do { \
|
|
ret = snprintf(bp, size_bp, (a), (v1)); \
|
|
if (ret < 0 || ret >= size_bp) \
|
|
goto out_overflow; \
|
|
size_bp -= ret; \
|
|
bp += ret; \
|
|
} while (0)
|
|
|
|
if (bctl->flags & BTRFS_BALANCE_FORCE)
|
|
CHECK_APPEND_1ARG("%s", "-f ");
|
|
|
|
if (bctl->flags & BTRFS_BALANCE_DATA) {
|
|
describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
|
|
CHECK_APPEND_1ARG("-d%s ", tmp_buf);
|
|
}
|
|
|
|
if (bctl->flags & BTRFS_BALANCE_METADATA) {
|
|
describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
|
|
CHECK_APPEND_1ARG("-m%s ", tmp_buf);
|
|
}
|
|
|
|
if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
|
|
describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
|
|
CHECK_APPEND_1ARG("-s%s ", tmp_buf);
|
|
}
|
|
|
|
#undef CHECK_APPEND_1ARG
|
|
|
|
out_overflow:
|
|
|
|
if (size_bp < size_buf)
|
|
buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
|
|
btrfs_info(fs_info, "balance: %s %s",
|
|
(bctl->flags & BTRFS_BALANCE_RESUME) ?
|
|
"resume" : "start", buf);
|
|
|
|
kfree(buf);
|
|
}
|
|
|
|
/*
|
|
* Should be called with balance mutexe held
|
|
*/
|
|
int btrfs_balance(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_balance_control *bctl,
|
|
struct btrfs_ioctl_balance_args *bargs)
|
|
{
|
|
u64 meta_target, data_target;
|
|
u64 allowed;
|
|
int mixed = 0;
|
|
int ret;
|
|
u64 num_devices;
|
|
unsigned seq;
|
|
bool reducing_redundancy;
|
|
bool paused = false;
|
|
int i;
|
|
|
|
if (btrfs_fs_closing(fs_info) ||
|
|
atomic_read(&fs_info->balance_pause_req) ||
|
|
btrfs_should_cancel_balance(fs_info)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
allowed = btrfs_super_incompat_flags(fs_info->super_copy);
|
|
if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
|
|
mixed = 1;
|
|
|
|
/*
|
|
* In case of mixed groups both data and meta should be picked,
|
|
* and identical options should be given for both of them.
|
|
*/
|
|
allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
|
|
if (mixed && (bctl->flags & allowed)) {
|
|
if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
|
|
!(bctl->flags & BTRFS_BALANCE_METADATA) ||
|
|
memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
|
|
btrfs_err(fs_info,
|
|
"balance: mixed groups data and metadata options must be the same");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* rw_devices will not change at the moment, device add/delete/replace
|
|
* are exclusive
|
|
*/
|
|
num_devices = fs_info->fs_devices->rw_devices;
|
|
|
|
/*
|
|
* SINGLE profile on-disk has no profile bit, but in-memory we have a
|
|
* special bit for it, to make it easier to distinguish. Thus we need
|
|
* to set it manually, or balance would refuse the profile.
|
|
*/
|
|
allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
|
|
for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
|
|
if (num_devices >= btrfs_raid_array[i].devs_min)
|
|
allowed |= btrfs_raid_array[i].bg_flag;
|
|
|
|
if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
|
|
!validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
|
|
!validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Allow to reduce metadata or system integrity only if force set for
|
|
* profiles with redundancy (copies, parity)
|
|
*/
|
|
allowed = 0;
|
|
for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
|
|
if (btrfs_raid_array[i].ncopies >= 2 ||
|
|
btrfs_raid_array[i].tolerated_failures >= 1)
|
|
allowed |= btrfs_raid_array[i].bg_flag;
|
|
}
|
|
do {
|
|
seq = read_seqbegin(&fs_info->profiles_lock);
|
|
|
|
if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
|
|
(fs_info->avail_system_alloc_bits & allowed) &&
|
|
!(bctl->sys.target & allowed)) ||
|
|
((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
|
|
(fs_info->avail_metadata_alloc_bits & allowed) &&
|
|
!(bctl->meta.target & allowed)))
|
|
reducing_redundancy = true;
|
|
else
|
|
reducing_redundancy = false;
|
|
|
|
/* if we're not converting, the target field is uninitialized */
|
|
meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
|
|
bctl->meta.target : fs_info->avail_metadata_alloc_bits;
|
|
data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
|
|
bctl->data.target : fs_info->avail_data_alloc_bits;
|
|
} while (read_seqretry(&fs_info->profiles_lock, seq));
|
|
|
|
if (reducing_redundancy) {
|
|
if (bctl->flags & BTRFS_BALANCE_FORCE) {
|
|
btrfs_info(fs_info,
|
|
"balance: force reducing metadata redundancy");
|
|
} else {
|
|
btrfs_err(fs_info,
|
|
"balance: reduces metadata redundancy, use --force if you want this");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
|
|
btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
|
|
btrfs_warn(fs_info,
|
|
"balance: metadata profile %s has lower redundancy than data profile %s",
|
|
btrfs_bg_type_to_raid_name(meta_target),
|
|
btrfs_bg_type_to_raid_name(data_target));
|
|
}
|
|
|
|
ret = insert_balance_item(fs_info, bctl);
|
|
if (ret && ret != -EEXIST)
|
|
goto out;
|
|
|
|
if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
|
|
BUG_ON(ret == -EEXIST);
|
|
BUG_ON(fs_info->balance_ctl);
|
|
spin_lock(&fs_info->balance_lock);
|
|
fs_info->balance_ctl = bctl;
|
|
spin_unlock(&fs_info->balance_lock);
|
|
} else {
|
|
BUG_ON(ret != -EEXIST);
|
|
spin_lock(&fs_info->balance_lock);
|
|
update_balance_args(bctl);
|
|
spin_unlock(&fs_info->balance_lock);
|
|
}
|
|
|
|
ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
|
|
set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
|
|
describe_balance_start_or_resume(fs_info);
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
|
|
ret = __btrfs_balance(fs_info);
|
|
|
|
mutex_lock(&fs_info->balance_mutex);
|
|
if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
|
|
btrfs_info(fs_info, "balance: paused");
|
|
btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
|
|
paused = true;
|
|
}
|
|
/*
|
|
* Balance can be canceled by:
|
|
*
|
|
* - Regular cancel request
|
|
* Then ret == -ECANCELED and balance_cancel_req > 0
|
|
*
|
|
* - Fatal signal to "btrfs" process
|
|
* Either the signal caught by wait_reserve_ticket() and callers
|
|
* got -EINTR, or caught by btrfs_should_cancel_balance() and
|
|
* got -ECANCELED.
|
|
* Either way, in this case balance_cancel_req = 0, and
|
|
* ret == -EINTR or ret == -ECANCELED.
|
|
*
|
|
* So here we only check the return value to catch canceled balance.
|
|
*/
|
|
else if (ret == -ECANCELED || ret == -EINTR)
|
|
btrfs_info(fs_info, "balance: canceled");
|
|
else
|
|
btrfs_info(fs_info, "balance: ended with status: %d", ret);
|
|
|
|
clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
|
|
|
|
if (bargs) {
|
|
memset(bargs, 0, sizeof(*bargs));
|
|
btrfs_update_ioctl_balance_args(fs_info, bargs);
|
|
}
|
|
|
|
/* We didn't pause, we can clean everything up. */
|
|
if (!paused) {
|
|
reset_balance_state(fs_info);
|
|
btrfs_exclop_finish(fs_info);
|
|
}
|
|
|
|
wake_up(&fs_info->balance_wait_q);
|
|
|
|
return ret;
|
|
out:
|
|
if (bctl->flags & BTRFS_BALANCE_RESUME)
|
|
reset_balance_state(fs_info);
|
|
else
|
|
kfree(bctl);
|
|
btrfs_exclop_finish(fs_info);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int balance_kthread(void *data)
|
|
{
|
|
struct btrfs_fs_info *fs_info = data;
|
|
int ret = 0;
|
|
|
|
sb_start_write(fs_info->sb);
|
|
mutex_lock(&fs_info->balance_mutex);
|
|
if (fs_info->balance_ctl)
|
|
ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
sb_end_write(fs_info->sb);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct task_struct *tsk;
|
|
|
|
mutex_lock(&fs_info->balance_mutex);
|
|
if (!fs_info->balance_ctl) {
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
return 0;
|
|
}
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
|
|
if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
|
|
btrfs_info(fs_info, "balance: resume skipped");
|
|
return 0;
|
|
}
|
|
|
|
spin_lock(&fs_info->super_lock);
|
|
ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
|
|
fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
|
|
spin_unlock(&fs_info->super_lock);
|
|
/*
|
|
* A ro->rw remount sequence should continue with the paused balance
|
|
* regardless of who pauses it, system or the user as of now, so set
|
|
* the resume flag.
|
|
*/
|
|
spin_lock(&fs_info->balance_lock);
|
|
fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
|
|
spin_unlock(&fs_info->balance_lock);
|
|
|
|
tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
|
|
return PTR_ERR_OR_ZERO(tsk);
|
|
}
|
|
|
|
int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_balance_control *bctl;
|
|
struct btrfs_balance_item *item;
|
|
struct btrfs_disk_balance_args disk_bargs;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
int ret;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
key.objectid = BTRFS_BALANCE_OBJECTID;
|
|
key.type = BTRFS_TEMPORARY_ITEM_KEY;
|
|
key.offset = 0;
|
|
|
|
ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (ret > 0) { /* ret = -ENOENT; */
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
|
|
if (!bctl) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
|
|
|
|
bctl->flags = btrfs_balance_flags(leaf, item);
|
|
bctl->flags |= BTRFS_BALANCE_RESUME;
|
|
|
|
btrfs_balance_data(leaf, item, &disk_bargs);
|
|
btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
|
|
btrfs_balance_meta(leaf, item, &disk_bargs);
|
|
btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
|
|
btrfs_balance_sys(leaf, item, &disk_bargs);
|
|
btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
|
|
|
|
/*
|
|
* This should never happen, as the paused balance state is recovered
|
|
* during mount without any chance of other exclusive ops to collide.
|
|
*
|
|
* This gives the exclusive op status to balance and keeps in paused
|
|
* state until user intervention (cancel or umount). If the ownership
|
|
* cannot be assigned, show a message but do not fail. The balance
|
|
* is in a paused state and must have fs_info::balance_ctl properly
|
|
* set up.
|
|
*/
|
|
if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
|
|
btrfs_warn(fs_info,
|
|
"balance: cannot set exclusive op status, resume manually");
|
|
|
|
btrfs_release_path(path);
|
|
|
|
mutex_lock(&fs_info->balance_mutex);
|
|
BUG_ON(fs_info->balance_ctl);
|
|
spin_lock(&fs_info->balance_lock);
|
|
fs_info->balance_ctl = bctl;
|
|
spin_unlock(&fs_info->balance_lock);
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
|
|
{
|
|
int ret = 0;
|
|
|
|
mutex_lock(&fs_info->balance_mutex);
|
|
if (!fs_info->balance_ctl) {
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
return -ENOTCONN;
|
|
}
|
|
|
|
if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
|
|
atomic_inc(&fs_info->balance_pause_req);
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
|
|
wait_event(fs_info->balance_wait_q,
|
|
!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
|
|
|
|
mutex_lock(&fs_info->balance_mutex);
|
|
/* we are good with balance_ctl ripped off from under us */
|
|
BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
|
|
atomic_dec(&fs_info->balance_pause_req);
|
|
} else {
|
|
ret = -ENOTCONN;
|
|
}
|
|
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
|
|
{
|
|
mutex_lock(&fs_info->balance_mutex);
|
|
if (!fs_info->balance_ctl) {
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
return -ENOTCONN;
|
|
}
|
|
|
|
/*
|
|
* A paused balance with the item stored on disk can be resumed at
|
|
* mount time if the mount is read-write. Otherwise it's still paused
|
|
* and we must not allow cancelling as it deletes the item.
|
|
*/
|
|
if (sb_rdonly(fs_info->sb)) {
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
return -EROFS;
|
|
}
|
|
|
|
atomic_inc(&fs_info->balance_cancel_req);
|
|
/*
|
|
* if we are running just wait and return, balance item is
|
|
* deleted in btrfs_balance in this case
|
|
*/
|
|
if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
wait_event(fs_info->balance_wait_q,
|
|
!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
|
|
mutex_lock(&fs_info->balance_mutex);
|
|
} else {
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
/*
|
|
* Lock released to allow other waiters to continue, we'll
|
|
* reexamine the status again.
|
|
*/
|
|
mutex_lock(&fs_info->balance_mutex);
|
|
|
|
if (fs_info->balance_ctl) {
|
|
reset_balance_state(fs_info);
|
|
btrfs_exclop_finish(fs_info);
|
|
btrfs_info(fs_info, "balance: canceled");
|
|
}
|
|
}
|
|
|
|
ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
|
|
atomic_dec(&fs_info->balance_cancel_req);
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_uuid_scan_kthread(void *data)
|
|
{
|
|
struct btrfs_fs_info *fs_info = data;
|
|
struct btrfs_root *root = fs_info->tree_root;
|
|
struct btrfs_key key;
|
|
struct btrfs_path *path = NULL;
|
|
int ret = 0;
|
|
struct extent_buffer *eb;
|
|
int slot;
|
|
struct btrfs_root_item root_item;
|
|
u32 item_size;
|
|
struct btrfs_trans_handle *trans = NULL;
|
|
bool closing = false;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
key.objectid = 0;
|
|
key.type = BTRFS_ROOT_ITEM_KEY;
|
|
key.offset = 0;
|
|
|
|
while (1) {
|
|
if (btrfs_fs_closing(fs_info)) {
|
|
closing = true;
|
|
break;
|
|
}
|
|
ret = btrfs_search_forward(root, &key, path,
|
|
BTRFS_OLDEST_GENERATION);
|
|
if (ret) {
|
|
if (ret > 0)
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
if (key.type != BTRFS_ROOT_ITEM_KEY ||
|
|
(key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
|
|
key.objectid != BTRFS_FS_TREE_OBJECTID) ||
|
|
key.objectid > BTRFS_LAST_FREE_OBJECTID)
|
|
goto skip;
|
|
|
|
eb = path->nodes[0];
|
|
slot = path->slots[0];
|
|
item_size = btrfs_item_size(eb, slot);
|
|
if (item_size < sizeof(root_item))
|
|
goto skip;
|
|
|
|
read_extent_buffer(eb, &root_item,
|
|
btrfs_item_ptr_offset(eb, slot),
|
|
(int)sizeof(root_item));
|
|
if (btrfs_root_refs(&root_item) == 0)
|
|
goto skip;
|
|
|
|
if (!btrfs_is_empty_uuid(root_item.uuid) ||
|
|
!btrfs_is_empty_uuid(root_item.received_uuid)) {
|
|
if (trans)
|
|
goto update_tree;
|
|
|
|
btrfs_release_path(path);
|
|
/*
|
|
* 1 - subvol uuid item
|
|
* 1 - received_subvol uuid item
|
|
*/
|
|
trans = btrfs_start_transaction(fs_info->uuid_root, 2);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
break;
|
|
}
|
|
continue;
|
|
} else {
|
|
goto skip;
|
|
}
|
|
update_tree:
|
|
btrfs_release_path(path);
|
|
if (!btrfs_is_empty_uuid(root_item.uuid)) {
|
|
ret = btrfs_uuid_tree_add(trans, root_item.uuid,
|
|
BTRFS_UUID_KEY_SUBVOL,
|
|
key.objectid);
|
|
if (ret < 0) {
|
|
btrfs_warn(fs_info, "uuid_tree_add failed %d",
|
|
ret);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
|
|
ret = btrfs_uuid_tree_add(trans,
|
|
root_item.received_uuid,
|
|
BTRFS_UUID_KEY_RECEIVED_SUBVOL,
|
|
key.objectid);
|
|
if (ret < 0) {
|
|
btrfs_warn(fs_info, "uuid_tree_add failed %d",
|
|
ret);
|
|
break;
|
|
}
|
|
}
|
|
|
|
skip:
|
|
btrfs_release_path(path);
|
|
if (trans) {
|
|
ret = btrfs_end_transaction(trans);
|
|
trans = NULL;
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
if (key.offset < (u64)-1) {
|
|
key.offset++;
|
|
} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
|
|
key.offset = 0;
|
|
key.type = BTRFS_ROOT_ITEM_KEY;
|
|
} else if (key.objectid < (u64)-1) {
|
|
key.offset = 0;
|
|
key.type = BTRFS_ROOT_ITEM_KEY;
|
|
key.objectid++;
|
|
} else {
|
|
break;
|
|
}
|
|
cond_resched();
|
|
}
|
|
|
|
out:
|
|
btrfs_free_path(path);
|
|
if (trans && !IS_ERR(trans))
|
|
btrfs_end_transaction(trans);
|
|
if (ret)
|
|
btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
|
|
else if (!closing)
|
|
set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
|
|
up(&fs_info->uuid_tree_rescan_sem);
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_root *tree_root = fs_info->tree_root;
|
|
struct btrfs_root *uuid_root;
|
|
struct task_struct *task;
|
|
int ret;
|
|
|
|
/*
|
|
* 1 - root node
|
|
* 1 - root item
|
|
*/
|
|
trans = btrfs_start_transaction(tree_root, 2);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
|
|
uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
|
|
if (IS_ERR(uuid_root)) {
|
|
ret = PTR_ERR(uuid_root);
|
|
btrfs_abort_transaction(trans, ret);
|
|
btrfs_end_transaction(trans);
|
|
return ret;
|
|
}
|
|
|
|
fs_info->uuid_root = uuid_root;
|
|
|
|
ret = btrfs_commit_transaction(trans);
|
|
if (ret)
|
|
return ret;
|
|
|
|
down(&fs_info->uuid_tree_rescan_sem);
|
|
task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
|
|
if (IS_ERR(task)) {
|
|
/* fs_info->update_uuid_tree_gen remains 0 in all error case */
|
|
btrfs_warn(fs_info, "failed to start uuid_scan task");
|
|
up(&fs_info->uuid_tree_rescan_sem);
|
|
return PTR_ERR(task);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* shrinking a device means finding all of the device extents past
|
|
* the new size, and then following the back refs to the chunks.
|
|
* The chunk relocation code actually frees the device extent
|
|
*/
|
|
int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
|
|
{
|
|
struct btrfs_fs_info *fs_info = device->fs_info;
|
|
struct btrfs_root *root = fs_info->dev_root;
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_dev_extent *dev_extent = NULL;
|
|
struct btrfs_path *path;
|
|
u64 length;
|
|
u64 chunk_offset;
|
|
int ret;
|
|
int slot;
|
|
int failed = 0;
|
|
bool retried = false;
|
|
struct extent_buffer *l;
|
|
struct btrfs_key key;
|
|
struct btrfs_super_block *super_copy = fs_info->super_copy;
|
|
u64 old_total = btrfs_super_total_bytes(super_copy);
|
|
u64 old_size = btrfs_device_get_total_bytes(device);
|
|
u64 diff;
|
|
u64 start;
|
|
|
|
new_size = round_down(new_size, fs_info->sectorsize);
|
|
start = new_size;
|
|
diff = round_down(old_size - new_size, fs_info->sectorsize);
|
|
|
|
if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
|
|
return -EINVAL;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
path->reada = READA_BACK;
|
|
|
|
trans = btrfs_start_transaction(root, 0);
|
|
if (IS_ERR(trans)) {
|
|
btrfs_free_path(path);
|
|
return PTR_ERR(trans);
|
|
}
|
|
|
|
mutex_lock(&fs_info->chunk_mutex);
|
|
|
|
btrfs_device_set_total_bytes(device, new_size);
|
|
if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
|
|
device->fs_devices->total_rw_bytes -= diff;
|
|
atomic64_sub(diff, &fs_info->free_chunk_space);
|
|
}
|
|
|
|
/*
|
|
* Once the device's size has been set to the new size, ensure all
|
|
* in-memory chunks are synced to disk so that the loop below sees them
|
|
* and relocates them accordingly.
|
|
*/
|
|
if (contains_pending_extent(device, &start, diff)) {
|
|
mutex_unlock(&fs_info->chunk_mutex);
|
|
ret = btrfs_commit_transaction(trans);
|
|
if (ret)
|
|
goto done;
|
|
} else {
|
|
mutex_unlock(&fs_info->chunk_mutex);
|
|
btrfs_end_transaction(trans);
|
|
}
|
|
|
|
again:
|
|
key.objectid = device->devid;
|
|
key.offset = (u64)-1;
|
|
key.type = BTRFS_DEV_EXTENT_KEY;
|
|
|
|
do {
|
|
mutex_lock(&fs_info->reclaim_bgs_lock);
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0) {
|
|
mutex_unlock(&fs_info->reclaim_bgs_lock);
|
|
goto done;
|
|
}
|
|
|
|
ret = btrfs_previous_item(root, path, 0, key.type);
|
|
if (ret) {
|
|
mutex_unlock(&fs_info->reclaim_bgs_lock);
|
|
if (ret < 0)
|
|
goto done;
|
|
ret = 0;
|
|
btrfs_release_path(path);
|
|
break;
|
|
}
|
|
|
|
l = path->nodes[0];
|
|
slot = path->slots[0];
|
|
btrfs_item_key_to_cpu(l, &key, path->slots[0]);
|
|
|
|
if (key.objectid != device->devid) {
|
|
mutex_unlock(&fs_info->reclaim_bgs_lock);
|
|
btrfs_release_path(path);
|
|
break;
|
|
}
|
|
|
|
dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
|
|
length = btrfs_dev_extent_length(l, dev_extent);
|
|
|
|
if (key.offset + length <= new_size) {
|
|
mutex_unlock(&fs_info->reclaim_bgs_lock);
|
|
btrfs_release_path(path);
|
|
break;
|
|
}
|
|
|
|
chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
|
|
btrfs_release_path(path);
|
|
|
|
/*
|
|
* We may be relocating the only data chunk we have,
|
|
* which could potentially end up with losing data's
|
|
* raid profile, so lets allocate an empty one in
|
|
* advance.
|
|
*/
|
|
ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
|
|
if (ret < 0) {
|
|
mutex_unlock(&fs_info->reclaim_bgs_lock);
|
|
goto done;
|
|
}
|
|
|
|
ret = btrfs_relocate_chunk(fs_info, chunk_offset);
|
|
mutex_unlock(&fs_info->reclaim_bgs_lock);
|
|
if (ret == -ENOSPC) {
|
|
failed++;
|
|
} else if (ret) {
|
|
if (ret == -ETXTBSY) {
|
|
btrfs_warn(fs_info,
|
|
"could not shrink block group %llu due to active swapfile",
|
|
chunk_offset);
|
|
}
|
|
goto done;
|
|
}
|
|
} while (key.offset-- > 0);
|
|
|
|
if (failed && !retried) {
|
|
failed = 0;
|
|
retried = true;
|
|
goto again;
|
|
} else if (failed && retried) {
|
|
ret = -ENOSPC;
|
|
goto done;
|
|
}
|
|
|
|
/* Shrinking succeeded, else we would be at "done". */
|
|
trans = btrfs_start_transaction(root, 0);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto done;
|
|
}
|
|
|
|
mutex_lock(&fs_info->chunk_mutex);
|
|
/* Clear all state bits beyond the shrunk device size */
|
|
clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
|
|
CHUNK_STATE_MASK);
|
|
|
|
btrfs_device_set_disk_total_bytes(device, new_size);
|
|
if (list_empty(&device->post_commit_list))
|
|
list_add_tail(&device->post_commit_list,
|
|
&trans->transaction->dev_update_list);
|
|
|
|
WARN_ON(diff > old_total);
|
|
btrfs_set_super_total_bytes(super_copy,
|
|
round_down(old_total - diff, fs_info->sectorsize));
|
|
mutex_unlock(&fs_info->chunk_mutex);
|
|
|
|
btrfs_reserve_chunk_metadata(trans, false);
|
|
/* Now btrfs_update_device() will change the on-disk size. */
|
|
ret = btrfs_update_device(trans, device);
|
|
btrfs_trans_release_chunk_metadata(trans);
|
|
if (ret < 0) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
btrfs_end_transaction(trans);
|
|
} else {
|
|
ret = btrfs_commit_transaction(trans);
|
|
}
|
|
done:
|
|
btrfs_free_path(path);
|
|
if (ret) {
|
|
mutex_lock(&fs_info->chunk_mutex);
|
|
btrfs_device_set_total_bytes(device, old_size);
|
|
if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
|
|
device->fs_devices->total_rw_bytes += diff;
|
|
atomic64_add(diff, &fs_info->free_chunk_space);
|
|
mutex_unlock(&fs_info->chunk_mutex);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_key *key,
|
|
struct btrfs_chunk *chunk, int item_size)
|
|
{
|
|
struct btrfs_super_block *super_copy = fs_info->super_copy;
|
|
struct btrfs_disk_key disk_key;
|
|
u32 array_size;
|
|
u8 *ptr;
|
|
|
|
lockdep_assert_held(&fs_info->chunk_mutex);
|
|
|
|
array_size = btrfs_super_sys_array_size(super_copy);
|
|
if (array_size + item_size + sizeof(disk_key)
|
|
> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
|
|
return -EFBIG;
|
|
|
|
ptr = super_copy->sys_chunk_array + array_size;
|
|
btrfs_cpu_key_to_disk(&disk_key, key);
|
|
memcpy(ptr, &disk_key, sizeof(disk_key));
|
|
ptr += sizeof(disk_key);
|
|
memcpy(ptr, chunk, item_size);
|
|
item_size += sizeof(disk_key);
|
|
btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* sort the devices in descending order by max_avail, total_avail
|
|
*/
|
|
static int btrfs_cmp_device_info(const void *a, const void *b)
|
|
{
|
|
const struct btrfs_device_info *di_a = a;
|
|
const struct btrfs_device_info *di_b = b;
|
|
|
|
if (di_a->max_avail > di_b->max_avail)
|
|
return -1;
|
|
if (di_a->max_avail < di_b->max_avail)
|
|
return 1;
|
|
if (di_a->total_avail > di_b->total_avail)
|
|
return -1;
|
|
if (di_a->total_avail < di_b->total_avail)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
|
|
{
|
|
if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
|
|
return;
|
|
|
|
btrfs_set_fs_incompat(info, RAID56);
|
|
}
|
|
|
|
static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
|
|
{
|
|
if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
|
|
return;
|
|
|
|
btrfs_set_fs_incompat(info, RAID1C34);
|
|
}
|
|
|
|
/*
|
|
* Structure used internally for btrfs_create_chunk() function.
|
|
* Wraps needed parameters.
|
|
*/
|
|
struct alloc_chunk_ctl {
|
|
u64 start;
|
|
u64 type;
|
|
/* Total number of stripes to allocate */
|
|
int num_stripes;
|
|
/* sub_stripes info for map */
|
|
int sub_stripes;
|
|
/* Stripes per device */
|
|
int dev_stripes;
|
|
/* Maximum number of devices to use */
|
|
int devs_max;
|
|
/* Minimum number of devices to use */
|
|
int devs_min;
|
|
/* ndevs has to be a multiple of this */
|
|
int devs_increment;
|
|
/* Number of copies */
|
|
int ncopies;
|
|
/* Number of stripes worth of bytes to store parity information */
|
|
int nparity;
|
|
u64 max_stripe_size;
|
|
u64 max_chunk_size;
|
|
u64 dev_extent_min;
|
|
u64 stripe_size;
|
|
u64 chunk_size;
|
|
int ndevs;
|
|
};
|
|
|
|
static void init_alloc_chunk_ctl_policy_regular(
|
|
struct btrfs_fs_devices *fs_devices,
|
|
struct alloc_chunk_ctl *ctl)
|
|
{
|
|
struct btrfs_space_info *space_info;
|
|
|
|
space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
|
|
ASSERT(space_info);
|
|
|
|
ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
|
|
ctl->max_stripe_size = ctl->max_chunk_size;
|
|
|
|
if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
|
|
ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
|
|
|
|
/* We don't want a chunk larger than 10% of writable space */
|
|
ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
|
|
ctl->max_chunk_size);
|
|
ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
|
|
}
|
|
|
|
static void init_alloc_chunk_ctl_policy_zoned(
|
|
struct btrfs_fs_devices *fs_devices,
|
|
struct alloc_chunk_ctl *ctl)
|
|
{
|
|
u64 zone_size = fs_devices->fs_info->zone_size;
|
|
u64 limit;
|
|
int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
|
|
int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
|
|
u64 min_chunk_size = min_data_stripes * zone_size;
|
|
u64 type = ctl->type;
|
|
|
|
ctl->max_stripe_size = zone_size;
|
|
if (type & BTRFS_BLOCK_GROUP_DATA) {
|
|
ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
|
|
zone_size);
|
|
} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
|
|
ctl->max_chunk_size = ctl->max_stripe_size;
|
|
} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
|
|
ctl->max_chunk_size = 2 * ctl->max_stripe_size;
|
|
ctl->devs_max = min_t(int, ctl->devs_max,
|
|
BTRFS_MAX_DEVS_SYS_CHUNK);
|
|
} else {
|
|
BUG();
|
|
}
|
|
|
|
/* We don't want a chunk larger than 10% of writable space */
|
|
limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
|
|
zone_size),
|
|
min_chunk_size);
|
|
ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
|
|
ctl->dev_extent_min = zone_size * ctl->dev_stripes;
|
|
}
|
|
|
|
static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
|
|
struct alloc_chunk_ctl *ctl)
|
|
{
|
|
int index = btrfs_bg_flags_to_raid_index(ctl->type);
|
|
|
|
ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
|
|
ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
|
|
ctl->devs_max = btrfs_raid_array[index].devs_max;
|
|
if (!ctl->devs_max)
|
|
ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
|
|
ctl->devs_min = btrfs_raid_array[index].devs_min;
|
|
ctl->devs_increment = btrfs_raid_array[index].devs_increment;
|
|
ctl->ncopies = btrfs_raid_array[index].ncopies;
|
|
ctl->nparity = btrfs_raid_array[index].nparity;
|
|
ctl->ndevs = 0;
|
|
|
|
switch (fs_devices->chunk_alloc_policy) {
|
|
case BTRFS_CHUNK_ALLOC_REGULAR:
|
|
init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
|
|
break;
|
|
case BTRFS_CHUNK_ALLOC_ZONED:
|
|
init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
static int gather_device_info(struct btrfs_fs_devices *fs_devices,
|
|
struct alloc_chunk_ctl *ctl,
|
|
struct btrfs_device_info *devices_info)
|
|
{
|
|
struct btrfs_fs_info *info = fs_devices->fs_info;
|
|
struct btrfs_device *device;
|
|
u64 total_avail;
|
|
u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
|
|
int ret;
|
|
int ndevs = 0;
|
|
u64 max_avail;
|
|
u64 dev_offset;
|
|
|
|
/*
|
|
* in the first pass through the devices list, we gather information
|
|
* about the available holes on each device.
|
|
*/
|
|
list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
|
|
if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
|
|
WARN(1, KERN_ERR
|
|
"BTRFS: read-only device in alloc_list\n");
|
|
continue;
|
|
}
|
|
|
|
if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
|
|
&device->dev_state) ||
|
|
test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
|
|
continue;
|
|
|
|
if (device->total_bytes > device->bytes_used)
|
|
total_avail = device->total_bytes - device->bytes_used;
|
|
else
|
|
total_avail = 0;
|
|
|
|
/* If there is no space on this device, skip it. */
|
|
if (total_avail < ctl->dev_extent_min)
|
|
continue;
|
|
|
|
ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
|
|
&max_avail);
|
|
if (ret && ret != -ENOSPC)
|
|
return ret;
|
|
|
|
if (ret == 0)
|
|
max_avail = dev_extent_want;
|
|
|
|
if (max_avail < ctl->dev_extent_min) {
|
|
if (btrfs_test_opt(info, ENOSPC_DEBUG))
|
|
btrfs_debug(info,
|
|
"%s: devid %llu has no free space, have=%llu want=%llu",
|
|
__func__, device->devid, max_avail,
|
|
ctl->dev_extent_min);
|
|
continue;
|
|
}
|
|
|
|
if (ndevs == fs_devices->rw_devices) {
|
|
WARN(1, "%s: found more than %llu devices\n",
|
|
__func__, fs_devices->rw_devices);
|
|
break;
|
|
}
|
|
devices_info[ndevs].dev_offset = dev_offset;
|
|
devices_info[ndevs].max_avail = max_avail;
|
|
devices_info[ndevs].total_avail = total_avail;
|
|
devices_info[ndevs].dev = device;
|
|
++ndevs;
|
|
}
|
|
ctl->ndevs = ndevs;
|
|
|
|
/*
|
|
* now sort the devices by hole size / available space
|
|
*/
|
|
sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
|
|
btrfs_cmp_device_info, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
|
|
struct btrfs_device_info *devices_info)
|
|
{
|
|
/* Number of stripes that count for block group size */
|
|
int data_stripes;
|
|
|
|
/*
|
|
* The primary goal is to maximize the number of stripes, so use as
|
|
* many devices as possible, even if the stripes are not maximum sized.
|
|
*
|
|
* The DUP profile stores more than one stripe per device, the
|
|
* max_avail is the total size so we have to adjust.
|
|
*/
|
|
ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
|
|
ctl->dev_stripes);
|
|
ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
|
|
|
|
/* This will have to be fixed for RAID1 and RAID10 over more drives */
|
|
data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
|
|
|
|
/*
|
|
* Use the number of data stripes to figure out how big this chunk is
|
|
* really going to be in terms of logical address space, and compare
|
|
* that answer with the max chunk size. If it's higher, we try to
|
|
* reduce stripe_size.
|
|
*/
|
|
if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
|
|
/*
|
|
* Reduce stripe_size, round it up to a 16MB boundary again and
|
|
* then use it, unless it ends up being even bigger than the
|
|
* previous value we had already.
|
|
*/
|
|
ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
|
|
data_stripes), SZ_16M),
|
|
ctl->stripe_size);
|
|
}
|
|
|
|
/* Stripe size should not go beyond 1G. */
|
|
ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
|
|
|
|
/* Align to BTRFS_STRIPE_LEN */
|
|
ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
|
|
ctl->chunk_size = ctl->stripe_size * data_stripes;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
|
|
struct btrfs_device_info *devices_info)
|
|
{
|
|
u64 zone_size = devices_info[0].dev->zone_info->zone_size;
|
|
/* Number of stripes that count for block group size */
|
|
int data_stripes;
|
|
|
|
/*
|
|
* It should hold because:
|
|
* dev_extent_min == dev_extent_want == zone_size * dev_stripes
|
|
*/
|
|
ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
|
|
|
|
ctl->stripe_size = zone_size;
|
|
ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
|
|
data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
|
|
|
|
/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
|
|
if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
|
|
ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
|
|
ctl->stripe_size) + ctl->nparity,
|
|
ctl->dev_stripes);
|
|
ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
|
|
data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
|
|
ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
|
|
}
|
|
|
|
ctl->chunk_size = ctl->stripe_size * data_stripes;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
|
|
struct alloc_chunk_ctl *ctl,
|
|
struct btrfs_device_info *devices_info)
|
|
{
|
|
struct btrfs_fs_info *info = fs_devices->fs_info;
|
|
|
|
/*
|
|
* Round down to number of usable stripes, devs_increment can be any
|
|
* number so we can't use round_down() that requires power of 2, while
|
|
* rounddown is safe.
|
|
*/
|
|
ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
|
|
|
|
if (ctl->ndevs < ctl->devs_min) {
|
|
if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
|
|
btrfs_debug(info,
|
|
"%s: not enough devices with free space: have=%d minimum required=%d",
|
|
__func__, ctl->ndevs, ctl->devs_min);
|
|
}
|
|
return -ENOSPC;
|
|
}
|
|
|
|
ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
|
|
|
|
switch (fs_devices->chunk_alloc_policy) {
|
|
case BTRFS_CHUNK_ALLOC_REGULAR:
|
|
return decide_stripe_size_regular(ctl, devices_info);
|
|
case BTRFS_CHUNK_ALLOC_ZONED:
|
|
return decide_stripe_size_zoned(ctl, devices_info);
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
|
|
struct alloc_chunk_ctl *ctl,
|
|
struct btrfs_device_info *devices_info)
|
|
{
|
|
struct btrfs_fs_info *info = trans->fs_info;
|
|
struct map_lookup *map = NULL;
|
|
struct extent_map_tree *em_tree;
|
|
struct btrfs_block_group *block_group;
|
|
struct extent_map *em;
|
|
u64 start = ctl->start;
|
|
u64 type = ctl->type;
|
|
int ret;
|
|
int i;
|
|
int j;
|
|
|
|
map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
|
|
if (!map)
|
|
return ERR_PTR(-ENOMEM);
|
|
map->num_stripes = ctl->num_stripes;
|
|
|
|
for (i = 0; i < ctl->ndevs; ++i) {
|
|
for (j = 0; j < ctl->dev_stripes; ++j) {
|
|
int s = i * ctl->dev_stripes + j;
|
|
map->stripes[s].dev = devices_info[i].dev;
|
|
map->stripes[s].physical = devices_info[i].dev_offset +
|
|
j * ctl->stripe_size;
|
|
}
|
|
}
|
|
map->io_align = BTRFS_STRIPE_LEN;
|
|
map->io_width = BTRFS_STRIPE_LEN;
|
|
map->type = type;
|
|
map->sub_stripes = ctl->sub_stripes;
|
|
|
|
trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
|
|
|
|
em = alloc_extent_map();
|
|
if (!em) {
|
|
kfree(map);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
|
|
em->map_lookup = map;
|
|
em->start = start;
|
|
em->len = ctl->chunk_size;
|
|
em->block_start = 0;
|
|
em->block_len = em->len;
|
|
em->orig_block_len = ctl->stripe_size;
|
|
|
|
em_tree = &info->mapping_tree;
|
|
write_lock(&em_tree->lock);
|
|
ret = add_extent_mapping(em_tree, em, 0);
|
|
if (ret) {
|
|
write_unlock(&em_tree->lock);
|
|
free_extent_map(em);
|
|
return ERR_PTR(ret);
|
|
}
|
|
write_unlock(&em_tree->lock);
|
|
|
|
block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
|
|
if (IS_ERR(block_group))
|
|
goto error_del_extent;
|
|
|
|
for (i = 0; i < map->num_stripes; i++) {
|
|
struct btrfs_device *dev = map->stripes[i].dev;
|
|
|
|
btrfs_device_set_bytes_used(dev,
|
|
dev->bytes_used + ctl->stripe_size);
|
|
if (list_empty(&dev->post_commit_list))
|
|
list_add_tail(&dev->post_commit_list,
|
|
&trans->transaction->dev_update_list);
|
|
}
|
|
|
|
atomic64_sub(ctl->stripe_size * map->num_stripes,
|
|
&info->free_chunk_space);
|
|
|
|
free_extent_map(em);
|
|
check_raid56_incompat_flag(info, type);
|
|
check_raid1c34_incompat_flag(info, type);
|
|
|
|
return block_group;
|
|
|
|
error_del_extent:
|
|
write_lock(&em_tree->lock);
|
|
remove_extent_mapping(em_tree, em);
|
|
write_unlock(&em_tree->lock);
|
|
|
|
/* One for our allocation */
|
|
free_extent_map(em);
|
|
/* One for the tree reference */
|
|
free_extent_map(em);
|
|
|
|
return block_group;
|
|
}
|
|
|
|
struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
|
|
u64 type)
|
|
{
|
|
struct btrfs_fs_info *info = trans->fs_info;
|
|
struct btrfs_fs_devices *fs_devices = info->fs_devices;
|
|
struct btrfs_device_info *devices_info = NULL;
|
|
struct alloc_chunk_ctl ctl;
|
|
struct btrfs_block_group *block_group;
|
|
int ret;
|
|
|
|
lockdep_assert_held(&info->chunk_mutex);
|
|
|
|
if (!alloc_profile_is_valid(type, 0)) {
|
|
ASSERT(0);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
if (list_empty(&fs_devices->alloc_list)) {
|
|
if (btrfs_test_opt(info, ENOSPC_DEBUG))
|
|
btrfs_debug(info, "%s: no writable device", __func__);
|
|
return ERR_PTR(-ENOSPC);
|
|
}
|
|
|
|
if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
|
|
btrfs_err(info, "invalid chunk type 0x%llx requested", type);
|
|
ASSERT(0);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
ctl.start = find_next_chunk(info);
|
|
ctl.type = type;
|
|
init_alloc_chunk_ctl(fs_devices, &ctl);
|
|
|
|
devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
|
|
GFP_NOFS);
|
|
if (!devices_info)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
ret = gather_device_info(fs_devices, &ctl, devices_info);
|
|
if (ret < 0) {
|
|
block_group = ERR_PTR(ret);
|
|
goto out;
|
|
}
|
|
|
|
ret = decide_stripe_size(fs_devices, &ctl, devices_info);
|
|
if (ret < 0) {
|
|
block_group = ERR_PTR(ret);
|
|
goto out;
|
|
}
|
|
|
|
block_group = create_chunk(trans, &ctl, devices_info);
|
|
|
|
out:
|
|
kfree(devices_info);
|
|
return block_group;
|
|
}
|
|
|
|
/*
|
|
* This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
|
|
* phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
|
|
* chunks.
|
|
*
|
|
* See the comment at btrfs_chunk_alloc() for details about the chunk allocation
|
|
* phases.
|
|
*/
|
|
int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
|
|
struct btrfs_block_group *bg)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_root *chunk_root = fs_info->chunk_root;
|
|
struct btrfs_key key;
|
|
struct btrfs_chunk *chunk;
|
|
struct btrfs_stripe *stripe;
|
|
struct extent_map *em;
|
|
struct map_lookup *map;
|
|
size_t item_size;
|
|
int i;
|
|
int ret;
|
|
|
|
/*
|
|
* We take the chunk_mutex for 2 reasons:
|
|
*
|
|
* 1) Updates and insertions in the chunk btree must be done while holding
|
|
* the chunk_mutex, as well as updating the system chunk array in the
|
|
* superblock. See the comment on top of btrfs_chunk_alloc() for the
|
|
* details;
|
|
*
|
|
* 2) To prevent races with the final phase of a device replace operation
|
|
* that replaces the device object associated with the map's stripes,
|
|
* because the device object's id can change at any time during that
|
|
* final phase of the device replace operation
|
|
* (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
|
|
* replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
|
|
* which would cause a failure when updating the device item, which does
|
|
* not exists, or persisting a stripe of the chunk item with such ID.
|
|
* Here we can't use the device_list_mutex because our caller already
|
|
* has locked the chunk_mutex, and the final phase of device replace
|
|
* acquires both mutexes - first the device_list_mutex and then the
|
|
* chunk_mutex. Using any of those two mutexes protects us from a
|
|
* concurrent device replace.
|
|
*/
|
|
lockdep_assert_held(&fs_info->chunk_mutex);
|
|
|
|
em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
|
|
if (IS_ERR(em)) {
|
|
ret = PTR_ERR(em);
|
|
btrfs_abort_transaction(trans, ret);
|
|
return ret;
|
|
}
|
|
|
|
map = em->map_lookup;
|
|
item_size = btrfs_chunk_item_size(map->num_stripes);
|
|
|
|
chunk = kzalloc(item_size, GFP_NOFS);
|
|
if (!chunk) {
|
|
ret = -ENOMEM;
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
|
|
for (i = 0; i < map->num_stripes; i++) {
|
|
struct btrfs_device *device = map->stripes[i].dev;
|
|
|
|
ret = btrfs_update_device(trans, device);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
stripe = &chunk->stripe;
|
|
for (i = 0; i < map->num_stripes; i++) {
|
|
struct btrfs_device *device = map->stripes[i].dev;
|
|
const u64 dev_offset = map->stripes[i].physical;
|
|
|
|
btrfs_set_stack_stripe_devid(stripe, device->devid);
|
|
btrfs_set_stack_stripe_offset(stripe, dev_offset);
|
|
memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
|
|
stripe++;
|
|
}
|
|
|
|
btrfs_set_stack_chunk_length(chunk, bg->length);
|
|
btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
|
|
btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
|
|
btrfs_set_stack_chunk_type(chunk, map->type);
|
|
btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
|
|
btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
|
|
btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
|
|
btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
|
|
btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
|
|
|
|
key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
|
|
key.type = BTRFS_CHUNK_ITEM_KEY;
|
|
key.offset = bg->start;
|
|
|
|
ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
|
|
if (ret)
|
|
goto out;
|
|
|
|
set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
|
|
|
|
if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
|
|
ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
kfree(chunk);
|
|
free_extent_map(em);
|
|
return ret;
|
|
}
|
|
|
|
static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
u64 alloc_profile;
|
|
struct btrfs_block_group *meta_bg;
|
|
struct btrfs_block_group *sys_bg;
|
|
|
|
/*
|
|
* When adding a new device for sprouting, the seed device is read-only
|
|
* so we must first allocate a metadata and a system chunk. But before
|
|
* adding the block group items to the extent, device and chunk btrees,
|
|
* we must first:
|
|
*
|
|
* 1) Create both chunks without doing any changes to the btrees, as
|
|
* otherwise we would get -ENOSPC since the block groups from the
|
|
* seed device are read-only;
|
|
*
|
|
* 2) Add the device item for the new sprout device - finishing the setup
|
|
* of a new block group requires updating the device item in the chunk
|
|
* btree, so it must exist when we attempt to do it. The previous step
|
|
* ensures this does not fail with -ENOSPC.
|
|
*
|
|
* After that we can add the block group items to their btrees:
|
|
* update existing device item in the chunk btree, add a new block group
|
|
* item to the extent btree, add a new chunk item to the chunk btree and
|
|
* finally add the new device extent items to the devices btree.
|
|
*/
|
|
|
|
alloc_profile = btrfs_metadata_alloc_profile(fs_info);
|
|
meta_bg = btrfs_create_chunk(trans, alloc_profile);
|
|
if (IS_ERR(meta_bg))
|
|
return PTR_ERR(meta_bg);
|
|
|
|
alloc_profile = btrfs_system_alloc_profile(fs_info);
|
|
sys_bg = btrfs_create_chunk(trans, alloc_profile);
|
|
if (IS_ERR(sys_bg))
|
|
return PTR_ERR(sys_bg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int btrfs_chunk_max_errors(struct map_lookup *map)
|
|
{
|
|
const int index = btrfs_bg_flags_to_raid_index(map->type);
|
|
|
|
return btrfs_raid_array[index].tolerated_failures;
|
|
}
|
|
|
|
bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
|
|
{
|
|
struct extent_map *em;
|
|
struct map_lookup *map;
|
|
int miss_ndevs = 0;
|
|
int i;
|
|
bool ret = true;
|
|
|
|
em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
|
|
if (IS_ERR(em))
|
|
return false;
|
|
|
|
map = em->map_lookup;
|
|
for (i = 0; i < map->num_stripes; i++) {
|
|
if (test_bit(BTRFS_DEV_STATE_MISSING,
|
|
&map->stripes[i].dev->dev_state)) {
|
|
miss_ndevs++;
|
|
continue;
|
|
}
|
|
if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
|
|
&map->stripes[i].dev->dev_state)) {
|
|
ret = false;
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the number of missing devices is larger than max errors, we can
|
|
* not write the data into that chunk successfully.
|
|
*/
|
|
if (miss_ndevs > btrfs_chunk_max_errors(map))
|
|
ret = false;
|
|
end:
|
|
free_extent_map(em);
|
|
return ret;
|
|
}
|
|
|
|
void btrfs_mapping_tree_free(struct extent_map_tree *tree)
|
|
{
|
|
struct extent_map *em;
|
|
|
|
while (1) {
|
|
write_lock(&tree->lock);
|
|
em = lookup_extent_mapping(tree, 0, (u64)-1);
|
|
if (em)
|
|
remove_extent_mapping(tree, em);
|
|
write_unlock(&tree->lock);
|
|
if (!em)
|
|
break;
|
|
/* once for us */
|
|
free_extent_map(em);
|
|
/* once for the tree */
|
|
free_extent_map(em);
|
|
}
|
|
}
|
|
|
|
int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
|
|
{
|
|
struct extent_map *em;
|
|
struct map_lookup *map;
|
|
enum btrfs_raid_types index;
|
|
int ret = 1;
|
|
|
|
em = btrfs_get_chunk_map(fs_info, logical, len);
|
|
if (IS_ERR(em))
|
|
/*
|
|
* We could return errors for these cases, but that could get
|
|
* ugly and we'd probably do the same thing which is just not do
|
|
* anything else and exit, so return 1 so the callers don't try
|
|
* to use other copies.
|
|
*/
|
|
return 1;
|
|
|
|
map = em->map_lookup;
|
|
index = btrfs_bg_flags_to_raid_index(map->type);
|
|
|
|
/* Non-RAID56, use their ncopies from btrfs_raid_array. */
|
|
if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
|
|
ret = btrfs_raid_array[index].ncopies;
|
|
else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
|
|
ret = 2;
|
|
else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
|
|
/*
|
|
* There could be two corrupted data stripes, we need
|
|
* to loop retry in order to rebuild the correct data.
|
|
*
|
|
* Fail a stripe at a time on every retry except the
|
|
* stripe under reconstruction.
|
|
*/
|
|
ret = map->num_stripes;
|
|
free_extent_map(em);
|
|
return ret;
|
|
}
|
|
|
|
unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
|
|
u64 logical)
|
|
{
|
|
struct extent_map *em;
|
|
struct map_lookup *map;
|
|
unsigned long len = fs_info->sectorsize;
|
|
|
|
if (!btrfs_fs_incompat(fs_info, RAID56))
|
|
return len;
|
|
|
|
em = btrfs_get_chunk_map(fs_info, logical, len);
|
|
|
|
if (!WARN_ON(IS_ERR(em))) {
|
|
map = em->map_lookup;
|
|
if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
|
|
len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
|
|
free_extent_map(em);
|
|
}
|
|
return len;
|
|
}
|
|
|
|
int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
|
|
{
|
|
struct extent_map *em;
|
|
struct map_lookup *map;
|
|
int ret = 0;
|
|
|
|
if (!btrfs_fs_incompat(fs_info, RAID56))
|
|
return 0;
|
|
|
|
em = btrfs_get_chunk_map(fs_info, logical, len);
|
|
|
|
if(!WARN_ON(IS_ERR(em))) {
|
|
map = em->map_lookup;
|
|
if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
|
|
ret = 1;
|
|
free_extent_map(em);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int find_live_mirror(struct btrfs_fs_info *fs_info,
|
|
struct map_lookup *map, int first,
|
|
int dev_replace_is_ongoing)
|
|
{
|
|
int i;
|
|
int num_stripes;
|
|
int preferred_mirror;
|
|
int tolerance;
|
|
struct btrfs_device *srcdev;
|
|
|
|
ASSERT((map->type &
|
|
(BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
|
|
|
|
if (map->type & BTRFS_BLOCK_GROUP_RAID10)
|
|
num_stripes = map->sub_stripes;
|
|
else
|
|
num_stripes = map->num_stripes;
|
|
|
|
switch (fs_info->fs_devices->read_policy) {
|
|
default:
|
|
/* Shouldn't happen, just warn and use pid instead of failing */
|
|
btrfs_warn_rl(fs_info,
|
|
"unknown read_policy type %u, reset to pid",
|
|
fs_info->fs_devices->read_policy);
|
|
fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
|
|
fallthrough;
|
|
case BTRFS_READ_POLICY_PID:
|
|
preferred_mirror = first + (current->pid % num_stripes);
|
|
break;
|
|
}
|
|
|
|
if (dev_replace_is_ongoing &&
|
|
fs_info->dev_replace.cont_reading_from_srcdev_mode ==
|
|
BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
|
|
srcdev = fs_info->dev_replace.srcdev;
|
|
else
|
|
srcdev = NULL;
|
|
|
|
/*
|
|
* try to avoid the drive that is the source drive for a
|
|
* dev-replace procedure, only choose it if no other non-missing
|
|
* mirror is available
|
|
*/
|
|
for (tolerance = 0; tolerance < 2; tolerance++) {
|
|
if (map->stripes[preferred_mirror].dev->bdev &&
|
|
(tolerance || map->stripes[preferred_mirror].dev != srcdev))
|
|
return preferred_mirror;
|
|
for (i = first; i < first + num_stripes; i++) {
|
|
if (map->stripes[i].dev->bdev &&
|
|
(tolerance || map->stripes[i].dev != srcdev))
|
|
return i;
|
|
}
|
|
}
|
|
|
|
/* we couldn't find one that doesn't fail. Just return something
|
|
* and the io error handling code will clean up eventually
|
|
*/
|
|
return preferred_mirror;
|
|
}
|
|
|
|
static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
|
|
u16 total_stripes)
|
|
{
|
|
struct btrfs_io_context *bioc;
|
|
|
|
bioc = kzalloc(
|
|
/* The size of btrfs_io_context */
|
|
sizeof(struct btrfs_io_context) +
|
|
/* Plus the variable array for the stripes */
|
|
sizeof(struct btrfs_io_stripe) * (total_stripes),
|
|
GFP_NOFS);
|
|
|
|
if (!bioc)
|
|
return NULL;
|
|
|
|
refcount_set(&bioc->refs, 1);
|
|
|
|
bioc->fs_info = fs_info;
|
|
bioc->replace_stripe_src = -1;
|
|
bioc->full_stripe_logical = (u64)-1;
|
|
|
|
return bioc;
|
|
}
|
|
|
|
void btrfs_get_bioc(struct btrfs_io_context *bioc)
|
|
{
|
|
WARN_ON(!refcount_read(&bioc->refs));
|
|
refcount_inc(&bioc->refs);
|
|
}
|
|
|
|
void btrfs_put_bioc(struct btrfs_io_context *bioc)
|
|
{
|
|
if (!bioc)
|
|
return;
|
|
if (refcount_dec_and_test(&bioc->refs))
|
|
kfree(bioc);
|
|
}
|
|
|
|
/*
|
|
* Please note that, discard won't be sent to target device of device
|
|
* replace.
|
|
*/
|
|
struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
|
|
u64 logical, u64 *length_ret,
|
|
u32 *num_stripes)
|
|
{
|
|
struct extent_map *em;
|
|
struct map_lookup *map;
|
|
struct btrfs_discard_stripe *stripes;
|
|
u64 length = *length_ret;
|
|
u64 offset;
|
|
u32 stripe_nr;
|
|
u32 stripe_nr_end;
|
|
u32 stripe_cnt;
|
|
u64 stripe_end_offset;
|
|
u64 stripe_offset;
|
|
u32 stripe_index;
|
|
u32 factor = 0;
|
|
u32 sub_stripes = 0;
|
|
u32 stripes_per_dev = 0;
|
|
u32 remaining_stripes = 0;
|
|
u32 last_stripe = 0;
|
|
int ret;
|
|
int i;
|
|
|
|
em = btrfs_get_chunk_map(fs_info, logical, length);
|
|
if (IS_ERR(em))
|
|
return ERR_CAST(em);
|
|
|
|
map = em->map_lookup;
|
|
|
|
/* we don't discard raid56 yet */
|
|
if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
|
|
ret = -EOPNOTSUPP;
|
|
goto out_free_map;
|
|
}
|
|
|
|
offset = logical - em->start;
|
|
length = min_t(u64, em->start + em->len - logical, length);
|
|
*length_ret = length;
|
|
|
|
/*
|
|
* stripe_nr counts the total number of stripes we have to stride
|
|
* to get to this block
|
|
*/
|
|
stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
|
|
|
|
/* stripe_offset is the offset of this block in its stripe */
|
|
stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
|
|
|
|
stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
|
|
BTRFS_STRIPE_LEN_SHIFT;
|
|
stripe_cnt = stripe_nr_end - stripe_nr;
|
|
stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
|
|
(offset + length);
|
|
/*
|
|
* after this, stripe_nr is the number of stripes on this
|
|
* device we have to walk to find the data, and stripe_index is
|
|
* the number of our device in the stripe array
|
|
*/
|
|
*num_stripes = 1;
|
|
stripe_index = 0;
|
|
if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
|
|
BTRFS_BLOCK_GROUP_RAID10)) {
|
|
if (map->type & BTRFS_BLOCK_GROUP_RAID0)
|
|
sub_stripes = 1;
|
|
else
|
|
sub_stripes = map->sub_stripes;
|
|
|
|
factor = map->num_stripes / sub_stripes;
|
|
*num_stripes = min_t(u64, map->num_stripes,
|
|
sub_stripes * stripe_cnt);
|
|
stripe_index = stripe_nr % factor;
|
|
stripe_nr /= factor;
|
|
stripe_index *= sub_stripes;
|
|
|
|
remaining_stripes = stripe_cnt % factor;
|
|
stripes_per_dev = stripe_cnt / factor;
|
|
last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
|
|
} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
|
|
BTRFS_BLOCK_GROUP_DUP)) {
|
|
*num_stripes = map->num_stripes;
|
|
} else {
|
|
stripe_index = stripe_nr % map->num_stripes;
|
|
stripe_nr /= map->num_stripes;
|
|
}
|
|
|
|
stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
|
|
if (!stripes) {
|
|
ret = -ENOMEM;
|
|
goto out_free_map;
|
|
}
|
|
|
|
for (i = 0; i < *num_stripes; i++) {
|
|
stripes[i].physical =
|
|
map->stripes[stripe_index].physical +
|
|
stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
|
|
stripes[i].dev = map->stripes[stripe_index].dev;
|
|
|
|
if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
|
|
BTRFS_BLOCK_GROUP_RAID10)) {
|
|
stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
|
|
|
|
if (i / sub_stripes < remaining_stripes)
|
|
stripes[i].length += BTRFS_STRIPE_LEN;
|
|
|
|
/*
|
|
* Special for the first stripe and
|
|
* the last stripe:
|
|
*
|
|
* |-------|...|-------|
|
|
* |----------|
|
|
* off end_off
|
|
*/
|
|
if (i < sub_stripes)
|
|
stripes[i].length -= stripe_offset;
|
|
|
|
if (stripe_index >= last_stripe &&
|
|
stripe_index <= (last_stripe +
|
|
sub_stripes - 1))
|
|
stripes[i].length -= stripe_end_offset;
|
|
|
|
if (i == sub_stripes - 1)
|
|
stripe_offset = 0;
|
|
} else {
|
|
stripes[i].length = length;
|
|
}
|
|
|
|
stripe_index++;
|
|
if (stripe_index == map->num_stripes) {
|
|
stripe_index = 0;
|
|
stripe_nr++;
|
|
}
|
|
}
|
|
|
|
free_extent_map(em);
|
|
return stripes;
|
|
out_free_map:
|
|
free_extent_map(em);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
|
|
{
|
|
struct btrfs_block_group *cache;
|
|
bool ret;
|
|
|
|
/* Non zoned filesystem does not use "to_copy" flag */
|
|
if (!btrfs_is_zoned(fs_info))
|
|
return false;
|
|
|
|
cache = btrfs_lookup_block_group(fs_info, logical);
|
|
|
|
ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
|
|
|
|
btrfs_put_block_group(cache);
|
|
return ret;
|
|
}
|
|
|
|
static void handle_ops_on_dev_replace(enum btrfs_map_op op,
|
|
struct btrfs_io_context *bioc,
|
|
struct btrfs_dev_replace *dev_replace,
|
|
u64 logical,
|
|
int *num_stripes_ret, int *max_errors_ret)
|
|
{
|
|
u64 srcdev_devid = dev_replace->srcdev->devid;
|
|
/*
|
|
* At this stage, num_stripes is still the real number of stripes,
|
|
* excluding the duplicated stripes.
|
|
*/
|
|
int num_stripes = *num_stripes_ret;
|
|
int nr_extra_stripes = 0;
|
|
int max_errors = *max_errors_ret;
|
|
int i;
|
|
|
|
/*
|
|
* A block group which has "to_copy" set will eventually be copied by
|
|
* the dev-replace process. We can avoid cloning IO here.
|
|
*/
|
|
if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
|
|
return;
|
|
|
|
/*
|
|
* Duplicate the write operations while the dev-replace procedure is
|
|
* running. Since the copying of the old disk to the new disk takes
|
|
* place at run time while the filesystem is mounted writable, the
|
|
* regular write operations to the old disk have to be duplicated to go
|
|
* to the new disk as well.
|
|
*
|
|
* Note that device->missing is handled by the caller, and that the
|
|
* write to the old disk is already set up in the stripes array.
|
|
*/
|
|
for (i = 0; i < num_stripes; i++) {
|
|
struct btrfs_io_stripe *old = &bioc->stripes[i];
|
|
struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
|
|
|
|
if (old->dev->devid != srcdev_devid)
|
|
continue;
|
|
|
|
new->physical = old->physical;
|
|
new->dev = dev_replace->tgtdev;
|
|
if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
|
|
bioc->replace_stripe_src = i;
|
|
nr_extra_stripes++;
|
|
}
|
|
|
|
/* We can only have at most 2 extra nr_stripes (for DUP). */
|
|
ASSERT(nr_extra_stripes <= 2);
|
|
/*
|
|
* For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
|
|
* replace.
|
|
* If we have 2 extra stripes, only choose the one with smaller physical.
|
|
*/
|
|
if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
|
|
struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
|
|
struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
|
|
|
|
/* Only DUP can have two extra stripes. */
|
|
ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
|
|
|
|
/*
|
|
* Swap the last stripe stripes and reduce @nr_extra_stripes.
|
|
* The extra stripe would still be there, but won't be accessed.
|
|
*/
|
|
if (first->physical > second->physical) {
|
|
swap(second->physical, first->physical);
|
|
swap(second->dev, first->dev);
|
|
nr_extra_stripes--;
|
|
}
|
|
}
|
|
|
|
*num_stripes_ret = num_stripes + nr_extra_stripes;
|
|
*max_errors_ret = max_errors + nr_extra_stripes;
|
|
bioc->replace_nr_stripes = nr_extra_stripes;
|
|
}
|
|
|
|
static u64 btrfs_max_io_len(struct map_lookup *map, enum btrfs_map_op op,
|
|
u64 offset, u32 *stripe_nr, u64 *stripe_offset,
|
|
u64 *full_stripe_start)
|
|
{
|
|
/*
|
|
* Stripe_nr is the stripe where this block falls. stripe_offset is
|
|
* the offset of this block in its stripe.
|
|
*/
|
|
*stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
|
|
*stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
|
|
ASSERT(*stripe_offset < U32_MAX);
|
|
|
|
if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
|
|
unsigned long full_stripe_len =
|
|
btrfs_stripe_nr_to_offset(nr_data_stripes(map));
|
|
|
|
/*
|
|
* For full stripe start, we use previously calculated
|
|
* @stripe_nr. Align it to nr_data_stripes, then multiply with
|
|
* STRIPE_LEN.
|
|
*
|
|
* By this we can avoid u64 division completely. And we have
|
|
* to go rounddown(), not round_down(), as nr_data_stripes is
|
|
* not ensured to be power of 2.
|
|
*/
|
|
*full_stripe_start =
|
|
btrfs_stripe_nr_to_offset(
|
|
rounddown(*stripe_nr, nr_data_stripes(map)));
|
|
|
|
ASSERT(*full_stripe_start + full_stripe_len > offset);
|
|
ASSERT(*full_stripe_start <= offset);
|
|
/*
|
|
* For writes to RAID56, allow to write a full stripe set, but
|
|
* no straddling of stripe sets.
|
|
*/
|
|
if (op == BTRFS_MAP_WRITE)
|
|
return full_stripe_len - (offset - *full_stripe_start);
|
|
}
|
|
|
|
/*
|
|
* For other RAID types and for RAID56 reads, allow a single stripe (on
|
|
* a single disk).
|
|
*/
|
|
if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
|
|
return BTRFS_STRIPE_LEN - *stripe_offset;
|
|
return U64_MAX;
|
|
}
|
|
|
|
static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map,
|
|
u32 stripe_index, u64 stripe_offset, u32 stripe_nr)
|
|
{
|
|
dst->dev = map->stripes[stripe_index].dev;
|
|
dst->physical = map->stripes[stripe_index].physical +
|
|
stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
|
|
}
|
|
|
|
int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
|
|
u64 logical, u64 *length,
|
|
struct btrfs_io_context **bioc_ret,
|
|
struct btrfs_io_stripe *smap, int *mirror_num_ret,
|
|
int need_raid_map)
|
|
{
|
|
struct extent_map *em;
|
|
struct map_lookup *map;
|
|
u64 map_offset;
|
|
u64 stripe_offset;
|
|
u32 stripe_nr;
|
|
u32 stripe_index;
|
|
int data_stripes;
|
|
int i;
|
|
int ret = 0;
|
|
int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
|
|
int num_stripes;
|
|
int num_copies;
|
|
int max_errors = 0;
|
|
struct btrfs_io_context *bioc = NULL;
|
|
struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
|
|
int dev_replace_is_ongoing = 0;
|
|
u16 num_alloc_stripes;
|
|
u64 raid56_full_stripe_start = (u64)-1;
|
|
u64 max_len;
|
|
|
|
ASSERT(bioc_ret);
|
|
|
|
num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize);
|
|
if (mirror_num > num_copies)
|
|
return -EINVAL;
|
|
|
|
em = btrfs_get_chunk_map(fs_info, logical, *length);
|
|
if (IS_ERR(em))
|
|
return PTR_ERR(em);
|
|
|
|
map = em->map_lookup;
|
|
data_stripes = nr_data_stripes(map);
|
|
|
|
map_offset = logical - em->start;
|
|
max_len = btrfs_max_io_len(map, op, map_offset, &stripe_nr,
|
|
&stripe_offset, &raid56_full_stripe_start);
|
|
*length = min_t(u64, em->len - map_offset, max_len);
|
|
|
|
down_read(&dev_replace->rwsem);
|
|
dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
|
|
/*
|
|
* Hold the semaphore for read during the whole operation, write is
|
|
* requested at commit time but must wait.
|
|
*/
|
|
if (!dev_replace_is_ongoing)
|
|
up_read(&dev_replace->rwsem);
|
|
|
|
num_stripes = 1;
|
|
stripe_index = 0;
|
|
if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
|
|
stripe_index = stripe_nr % map->num_stripes;
|
|
stripe_nr /= map->num_stripes;
|
|
if (op == BTRFS_MAP_READ)
|
|
mirror_num = 1;
|
|
} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
|
|
if (op != BTRFS_MAP_READ) {
|
|
num_stripes = map->num_stripes;
|
|
} else if (mirror_num) {
|
|
stripe_index = mirror_num - 1;
|
|
} else {
|
|
stripe_index = find_live_mirror(fs_info, map, 0,
|
|
dev_replace_is_ongoing);
|
|
mirror_num = stripe_index + 1;
|
|
}
|
|
|
|
} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
|
|
if (op != BTRFS_MAP_READ) {
|
|
num_stripes = map->num_stripes;
|
|
} else if (mirror_num) {
|
|
stripe_index = mirror_num - 1;
|
|
} else {
|
|
mirror_num = 1;
|
|
}
|
|
|
|
} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
|
|
u32 factor = map->num_stripes / map->sub_stripes;
|
|
|
|
stripe_index = (stripe_nr % factor) * map->sub_stripes;
|
|
stripe_nr /= factor;
|
|
|
|
if (op != BTRFS_MAP_READ)
|
|
num_stripes = map->sub_stripes;
|
|
else if (mirror_num)
|
|
stripe_index += mirror_num - 1;
|
|
else {
|
|
int old_stripe_index = stripe_index;
|
|
stripe_index = find_live_mirror(fs_info, map,
|
|
stripe_index,
|
|
dev_replace_is_ongoing);
|
|
mirror_num = stripe_index - old_stripe_index + 1;
|
|
}
|
|
|
|
} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
|
|
if (need_raid_map && (op != BTRFS_MAP_READ || mirror_num > 1)) {
|
|
/*
|
|
* Push stripe_nr back to the start of the full stripe
|
|
* For those cases needing a full stripe, @stripe_nr
|
|
* is the full stripe number.
|
|
*
|
|
* Originally we go raid56_full_stripe_start / full_stripe_len,
|
|
* but that can be expensive. Here we just divide
|
|
* @stripe_nr with @data_stripes.
|
|
*/
|
|
stripe_nr /= data_stripes;
|
|
|
|
/* RAID[56] write or recovery. Return all stripes */
|
|
num_stripes = map->num_stripes;
|
|
max_errors = btrfs_chunk_max_errors(map);
|
|
|
|
/* Return the length to the full stripe end */
|
|
*length = min(logical + *length,
|
|
raid56_full_stripe_start + em->start +
|
|
btrfs_stripe_nr_to_offset(data_stripes)) -
|
|
logical;
|
|
stripe_index = 0;
|
|
stripe_offset = 0;
|
|
} else {
|
|
/*
|
|
* Mirror #0 or #1 means the original data block.
|
|
* Mirror #2 is RAID5 parity block.
|
|
* Mirror #3 is RAID6 Q block.
|
|
*/
|
|
stripe_index = stripe_nr % data_stripes;
|
|
stripe_nr /= data_stripes;
|
|
if (mirror_num > 1)
|
|
stripe_index = data_stripes + mirror_num - 2;
|
|
|
|
/* We distribute the parity blocks across stripes */
|
|
stripe_index = (stripe_nr + stripe_index) % map->num_stripes;
|
|
if (op == BTRFS_MAP_READ && mirror_num <= 1)
|
|
mirror_num = 1;
|
|
}
|
|
} else {
|
|
/*
|
|
* After this, stripe_nr is the number of stripes on this
|
|
* device we have to walk to find the data, and stripe_index is
|
|
* the number of our device in the stripe array
|
|
*/
|
|
stripe_index = stripe_nr % map->num_stripes;
|
|
stripe_nr /= map->num_stripes;
|
|
mirror_num = stripe_index + 1;
|
|
}
|
|
if (stripe_index >= map->num_stripes) {
|
|
btrfs_crit(fs_info,
|
|
"stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
|
|
stripe_index, map->num_stripes);
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
num_alloc_stripes = num_stripes;
|
|
if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
|
|
op != BTRFS_MAP_READ)
|
|
/*
|
|
* For replace case, we need to add extra stripes for extra
|
|
* duplicated stripes.
|
|
*
|
|
* For both WRITE and GET_READ_MIRRORS, we may have at most
|
|
* 2 more stripes (DUP types, otherwise 1).
|
|
*/
|
|
num_alloc_stripes += 2;
|
|
|
|
/*
|
|
* If this I/O maps to a single device, try to return the device and
|
|
* physical block information on the stack instead of allocating an
|
|
* I/O context structure.
|
|
*/
|
|
if (smap && num_alloc_stripes == 1 &&
|
|
!((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1) &&
|
|
(op == BTRFS_MAP_READ || !dev_replace_is_ongoing ||
|
|
!dev_replace->tgtdev)) {
|
|
set_io_stripe(smap, map, stripe_index, stripe_offset, stripe_nr);
|
|
if (mirror_num_ret)
|
|
*mirror_num_ret = mirror_num;
|
|
*bioc_ret = NULL;
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes);
|
|
if (!bioc) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
bioc->map_type = map->type;
|
|
|
|
/*
|
|
* For RAID56 full map, we need to make sure the stripes[] follows the
|
|
* rule that data stripes are all ordered, then followed with P and Q
|
|
* (if we have).
|
|
*
|
|
* It's still mostly the same as other profiles, just with extra rotation.
|
|
*/
|
|
if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
|
|
(op != BTRFS_MAP_READ || mirror_num > 1)) {
|
|
/*
|
|
* For RAID56 @stripe_nr is already the number of full stripes
|
|
* before us, which is also the rotation value (needs to modulo
|
|
* with num_stripes).
|
|
*
|
|
* In this case, we just add @stripe_nr with @i, then do the
|
|
* modulo, to reduce one modulo call.
|
|
*/
|
|
bioc->full_stripe_logical = em->start +
|
|
btrfs_stripe_nr_to_offset(stripe_nr * data_stripes);
|
|
for (i = 0; i < num_stripes; i++)
|
|
set_io_stripe(&bioc->stripes[i], map,
|
|
(i + stripe_nr) % num_stripes,
|
|
stripe_offset, stripe_nr);
|
|
} else {
|
|
/*
|
|
* For all other non-RAID56 profiles, just copy the target
|
|
* stripe into the bioc.
|
|
*/
|
|
for (i = 0; i < num_stripes; i++) {
|
|
set_io_stripe(&bioc->stripes[i], map, stripe_index,
|
|
stripe_offset, stripe_nr);
|
|
stripe_index++;
|
|
}
|
|
}
|
|
|
|
if (op != BTRFS_MAP_READ)
|
|
max_errors = btrfs_chunk_max_errors(map);
|
|
|
|
if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
|
|
op != BTRFS_MAP_READ) {
|
|
handle_ops_on_dev_replace(op, bioc, dev_replace, logical,
|
|
&num_stripes, &max_errors);
|
|
}
|
|
|
|
*bioc_ret = bioc;
|
|
bioc->num_stripes = num_stripes;
|
|
bioc->max_errors = max_errors;
|
|
bioc->mirror_num = mirror_num;
|
|
|
|
out:
|
|
if (dev_replace_is_ongoing) {
|
|
lockdep_assert_held(&dev_replace->rwsem);
|
|
/* Unlock and let waiting writers proceed */
|
|
up_read(&dev_replace->rwsem);
|
|
}
|
|
free_extent_map(em);
|
|
return ret;
|
|
}
|
|
|
|
static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
|
|
const struct btrfs_fs_devices *fs_devices)
|
|
{
|
|
if (args->fsid == NULL)
|
|
return true;
|
|
if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
|
|
const struct btrfs_device *device)
|
|
{
|
|
if (args->missing) {
|
|
if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
|
|
!device->bdev)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
if (device->devid != args->devid)
|
|
return false;
|
|
if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Find a device specified by @devid or @uuid in the list of @fs_devices, or
|
|
* return NULL.
|
|
*
|
|
* If devid and uuid are both specified, the match must be exact, otherwise
|
|
* only devid is used.
|
|
*/
|
|
struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
|
|
const struct btrfs_dev_lookup_args *args)
|
|
{
|
|
struct btrfs_device *device;
|
|
struct btrfs_fs_devices *seed_devs;
|
|
|
|
if (dev_args_match_fs_devices(args, fs_devices)) {
|
|
list_for_each_entry(device, &fs_devices->devices, dev_list) {
|
|
if (dev_args_match_device(args, device))
|
|
return device;
|
|
}
|
|
}
|
|
|
|
list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
|
|
if (!dev_args_match_fs_devices(args, seed_devs))
|
|
continue;
|
|
list_for_each_entry(device, &seed_devs->devices, dev_list) {
|
|
if (dev_args_match_device(args, device))
|
|
return device;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
|
|
u64 devid, u8 *dev_uuid)
|
|
{
|
|
struct btrfs_device *device;
|
|
unsigned int nofs_flag;
|
|
|
|
/*
|
|
* We call this under the chunk_mutex, so we want to use NOFS for this
|
|
* allocation, however we don't want to change btrfs_alloc_device() to
|
|
* always do NOFS because we use it in a lot of other GFP_KERNEL safe
|
|
* places.
|
|
*/
|
|
|
|
nofs_flag = memalloc_nofs_save();
|
|
device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
|
|
memalloc_nofs_restore(nofs_flag);
|
|
if (IS_ERR(device))
|
|
return device;
|
|
|
|
list_add(&device->dev_list, &fs_devices->devices);
|
|
device->fs_devices = fs_devices;
|
|
fs_devices->num_devices++;
|
|
|
|
set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
|
|
fs_devices->missing_devices++;
|
|
|
|
return device;
|
|
}
|
|
|
|
/*
|
|
* Allocate new device struct, set up devid and UUID.
|
|
*
|
|
* @fs_info: used only for generating a new devid, can be NULL if
|
|
* devid is provided (i.e. @devid != NULL).
|
|
* @devid: a pointer to devid for this device. If NULL a new devid
|
|
* is generated.
|
|
* @uuid: a pointer to UUID for this device. If NULL a new UUID
|
|
* is generated.
|
|
* @path: a pointer to device path if available, NULL otherwise.
|
|
*
|
|
* Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
|
|
* on error. Returned struct is not linked onto any lists and must be
|
|
* destroyed with btrfs_free_device.
|
|
*/
|
|
struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
|
|
const u64 *devid, const u8 *uuid,
|
|
const char *path)
|
|
{
|
|
struct btrfs_device *dev;
|
|
u64 tmp;
|
|
|
|
if (WARN_ON(!devid && !fs_info))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
|
|
if (!dev)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
INIT_LIST_HEAD(&dev->dev_list);
|
|
INIT_LIST_HEAD(&dev->dev_alloc_list);
|
|
INIT_LIST_HEAD(&dev->post_commit_list);
|
|
|
|
atomic_set(&dev->dev_stats_ccnt, 0);
|
|
btrfs_device_data_ordered_init(dev);
|
|
extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
|
|
|
|
if (devid)
|
|
tmp = *devid;
|
|
else {
|
|
int ret;
|
|
|
|
ret = find_next_devid(fs_info, &tmp);
|
|
if (ret) {
|
|
btrfs_free_device(dev);
|
|
return ERR_PTR(ret);
|
|
}
|
|
}
|
|
dev->devid = tmp;
|
|
|
|
if (uuid)
|
|
memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
|
|
else
|
|
generate_random_uuid(dev->uuid);
|
|
|
|
if (path) {
|
|
struct rcu_string *name;
|
|
|
|
name = rcu_string_strdup(path, GFP_KERNEL);
|
|
if (!name) {
|
|
btrfs_free_device(dev);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
rcu_assign_pointer(dev->name, name);
|
|
}
|
|
|
|
return dev;
|
|
}
|
|
|
|
static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
|
|
u64 devid, u8 *uuid, bool error)
|
|
{
|
|
if (error)
|
|
btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
|
|
devid, uuid);
|
|
else
|
|
btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
|
|
devid, uuid);
|
|
}
|
|
|
|
u64 btrfs_calc_stripe_length(const struct extent_map *em)
|
|
{
|
|
const struct map_lookup *map = em->map_lookup;
|
|
const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
|
|
|
|
return div_u64(em->len, data_stripes);
|
|
}
|
|
|
|
#if BITS_PER_LONG == 32
|
|
/*
|
|
* Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
|
|
* can't be accessed on 32bit systems.
|
|
*
|
|
* This function do mount time check to reject the fs if it already has
|
|
* metadata chunk beyond that limit.
|
|
*/
|
|
static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
|
|
u64 logical, u64 length, u64 type)
|
|
{
|
|
if (!(type & BTRFS_BLOCK_GROUP_METADATA))
|
|
return 0;
|
|
|
|
if (logical + length < MAX_LFS_FILESIZE)
|
|
return 0;
|
|
|
|
btrfs_err_32bit_limit(fs_info);
|
|
return -EOVERFLOW;
|
|
}
|
|
|
|
/*
|
|
* This is to give early warning for any metadata chunk reaching
|
|
* BTRFS_32BIT_EARLY_WARN_THRESHOLD.
|
|
* Although we can still access the metadata, it's not going to be possible
|
|
* once the limit is reached.
|
|
*/
|
|
static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
|
|
u64 logical, u64 length, u64 type)
|
|
{
|
|
if (!(type & BTRFS_BLOCK_GROUP_METADATA))
|
|
return;
|
|
|
|
if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
|
|
return;
|
|
|
|
btrfs_warn_32bit_limit(fs_info);
|
|
}
|
|
#endif
|
|
|
|
static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
|
|
u64 devid, u8 *uuid)
|
|
{
|
|
struct btrfs_device *dev;
|
|
|
|
if (!btrfs_test_opt(fs_info, DEGRADED)) {
|
|
btrfs_report_missing_device(fs_info, devid, uuid, true);
|
|
return ERR_PTR(-ENOENT);
|
|
}
|
|
|
|
dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
|
|
if (IS_ERR(dev)) {
|
|
btrfs_err(fs_info, "failed to init missing device %llu: %ld",
|
|
devid, PTR_ERR(dev));
|
|
return dev;
|
|
}
|
|
btrfs_report_missing_device(fs_info, devid, uuid, false);
|
|
|
|
return dev;
|
|
}
|
|
|
|
static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
|
|
struct btrfs_chunk *chunk)
|
|
{
|
|
BTRFS_DEV_LOOKUP_ARGS(args);
|
|
struct btrfs_fs_info *fs_info = leaf->fs_info;
|
|
struct extent_map_tree *map_tree = &fs_info->mapping_tree;
|
|
struct map_lookup *map;
|
|
struct extent_map *em;
|
|
u64 logical;
|
|
u64 length;
|
|
u64 devid;
|
|
u64 type;
|
|
u8 uuid[BTRFS_UUID_SIZE];
|
|
int index;
|
|
int num_stripes;
|
|
int ret;
|
|
int i;
|
|
|
|
logical = key->offset;
|
|
length = btrfs_chunk_length(leaf, chunk);
|
|
type = btrfs_chunk_type(leaf, chunk);
|
|
index = btrfs_bg_flags_to_raid_index(type);
|
|
num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
|
|
|
|
#if BITS_PER_LONG == 32
|
|
ret = check_32bit_meta_chunk(fs_info, logical, length, type);
|
|
if (ret < 0)
|
|
return ret;
|
|
warn_32bit_meta_chunk(fs_info, logical, length, type);
|
|
#endif
|
|
|
|
/*
|
|
* Only need to verify chunk item if we're reading from sys chunk array,
|
|
* as chunk item in tree block is already verified by tree-checker.
|
|
*/
|
|
if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
|
|
ret = btrfs_check_chunk_valid(leaf, chunk, logical);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
read_lock(&map_tree->lock);
|
|
em = lookup_extent_mapping(map_tree, logical, 1);
|
|
read_unlock(&map_tree->lock);
|
|
|
|
/* already mapped? */
|
|
if (em && em->start <= logical && em->start + em->len > logical) {
|
|
free_extent_map(em);
|
|
return 0;
|
|
} else if (em) {
|
|
free_extent_map(em);
|
|
}
|
|
|
|
em = alloc_extent_map();
|
|
if (!em)
|
|
return -ENOMEM;
|
|
map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
|
|
if (!map) {
|
|
free_extent_map(em);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
|
|
em->map_lookup = map;
|
|
em->start = logical;
|
|
em->len = length;
|
|
em->orig_start = 0;
|
|
em->block_start = 0;
|
|
em->block_len = em->len;
|
|
|
|
map->num_stripes = num_stripes;
|
|
map->io_width = btrfs_chunk_io_width(leaf, chunk);
|
|
map->io_align = btrfs_chunk_io_align(leaf, chunk);
|
|
map->type = type;
|
|
/*
|
|
* We can't use the sub_stripes value, as for profiles other than
|
|
* RAID10, they may have 0 as sub_stripes for filesystems created by
|
|
* older mkfs (<v5.4).
|
|
* In that case, it can cause divide-by-zero errors later.
|
|
* Since currently sub_stripes is fixed for each profile, let's
|
|
* use the trusted value instead.
|
|
*/
|
|
map->sub_stripes = btrfs_raid_array[index].sub_stripes;
|
|
map->verified_stripes = 0;
|
|
em->orig_block_len = btrfs_calc_stripe_length(em);
|
|
for (i = 0; i < num_stripes; i++) {
|
|
map->stripes[i].physical =
|
|
btrfs_stripe_offset_nr(leaf, chunk, i);
|
|
devid = btrfs_stripe_devid_nr(leaf, chunk, i);
|
|
args.devid = devid;
|
|
read_extent_buffer(leaf, uuid, (unsigned long)
|
|
btrfs_stripe_dev_uuid_nr(chunk, i),
|
|
BTRFS_UUID_SIZE);
|
|
args.uuid = uuid;
|
|
map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
|
|
if (!map->stripes[i].dev) {
|
|
map->stripes[i].dev = handle_missing_device(fs_info,
|
|
devid, uuid);
|
|
if (IS_ERR(map->stripes[i].dev)) {
|
|
ret = PTR_ERR(map->stripes[i].dev);
|
|
free_extent_map(em);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
|
|
&(map->stripes[i].dev->dev_state));
|
|
}
|
|
|
|
write_lock(&map_tree->lock);
|
|
ret = add_extent_mapping(map_tree, em, 0);
|
|
write_unlock(&map_tree->lock);
|
|
if (ret < 0) {
|
|
btrfs_err(fs_info,
|
|
"failed to add chunk map, start=%llu len=%llu: %d",
|
|
em->start, em->len, ret);
|
|
}
|
|
free_extent_map(em);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void fill_device_from_item(struct extent_buffer *leaf,
|
|
struct btrfs_dev_item *dev_item,
|
|
struct btrfs_device *device)
|
|
{
|
|
unsigned long ptr;
|
|
|
|
device->devid = btrfs_device_id(leaf, dev_item);
|
|
device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
|
|
device->total_bytes = device->disk_total_bytes;
|
|
device->commit_total_bytes = device->disk_total_bytes;
|
|
device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
|
|
device->commit_bytes_used = device->bytes_used;
|
|
device->type = btrfs_device_type(leaf, dev_item);
|
|
device->io_align = btrfs_device_io_align(leaf, dev_item);
|
|
device->io_width = btrfs_device_io_width(leaf, dev_item);
|
|
device->sector_size = btrfs_device_sector_size(leaf, dev_item);
|
|
WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
|
|
clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
|
|
|
|
ptr = btrfs_device_uuid(dev_item);
|
|
read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
|
|
}
|
|
|
|
static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
|
|
u8 *fsid)
|
|
{
|
|
struct btrfs_fs_devices *fs_devices;
|
|
int ret;
|
|
|
|
lockdep_assert_held(&uuid_mutex);
|
|
ASSERT(fsid);
|
|
|
|
/* This will match only for multi-device seed fs */
|
|
list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
|
|
if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
|
|
return fs_devices;
|
|
|
|
|
|
fs_devices = find_fsid(fsid, NULL);
|
|
if (!fs_devices) {
|
|
if (!btrfs_test_opt(fs_info, DEGRADED))
|
|
return ERR_PTR(-ENOENT);
|
|
|
|
fs_devices = alloc_fs_devices(fsid, NULL);
|
|
if (IS_ERR(fs_devices))
|
|
return fs_devices;
|
|
|
|
fs_devices->seeding = true;
|
|
fs_devices->opened = 1;
|
|
return fs_devices;
|
|
}
|
|
|
|
/*
|
|
* Upon first call for a seed fs fsid, just create a private copy of the
|
|
* respective fs_devices and anchor it at fs_info->fs_devices->seed_list
|
|
*/
|
|
fs_devices = clone_fs_devices(fs_devices);
|
|
if (IS_ERR(fs_devices))
|
|
return fs_devices;
|
|
|
|
ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
|
|
if (ret) {
|
|
free_fs_devices(fs_devices);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
if (!fs_devices->seeding) {
|
|
close_fs_devices(fs_devices);
|
|
free_fs_devices(fs_devices);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
|
|
|
|
return fs_devices;
|
|
}
|
|
|
|
static int read_one_dev(struct extent_buffer *leaf,
|
|
struct btrfs_dev_item *dev_item)
|
|
{
|
|
BTRFS_DEV_LOOKUP_ARGS(args);
|
|
struct btrfs_fs_info *fs_info = leaf->fs_info;
|
|
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
|
|
struct btrfs_device *device;
|
|
u64 devid;
|
|
int ret;
|
|
u8 fs_uuid[BTRFS_FSID_SIZE];
|
|
u8 dev_uuid[BTRFS_UUID_SIZE];
|
|
|
|
devid = btrfs_device_id(leaf, dev_item);
|
|
args.devid = devid;
|
|
read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
|
|
BTRFS_UUID_SIZE);
|
|
read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
|
|
BTRFS_FSID_SIZE);
|
|
args.uuid = dev_uuid;
|
|
args.fsid = fs_uuid;
|
|
|
|
if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
|
|
fs_devices = open_seed_devices(fs_info, fs_uuid);
|
|
if (IS_ERR(fs_devices))
|
|
return PTR_ERR(fs_devices);
|
|
}
|
|
|
|
device = btrfs_find_device(fs_info->fs_devices, &args);
|
|
if (!device) {
|
|
if (!btrfs_test_opt(fs_info, DEGRADED)) {
|
|
btrfs_report_missing_device(fs_info, devid,
|
|
dev_uuid, true);
|
|
return -ENOENT;
|
|
}
|
|
|
|
device = add_missing_dev(fs_devices, devid, dev_uuid);
|
|
if (IS_ERR(device)) {
|
|
btrfs_err(fs_info,
|
|
"failed to add missing dev %llu: %ld",
|
|
devid, PTR_ERR(device));
|
|
return PTR_ERR(device);
|
|
}
|
|
btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
|
|
} else {
|
|
if (!device->bdev) {
|
|
if (!btrfs_test_opt(fs_info, DEGRADED)) {
|
|
btrfs_report_missing_device(fs_info,
|
|
devid, dev_uuid, true);
|
|
return -ENOENT;
|
|
}
|
|
btrfs_report_missing_device(fs_info, devid,
|
|
dev_uuid, false);
|
|
}
|
|
|
|
if (!device->bdev &&
|
|
!test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
|
|
/*
|
|
* this happens when a device that was properly setup
|
|
* in the device info lists suddenly goes bad.
|
|
* device->bdev is NULL, and so we have to set
|
|
* device->missing to one here
|
|
*/
|
|
device->fs_devices->missing_devices++;
|
|
set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
|
|
}
|
|
|
|
/* Move the device to its own fs_devices */
|
|
if (device->fs_devices != fs_devices) {
|
|
ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
|
|
&device->dev_state));
|
|
|
|
list_move(&device->dev_list, &fs_devices->devices);
|
|
device->fs_devices->num_devices--;
|
|
fs_devices->num_devices++;
|
|
|
|
device->fs_devices->missing_devices--;
|
|
fs_devices->missing_devices++;
|
|
|
|
device->fs_devices = fs_devices;
|
|
}
|
|
}
|
|
|
|
if (device->fs_devices != fs_info->fs_devices) {
|
|
BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
|
|
if (device->generation !=
|
|
btrfs_device_generation(leaf, dev_item))
|
|
return -EINVAL;
|
|
}
|
|
|
|
fill_device_from_item(leaf, dev_item, device);
|
|
if (device->bdev) {
|
|
u64 max_total_bytes = bdev_nr_bytes(device->bdev);
|
|
|
|
if (device->total_bytes > max_total_bytes) {
|
|
btrfs_err(fs_info,
|
|
"device total_bytes should be at most %llu but found %llu",
|
|
max_total_bytes, device->total_bytes);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
|
|
if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
|
|
!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
|
|
device->fs_devices->total_rw_bytes += device->total_bytes;
|
|
atomic64_add(device->total_bytes - device->bytes_used,
|
|
&fs_info->free_chunk_space);
|
|
}
|
|
ret = 0;
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_super_block *super_copy = fs_info->super_copy;
|
|
struct extent_buffer *sb;
|
|
struct btrfs_disk_key *disk_key;
|
|
struct btrfs_chunk *chunk;
|
|
u8 *array_ptr;
|
|
unsigned long sb_array_offset;
|
|
int ret = 0;
|
|
u32 num_stripes;
|
|
u32 array_size;
|
|
u32 len = 0;
|
|
u32 cur_offset;
|
|
u64 type;
|
|
struct btrfs_key key;
|
|
|
|
ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
|
|
|
|
/*
|
|
* We allocated a dummy extent, just to use extent buffer accessors.
|
|
* There will be unused space after BTRFS_SUPER_INFO_SIZE, but
|
|
* that's fine, we will not go beyond system chunk array anyway.
|
|
*/
|
|
sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
|
|
if (!sb)
|
|
return -ENOMEM;
|
|
set_extent_buffer_uptodate(sb);
|
|
|
|
write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
|
|
array_size = btrfs_super_sys_array_size(super_copy);
|
|
|
|
array_ptr = super_copy->sys_chunk_array;
|
|
sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
|
|
cur_offset = 0;
|
|
|
|
while (cur_offset < array_size) {
|
|
disk_key = (struct btrfs_disk_key *)array_ptr;
|
|
len = sizeof(*disk_key);
|
|
if (cur_offset + len > array_size)
|
|
goto out_short_read;
|
|
|
|
btrfs_disk_key_to_cpu(&key, disk_key);
|
|
|
|
array_ptr += len;
|
|
sb_array_offset += len;
|
|
cur_offset += len;
|
|
|
|
if (key.type != BTRFS_CHUNK_ITEM_KEY) {
|
|
btrfs_err(fs_info,
|
|
"unexpected item type %u in sys_array at offset %u",
|
|
(u32)key.type, cur_offset);
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
|
|
chunk = (struct btrfs_chunk *)sb_array_offset;
|
|
/*
|
|
* At least one btrfs_chunk with one stripe must be present,
|
|
* exact stripe count check comes afterwards
|
|
*/
|
|
len = btrfs_chunk_item_size(1);
|
|
if (cur_offset + len > array_size)
|
|
goto out_short_read;
|
|
|
|
num_stripes = btrfs_chunk_num_stripes(sb, chunk);
|
|
if (!num_stripes) {
|
|
btrfs_err(fs_info,
|
|
"invalid number of stripes %u in sys_array at offset %u",
|
|
num_stripes, cur_offset);
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
|
|
type = btrfs_chunk_type(sb, chunk);
|
|
if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
|
|
btrfs_err(fs_info,
|
|
"invalid chunk type %llu in sys_array at offset %u",
|
|
type, cur_offset);
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
|
|
len = btrfs_chunk_item_size(num_stripes);
|
|
if (cur_offset + len > array_size)
|
|
goto out_short_read;
|
|
|
|
ret = read_one_chunk(&key, sb, chunk);
|
|
if (ret)
|
|
break;
|
|
|
|
array_ptr += len;
|
|
sb_array_offset += len;
|
|
cur_offset += len;
|
|
}
|
|
clear_extent_buffer_uptodate(sb);
|
|
free_extent_buffer_stale(sb);
|
|
return ret;
|
|
|
|
out_short_read:
|
|
btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
|
|
len, cur_offset);
|
|
clear_extent_buffer_uptodate(sb);
|
|
free_extent_buffer_stale(sb);
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* Check if all chunks in the fs are OK for read-write degraded mount
|
|
*
|
|
* If the @failing_dev is specified, it's accounted as missing.
|
|
*
|
|
* Return true if all chunks meet the minimal RW mount requirements.
|
|
* Return false if any chunk doesn't meet the minimal RW mount requirements.
|
|
*/
|
|
bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_device *failing_dev)
|
|
{
|
|
struct extent_map_tree *map_tree = &fs_info->mapping_tree;
|
|
struct extent_map *em;
|
|
u64 next_start = 0;
|
|
bool ret = true;
|
|
|
|
read_lock(&map_tree->lock);
|
|
em = lookup_extent_mapping(map_tree, 0, (u64)-1);
|
|
read_unlock(&map_tree->lock);
|
|
/* No chunk at all? Return false anyway */
|
|
if (!em) {
|
|
ret = false;
|
|
goto out;
|
|
}
|
|
while (em) {
|
|
struct map_lookup *map;
|
|
int missing = 0;
|
|
int max_tolerated;
|
|
int i;
|
|
|
|
map = em->map_lookup;
|
|
max_tolerated =
|
|
btrfs_get_num_tolerated_disk_barrier_failures(
|
|
map->type);
|
|
for (i = 0; i < map->num_stripes; i++) {
|
|
struct btrfs_device *dev = map->stripes[i].dev;
|
|
|
|
if (!dev || !dev->bdev ||
|
|
test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
|
|
dev->last_flush_error)
|
|
missing++;
|
|
else if (failing_dev && failing_dev == dev)
|
|
missing++;
|
|
}
|
|
if (missing > max_tolerated) {
|
|
if (!failing_dev)
|
|
btrfs_warn(fs_info,
|
|
"chunk %llu missing %d devices, max tolerance is %d for writable mount",
|
|
em->start, missing, max_tolerated);
|
|
free_extent_map(em);
|
|
ret = false;
|
|
goto out;
|
|
}
|
|
next_start = extent_map_end(em);
|
|
free_extent_map(em);
|
|
|
|
read_lock(&map_tree->lock);
|
|
em = lookup_extent_mapping(map_tree, next_start,
|
|
(u64)(-1) - next_start);
|
|
read_unlock(&map_tree->lock);
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static void readahead_tree_node_children(struct extent_buffer *node)
|
|
{
|
|
int i;
|
|
const int nr_items = btrfs_header_nritems(node);
|
|
|
|
for (i = 0; i < nr_items; i++)
|
|
btrfs_readahead_node_child(node, i);
|
|
}
|
|
|
|
int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_root *root = fs_info->chunk_root;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
struct btrfs_key found_key;
|
|
int ret;
|
|
int slot;
|
|
int iter_ret = 0;
|
|
u64 total_dev = 0;
|
|
u64 last_ra_node = 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* uuid_mutex is needed only if we are mounting a sprout FS
|
|
* otherwise we don't need it.
|
|
*/
|
|
mutex_lock(&uuid_mutex);
|
|
|
|
/*
|
|
* It is possible for mount and umount to race in such a way that
|
|
* we execute this code path, but open_fs_devices failed to clear
|
|
* total_rw_bytes. We certainly want it cleared before reading the
|
|
* device items, so clear it here.
|
|
*/
|
|
fs_info->fs_devices->total_rw_bytes = 0;
|
|
|
|
/*
|
|
* Lockdep complains about possible circular locking dependency between
|
|
* a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
|
|
* used for freeze procection of a fs (struct super_block.s_writers),
|
|
* which we take when starting a transaction, and extent buffers of the
|
|
* chunk tree if we call read_one_dev() while holding a lock on an
|
|
* extent buffer of the chunk tree. Since we are mounting the filesystem
|
|
* and at this point there can't be any concurrent task modifying the
|
|
* chunk tree, to keep it simple, just skip locking on the chunk tree.
|
|
*/
|
|
ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
|
|
path->skip_locking = 1;
|
|
|
|
/*
|
|
* Read all device items, and then all the chunk items. All
|
|
* device items are found before any chunk item (their object id
|
|
* is smaller than the lowest possible object id for a chunk
|
|
* item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
|
|
*/
|
|
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
|
|
key.offset = 0;
|
|
key.type = 0;
|
|
btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
|
|
struct extent_buffer *node = path->nodes[1];
|
|
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
|
|
if (node) {
|
|
if (last_ra_node != node->start) {
|
|
readahead_tree_node_children(node);
|
|
last_ra_node = node->start;
|
|
}
|
|
}
|
|
if (found_key.type == BTRFS_DEV_ITEM_KEY) {
|
|
struct btrfs_dev_item *dev_item;
|
|
dev_item = btrfs_item_ptr(leaf, slot,
|
|
struct btrfs_dev_item);
|
|
ret = read_one_dev(leaf, dev_item);
|
|
if (ret)
|
|
goto error;
|
|
total_dev++;
|
|
} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
|
|
struct btrfs_chunk *chunk;
|
|
|
|
/*
|
|
* We are only called at mount time, so no need to take
|
|
* fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
|
|
* we always lock first fs_info->chunk_mutex before
|
|
* acquiring any locks on the chunk tree. This is a
|
|
* requirement for chunk allocation, see the comment on
|
|
* top of btrfs_chunk_alloc() for details.
|
|
*/
|
|
chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
|
|
ret = read_one_chunk(&found_key, leaf, chunk);
|
|
if (ret)
|
|
goto error;
|
|
}
|
|
}
|
|
/* Catch error found during iteration */
|
|
if (iter_ret < 0) {
|
|
ret = iter_ret;
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* After loading chunk tree, we've got all device information,
|
|
* do another round of validation checks.
|
|
*/
|
|
if (total_dev != fs_info->fs_devices->total_devices) {
|
|
btrfs_warn(fs_info,
|
|
"super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
|
|
btrfs_super_num_devices(fs_info->super_copy),
|
|
total_dev);
|
|
fs_info->fs_devices->total_devices = total_dev;
|
|
btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
|
|
}
|
|
if (btrfs_super_total_bytes(fs_info->super_copy) <
|
|
fs_info->fs_devices->total_rw_bytes) {
|
|
btrfs_err(fs_info,
|
|
"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
|
|
btrfs_super_total_bytes(fs_info->super_copy),
|
|
fs_info->fs_devices->total_rw_bytes);
|
|
ret = -EINVAL;
|
|
goto error;
|
|
}
|
|
ret = 0;
|
|
error:
|
|
mutex_unlock(&uuid_mutex);
|
|
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
|
|
struct btrfs_device *device;
|
|
int ret = 0;
|
|
|
|
fs_devices->fs_info = fs_info;
|
|
|
|
mutex_lock(&fs_devices->device_list_mutex);
|
|
list_for_each_entry(device, &fs_devices->devices, dev_list)
|
|
device->fs_info = fs_info;
|
|
|
|
list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
|
|
list_for_each_entry(device, &seed_devs->devices, dev_list) {
|
|
device->fs_info = fs_info;
|
|
ret = btrfs_get_dev_zone_info(device, false);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
seed_devs->fs_info = fs_info;
|
|
}
|
|
mutex_unlock(&fs_devices->device_list_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
|
|
const struct btrfs_dev_stats_item *ptr,
|
|
int index)
|
|
{
|
|
u64 val;
|
|
|
|
read_extent_buffer(eb, &val,
|
|
offsetof(struct btrfs_dev_stats_item, values) +
|
|
((unsigned long)ptr) + (index * sizeof(u64)),
|
|
sizeof(val));
|
|
return val;
|
|
}
|
|
|
|
static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
|
|
struct btrfs_dev_stats_item *ptr,
|
|
int index, u64 val)
|
|
{
|
|
write_extent_buffer(eb, &val,
|
|
offsetof(struct btrfs_dev_stats_item, values) +
|
|
((unsigned long)ptr) + (index * sizeof(u64)),
|
|
sizeof(val));
|
|
}
|
|
|
|
static int btrfs_device_init_dev_stats(struct btrfs_device *device,
|
|
struct btrfs_path *path)
|
|
{
|
|
struct btrfs_dev_stats_item *ptr;
|
|
struct extent_buffer *eb;
|
|
struct btrfs_key key;
|
|
int item_size;
|
|
int i, ret, slot;
|
|
|
|
if (!device->fs_info->dev_root)
|
|
return 0;
|
|
|
|
key.objectid = BTRFS_DEV_STATS_OBJECTID;
|
|
key.type = BTRFS_PERSISTENT_ITEM_KEY;
|
|
key.offset = device->devid;
|
|
ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
|
|
if (ret) {
|
|
for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
|
|
btrfs_dev_stat_set(device, i, 0);
|
|
device->dev_stats_valid = 1;
|
|
btrfs_release_path(path);
|
|
return ret < 0 ? ret : 0;
|
|
}
|
|
slot = path->slots[0];
|
|
eb = path->nodes[0];
|
|
item_size = btrfs_item_size(eb, slot);
|
|
|
|
ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
|
|
|
|
for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
|
|
if (item_size >= (1 + i) * sizeof(__le64))
|
|
btrfs_dev_stat_set(device, i,
|
|
btrfs_dev_stats_value(eb, ptr, i));
|
|
else
|
|
btrfs_dev_stat_set(device, i, 0);
|
|
}
|
|
|
|
device->dev_stats_valid = 1;
|
|
btrfs_dev_stat_print_on_load(device);
|
|
btrfs_release_path(path);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
|
|
struct btrfs_device *device;
|
|
struct btrfs_path *path = NULL;
|
|
int ret = 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
mutex_lock(&fs_devices->device_list_mutex);
|
|
list_for_each_entry(device, &fs_devices->devices, dev_list) {
|
|
ret = btrfs_device_init_dev_stats(device, path);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
|
|
list_for_each_entry(device, &seed_devs->devices, dev_list) {
|
|
ret = btrfs_device_init_dev_stats(device, path);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
}
|
|
out:
|
|
mutex_unlock(&fs_devices->device_list_mutex);
|
|
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static int update_dev_stat_item(struct btrfs_trans_handle *trans,
|
|
struct btrfs_device *device)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_root *dev_root = fs_info->dev_root;
|
|
struct btrfs_path *path;
|
|
struct btrfs_key key;
|
|
struct extent_buffer *eb;
|
|
struct btrfs_dev_stats_item *ptr;
|
|
int ret;
|
|
int i;
|
|
|
|
key.objectid = BTRFS_DEV_STATS_OBJECTID;
|
|
key.type = BTRFS_PERSISTENT_ITEM_KEY;
|
|
key.offset = device->devid;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
|
|
if (ret < 0) {
|
|
btrfs_warn_in_rcu(fs_info,
|
|
"error %d while searching for dev_stats item for device %s",
|
|
ret, btrfs_dev_name(device));
|
|
goto out;
|
|
}
|
|
|
|
if (ret == 0 &&
|
|
btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
|
|
/* need to delete old one and insert a new one */
|
|
ret = btrfs_del_item(trans, dev_root, path);
|
|
if (ret != 0) {
|
|
btrfs_warn_in_rcu(fs_info,
|
|
"delete too small dev_stats item for device %s failed %d",
|
|
btrfs_dev_name(device), ret);
|
|
goto out;
|
|
}
|
|
ret = 1;
|
|
}
|
|
|
|
if (ret == 1) {
|
|
/* need to insert a new item */
|
|
btrfs_release_path(path);
|
|
ret = btrfs_insert_empty_item(trans, dev_root, path,
|
|
&key, sizeof(*ptr));
|
|
if (ret < 0) {
|
|
btrfs_warn_in_rcu(fs_info,
|
|
"insert dev_stats item for device %s failed %d",
|
|
btrfs_dev_name(device), ret);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
eb = path->nodes[0];
|
|
ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
|
|
for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
|
|
btrfs_set_dev_stats_value(eb, ptr, i,
|
|
btrfs_dev_stat_read(device, i));
|
|
btrfs_mark_buffer_dirty(eb);
|
|
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* called from commit_transaction. Writes all changed device stats to disk.
|
|
*/
|
|
int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
|
|
struct btrfs_device *device;
|
|
int stats_cnt;
|
|
int ret = 0;
|
|
|
|
mutex_lock(&fs_devices->device_list_mutex);
|
|
list_for_each_entry(device, &fs_devices->devices, dev_list) {
|
|
stats_cnt = atomic_read(&device->dev_stats_ccnt);
|
|
if (!device->dev_stats_valid || stats_cnt == 0)
|
|
continue;
|
|
|
|
|
|
/*
|
|
* There is a LOAD-LOAD control dependency between the value of
|
|
* dev_stats_ccnt and updating the on-disk values which requires
|
|
* reading the in-memory counters. Such control dependencies
|
|
* require explicit read memory barriers.
|
|
*
|
|
* This memory barriers pairs with smp_mb__before_atomic in
|
|
* btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
|
|
* barrier implied by atomic_xchg in
|
|
* btrfs_dev_stats_read_and_reset
|
|
*/
|
|
smp_rmb();
|
|
|
|
ret = update_dev_stat_item(trans, device);
|
|
if (!ret)
|
|
atomic_sub(stats_cnt, &device->dev_stats_ccnt);
|
|
}
|
|
mutex_unlock(&fs_devices->device_list_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
|
|
{
|
|
btrfs_dev_stat_inc(dev, index);
|
|
|
|
if (!dev->dev_stats_valid)
|
|
return;
|
|
btrfs_err_rl_in_rcu(dev->fs_info,
|
|
"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
|
|
btrfs_dev_name(dev),
|
|
btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
|
|
btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
|
|
btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
|
|
btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
|
|
btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
|
|
}
|
|
|
|
static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
|
|
if (btrfs_dev_stat_read(dev, i) != 0)
|
|
break;
|
|
if (i == BTRFS_DEV_STAT_VALUES_MAX)
|
|
return; /* all values == 0, suppress message */
|
|
|
|
btrfs_info_in_rcu(dev->fs_info,
|
|
"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
|
|
btrfs_dev_name(dev),
|
|
btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
|
|
btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
|
|
btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
|
|
btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
|
|
btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
|
|
}
|
|
|
|
int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_ioctl_get_dev_stats *stats)
|
|
{
|
|
BTRFS_DEV_LOOKUP_ARGS(args);
|
|
struct btrfs_device *dev;
|
|
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
|
|
int i;
|
|
|
|
mutex_lock(&fs_devices->device_list_mutex);
|
|
args.devid = stats->devid;
|
|
dev = btrfs_find_device(fs_info->fs_devices, &args);
|
|
mutex_unlock(&fs_devices->device_list_mutex);
|
|
|
|
if (!dev) {
|
|
btrfs_warn(fs_info, "get dev_stats failed, device not found");
|
|
return -ENODEV;
|
|
} else if (!dev->dev_stats_valid) {
|
|
btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
|
|
return -ENODEV;
|
|
} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
|
|
for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
|
|
if (stats->nr_items > i)
|
|
stats->values[i] =
|
|
btrfs_dev_stat_read_and_reset(dev, i);
|
|
else
|
|
btrfs_dev_stat_set(dev, i, 0);
|
|
}
|
|
btrfs_info(fs_info, "device stats zeroed by %s (%d)",
|
|
current->comm, task_pid_nr(current));
|
|
} else {
|
|
for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
|
|
if (stats->nr_items > i)
|
|
stats->values[i] = btrfs_dev_stat_read(dev, i);
|
|
}
|
|
if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
|
|
stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Update the size and bytes used for each device where it changed. This is
|
|
* delayed since we would otherwise get errors while writing out the
|
|
* superblocks.
|
|
*
|
|
* Must be invoked during transaction commit.
|
|
*/
|
|
void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
|
|
{
|
|
struct btrfs_device *curr, *next;
|
|
|
|
ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
|
|
|
|
if (list_empty(&trans->dev_update_list))
|
|
return;
|
|
|
|
/*
|
|
* We don't need the device_list_mutex here. This list is owned by the
|
|
* transaction and the transaction must complete before the device is
|
|
* released.
|
|
*/
|
|
mutex_lock(&trans->fs_info->chunk_mutex);
|
|
list_for_each_entry_safe(curr, next, &trans->dev_update_list,
|
|
post_commit_list) {
|
|
list_del_init(&curr->post_commit_list);
|
|
curr->commit_total_bytes = curr->disk_total_bytes;
|
|
curr->commit_bytes_used = curr->bytes_used;
|
|
}
|
|
mutex_unlock(&trans->fs_info->chunk_mutex);
|
|
}
|
|
|
|
/*
|
|
* Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
|
|
*/
|
|
int btrfs_bg_type_to_factor(u64 flags)
|
|
{
|
|
const int index = btrfs_bg_flags_to_raid_index(flags);
|
|
|
|
return btrfs_raid_array[index].ncopies;
|
|
}
|
|
|
|
|
|
|
|
static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
|
|
u64 chunk_offset, u64 devid,
|
|
u64 physical_offset, u64 physical_len)
|
|
{
|
|
struct btrfs_dev_lookup_args args = { .devid = devid };
|
|
struct extent_map_tree *em_tree = &fs_info->mapping_tree;
|
|
struct extent_map *em;
|
|
struct map_lookup *map;
|
|
struct btrfs_device *dev;
|
|
u64 stripe_len;
|
|
bool found = false;
|
|
int ret = 0;
|
|
int i;
|
|
|
|
read_lock(&em_tree->lock);
|
|
em = lookup_extent_mapping(em_tree, chunk_offset, 1);
|
|
read_unlock(&em_tree->lock);
|
|
|
|
if (!em) {
|
|
btrfs_err(fs_info,
|
|
"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
|
|
physical_offset, devid);
|
|
ret = -EUCLEAN;
|
|
goto out;
|
|
}
|
|
|
|
map = em->map_lookup;
|
|
stripe_len = btrfs_calc_stripe_length(em);
|
|
if (physical_len != stripe_len) {
|
|
btrfs_err(fs_info,
|
|
"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
|
|
physical_offset, devid, em->start, physical_len,
|
|
stripe_len);
|
|
ret = -EUCLEAN;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Very old mkfs.btrfs (before v4.1) will not respect the reserved
|
|
* space. Although kernel can handle it without problem, better to warn
|
|
* the users.
|
|
*/
|
|
if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
|
|
btrfs_warn(fs_info,
|
|
"devid %llu physical %llu len %llu inside the reserved space",
|
|
devid, physical_offset, physical_len);
|
|
|
|
for (i = 0; i < map->num_stripes; i++) {
|
|
if (map->stripes[i].dev->devid == devid &&
|
|
map->stripes[i].physical == physical_offset) {
|
|
found = true;
|
|
if (map->verified_stripes >= map->num_stripes) {
|
|
btrfs_err(fs_info,
|
|
"too many dev extents for chunk %llu found",
|
|
em->start);
|
|
ret = -EUCLEAN;
|
|
goto out;
|
|
}
|
|
map->verified_stripes++;
|
|
break;
|
|
}
|
|
}
|
|
if (!found) {
|
|
btrfs_err(fs_info,
|
|
"dev extent physical offset %llu devid %llu has no corresponding chunk",
|
|
physical_offset, devid);
|
|
ret = -EUCLEAN;
|
|
}
|
|
|
|
/* Make sure no dev extent is beyond device boundary */
|
|
dev = btrfs_find_device(fs_info->fs_devices, &args);
|
|
if (!dev) {
|
|
btrfs_err(fs_info, "failed to find devid %llu", devid);
|
|
ret = -EUCLEAN;
|
|
goto out;
|
|
}
|
|
|
|
if (physical_offset + physical_len > dev->disk_total_bytes) {
|
|
btrfs_err(fs_info,
|
|
"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
|
|
devid, physical_offset, physical_len,
|
|
dev->disk_total_bytes);
|
|
ret = -EUCLEAN;
|
|
goto out;
|
|
}
|
|
|
|
if (dev->zone_info) {
|
|
u64 zone_size = dev->zone_info->zone_size;
|
|
|
|
if (!IS_ALIGNED(physical_offset, zone_size) ||
|
|
!IS_ALIGNED(physical_len, zone_size)) {
|
|
btrfs_err(fs_info,
|
|
"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
|
|
devid, physical_offset, physical_len);
|
|
ret = -EUCLEAN;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
out:
|
|
free_extent_map(em);
|
|
return ret;
|
|
}
|
|
|
|
static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct extent_map_tree *em_tree = &fs_info->mapping_tree;
|
|
struct extent_map *em;
|
|
struct rb_node *node;
|
|
int ret = 0;
|
|
|
|
read_lock(&em_tree->lock);
|
|
for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
|
|
em = rb_entry(node, struct extent_map, rb_node);
|
|
if (em->map_lookup->num_stripes !=
|
|
em->map_lookup->verified_stripes) {
|
|
btrfs_err(fs_info,
|
|
"chunk %llu has missing dev extent, have %d expect %d",
|
|
em->start, em->map_lookup->verified_stripes,
|
|
em->map_lookup->num_stripes);
|
|
ret = -EUCLEAN;
|
|
goto out;
|
|
}
|
|
}
|
|
out:
|
|
read_unlock(&em_tree->lock);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Ensure that all dev extents are mapped to correct chunk, otherwise
|
|
* later chunk allocation/free would cause unexpected behavior.
|
|
*
|
|
* NOTE: This will iterate through the whole device tree, which should be of
|
|
* the same size level as the chunk tree. This slightly increases mount time.
|
|
*/
|
|
int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_path *path;
|
|
struct btrfs_root *root = fs_info->dev_root;
|
|
struct btrfs_key key;
|
|
u64 prev_devid = 0;
|
|
u64 prev_dev_ext_end = 0;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* We don't have a dev_root because we mounted with ignorebadroots and
|
|
* failed to load the root, so we want to skip the verification in this
|
|
* case for sure.
|
|
*
|
|
* However if the dev root is fine, but the tree itself is corrupted
|
|
* we'd still fail to mount. This verification is only to make sure
|
|
* writes can happen safely, so instead just bypass this check
|
|
* completely in the case of IGNOREBADROOTS.
|
|
*/
|
|
if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
|
|
return 0;
|
|
|
|
key.objectid = 1;
|
|
key.type = BTRFS_DEV_EXTENT_KEY;
|
|
key.offset = 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
path->reada = READA_FORWARD;
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0)
|
|
goto out;
|
|
/* No dev extents at all? Not good */
|
|
if (ret > 0) {
|
|
ret = -EUCLEAN;
|
|
goto out;
|
|
}
|
|
}
|
|
while (1) {
|
|
struct extent_buffer *leaf = path->nodes[0];
|
|
struct btrfs_dev_extent *dext;
|
|
int slot = path->slots[0];
|
|
u64 chunk_offset;
|
|
u64 physical_offset;
|
|
u64 physical_len;
|
|
u64 devid;
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
|
if (key.type != BTRFS_DEV_EXTENT_KEY)
|
|
break;
|
|
devid = key.objectid;
|
|
physical_offset = key.offset;
|
|
|
|
dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
|
|
chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
|
|
physical_len = btrfs_dev_extent_length(leaf, dext);
|
|
|
|
/* Check if this dev extent overlaps with the previous one */
|
|
if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
|
|
btrfs_err(fs_info,
|
|
"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
|
|
devid, physical_offset, prev_dev_ext_end);
|
|
ret = -EUCLEAN;
|
|
goto out;
|
|
}
|
|
|
|
ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
|
|
physical_offset, physical_len);
|
|
if (ret < 0)
|
|
goto out;
|
|
prev_devid = devid;
|
|
prev_dev_ext_end = physical_offset + physical_len;
|
|
|
|
ret = btrfs_next_item(root, path);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (ret > 0) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Ensure all chunks have corresponding dev extents */
|
|
ret = verify_chunk_dev_extent_mapping(fs_info);
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Check whether the given block group or device is pinned by any inode being
|
|
* used as a swapfile.
|
|
*/
|
|
bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
|
|
{
|
|
struct btrfs_swapfile_pin *sp;
|
|
struct rb_node *node;
|
|
|
|
spin_lock(&fs_info->swapfile_pins_lock);
|
|
node = fs_info->swapfile_pins.rb_node;
|
|
while (node) {
|
|
sp = rb_entry(node, struct btrfs_swapfile_pin, node);
|
|
if (ptr < sp->ptr)
|
|
node = node->rb_left;
|
|
else if (ptr > sp->ptr)
|
|
node = node->rb_right;
|
|
else
|
|
break;
|
|
}
|
|
spin_unlock(&fs_info->swapfile_pins_lock);
|
|
return node != NULL;
|
|
}
|
|
|
|
static int relocating_repair_kthread(void *data)
|
|
{
|
|
struct btrfs_block_group *cache = data;
|
|
struct btrfs_fs_info *fs_info = cache->fs_info;
|
|
u64 target;
|
|
int ret = 0;
|
|
|
|
target = cache->start;
|
|
btrfs_put_block_group(cache);
|
|
|
|
sb_start_write(fs_info->sb);
|
|
if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
|
|
btrfs_info(fs_info,
|
|
"zoned: skip relocating block group %llu to repair: EBUSY",
|
|
target);
|
|
sb_end_write(fs_info->sb);
|
|
return -EBUSY;
|
|
}
|
|
|
|
mutex_lock(&fs_info->reclaim_bgs_lock);
|
|
|
|
/* Ensure block group still exists */
|
|
cache = btrfs_lookup_block_group(fs_info, target);
|
|
if (!cache)
|
|
goto out;
|
|
|
|
if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
|
|
goto out;
|
|
|
|
ret = btrfs_may_alloc_data_chunk(fs_info, target);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
btrfs_info(fs_info,
|
|
"zoned: relocating block group %llu to repair IO failure",
|
|
target);
|
|
ret = btrfs_relocate_chunk(fs_info, target);
|
|
|
|
out:
|
|
if (cache)
|
|
btrfs_put_block_group(cache);
|
|
mutex_unlock(&fs_info->reclaim_bgs_lock);
|
|
btrfs_exclop_finish(fs_info);
|
|
sb_end_write(fs_info->sb);
|
|
|
|
return ret;
|
|
}
|
|
|
|
bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
|
|
{
|
|
struct btrfs_block_group *cache;
|
|
|
|
if (!btrfs_is_zoned(fs_info))
|
|
return false;
|
|
|
|
/* Do not attempt to repair in degraded state */
|
|
if (btrfs_test_opt(fs_info, DEGRADED))
|
|
return true;
|
|
|
|
cache = btrfs_lookup_block_group(fs_info, logical);
|
|
if (!cache)
|
|
return true;
|
|
|
|
if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
|
|
btrfs_put_block_group(cache);
|
|
return true;
|
|
}
|
|
|
|
kthread_run(relocating_repair_kthread, cache,
|
|
"btrfs-relocating-repair");
|
|
|
|
return true;
|
|
}
|
|
|
|
static void map_raid56_repair_block(struct btrfs_io_context *bioc,
|
|
struct btrfs_io_stripe *smap,
|
|
u64 logical)
|
|
{
|
|
int data_stripes = nr_bioc_data_stripes(bioc);
|
|
int i;
|
|
|
|
for (i = 0; i < data_stripes; i++) {
|
|
u64 stripe_start = bioc->full_stripe_logical +
|
|
btrfs_stripe_nr_to_offset(i);
|
|
|
|
if (logical >= stripe_start &&
|
|
logical < stripe_start + BTRFS_STRIPE_LEN)
|
|
break;
|
|
}
|
|
ASSERT(i < data_stripes);
|
|
smap->dev = bioc->stripes[i].dev;
|
|
smap->physical = bioc->stripes[i].physical +
|
|
((logical - bioc->full_stripe_logical) &
|
|
BTRFS_STRIPE_LEN_MASK);
|
|
}
|
|
|
|
/*
|
|
* Map a repair write into a single device.
|
|
*
|
|
* A repair write is triggered by read time repair or scrub, which would only
|
|
* update the contents of a single device.
|
|
* Not update any other mirrors nor go through RMW path.
|
|
*
|
|
* Callers should ensure:
|
|
*
|
|
* - Call btrfs_bio_counter_inc_blocked() first
|
|
* - The range does not cross stripe boundary
|
|
* - Has a valid @mirror_num passed in.
|
|
*/
|
|
int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_io_stripe *smap, u64 logical,
|
|
u32 length, int mirror_num)
|
|
{
|
|
struct btrfs_io_context *bioc = NULL;
|
|
u64 map_length = length;
|
|
int mirror_ret = mirror_num;
|
|
int ret;
|
|
|
|
ASSERT(mirror_num > 0);
|
|
|
|
ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
|
|
&bioc, smap, &mirror_ret, true);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* The map range should not cross stripe boundary. */
|
|
ASSERT(map_length >= length);
|
|
|
|
/* Already mapped to single stripe. */
|
|
if (!bioc)
|
|
goto out;
|
|
|
|
/* Map the RAID56 multi-stripe writes to a single one. */
|
|
if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
|
|
map_raid56_repair_block(bioc, smap, logical);
|
|
goto out;
|
|
}
|
|
|
|
ASSERT(mirror_num <= bioc->num_stripes);
|
|
smap->dev = bioc->stripes[mirror_num - 1].dev;
|
|
smap->physical = bioc->stripes[mirror_num - 1].physical;
|
|
out:
|
|
btrfs_put_bioc(bioc);
|
|
ASSERT(smap->dev);
|
|
return 0;
|
|
}
|