2057 lines
64 KiB
C
2057 lines
64 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _LINUX_MMZONE_H
|
|
#define _LINUX_MMZONE_H
|
|
|
|
#ifndef __ASSEMBLY__
|
|
#ifndef __GENERATING_BOUNDS_H
|
|
|
|
#include <linux/spinlock.h>
|
|
#include <linux/list.h>
|
|
#include <linux/list_nulls.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/threads.h>
|
|
#include <linux/numa.h>
|
|
#include <linux/init.h>
|
|
#include <linux/seqlock.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/pageblock-flags.h>
|
|
#include <linux/page-flags-layout.h>
|
|
#include <linux/atomic.h>
|
|
#include <linux/mm_types.h>
|
|
#include <linux/page-flags.h>
|
|
#include <linux/local_lock.h>
|
|
#include <asm/page.h>
|
|
|
|
/* Free memory management - zoned buddy allocator. */
|
|
#ifndef CONFIG_ARCH_FORCE_MAX_ORDER
|
|
#define MAX_ORDER 10
|
|
#else
|
|
#define MAX_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
|
|
#endif
|
|
#define MAX_ORDER_NR_PAGES (1 << MAX_ORDER)
|
|
|
|
#define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES)
|
|
|
|
/*
|
|
* PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
|
|
* costly to service. That is between allocation orders which should
|
|
* coalesce naturally under reasonable reclaim pressure and those which
|
|
* will not.
|
|
*/
|
|
#define PAGE_ALLOC_COSTLY_ORDER 3
|
|
|
|
enum migratetype {
|
|
MIGRATE_UNMOVABLE,
|
|
MIGRATE_MOVABLE,
|
|
MIGRATE_RECLAIMABLE,
|
|
MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
|
|
MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
|
|
#ifdef CONFIG_CMA
|
|
/*
|
|
* MIGRATE_CMA migration type is designed to mimic the way
|
|
* ZONE_MOVABLE works. Only movable pages can be allocated
|
|
* from MIGRATE_CMA pageblocks and page allocator never
|
|
* implicitly change migration type of MIGRATE_CMA pageblock.
|
|
*
|
|
* The way to use it is to change migratetype of a range of
|
|
* pageblocks to MIGRATE_CMA which can be done by
|
|
* __free_pageblock_cma() function.
|
|
*/
|
|
MIGRATE_CMA,
|
|
#endif
|
|
#ifdef CONFIG_MEMORY_ISOLATION
|
|
MIGRATE_ISOLATE, /* can't allocate from here */
|
|
#endif
|
|
MIGRATE_TYPES
|
|
};
|
|
|
|
/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
|
|
extern const char * const migratetype_names[MIGRATE_TYPES];
|
|
|
|
#ifdef CONFIG_CMA
|
|
# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
|
|
# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
|
|
#else
|
|
# define is_migrate_cma(migratetype) false
|
|
# define is_migrate_cma_page(_page) false
|
|
#endif
|
|
|
|
static inline bool is_migrate_movable(int mt)
|
|
{
|
|
return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
|
|
}
|
|
|
|
/*
|
|
* Check whether a migratetype can be merged with another migratetype.
|
|
*
|
|
* It is only mergeable when it can fall back to other migratetypes for
|
|
* allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
|
|
*/
|
|
static inline bool migratetype_is_mergeable(int mt)
|
|
{
|
|
return mt < MIGRATE_PCPTYPES;
|
|
}
|
|
|
|
#define for_each_migratetype_order(order, type) \
|
|
for (order = 0; order <= MAX_ORDER; order++) \
|
|
for (type = 0; type < MIGRATE_TYPES; type++)
|
|
|
|
extern int page_group_by_mobility_disabled;
|
|
|
|
#define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
|
|
|
|
#define get_pageblock_migratetype(page) \
|
|
get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
|
|
|
|
#define folio_migratetype(folio) \
|
|
get_pfnblock_flags_mask(&folio->page, folio_pfn(folio), \
|
|
MIGRATETYPE_MASK)
|
|
struct free_area {
|
|
struct list_head free_list[MIGRATE_TYPES];
|
|
unsigned long nr_free;
|
|
};
|
|
|
|
struct pglist_data;
|
|
|
|
#ifdef CONFIG_NUMA
|
|
enum numa_stat_item {
|
|
NUMA_HIT, /* allocated in intended node */
|
|
NUMA_MISS, /* allocated in non intended node */
|
|
NUMA_FOREIGN, /* was intended here, hit elsewhere */
|
|
NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
|
|
NUMA_LOCAL, /* allocation from local node */
|
|
NUMA_OTHER, /* allocation from other node */
|
|
NR_VM_NUMA_EVENT_ITEMS
|
|
};
|
|
#else
|
|
#define NR_VM_NUMA_EVENT_ITEMS 0
|
|
#endif
|
|
|
|
enum zone_stat_item {
|
|
/* First 128 byte cacheline (assuming 64 bit words) */
|
|
NR_FREE_PAGES,
|
|
NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
|
|
NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
|
|
NR_ZONE_ACTIVE_ANON,
|
|
NR_ZONE_INACTIVE_FILE,
|
|
NR_ZONE_ACTIVE_FILE,
|
|
NR_ZONE_UNEVICTABLE,
|
|
NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
|
|
NR_MLOCK, /* mlock()ed pages found and moved off LRU */
|
|
/* Second 128 byte cacheline */
|
|
NR_BOUNCE,
|
|
#if IS_ENABLED(CONFIG_ZSMALLOC)
|
|
NR_ZSPAGES, /* allocated in zsmalloc */
|
|
#endif
|
|
NR_FREE_CMA_PAGES,
|
|
#ifdef CONFIG_UNACCEPTED_MEMORY
|
|
NR_UNACCEPTED,
|
|
#endif
|
|
NR_VM_ZONE_STAT_ITEMS };
|
|
|
|
enum node_stat_item {
|
|
NR_LRU_BASE,
|
|
NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
|
|
NR_ACTIVE_ANON, /* " " " " " */
|
|
NR_INACTIVE_FILE, /* " " " " " */
|
|
NR_ACTIVE_FILE, /* " " " " " */
|
|
NR_UNEVICTABLE, /* " " " " " */
|
|
NR_SLAB_RECLAIMABLE_B,
|
|
NR_SLAB_UNRECLAIMABLE_B,
|
|
NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
|
|
NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
|
|
WORKINGSET_NODES,
|
|
WORKINGSET_REFAULT_BASE,
|
|
WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
|
|
WORKINGSET_REFAULT_FILE,
|
|
WORKINGSET_ACTIVATE_BASE,
|
|
WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
|
|
WORKINGSET_ACTIVATE_FILE,
|
|
WORKINGSET_RESTORE_BASE,
|
|
WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
|
|
WORKINGSET_RESTORE_FILE,
|
|
WORKINGSET_NODERECLAIM,
|
|
NR_ANON_MAPPED, /* Mapped anonymous pages */
|
|
NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
|
|
only modified from process context */
|
|
NR_FILE_PAGES,
|
|
NR_FILE_DIRTY,
|
|
NR_WRITEBACK,
|
|
NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
|
|
NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
|
|
NR_SHMEM_THPS,
|
|
NR_SHMEM_PMDMAPPED,
|
|
NR_FILE_THPS,
|
|
NR_FILE_PMDMAPPED,
|
|
NR_ANON_THPS,
|
|
NR_VMSCAN_WRITE,
|
|
NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
|
|
NR_DIRTIED, /* page dirtyings since bootup */
|
|
NR_WRITTEN, /* page writings since bootup */
|
|
NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */
|
|
NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
|
|
NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */
|
|
NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */
|
|
NR_KERNEL_STACK_KB, /* measured in KiB */
|
|
#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
|
|
NR_KERNEL_SCS_KB, /* measured in KiB */
|
|
#endif
|
|
NR_PAGETABLE, /* used for pagetables */
|
|
NR_SECONDARY_PAGETABLE, /* secondary pagetables, e.g. KVM pagetables */
|
|
#ifdef CONFIG_SWAP
|
|
NR_SWAPCACHE,
|
|
#endif
|
|
#ifdef CONFIG_NUMA_BALANCING
|
|
PGPROMOTE_SUCCESS, /* promote successfully */
|
|
PGPROMOTE_CANDIDATE, /* candidate pages to promote */
|
|
#endif
|
|
NR_VM_NODE_STAT_ITEMS
|
|
};
|
|
|
|
/*
|
|
* Returns true if the item should be printed in THPs (/proc/vmstat
|
|
* currently prints number of anon, file and shmem THPs. But the item
|
|
* is charged in pages).
|
|
*/
|
|
static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
|
|
{
|
|
if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
|
|
return false;
|
|
|
|
return item == NR_ANON_THPS ||
|
|
item == NR_FILE_THPS ||
|
|
item == NR_SHMEM_THPS ||
|
|
item == NR_SHMEM_PMDMAPPED ||
|
|
item == NR_FILE_PMDMAPPED;
|
|
}
|
|
|
|
/*
|
|
* Returns true if the value is measured in bytes (most vmstat values are
|
|
* measured in pages). This defines the API part, the internal representation
|
|
* might be different.
|
|
*/
|
|
static __always_inline bool vmstat_item_in_bytes(int idx)
|
|
{
|
|
/*
|
|
* Global and per-node slab counters track slab pages.
|
|
* It's expected that changes are multiples of PAGE_SIZE.
|
|
* Internally values are stored in pages.
|
|
*
|
|
* Per-memcg and per-lruvec counters track memory, consumed
|
|
* by individual slab objects. These counters are actually
|
|
* byte-precise.
|
|
*/
|
|
return (idx == NR_SLAB_RECLAIMABLE_B ||
|
|
idx == NR_SLAB_UNRECLAIMABLE_B);
|
|
}
|
|
|
|
/*
|
|
* We do arithmetic on the LRU lists in various places in the code,
|
|
* so it is important to keep the active lists LRU_ACTIVE higher in
|
|
* the array than the corresponding inactive lists, and to keep
|
|
* the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
|
|
*
|
|
* This has to be kept in sync with the statistics in zone_stat_item
|
|
* above and the descriptions in vmstat_text in mm/vmstat.c
|
|
*/
|
|
#define LRU_BASE 0
|
|
#define LRU_ACTIVE 1
|
|
#define LRU_FILE 2
|
|
|
|
enum lru_list {
|
|
LRU_INACTIVE_ANON = LRU_BASE,
|
|
LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
|
|
LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
|
|
LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
|
|
LRU_UNEVICTABLE,
|
|
NR_LRU_LISTS
|
|
};
|
|
|
|
enum vmscan_throttle_state {
|
|
VMSCAN_THROTTLE_WRITEBACK,
|
|
VMSCAN_THROTTLE_ISOLATED,
|
|
VMSCAN_THROTTLE_NOPROGRESS,
|
|
VMSCAN_THROTTLE_CONGESTED,
|
|
NR_VMSCAN_THROTTLE,
|
|
};
|
|
|
|
#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
|
|
|
|
#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
|
|
|
|
static inline bool is_file_lru(enum lru_list lru)
|
|
{
|
|
return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
|
|
}
|
|
|
|
static inline bool is_active_lru(enum lru_list lru)
|
|
{
|
|
return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
|
|
}
|
|
|
|
#define WORKINGSET_ANON 0
|
|
#define WORKINGSET_FILE 1
|
|
#define ANON_AND_FILE 2
|
|
|
|
enum lruvec_flags {
|
|
/*
|
|
* An lruvec has many dirty pages backed by a congested BDI:
|
|
* 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim.
|
|
* It can be cleared by cgroup reclaim or kswapd.
|
|
* 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim.
|
|
* It can only be cleared by kswapd.
|
|
*
|
|
* Essentially, kswapd can unthrottle an lruvec throttled by cgroup
|
|
* reclaim, but not vice versa. This only applies to the root cgroup.
|
|
* The goal is to prevent cgroup reclaim on the root cgroup (e.g.
|
|
* memory.reclaim) to unthrottle an unbalanced node (that was throttled
|
|
* by kswapd).
|
|
*/
|
|
LRUVEC_CGROUP_CONGESTED,
|
|
LRUVEC_NODE_CONGESTED,
|
|
};
|
|
|
|
#endif /* !__GENERATING_BOUNDS_H */
|
|
|
|
/*
|
|
* Evictable pages are divided into multiple generations. The youngest and the
|
|
* oldest generation numbers, max_seq and min_seq, are monotonically increasing.
|
|
* They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
|
|
* offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
|
|
* corresponding generation. The gen counter in folio->flags stores gen+1 while
|
|
* a page is on one of lrugen->folios[]. Otherwise it stores 0.
|
|
*
|
|
* A page is added to the youngest generation on faulting. The aging needs to
|
|
* check the accessed bit at least twice before handing this page over to the
|
|
* eviction. The first check takes care of the accessed bit set on the initial
|
|
* fault; the second check makes sure this page hasn't been used since then.
|
|
* This process, AKA second chance, requires a minimum of two generations,
|
|
* hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive
|
|
* LRU, e.g., /proc/vmstat, these two generations are considered active; the
|
|
* rest of generations, if they exist, are considered inactive. See
|
|
* lru_gen_is_active().
|
|
*
|
|
* PG_active is always cleared while a page is on one of lrugen->folios[] so
|
|
* that the aging needs not to worry about it. And it's set again when a page
|
|
* considered active is isolated for non-reclaiming purposes, e.g., migration.
|
|
* See lru_gen_add_folio() and lru_gen_del_folio().
|
|
*
|
|
* MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
|
|
* number of categories of the active/inactive LRU when keeping track of
|
|
* accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
|
|
* in folio->flags.
|
|
*/
|
|
#define MIN_NR_GENS 2U
|
|
#define MAX_NR_GENS 4U
|
|
|
|
/*
|
|
* Each generation is divided into multiple tiers. A page accessed N times
|
|
* through file descriptors is in tier order_base_2(N). A page in the first tier
|
|
* (N=0,1) is marked by PG_referenced unless it was faulted in through page
|
|
* tables or read ahead. A page in any other tier (N>1) is marked by
|
|
* PG_referenced and PG_workingset. This implies a minimum of two tiers is
|
|
* supported without using additional bits in folio->flags.
|
|
*
|
|
* In contrast to moving across generations which requires the LRU lock, moving
|
|
* across tiers only involves atomic operations on folio->flags and therefore
|
|
* has a negligible cost in the buffered access path. In the eviction path,
|
|
* comparisons of refaulted/(evicted+protected) from the first tier and the
|
|
* rest infer whether pages accessed multiple times through file descriptors
|
|
* are statistically hot and thus worth protecting.
|
|
*
|
|
* MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
|
|
* number of categories of the active/inactive LRU when keeping track of
|
|
* accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
|
|
* folio->flags.
|
|
*/
|
|
#define MAX_NR_TIERS 4U
|
|
|
|
#ifndef __GENERATING_BOUNDS_H
|
|
|
|
struct lruvec;
|
|
struct page_vma_mapped_walk;
|
|
|
|
#define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
|
|
#define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
|
|
|
|
#ifdef CONFIG_LRU_GEN
|
|
|
|
enum {
|
|
LRU_GEN_ANON,
|
|
LRU_GEN_FILE,
|
|
};
|
|
|
|
enum {
|
|
LRU_GEN_CORE,
|
|
LRU_GEN_MM_WALK,
|
|
LRU_GEN_NONLEAF_YOUNG,
|
|
NR_LRU_GEN_CAPS
|
|
};
|
|
|
|
#define MIN_LRU_BATCH BITS_PER_LONG
|
|
#define MAX_LRU_BATCH (MIN_LRU_BATCH * 64)
|
|
|
|
/* whether to keep historical stats from evicted generations */
|
|
#ifdef CONFIG_LRU_GEN_STATS
|
|
#define NR_HIST_GENS MAX_NR_GENS
|
|
#else
|
|
#define NR_HIST_GENS 1U
|
|
#endif
|
|
|
|
/*
|
|
* The youngest generation number is stored in max_seq for both anon and file
|
|
* types as they are aged on an equal footing. The oldest generation numbers are
|
|
* stored in min_seq[] separately for anon and file types as clean file pages
|
|
* can be evicted regardless of swap constraints.
|
|
*
|
|
* Normally anon and file min_seq are in sync. But if swapping is constrained,
|
|
* e.g., out of swap space, file min_seq is allowed to advance and leave anon
|
|
* min_seq behind.
|
|
*
|
|
* The number of pages in each generation is eventually consistent and therefore
|
|
* can be transiently negative when reset_batch_size() is pending.
|
|
*/
|
|
struct lru_gen_folio {
|
|
/* the aging increments the youngest generation number */
|
|
unsigned long max_seq;
|
|
/* the eviction increments the oldest generation numbers */
|
|
unsigned long min_seq[ANON_AND_FILE];
|
|
/* the birth time of each generation in jiffies */
|
|
unsigned long timestamps[MAX_NR_GENS];
|
|
/* the multi-gen LRU lists, lazily sorted on eviction */
|
|
struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
|
|
/* the multi-gen LRU sizes, eventually consistent */
|
|
long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
|
|
/* the exponential moving average of refaulted */
|
|
unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
|
|
/* the exponential moving average of evicted+protected */
|
|
unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
|
|
/* the first tier doesn't need protection, hence the minus one */
|
|
unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1];
|
|
/* can be modified without holding the LRU lock */
|
|
atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
|
|
atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
|
|
/* whether the multi-gen LRU is enabled */
|
|
bool enabled;
|
|
#ifdef CONFIG_MEMCG
|
|
/* the memcg generation this lru_gen_folio belongs to */
|
|
u8 gen;
|
|
/* the list segment this lru_gen_folio belongs to */
|
|
u8 seg;
|
|
/* per-node lru_gen_folio list for global reclaim */
|
|
struct hlist_nulls_node list;
|
|
#endif
|
|
};
|
|
|
|
enum {
|
|
MM_LEAF_TOTAL, /* total leaf entries */
|
|
MM_LEAF_OLD, /* old leaf entries */
|
|
MM_LEAF_YOUNG, /* young leaf entries */
|
|
MM_NONLEAF_TOTAL, /* total non-leaf entries */
|
|
MM_NONLEAF_FOUND, /* non-leaf entries found in Bloom filters */
|
|
MM_NONLEAF_ADDED, /* non-leaf entries added to Bloom filters */
|
|
NR_MM_STATS
|
|
};
|
|
|
|
/* double-buffering Bloom filters */
|
|
#define NR_BLOOM_FILTERS 2
|
|
|
|
struct lru_gen_mm_state {
|
|
/* set to max_seq after each iteration */
|
|
unsigned long seq;
|
|
/* where the current iteration continues after */
|
|
struct list_head *head;
|
|
/* where the last iteration ended before */
|
|
struct list_head *tail;
|
|
/* Bloom filters flip after each iteration */
|
|
unsigned long *filters[NR_BLOOM_FILTERS];
|
|
/* the mm stats for debugging */
|
|
unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
|
|
};
|
|
|
|
struct lru_gen_mm_walk {
|
|
/* the lruvec under reclaim */
|
|
struct lruvec *lruvec;
|
|
/* unstable max_seq from lru_gen_folio */
|
|
unsigned long max_seq;
|
|
/* the next address within an mm to scan */
|
|
unsigned long next_addr;
|
|
/* to batch promoted pages */
|
|
int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
|
|
/* to batch the mm stats */
|
|
int mm_stats[NR_MM_STATS];
|
|
/* total batched items */
|
|
int batched;
|
|
bool can_swap;
|
|
bool force_scan;
|
|
};
|
|
|
|
void lru_gen_init_lruvec(struct lruvec *lruvec);
|
|
void lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
|
|
|
|
#ifdef CONFIG_MEMCG
|
|
|
|
/*
|
|
* For each node, memcgs are divided into two generations: the old and the
|
|
* young. For each generation, memcgs are randomly sharded into multiple bins
|
|
* to improve scalability. For each bin, the hlist_nulls is virtually divided
|
|
* into three segments: the head, the tail and the default.
|
|
*
|
|
* An onlining memcg is added to the tail of a random bin in the old generation.
|
|
* The eviction starts at the head of a random bin in the old generation. The
|
|
* per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
|
|
* the old generation, is incremented when all its bins become empty.
|
|
*
|
|
* There are four operations:
|
|
* 1. MEMCG_LRU_HEAD, which moves an memcg to the head of a random bin in its
|
|
* current generation (old or young) and updates its "seg" to "head";
|
|
* 2. MEMCG_LRU_TAIL, which moves an memcg to the tail of a random bin in its
|
|
* current generation (old or young) and updates its "seg" to "tail";
|
|
* 3. MEMCG_LRU_OLD, which moves an memcg to the head of a random bin in the old
|
|
* generation, updates its "gen" to "old" and resets its "seg" to "default";
|
|
* 4. MEMCG_LRU_YOUNG, which moves an memcg to the tail of a random bin in the
|
|
* young generation, updates its "gen" to "young" and resets its "seg" to
|
|
* "default".
|
|
*
|
|
* The events that trigger the above operations are:
|
|
* 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
|
|
* 2. The first attempt to reclaim an memcg below low, which triggers
|
|
* MEMCG_LRU_TAIL;
|
|
* 3. The first attempt to reclaim an memcg below reclaimable size threshold,
|
|
* which triggers MEMCG_LRU_TAIL;
|
|
* 4. The second attempt to reclaim an memcg below reclaimable size threshold,
|
|
* which triggers MEMCG_LRU_YOUNG;
|
|
* 5. Attempting to reclaim an memcg below min, which triggers MEMCG_LRU_YOUNG;
|
|
* 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
|
|
* 7. Offlining an memcg, which triggers MEMCG_LRU_OLD.
|
|
*
|
|
* Note that memcg LRU only applies to global reclaim, and the round-robin
|
|
* incrementing of their max_seq counters ensures the eventual fairness to all
|
|
* eligible memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
|
|
*/
|
|
#define MEMCG_NR_GENS 2
|
|
#define MEMCG_NR_BINS 8
|
|
|
|
struct lru_gen_memcg {
|
|
/* the per-node memcg generation counter */
|
|
unsigned long seq;
|
|
/* each memcg has one lru_gen_folio per node */
|
|
unsigned long nr_memcgs[MEMCG_NR_GENS];
|
|
/* per-node lru_gen_folio list for global reclaim */
|
|
struct hlist_nulls_head fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
|
|
/* protects the above */
|
|
spinlock_t lock;
|
|
};
|
|
|
|
void lru_gen_init_pgdat(struct pglist_data *pgdat);
|
|
|
|
void lru_gen_init_memcg(struct mem_cgroup *memcg);
|
|
void lru_gen_exit_memcg(struct mem_cgroup *memcg);
|
|
void lru_gen_online_memcg(struct mem_cgroup *memcg);
|
|
void lru_gen_offline_memcg(struct mem_cgroup *memcg);
|
|
void lru_gen_release_memcg(struct mem_cgroup *memcg);
|
|
void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid);
|
|
|
|
#else /* !CONFIG_MEMCG */
|
|
|
|
#define MEMCG_NR_GENS 1
|
|
|
|
struct lru_gen_memcg {
|
|
};
|
|
|
|
static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
|
|
{
|
|
}
|
|
|
|
#endif /* CONFIG_MEMCG */
|
|
|
|
#else /* !CONFIG_LRU_GEN */
|
|
|
|
static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
|
|
{
|
|
}
|
|
|
|
static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
|
|
{
|
|
}
|
|
|
|
static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
|
|
{
|
|
}
|
|
|
|
#ifdef CONFIG_MEMCG
|
|
|
|
static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
|
|
{
|
|
}
|
|
|
|
static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
|
|
{
|
|
}
|
|
|
|
static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
|
|
{
|
|
}
|
|
|
|
static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
|
|
{
|
|
}
|
|
|
|
static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
|
|
{
|
|
}
|
|
|
|
static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
|
|
{
|
|
}
|
|
|
|
#endif /* CONFIG_MEMCG */
|
|
|
|
#endif /* CONFIG_LRU_GEN */
|
|
|
|
struct lruvec {
|
|
struct list_head lists[NR_LRU_LISTS];
|
|
/* per lruvec lru_lock for memcg */
|
|
spinlock_t lru_lock;
|
|
/*
|
|
* These track the cost of reclaiming one LRU - file or anon -
|
|
* over the other. As the observed cost of reclaiming one LRU
|
|
* increases, the reclaim scan balance tips toward the other.
|
|
*/
|
|
unsigned long anon_cost;
|
|
unsigned long file_cost;
|
|
/* Non-resident age, driven by LRU movement */
|
|
atomic_long_t nonresident_age;
|
|
/* Refaults at the time of last reclaim cycle */
|
|
unsigned long refaults[ANON_AND_FILE];
|
|
/* Various lruvec state flags (enum lruvec_flags) */
|
|
unsigned long flags;
|
|
#ifdef CONFIG_LRU_GEN
|
|
/* evictable pages divided into generations */
|
|
struct lru_gen_folio lrugen;
|
|
/* to concurrently iterate lru_gen_mm_list */
|
|
struct lru_gen_mm_state mm_state;
|
|
#endif
|
|
#ifdef CONFIG_MEMCG
|
|
struct pglist_data *pgdat;
|
|
#endif
|
|
};
|
|
|
|
/* Isolate unmapped pages */
|
|
#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
|
|
/* Isolate for asynchronous migration */
|
|
#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
|
|
/* Isolate unevictable pages */
|
|
#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
|
|
|
|
/* LRU Isolation modes. */
|
|
typedef unsigned __bitwise isolate_mode_t;
|
|
|
|
enum zone_watermarks {
|
|
WMARK_MIN,
|
|
WMARK_LOW,
|
|
WMARK_HIGH,
|
|
WMARK_PROMO,
|
|
NR_WMARK
|
|
};
|
|
|
|
/*
|
|
* One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list
|
|
* for THP which will usually be GFP_MOVABLE. Even if it is another type,
|
|
* it should not contribute to serious fragmentation causing THP allocation
|
|
* failures.
|
|
*/
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
#define NR_PCP_THP 1
|
|
#else
|
|
#define NR_PCP_THP 0
|
|
#endif
|
|
#define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
|
|
#define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
|
|
|
|
#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
|
|
#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
|
|
#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
|
|
#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
|
|
|
|
/* Fields and list protected by pagesets local_lock in page_alloc.c */
|
|
struct per_cpu_pages {
|
|
spinlock_t lock; /* Protects lists field */
|
|
int count; /* number of pages in the list */
|
|
int high; /* high watermark, emptying needed */
|
|
int batch; /* chunk size for buddy add/remove */
|
|
short free_factor; /* batch scaling factor during free */
|
|
#ifdef CONFIG_NUMA
|
|
short expire; /* When 0, remote pagesets are drained */
|
|
#endif
|
|
|
|
/* Lists of pages, one per migrate type stored on the pcp-lists */
|
|
struct list_head lists[NR_PCP_LISTS];
|
|
} ____cacheline_aligned_in_smp;
|
|
|
|
struct per_cpu_zonestat {
|
|
#ifdef CONFIG_SMP
|
|
s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
|
|
s8 stat_threshold;
|
|
#endif
|
|
#ifdef CONFIG_NUMA
|
|
/*
|
|
* Low priority inaccurate counters that are only folded
|
|
* on demand. Use a large type to avoid the overhead of
|
|
* folding during refresh_cpu_vm_stats.
|
|
*/
|
|
unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
|
|
#endif
|
|
};
|
|
|
|
struct per_cpu_nodestat {
|
|
s8 stat_threshold;
|
|
s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
|
|
};
|
|
|
|
#endif /* !__GENERATING_BOUNDS.H */
|
|
|
|
enum zone_type {
|
|
/*
|
|
* ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
|
|
* to DMA to all of the addressable memory (ZONE_NORMAL).
|
|
* On architectures where this area covers the whole 32 bit address
|
|
* space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
|
|
* DMA addressing constraints. This distinction is important as a 32bit
|
|
* DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
|
|
* platforms may need both zones as they support peripherals with
|
|
* different DMA addressing limitations.
|
|
*/
|
|
#ifdef CONFIG_ZONE_DMA
|
|
ZONE_DMA,
|
|
#endif
|
|
#ifdef CONFIG_ZONE_DMA32
|
|
ZONE_DMA32,
|
|
#endif
|
|
/*
|
|
* Normal addressable memory is in ZONE_NORMAL. DMA operations can be
|
|
* performed on pages in ZONE_NORMAL if the DMA devices support
|
|
* transfers to all addressable memory.
|
|
*/
|
|
ZONE_NORMAL,
|
|
#ifdef CONFIG_HIGHMEM
|
|
/*
|
|
* A memory area that is only addressable by the kernel through
|
|
* mapping portions into its own address space. This is for example
|
|
* used by i386 to allow the kernel to address the memory beyond
|
|
* 900MB. The kernel will set up special mappings (page
|
|
* table entries on i386) for each page that the kernel needs to
|
|
* access.
|
|
*/
|
|
ZONE_HIGHMEM,
|
|
#endif
|
|
/*
|
|
* ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
|
|
* movable pages with few exceptional cases described below. Main use
|
|
* cases for ZONE_MOVABLE are to make memory offlining/unplug more
|
|
* likely to succeed, and to locally limit unmovable allocations - e.g.,
|
|
* to increase the number of THP/huge pages. Notable special cases are:
|
|
*
|
|
* 1. Pinned pages: (long-term) pinning of movable pages might
|
|
* essentially turn such pages unmovable. Therefore, we do not allow
|
|
* pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
|
|
* faulted, they come from the right zone right away. However, it is
|
|
* still possible that address space already has pages in
|
|
* ZONE_MOVABLE at the time when pages are pinned (i.e. user has
|
|
* touches that memory before pinning). In such case we migrate them
|
|
* to a different zone. When migration fails - pinning fails.
|
|
* 2. memblock allocations: kernelcore/movablecore setups might create
|
|
* situations where ZONE_MOVABLE contains unmovable allocations
|
|
* after boot. Memory offlining and allocations fail early.
|
|
* 3. Memory holes: kernelcore/movablecore setups might create very rare
|
|
* situations where ZONE_MOVABLE contains memory holes after boot,
|
|
* for example, if we have sections that are only partially
|
|
* populated. Memory offlining and allocations fail early.
|
|
* 4. PG_hwpoison pages: while poisoned pages can be skipped during
|
|
* memory offlining, such pages cannot be allocated.
|
|
* 5. Unmovable PG_offline pages: in paravirtualized environments,
|
|
* hotplugged memory blocks might only partially be managed by the
|
|
* buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
|
|
* parts not manged by the buddy are unmovable PG_offline pages. In
|
|
* some cases (virtio-mem), such pages can be skipped during
|
|
* memory offlining, however, cannot be moved/allocated. These
|
|
* techniques might use alloc_contig_range() to hide previously
|
|
* exposed pages from the buddy again (e.g., to implement some sort
|
|
* of memory unplug in virtio-mem).
|
|
* 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
|
|
* situations where ZERO_PAGE(0) which is allocated differently
|
|
* on different platforms may end up in a movable zone. ZERO_PAGE(0)
|
|
* cannot be migrated.
|
|
* 7. Memory-hotplug: when using memmap_on_memory and onlining the
|
|
* memory to the MOVABLE zone, the vmemmap pages are also placed in
|
|
* such zone. Such pages cannot be really moved around as they are
|
|
* self-stored in the range, but they are treated as movable when
|
|
* the range they describe is about to be offlined.
|
|
*
|
|
* In general, no unmovable allocations that degrade memory offlining
|
|
* should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
|
|
* have to expect that migrating pages in ZONE_MOVABLE can fail (even
|
|
* if has_unmovable_pages() states that there are no unmovable pages,
|
|
* there can be false negatives).
|
|
*/
|
|
ZONE_MOVABLE,
|
|
#ifdef CONFIG_ZONE_DEVICE
|
|
ZONE_DEVICE,
|
|
#endif
|
|
__MAX_NR_ZONES
|
|
|
|
};
|
|
|
|
#ifndef __GENERATING_BOUNDS_H
|
|
|
|
#define ASYNC_AND_SYNC 2
|
|
|
|
struct zone {
|
|
/* Read-mostly fields */
|
|
|
|
/* zone watermarks, access with *_wmark_pages(zone) macros */
|
|
unsigned long _watermark[NR_WMARK];
|
|
unsigned long watermark_boost;
|
|
|
|
unsigned long nr_reserved_highatomic;
|
|
|
|
/*
|
|
* We don't know if the memory that we're going to allocate will be
|
|
* freeable or/and it will be released eventually, so to avoid totally
|
|
* wasting several GB of ram we must reserve some of the lower zone
|
|
* memory (otherwise we risk to run OOM on the lower zones despite
|
|
* there being tons of freeable ram on the higher zones). This array is
|
|
* recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
|
|
* changes.
|
|
*/
|
|
long lowmem_reserve[MAX_NR_ZONES];
|
|
|
|
#ifdef CONFIG_NUMA
|
|
int node;
|
|
#endif
|
|
struct pglist_data *zone_pgdat;
|
|
struct per_cpu_pages __percpu *per_cpu_pageset;
|
|
struct per_cpu_zonestat __percpu *per_cpu_zonestats;
|
|
/*
|
|
* the high and batch values are copied to individual pagesets for
|
|
* faster access
|
|
*/
|
|
int pageset_high;
|
|
int pageset_batch;
|
|
|
|
#ifndef CONFIG_SPARSEMEM
|
|
/*
|
|
* Flags for a pageblock_nr_pages block. See pageblock-flags.h.
|
|
* In SPARSEMEM, this map is stored in struct mem_section
|
|
*/
|
|
unsigned long *pageblock_flags;
|
|
#endif /* CONFIG_SPARSEMEM */
|
|
|
|
/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
|
|
unsigned long zone_start_pfn;
|
|
|
|
/*
|
|
* spanned_pages is the total pages spanned by the zone, including
|
|
* holes, which is calculated as:
|
|
* spanned_pages = zone_end_pfn - zone_start_pfn;
|
|
*
|
|
* present_pages is physical pages existing within the zone, which
|
|
* is calculated as:
|
|
* present_pages = spanned_pages - absent_pages(pages in holes);
|
|
*
|
|
* present_early_pages is present pages existing within the zone
|
|
* located on memory available since early boot, excluding hotplugged
|
|
* memory.
|
|
*
|
|
* managed_pages is present pages managed by the buddy system, which
|
|
* is calculated as (reserved_pages includes pages allocated by the
|
|
* bootmem allocator):
|
|
* managed_pages = present_pages - reserved_pages;
|
|
*
|
|
* cma pages is present pages that are assigned for CMA use
|
|
* (MIGRATE_CMA).
|
|
*
|
|
* So present_pages may be used by memory hotplug or memory power
|
|
* management logic to figure out unmanaged pages by checking
|
|
* (present_pages - managed_pages). And managed_pages should be used
|
|
* by page allocator and vm scanner to calculate all kinds of watermarks
|
|
* and thresholds.
|
|
*
|
|
* Locking rules:
|
|
*
|
|
* zone_start_pfn and spanned_pages are protected by span_seqlock.
|
|
* It is a seqlock because it has to be read outside of zone->lock,
|
|
* and it is done in the main allocator path. But, it is written
|
|
* quite infrequently.
|
|
*
|
|
* The span_seq lock is declared along with zone->lock because it is
|
|
* frequently read in proximity to zone->lock. It's good to
|
|
* give them a chance of being in the same cacheline.
|
|
*
|
|
* Write access to present_pages at runtime should be protected by
|
|
* mem_hotplug_begin/done(). Any reader who can't tolerant drift of
|
|
* present_pages should use get_online_mems() to get a stable value.
|
|
*/
|
|
atomic_long_t managed_pages;
|
|
unsigned long spanned_pages;
|
|
unsigned long present_pages;
|
|
#if defined(CONFIG_MEMORY_HOTPLUG)
|
|
unsigned long present_early_pages;
|
|
#endif
|
|
#ifdef CONFIG_CMA
|
|
unsigned long cma_pages;
|
|
#endif
|
|
|
|
const char *name;
|
|
|
|
#ifdef CONFIG_MEMORY_ISOLATION
|
|
/*
|
|
* Number of isolated pageblock. It is used to solve incorrect
|
|
* freepage counting problem due to racy retrieving migratetype
|
|
* of pageblock. Protected by zone->lock.
|
|
*/
|
|
unsigned long nr_isolate_pageblock;
|
|
#endif
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
/* see spanned/present_pages for more description */
|
|
seqlock_t span_seqlock;
|
|
#endif
|
|
|
|
int initialized;
|
|
|
|
/* Write-intensive fields used from the page allocator */
|
|
CACHELINE_PADDING(_pad1_);
|
|
|
|
/* free areas of different sizes */
|
|
struct free_area free_area[MAX_ORDER + 1];
|
|
|
|
#ifdef CONFIG_UNACCEPTED_MEMORY
|
|
/* Pages to be accepted. All pages on the list are MAX_ORDER */
|
|
struct list_head unaccepted_pages;
|
|
#endif
|
|
|
|
/* zone flags, see below */
|
|
unsigned long flags;
|
|
|
|
/* Primarily protects free_area */
|
|
spinlock_t lock;
|
|
|
|
/* Write-intensive fields used by compaction and vmstats. */
|
|
CACHELINE_PADDING(_pad2_);
|
|
|
|
/*
|
|
* When free pages are below this point, additional steps are taken
|
|
* when reading the number of free pages to avoid per-cpu counter
|
|
* drift allowing watermarks to be breached
|
|
*/
|
|
unsigned long percpu_drift_mark;
|
|
|
|
#if defined CONFIG_COMPACTION || defined CONFIG_CMA
|
|
/* pfn where compaction free scanner should start */
|
|
unsigned long compact_cached_free_pfn;
|
|
/* pfn where compaction migration scanner should start */
|
|
unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC];
|
|
unsigned long compact_init_migrate_pfn;
|
|
unsigned long compact_init_free_pfn;
|
|
#endif
|
|
|
|
#ifdef CONFIG_COMPACTION
|
|
/*
|
|
* On compaction failure, 1<<compact_defer_shift compactions
|
|
* are skipped before trying again. The number attempted since
|
|
* last failure is tracked with compact_considered.
|
|
* compact_order_failed is the minimum compaction failed order.
|
|
*/
|
|
unsigned int compact_considered;
|
|
unsigned int compact_defer_shift;
|
|
int compact_order_failed;
|
|
#endif
|
|
|
|
#if defined CONFIG_COMPACTION || defined CONFIG_CMA
|
|
/* Set to true when the PG_migrate_skip bits should be cleared */
|
|
bool compact_blockskip_flush;
|
|
#endif
|
|
|
|
bool contiguous;
|
|
|
|
CACHELINE_PADDING(_pad3_);
|
|
/* Zone statistics */
|
|
atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
|
|
atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
|
|
} ____cacheline_internodealigned_in_smp;
|
|
|
|
enum pgdat_flags {
|
|
PGDAT_DIRTY, /* reclaim scanning has recently found
|
|
* many dirty file pages at the tail
|
|
* of the LRU.
|
|
*/
|
|
PGDAT_WRITEBACK, /* reclaim scanning has recently found
|
|
* many pages under writeback
|
|
*/
|
|
PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
|
|
};
|
|
|
|
enum zone_flags {
|
|
ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
|
|
* Cleared when kswapd is woken.
|
|
*/
|
|
ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */
|
|
};
|
|
|
|
static inline unsigned long zone_managed_pages(struct zone *zone)
|
|
{
|
|
return (unsigned long)atomic_long_read(&zone->managed_pages);
|
|
}
|
|
|
|
static inline unsigned long zone_cma_pages(struct zone *zone)
|
|
{
|
|
#ifdef CONFIG_CMA
|
|
return zone->cma_pages;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static inline unsigned long zone_end_pfn(const struct zone *zone)
|
|
{
|
|
return zone->zone_start_pfn + zone->spanned_pages;
|
|
}
|
|
|
|
static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
|
|
{
|
|
return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
|
|
}
|
|
|
|
static inline bool zone_is_initialized(struct zone *zone)
|
|
{
|
|
return zone->initialized;
|
|
}
|
|
|
|
static inline bool zone_is_empty(struct zone *zone)
|
|
{
|
|
return zone->spanned_pages == 0;
|
|
}
|
|
|
|
#ifndef BUILD_VDSO32_64
|
|
/*
|
|
* The zone field is never updated after free_area_init_core()
|
|
* sets it, so none of the operations on it need to be atomic.
|
|
*/
|
|
|
|
/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
|
|
#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
|
|
#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
|
|
#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
|
|
#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
|
|
#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
|
|
#define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
|
|
#define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH)
|
|
|
|
/*
|
|
* Define the bit shifts to access each section. For non-existent
|
|
* sections we define the shift as 0; that plus a 0 mask ensures
|
|
* the compiler will optimise away reference to them.
|
|
*/
|
|
#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
|
|
#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
|
|
#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
|
|
#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
|
|
#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
|
|
|
|
/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
|
|
#ifdef NODE_NOT_IN_PAGE_FLAGS
|
|
#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
|
|
#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \
|
|
SECTIONS_PGOFF : ZONES_PGOFF)
|
|
#else
|
|
#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
|
|
#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \
|
|
NODES_PGOFF : ZONES_PGOFF)
|
|
#endif
|
|
|
|
#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
|
|
|
|
#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
|
|
#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
|
|
#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
|
|
#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
|
|
#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
|
|
#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
|
|
|
|
static inline enum zone_type page_zonenum(const struct page *page)
|
|
{
|
|
ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
|
|
return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
|
|
}
|
|
|
|
static inline enum zone_type folio_zonenum(const struct folio *folio)
|
|
{
|
|
return page_zonenum(&folio->page);
|
|
}
|
|
|
|
#ifdef CONFIG_ZONE_DEVICE
|
|
static inline bool is_zone_device_page(const struct page *page)
|
|
{
|
|
return page_zonenum(page) == ZONE_DEVICE;
|
|
}
|
|
|
|
/*
|
|
* Consecutive zone device pages should not be merged into the same sgl
|
|
* or bvec segment with other types of pages or if they belong to different
|
|
* pgmaps. Otherwise getting the pgmap of a given segment is not possible
|
|
* without scanning the entire segment. This helper returns true either if
|
|
* both pages are not zone device pages or both pages are zone device pages
|
|
* with the same pgmap.
|
|
*/
|
|
static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
|
|
const struct page *b)
|
|
{
|
|
if (is_zone_device_page(a) != is_zone_device_page(b))
|
|
return false;
|
|
if (!is_zone_device_page(a))
|
|
return true;
|
|
return a->pgmap == b->pgmap;
|
|
}
|
|
|
|
extern void memmap_init_zone_device(struct zone *, unsigned long,
|
|
unsigned long, struct dev_pagemap *);
|
|
#else
|
|
static inline bool is_zone_device_page(const struct page *page)
|
|
{
|
|
return false;
|
|
}
|
|
static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
|
|
const struct page *b)
|
|
{
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
static inline bool folio_is_zone_device(const struct folio *folio)
|
|
{
|
|
return is_zone_device_page(&folio->page);
|
|
}
|
|
|
|
static inline bool is_zone_movable_page(const struct page *page)
|
|
{
|
|
return page_zonenum(page) == ZONE_MOVABLE;
|
|
}
|
|
|
|
static inline bool folio_is_zone_movable(const struct folio *folio)
|
|
{
|
|
return folio_zonenum(folio) == ZONE_MOVABLE;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
|
|
* intersection with the given zone
|
|
*/
|
|
static inline bool zone_intersects(struct zone *zone,
|
|
unsigned long start_pfn, unsigned long nr_pages)
|
|
{
|
|
if (zone_is_empty(zone))
|
|
return false;
|
|
if (start_pfn >= zone_end_pfn(zone) ||
|
|
start_pfn + nr_pages <= zone->zone_start_pfn)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* The "priority" of VM scanning is how much of the queues we will scan in one
|
|
* go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
|
|
* queues ("queue_length >> 12") during an aging round.
|
|
*/
|
|
#define DEF_PRIORITY 12
|
|
|
|
/* Maximum number of zones on a zonelist */
|
|
#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
|
|
|
|
enum {
|
|
ZONELIST_FALLBACK, /* zonelist with fallback */
|
|
#ifdef CONFIG_NUMA
|
|
/*
|
|
* The NUMA zonelists are doubled because we need zonelists that
|
|
* restrict the allocations to a single node for __GFP_THISNODE.
|
|
*/
|
|
ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
|
|
#endif
|
|
MAX_ZONELISTS
|
|
};
|
|
|
|
/*
|
|
* This struct contains information about a zone in a zonelist. It is stored
|
|
* here to avoid dereferences into large structures and lookups of tables
|
|
*/
|
|
struct zoneref {
|
|
struct zone *zone; /* Pointer to actual zone */
|
|
int zone_idx; /* zone_idx(zoneref->zone) */
|
|
};
|
|
|
|
/*
|
|
* One allocation request operates on a zonelist. A zonelist
|
|
* is a list of zones, the first one is the 'goal' of the
|
|
* allocation, the other zones are fallback zones, in decreasing
|
|
* priority.
|
|
*
|
|
* To speed the reading of the zonelist, the zonerefs contain the zone index
|
|
* of the entry being read. Helper functions to access information given
|
|
* a struct zoneref are
|
|
*
|
|
* zonelist_zone() - Return the struct zone * for an entry in _zonerefs
|
|
* zonelist_zone_idx() - Return the index of the zone for an entry
|
|
* zonelist_node_idx() - Return the index of the node for an entry
|
|
*/
|
|
struct zonelist {
|
|
struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
|
|
};
|
|
|
|
/*
|
|
* The array of struct pages for flatmem.
|
|
* It must be declared for SPARSEMEM as well because there are configurations
|
|
* that rely on that.
|
|
*/
|
|
extern struct page *mem_map;
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
struct deferred_split {
|
|
spinlock_t split_queue_lock;
|
|
struct list_head split_queue;
|
|
unsigned long split_queue_len;
|
|
};
|
|
#endif
|
|
|
|
#ifdef CONFIG_MEMORY_FAILURE
|
|
/*
|
|
* Per NUMA node memory failure handling statistics.
|
|
*/
|
|
struct memory_failure_stats {
|
|
/*
|
|
* Number of raw pages poisoned.
|
|
* Cases not accounted: memory outside kernel control, offline page,
|
|
* arch-specific memory_failure (SGX), hwpoison_filter() filtered
|
|
* error events, and unpoison actions from hwpoison_unpoison.
|
|
*/
|
|
unsigned long total;
|
|
/*
|
|
* Recovery results of poisoned raw pages handled by memory_failure,
|
|
* in sync with mf_result.
|
|
* total = ignored + failed + delayed + recovered.
|
|
* total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted.
|
|
*/
|
|
unsigned long ignored;
|
|
unsigned long failed;
|
|
unsigned long delayed;
|
|
unsigned long recovered;
|
|
};
|
|
#endif
|
|
|
|
/*
|
|
* On NUMA machines, each NUMA node would have a pg_data_t to describe
|
|
* it's memory layout. On UMA machines there is a single pglist_data which
|
|
* describes the whole memory.
|
|
*
|
|
* Memory statistics and page replacement data structures are maintained on a
|
|
* per-zone basis.
|
|
*/
|
|
typedef struct pglist_data {
|
|
/*
|
|
* node_zones contains just the zones for THIS node. Not all of the
|
|
* zones may be populated, but it is the full list. It is referenced by
|
|
* this node's node_zonelists as well as other node's node_zonelists.
|
|
*/
|
|
struct zone node_zones[MAX_NR_ZONES];
|
|
|
|
/*
|
|
* node_zonelists contains references to all zones in all nodes.
|
|
* Generally the first zones will be references to this node's
|
|
* node_zones.
|
|
*/
|
|
struct zonelist node_zonelists[MAX_ZONELISTS];
|
|
|
|
int nr_zones; /* number of populated zones in this node */
|
|
#ifdef CONFIG_FLATMEM /* means !SPARSEMEM */
|
|
struct page *node_mem_map;
|
|
#ifdef CONFIG_PAGE_EXTENSION
|
|
struct page_ext *node_page_ext;
|
|
#endif
|
|
#endif
|
|
#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
|
|
/*
|
|
* Must be held any time you expect node_start_pfn,
|
|
* node_present_pages, node_spanned_pages or nr_zones to stay constant.
|
|
* Also synchronizes pgdat->first_deferred_pfn during deferred page
|
|
* init.
|
|
*
|
|
* pgdat_resize_lock() and pgdat_resize_unlock() are provided to
|
|
* manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
|
|
* or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
|
|
*
|
|
* Nests above zone->lock and zone->span_seqlock
|
|
*/
|
|
spinlock_t node_size_lock;
|
|
#endif
|
|
unsigned long node_start_pfn;
|
|
unsigned long node_present_pages; /* total number of physical pages */
|
|
unsigned long node_spanned_pages; /* total size of physical page
|
|
range, including holes */
|
|
int node_id;
|
|
wait_queue_head_t kswapd_wait;
|
|
wait_queue_head_t pfmemalloc_wait;
|
|
|
|
/* workqueues for throttling reclaim for different reasons. */
|
|
wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
|
|
|
|
atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
|
|
unsigned long nr_reclaim_start; /* nr pages written while throttled
|
|
* when throttling started. */
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
struct mutex kswapd_lock;
|
|
#endif
|
|
struct task_struct *kswapd; /* Protected by kswapd_lock */
|
|
int kswapd_order;
|
|
enum zone_type kswapd_highest_zoneidx;
|
|
|
|
int kswapd_failures; /* Number of 'reclaimed == 0' runs */
|
|
|
|
#ifdef CONFIG_COMPACTION
|
|
int kcompactd_max_order;
|
|
enum zone_type kcompactd_highest_zoneidx;
|
|
wait_queue_head_t kcompactd_wait;
|
|
struct task_struct *kcompactd;
|
|
bool proactive_compact_trigger;
|
|
#endif
|
|
/*
|
|
* This is a per-node reserve of pages that are not available
|
|
* to userspace allocations.
|
|
*/
|
|
unsigned long totalreserve_pages;
|
|
|
|
#ifdef CONFIG_NUMA
|
|
/*
|
|
* node reclaim becomes active if more unmapped pages exist.
|
|
*/
|
|
unsigned long min_unmapped_pages;
|
|
unsigned long min_slab_pages;
|
|
#endif /* CONFIG_NUMA */
|
|
|
|
/* Write-intensive fields used by page reclaim */
|
|
CACHELINE_PADDING(_pad1_);
|
|
|
|
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
|
|
/*
|
|
* If memory initialisation on large machines is deferred then this
|
|
* is the first PFN that needs to be initialised.
|
|
*/
|
|
unsigned long first_deferred_pfn;
|
|
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
struct deferred_split deferred_split_queue;
|
|
#endif
|
|
|
|
#ifdef CONFIG_NUMA_BALANCING
|
|
/* start time in ms of current promote rate limit period */
|
|
unsigned int nbp_rl_start;
|
|
/* number of promote candidate pages at start time of current rate limit period */
|
|
unsigned long nbp_rl_nr_cand;
|
|
/* promote threshold in ms */
|
|
unsigned int nbp_threshold;
|
|
/* start time in ms of current promote threshold adjustment period */
|
|
unsigned int nbp_th_start;
|
|
/*
|
|
* number of promote candidate pages at start time of current promote
|
|
* threshold adjustment period
|
|
*/
|
|
unsigned long nbp_th_nr_cand;
|
|
#endif
|
|
/* Fields commonly accessed by the page reclaim scanner */
|
|
|
|
/*
|
|
* NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
|
|
*
|
|
* Use mem_cgroup_lruvec() to look up lruvecs.
|
|
*/
|
|
struct lruvec __lruvec;
|
|
|
|
unsigned long flags;
|
|
|
|
#ifdef CONFIG_LRU_GEN
|
|
/* kswap mm walk data */
|
|
struct lru_gen_mm_walk mm_walk;
|
|
/* lru_gen_folio list */
|
|
struct lru_gen_memcg memcg_lru;
|
|
#endif
|
|
|
|
CACHELINE_PADDING(_pad2_);
|
|
|
|
/* Per-node vmstats */
|
|
struct per_cpu_nodestat __percpu *per_cpu_nodestats;
|
|
atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
|
|
#ifdef CONFIG_NUMA
|
|
struct memory_tier __rcu *memtier;
|
|
#endif
|
|
#ifdef CONFIG_MEMORY_FAILURE
|
|
struct memory_failure_stats mf_stats;
|
|
#endif
|
|
} pg_data_t;
|
|
|
|
#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
|
|
#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
|
|
|
|
#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
|
|
#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
|
|
|
|
static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
|
|
{
|
|
return pgdat->node_start_pfn + pgdat->node_spanned_pages;
|
|
}
|
|
|
|
#include <linux/memory_hotplug.h>
|
|
|
|
void build_all_zonelists(pg_data_t *pgdat);
|
|
void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
|
|
enum zone_type highest_zoneidx);
|
|
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
|
|
int highest_zoneidx, unsigned int alloc_flags,
|
|
long free_pages);
|
|
bool zone_watermark_ok(struct zone *z, unsigned int order,
|
|
unsigned long mark, int highest_zoneidx,
|
|
unsigned int alloc_flags);
|
|
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
|
|
unsigned long mark, int highest_zoneidx);
|
|
/*
|
|
* Memory initialization context, use to differentiate memory added by
|
|
* the platform statically or via memory hotplug interface.
|
|
*/
|
|
enum meminit_context {
|
|
MEMINIT_EARLY,
|
|
MEMINIT_HOTPLUG,
|
|
};
|
|
|
|
extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
|
|
unsigned long size);
|
|
|
|
extern void lruvec_init(struct lruvec *lruvec);
|
|
|
|
static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
|
|
{
|
|
#ifdef CONFIG_MEMCG
|
|
return lruvec->pgdat;
|
|
#else
|
|
return container_of(lruvec, struct pglist_data, __lruvec);
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
|
|
int local_memory_node(int node_id);
|
|
#else
|
|
static inline int local_memory_node(int node_id) { return node_id; };
|
|
#endif
|
|
|
|
/*
|
|
* zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
|
|
*/
|
|
#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
|
|
|
|
#ifdef CONFIG_ZONE_DEVICE
|
|
static inline bool zone_is_zone_device(struct zone *zone)
|
|
{
|
|
return zone_idx(zone) == ZONE_DEVICE;
|
|
}
|
|
#else
|
|
static inline bool zone_is_zone_device(struct zone *zone)
|
|
{
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Returns true if a zone has pages managed by the buddy allocator.
|
|
* All the reclaim decisions have to use this function rather than
|
|
* populated_zone(). If the whole zone is reserved then we can easily
|
|
* end up with populated_zone() && !managed_zone().
|
|
*/
|
|
static inline bool managed_zone(struct zone *zone)
|
|
{
|
|
return zone_managed_pages(zone);
|
|
}
|
|
|
|
/* Returns true if a zone has memory */
|
|
static inline bool populated_zone(struct zone *zone)
|
|
{
|
|
return zone->present_pages;
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
static inline int zone_to_nid(struct zone *zone)
|
|
{
|
|
return zone->node;
|
|
}
|
|
|
|
static inline void zone_set_nid(struct zone *zone, int nid)
|
|
{
|
|
zone->node = nid;
|
|
}
|
|
#else
|
|
static inline int zone_to_nid(struct zone *zone)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void zone_set_nid(struct zone *zone, int nid) {}
|
|
#endif
|
|
|
|
extern int movable_zone;
|
|
|
|
static inline int is_highmem_idx(enum zone_type idx)
|
|
{
|
|
#ifdef CONFIG_HIGHMEM
|
|
return (idx == ZONE_HIGHMEM ||
|
|
(idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* is_highmem - helper function to quickly check if a struct zone is a
|
|
* highmem zone or not. This is an attempt to keep references
|
|
* to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
|
|
* @zone: pointer to struct zone variable
|
|
* Return: 1 for a highmem zone, 0 otherwise
|
|
*/
|
|
static inline int is_highmem(struct zone *zone)
|
|
{
|
|
return is_highmem_idx(zone_idx(zone));
|
|
}
|
|
|
|
#ifdef CONFIG_ZONE_DMA
|
|
bool has_managed_dma(void);
|
|
#else
|
|
static inline bool has_managed_dma(void)
|
|
{
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifndef CONFIG_NUMA
|
|
|
|
extern struct pglist_data contig_page_data;
|
|
static inline struct pglist_data *NODE_DATA(int nid)
|
|
{
|
|
return &contig_page_data;
|
|
}
|
|
|
|
#else /* CONFIG_NUMA */
|
|
|
|
#include <asm/mmzone.h>
|
|
|
|
#endif /* !CONFIG_NUMA */
|
|
|
|
extern struct pglist_data *first_online_pgdat(void);
|
|
extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
|
|
extern struct zone *next_zone(struct zone *zone);
|
|
|
|
/**
|
|
* for_each_online_pgdat - helper macro to iterate over all online nodes
|
|
* @pgdat: pointer to a pg_data_t variable
|
|
*/
|
|
#define for_each_online_pgdat(pgdat) \
|
|
for (pgdat = first_online_pgdat(); \
|
|
pgdat; \
|
|
pgdat = next_online_pgdat(pgdat))
|
|
/**
|
|
* for_each_zone - helper macro to iterate over all memory zones
|
|
* @zone: pointer to struct zone variable
|
|
*
|
|
* The user only needs to declare the zone variable, for_each_zone
|
|
* fills it in.
|
|
*/
|
|
#define for_each_zone(zone) \
|
|
for (zone = (first_online_pgdat())->node_zones; \
|
|
zone; \
|
|
zone = next_zone(zone))
|
|
|
|
#define for_each_populated_zone(zone) \
|
|
for (zone = (first_online_pgdat())->node_zones; \
|
|
zone; \
|
|
zone = next_zone(zone)) \
|
|
if (!populated_zone(zone)) \
|
|
; /* do nothing */ \
|
|
else
|
|
|
|
static inline struct zone *zonelist_zone(struct zoneref *zoneref)
|
|
{
|
|
return zoneref->zone;
|
|
}
|
|
|
|
static inline int zonelist_zone_idx(struct zoneref *zoneref)
|
|
{
|
|
return zoneref->zone_idx;
|
|
}
|
|
|
|
static inline int zonelist_node_idx(struct zoneref *zoneref)
|
|
{
|
|
return zone_to_nid(zoneref->zone);
|
|
}
|
|
|
|
struct zoneref *__next_zones_zonelist(struct zoneref *z,
|
|
enum zone_type highest_zoneidx,
|
|
nodemask_t *nodes);
|
|
|
|
/**
|
|
* next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
|
|
* @z: The cursor used as a starting point for the search
|
|
* @highest_zoneidx: The zone index of the highest zone to return
|
|
* @nodes: An optional nodemask to filter the zonelist with
|
|
*
|
|
* This function returns the next zone at or below a given zone index that is
|
|
* within the allowed nodemask using a cursor as the starting point for the
|
|
* search. The zoneref returned is a cursor that represents the current zone
|
|
* being examined. It should be advanced by one before calling
|
|
* next_zones_zonelist again.
|
|
*
|
|
* Return: the next zone at or below highest_zoneidx within the allowed
|
|
* nodemask using a cursor within a zonelist as a starting point
|
|
*/
|
|
static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
|
|
enum zone_type highest_zoneidx,
|
|
nodemask_t *nodes)
|
|
{
|
|
if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
|
|
return z;
|
|
return __next_zones_zonelist(z, highest_zoneidx, nodes);
|
|
}
|
|
|
|
/**
|
|
* first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
|
|
* @zonelist: The zonelist to search for a suitable zone
|
|
* @highest_zoneidx: The zone index of the highest zone to return
|
|
* @nodes: An optional nodemask to filter the zonelist with
|
|
*
|
|
* This function returns the first zone at or below a given zone index that is
|
|
* within the allowed nodemask. The zoneref returned is a cursor that can be
|
|
* used to iterate the zonelist with next_zones_zonelist by advancing it by
|
|
* one before calling.
|
|
*
|
|
* When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
|
|
* never NULL). This may happen either genuinely, or due to concurrent nodemask
|
|
* update due to cpuset modification.
|
|
*
|
|
* Return: Zoneref pointer for the first suitable zone found
|
|
*/
|
|
static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
|
|
enum zone_type highest_zoneidx,
|
|
nodemask_t *nodes)
|
|
{
|
|
return next_zones_zonelist(zonelist->_zonerefs,
|
|
highest_zoneidx, nodes);
|
|
}
|
|
|
|
/**
|
|
* for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
|
|
* @zone: The current zone in the iterator
|
|
* @z: The current pointer within zonelist->_zonerefs being iterated
|
|
* @zlist: The zonelist being iterated
|
|
* @highidx: The zone index of the highest zone to return
|
|
* @nodemask: Nodemask allowed by the allocator
|
|
*
|
|
* This iterator iterates though all zones at or below a given zone index and
|
|
* within a given nodemask
|
|
*/
|
|
#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
|
|
for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
|
|
zone; \
|
|
z = next_zones_zonelist(++z, highidx, nodemask), \
|
|
zone = zonelist_zone(z))
|
|
|
|
#define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
|
|
for (zone = z->zone; \
|
|
zone; \
|
|
z = next_zones_zonelist(++z, highidx, nodemask), \
|
|
zone = zonelist_zone(z))
|
|
|
|
|
|
/**
|
|
* for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
|
|
* @zone: The current zone in the iterator
|
|
* @z: The current pointer within zonelist->zones being iterated
|
|
* @zlist: The zonelist being iterated
|
|
* @highidx: The zone index of the highest zone to return
|
|
*
|
|
* This iterator iterates though all zones at or below a given zone index.
|
|
*/
|
|
#define for_each_zone_zonelist(zone, z, zlist, highidx) \
|
|
for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
|
|
|
|
/* Whether the 'nodes' are all movable nodes */
|
|
static inline bool movable_only_nodes(nodemask_t *nodes)
|
|
{
|
|
struct zonelist *zonelist;
|
|
struct zoneref *z;
|
|
int nid;
|
|
|
|
if (nodes_empty(*nodes))
|
|
return false;
|
|
|
|
/*
|
|
* We can chose arbitrary node from the nodemask to get a
|
|
* zonelist as they are interlinked. We just need to find
|
|
* at least one zone that can satisfy kernel allocations.
|
|
*/
|
|
nid = first_node(*nodes);
|
|
zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
|
|
z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes);
|
|
return (!z->zone) ? true : false;
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_SPARSEMEM
|
|
#include <asm/sparsemem.h>
|
|
#endif
|
|
|
|
#ifdef CONFIG_FLATMEM
|
|
#define pfn_to_nid(pfn) (0)
|
|
#endif
|
|
|
|
#ifdef CONFIG_SPARSEMEM
|
|
|
|
/*
|
|
* PA_SECTION_SHIFT physical address to/from section number
|
|
* PFN_SECTION_SHIFT pfn to/from section number
|
|
*/
|
|
#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
|
|
#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
|
|
|
|
#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
|
|
|
|
#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
|
|
#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
|
|
|
|
#define SECTION_BLOCKFLAGS_BITS \
|
|
((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
|
|
|
|
#if (MAX_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS
|
|
#error Allocator MAX_ORDER exceeds SECTION_SIZE
|
|
#endif
|
|
|
|
static inline unsigned long pfn_to_section_nr(unsigned long pfn)
|
|
{
|
|
return pfn >> PFN_SECTION_SHIFT;
|
|
}
|
|
static inline unsigned long section_nr_to_pfn(unsigned long sec)
|
|
{
|
|
return sec << PFN_SECTION_SHIFT;
|
|
}
|
|
|
|
#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
|
|
#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
|
|
|
|
#define SUBSECTION_SHIFT 21
|
|
#define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
|
|
|
|
#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
|
|
#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
|
|
#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
|
|
|
|
#if SUBSECTION_SHIFT > SECTION_SIZE_BITS
|
|
#error Subsection size exceeds section size
|
|
#else
|
|
#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
|
|
#endif
|
|
|
|
#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
|
|
#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
|
|
|
|
struct mem_section_usage {
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
|
|
#endif
|
|
/* See declaration of similar field in struct zone */
|
|
unsigned long pageblock_flags[0];
|
|
};
|
|
|
|
void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
|
|
|
|
struct page;
|
|
struct page_ext;
|
|
struct mem_section {
|
|
/*
|
|
* This is, logically, a pointer to an array of struct
|
|
* pages. However, it is stored with some other magic.
|
|
* (see sparse.c::sparse_init_one_section())
|
|
*
|
|
* Additionally during early boot we encode node id of
|
|
* the location of the section here to guide allocation.
|
|
* (see sparse.c::memory_present())
|
|
*
|
|
* Making it a UL at least makes someone do a cast
|
|
* before using it wrong.
|
|
*/
|
|
unsigned long section_mem_map;
|
|
|
|
struct mem_section_usage *usage;
|
|
#ifdef CONFIG_PAGE_EXTENSION
|
|
/*
|
|
* If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
|
|
* section. (see page_ext.h about this.)
|
|
*/
|
|
struct page_ext *page_ext;
|
|
unsigned long pad;
|
|
#endif
|
|
/*
|
|
* WARNING: mem_section must be a power-of-2 in size for the
|
|
* calculation and use of SECTION_ROOT_MASK to make sense.
|
|
*/
|
|
};
|
|
|
|
#ifdef CONFIG_SPARSEMEM_EXTREME
|
|
#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
|
|
#else
|
|
#define SECTIONS_PER_ROOT 1
|
|
#endif
|
|
|
|
#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
|
|
#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
|
|
#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
|
|
|
|
#ifdef CONFIG_SPARSEMEM_EXTREME
|
|
extern struct mem_section **mem_section;
|
|
#else
|
|
extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
|
|
#endif
|
|
|
|
static inline unsigned long *section_to_usemap(struct mem_section *ms)
|
|
{
|
|
return ms->usage->pageblock_flags;
|
|
}
|
|
|
|
static inline struct mem_section *__nr_to_section(unsigned long nr)
|
|
{
|
|
unsigned long root = SECTION_NR_TO_ROOT(nr);
|
|
|
|
if (unlikely(root >= NR_SECTION_ROOTS))
|
|
return NULL;
|
|
|
|
#ifdef CONFIG_SPARSEMEM_EXTREME
|
|
if (!mem_section || !mem_section[root])
|
|
return NULL;
|
|
#endif
|
|
return &mem_section[root][nr & SECTION_ROOT_MASK];
|
|
}
|
|
extern size_t mem_section_usage_size(void);
|
|
|
|
/*
|
|
* We use the lower bits of the mem_map pointer to store
|
|
* a little bit of information. The pointer is calculated
|
|
* as mem_map - section_nr_to_pfn(pnum). The result is
|
|
* aligned to the minimum alignment of the two values:
|
|
* 1. All mem_map arrays are page-aligned.
|
|
* 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
|
|
* lowest bits. PFN_SECTION_SHIFT is arch-specific
|
|
* (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
|
|
* worst combination is powerpc with 256k pages,
|
|
* which results in PFN_SECTION_SHIFT equal 6.
|
|
* To sum it up, at least 6 bits are available on all architectures.
|
|
* However, we can exceed 6 bits on some other architectures except
|
|
* powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
|
|
* with the worst case of 64K pages on arm64) if we make sure the
|
|
* exceeded bit is not applicable to powerpc.
|
|
*/
|
|
enum {
|
|
SECTION_MARKED_PRESENT_BIT,
|
|
SECTION_HAS_MEM_MAP_BIT,
|
|
SECTION_IS_ONLINE_BIT,
|
|
SECTION_IS_EARLY_BIT,
|
|
#ifdef CONFIG_ZONE_DEVICE
|
|
SECTION_TAINT_ZONE_DEVICE_BIT,
|
|
#endif
|
|
SECTION_MAP_LAST_BIT,
|
|
};
|
|
|
|
#define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT)
|
|
#define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT)
|
|
#define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT)
|
|
#define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT)
|
|
#ifdef CONFIG_ZONE_DEVICE
|
|
#define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
|
|
#endif
|
|
#define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1))
|
|
#define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT
|
|
|
|
static inline struct page *__section_mem_map_addr(struct mem_section *section)
|
|
{
|
|
unsigned long map = section->section_mem_map;
|
|
map &= SECTION_MAP_MASK;
|
|
return (struct page *)map;
|
|
}
|
|
|
|
static inline int present_section(struct mem_section *section)
|
|
{
|
|
return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
|
|
}
|
|
|
|
static inline int present_section_nr(unsigned long nr)
|
|
{
|
|
return present_section(__nr_to_section(nr));
|
|
}
|
|
|
|
static inline int valid_section(struct mem_section *section)
|
|
{
|
|
return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
|
|
}
|
|
|
|
static inline int early_section(struct mem_section *section)
|
|
{
|
|
return (section && (section->section_mem_map & SECTION_IS_EARLY));
|
|
}
|
|
|
|
static inline int valid_section_nr(unsigned long nr)
|
|
{
|
|
return valid_section(__nr_to_section(nr));
|
|
}
|
|
|
|
static inline int online_section(struct mem_section *section)
|
|
{
|
|
return (section && (section->section_mem_map & SECTION_IS_ONLINE));
|
|
}
|
|
|
|
#ifdef CONFIG_ZONE_DEVICE
|
|
static inline int online_device_section(struct mem_section *section)
|
|
{
|
|
unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
|
|
|
|
return section && ((section->section_mem_map & flags) == flags);
|
|
}
|
|
#else
|
|
static inline int online_device_section(struct mem_section *section)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static inline int online_section_nr(unsigned long nr)
|
|
{
|
|
return online_section(__nr_to_section(nr));
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
|
|
void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
|
|
#endif
|
|
|
|
static inline struct mem_section *__pfn_to_section(unsigned long pfn)
|
|
{
|
|
return __nr_to_section(pfn_to_section_nr(pfn));
|
|
}
|
|
|
|
extern unsigned long __highest_present_section_nr;
|
|
|
|
static inline int subsection_map_index(unsigned long pfn)
|
|
{
|
|
return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
|
|
}
|
|
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
|
|
{
|
|
int idx = subsection_map_index(pfn);
|
|
|
|
return test_bit(idx, ms->usage->subsection_map);
|
|
}
|
|
#else
|
|
static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
|
|
{
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
#ifndef CONFIG_HAVE_ARCH_PFN_VALID
|
|
/**
|
|
* pfn_valid - check if there is a valid memory map entry for a PFN
|
|
* @pfn: the page frame number to check
|
|
*
|
|
* Check if there is a valid memory map entry aka struct page for the @pfn.
|
|
* Note, that availability of the memory map entry does not imply that
|
|
* there is actual usable memory at that @pfn. The struct page may
|
|
* represent a hole or an unusable page frame.
|
|
*
|
|
* Return: 1 for PFNs that have memory map entries and 0 otherwise
|
|
*/
|
|
static inline int pfn_valid(unsigned long pfn)
|
|
{
|
|
struct mem_section *ms;
|
|
|
|
/*
|
|
* Ensure the upper PAGE_SHIFT bits are clear in the
|
|
* pfn. Else it might lead to false positives when
|
|
* some of the upper bits are set, but the lower bits
|
|
* match a valid pfn.
|
|
*/
|
|
if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
|
|
return 0;
|
|
|
|
if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
|
|
return 0;
|
|
ms = __pfn_to_section(pfn);
|
|
if (!valid_section(ms))
|
|
return 0;
|
|
/*
|
|
* Traditionally early sections always returned pfn_valid() for
|
|
* the entire section-sized span.
|
|
*/
|
|
return early_section(ms) || pfn_section_valid(ms, pfn);
|
|
}
|
|
#endif
|
|
|
|
static inline int pfn_in_present_section(unsigned long pfn)
|
|
{
|
|
if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
|
|
return 0;
|
|
return present_section(__pfn_to_section(pfn));
|
|
}
|
|
|
|
static inline unsigned long next_present_section_nr(unsigned long section_nr)
|
|
{
|
|
while (++section_nr <= __highest_present_section_nr) {
|
|
if (present_section_nr(section_nr))
|
|
return section_nr;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* These are _only_ used during initialisation, therefore they
|
|
* can use __initdata ... They could have names to indicate
|
|
* this restriction.
|
|
*/
|
|
#ifdef CONFIG_NUMA
|
|
#define pfn_to_nid(pfn) \
|
|
({ \
|
|
unsigned long __pfn_to_nid_pfn = (pfn); \
|
|
page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
|
|
})
|
|
#else
|
|
#define pfn_to_nid(pfn) (0)
|
|
#endif
|
|
|
|
void sparse_init(void);
|
|
#else
|
|
#define sparse_init() do {} while (0)
|
|
#define sparse_index_init(_sec, _nid) do {} while (0)
|
|
#define pfn_in_present_section pfn_valid
|
|
#define subsection_map_init(_pfn, _nr_pages) do {} while (0)
|
|
#endif /* CONFIG_SPARSEMEM */
|
|
|
|
#endif /* !__GENERATING_BOUNDS.H */
|
|
#endif /* !__ASSEMBLY__ */
|
|
#endif /* _LINUX_MMZONE_H */
|