linux-zen-desktop/net/sched/sch_fq_codel.c

736 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Fair Queue CoDel discipline
*
* Copyright (C) 2012,2015 Eric Dumazet <edumazet@google.com>
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/jiffies.h>
#include <linux/string.h>
#include <linux/in.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <net/netlink.h>
#include <net/pkt_sched.h>
#include <net/pkt_cls.h>
#include <net/codel.h>
#include <net/codel_impl.h>
#include <net/codel_qdisc.h>
/* Fair Queue CoDel.
*
* Principles :
* Packets are classified (internal classifier or external) on flows.
* This is a Stochastic model (as we use a hash, several flows
* might be hashed on same slot)
* Each flow has a CoDel managed queue.
* Flows are linked onto two (Round Robin) lists,
* so that new flows have priority on old ones.
*
* For a given flow, packets are not reordered (CoDel uses a FIFO)
* head drops only.
* ECN capability is on by default.
* Low memory footprint (64 bytes per flow)
*/
struct fq_codel_flow {
struct sk_buff *head;
struct sk_buff *tail;
struct list_head flowchain;
int deficit;
struct codel_vars cvars;
}; /* please try to keep this structure <= 64 bytes */
struct fq_codel_sched_data {
struct tcf_proto __rcu *filter_list; /* optional external classifier */
struct tcf_block *block;
struct fq_codel_flow *flows; /* Flows table [flows_cnt] */
u32 *backlogs; /* backlog table [flows_cnt] */
u32 flows_cnt; /* number of flows */
u32 quantum; /* psched_mtu(qdisc_dev(sch)); */
u32 drop_batch_size;
u32 memory_limit;
struct codel_params cparams;
struct codel_stats cstats;
u32 memory_usage;
u32 drop_overmemory;
u32 drop_overlimit;
u32 new_flow_count;
struct list_head new_flows; /* list of new flows */
struct list_head old_flows; /* list of old flows */
};
static unsigned int fq_codel_hash(const struct fq_codel_sched_data *q,
struct sk_buff *skb)
{
return reciprocal_scale(skb_get_hash(skb), q->flows_cnt);
}
static unsigned int fq_codel_classify(struct sk_buff *skb, struct Qdisc *sch,
int *qerr)
{
struct fq_codel_sched_data *q = qdisc_priv(sch);
struct tcf_proto *filter;
struct tcf_result res;
int result;
if (TC_H_MAJ(skb->priority) == sch->handle &&
TC_H_MIN(skb->priority) > 0 &&
TC_H_MIN(skb->priority) <= q->flows_cnt)
return TC_H_MIN(skb->priority);
filter = rcu_dereference_bh(q->filter_list);
if (!filter)
return fq_codel_hash(q, skb) + 1;
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
result = tcf_classify(skb, NULL, filter, &res, false);
if (result >= 0) {
#ifdef CONFIG_NET_CLS_ACT
switch (result) {
case TC_ACT_STOLEN:
case TC_ACT_QUEUED:
case TC_ACT_TRAP:
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
fallthrough;
case TC_ACT_SHOT:
return 0;
}
#endif
if (TC_H_MIN(res.classid) <= q->flows_cnt)
return TC_H_MIN(res.classid);
}
return 0;
}
/* helper functions : might be changed when/if skb use a standard list_head */
/* remove one skb from head of slot queue */
static inline struct sk_buff *dequeue_head(struct fq_codel_flow *flow)
{
struct sk_buff *skb = flow->head;
flow->head = skb->next;
skb_mark_not_on_list(skb);
return skb;
}
/* add skb to flow queue (tail add) */
static inline void flow_queue_add(struct fq_codel_flow *flow,
struct sk_buff *skb)
{
if (flow->head == NULL)
flow->head = skb;
else
flow->tail->next = skb;
flow->tail = skb;
skb->next = NULL;
}
static unsigned int fq_codel_drop(struct Qdisc *sch, unsigned int max_packets,
struct sk_buff **to_free)
{
struct fq_codel_sched_data *q = qdisc_priv(sch);
struct sk_buff *skb;
unsigned int maxbacklog = 0, idx = 0, i, len;
struct fq_codel_flow *flow;
unsigned int threshold;
unsigned int mem = 0;
/* Queue is full! Find the fat flow and drop packet(s) from it.
* This might sound expensive, but with 1024 flows, we scan
* 4KB of memory, and we dont need to handle a complex tree
* in fast path (packet queue/enqueue) with many cache misses.
* In stress mode, we'll try to drop 64 packets from the flow,
* amortizing this linear lookup to one cache line per drop.
*/
for (i = 0; i < q->flows_cnt; i++) {
if (q->backlogs[i] > maxbacklog) {
maxbacklog = q->backlogs[i];
idx = i;
}
}
/* Our goal is to drop half of this fat flow backlog */
threshold = maxbacklog >> 1;
flow = &q->flows[idx];
len = 0;
i = 0;
do {
skb = dequeue_head(flow);
len += qdisc_pkt_len(skb);
mem += get_codel_cb(skb)->mem_usage;
__qdisc_drop(skb, to_free);
} while (++i < max_packets && len < threshold);
/* Tell codel to increase its signal strength also */
flow->cvars.count += i;
q->backlogs[idx] -= len;
q->memory_usage -= mem;
sch->qstats.drops += i;
sch->qstats.backlog -= len;
sch->q.qlen -= i;
return idx;
}
static int fq_codel_enqueue(struct sk_buff *skb, struct Qdisc *sch,
struct sk_buff **to_free)
{
struct fq_codel_sched_data *q = qdisc_priv(sch);
unsigned int idx, prev_backlog, prev_qlen;
struct fq_codel_flow *flow;
int ret;
unsigned int pkt_len;
bool memory_limited;
idx = fq_codel_classify(skb, sch, &ret);
if (idx == 0) {
if (ret & __NET_XMIT_BYPASS)
qdisc_qstats_drop(sch);
__qdisc_drop(skb, to_free);
return ret;
}
idx--;
codel_set_enqueue_time(skb);
flow = &q->flows[idx];
flow_queue_add(flow, skb);
q->backlogs[idx] += qdisc_pkt_len(skb);
qdisc_qstats_backlog_inc(sch, skb);
if (list_empty(&flow->flowchain)) {
list_add_tail(&flow->flowchain, &q->new_flows);
q->new_flow_count++;
flow->deficit = q->quantum;
}
get_codel_cb(skb)->mem_usage = skb->truesize;
q->memory_usage += get_codel_cb(skb)->mem_usage;
memory_limited = q->memory_usage > q->memory_limit;
if (++sch->q.qlen <= sch->limit && !memory_limited)
return NET_XMIT_SUCCESS;
prev_backlog = sch->qstats.backlog;
prev_qlen = sch->q.qlen;
/* save this packet length as it might be dropped by fq_codel_drop() */
pkt_len = qdisc_pkt_len(skb);
/* fq_codel_drop() is quite expensive, as it performs a linear search
* in q->backlogs[] to find a fat flow.
* So instead of dropping a single packet, drop half of its backlog
* with a 64 packets limit to not add a too big cpu spike here.
*/
ret = fq_codel_drop(sch, q->drop_batch_size, to_free);
prev_qlen -= sch->q.qlen;
prev_backlog -= sch->qstats.backlog;
q->drop_overlimit += prev_qlen;
if (memory_limited)
q->drop_overmemory += prev_qlen;
/* As we dropped packet(s), better let upper stack know this.
* If we dropped a packet for this flow, return NET_XMIT_CN,
* but in this case, our parents wont increase their backlogs.
*/
if (ret == idx) {
qdisc_tree_reduce_backlog(sch, prev_qlen - 1,
prev_backlog - pkt_len);
return NET_XMIT_CN;
}
qdisc_tree_reduce_backlog(sch, prev_qlen, prev_backlog);
return NET_XMIT_SUCCESS;
}
/* This is the specific function called from codel_dequeue()
* to dequeue a packet from queue. Note: backlog is handled in
* codel, we dont need to reduce it here.
*/
static struct sk_buff *dequeue_func(struct codel_vars *vars, void *ctx)
{
struct Qdisc *sch = ctx;
struct fq_codel_sched_data *q = qdisc_priv(sch);
struct fq_codel_flow *flow;
struct sk_buff *skb = NULL;
flow = container_of(vars, struct fq_codel_flow, cvars);
if (flow->head) {
skb = dequeue_head(flow);
q->backlogs[flow - q->flows] -= qdisc_pkt_len(skb);
q->memory_usage -= get_codel_cb(skb)->mem_usage;
sch->q.qlen--;
sch->qstats.backlog -= qdisc_pkt_len(skb);
}
return skb;
}
static void drop_func(struct sk_buff *skb, void *ctx)
{
struct Qdisc *sch = ctx;
kfree_skb(skb);
qdisc_qstats_drop(sch);
}
static struct sk_buff *fq_codel_dequeue(struct Qdisc *sch)
{
struct fq_codel_sched_data *q = qdisc_priv(sch);
struct sk_buff *skb;
struct fq_codel_flow *flow;
struct list_head *head;
begin:
head = &q->new_flows;
if (list_empty(head)) {
head = &q->old_flows;
if (list_empty(head))
return NULL;
}
flow = list_first_entry(head, struct fq_codel_flow, flowchain);
if (flow->deficit <= 0) {
flow->deficit += q->quantum;
list_move_tail(&flow->flowchain, &q->old_flows);
goto begin;
}
skb = codel_dequeue(sch, &sch->qstats.backlog, &q->cparams,
&flow->cvars, &q->cstats, qdisc_pkt_len,
codel_get_enqueue_time, drop_func, dequeue_func);
if (!skb) {
/* force a pass through old_flows to prevent starvation */
if ((head == &q->new_flows) && !list_empty(&q->old_flows))
list_move_tail(&flow->flowchain, &q->old_flows);
else
list_del_init(&flow->flowchain);
goto begin;
}
qdisc_bstats_update(sch, skb);
flow->deficit -= qdisc_pkt_len(skb);
/* We cant call qdisc_tree_reduce_backlog() if our qlen is 0,
* or HTB crashes. Defer it for next round.
*/
if (q->cstats.drop_count && sch->q.qlen) {
qdisc_tree_reduce_backlog(sch, q->cstats.drop_count,
q->cstats.drop_len);
q->cstats.drop_count = 0;
q->cstats.drop_len = 0;
}
return skb;
}
static void fq_codel_flow_purge(struct fq_codel_flow *flow)
{
rtnl_kfree_skbs(flow->head, flow->tail);
flow->head = NULL;
}
static void fq_codel_reset(struct Qdisc *sch)
{
struct fq_codel_sched_data *q = qdisc_priv(sch);
int i;
INIT_LIST_HEAD(&q->new_flows);
INIT_LIST_HEAD(&q->old_flows);
for (i = 0; i < q->flows_cnt; i++) {
struct fq_codel_flow *flow = q->flows + i;
fq_codel_flow_purge(flow);
INIT_LIST_HEAD(&flow->flowchain);
codel_vars_init(&flow->cvars);
}
memset(q->backlogs, 0, q->flows_cnt * sizeof(u32));
q->memory_usage = 0;
}
static const struct nla_policy fq_codel_policy[TCA_FQ_CODEL_MAX + 1] = {
[TCA_FQ_CODEL_TARGET] = { .type = NLA_U32 },
[TCA_FQ_CODEL_LIMIT] = { .type = NLA_U32 },
[TCA_FQ_CODEL_INTERVAL] = { .type = NLA_U32 },
[TCA_FQ_CODEL_ECN] = { .type = NLA_U32 },
[TCA_FQ_CODEL_FLOWS] = { .type = NLA_U32 },
[TCA_FQ_CODEL_QUANTUM] = { .type = NLA_U32 },
[TCA_FQ_CODEL_CE_THRESHOLD] = { .type = NLA_U32 },
[TCA_FQ_CODEL_DROP_BATCH_SIZE] = { .type = NLA_U32 },
[TCA_FQ_CODEL_MEMORY_LIMIT] = { .type = NLA_U32 },
[TCA_FQ_CODEL_CE_THRESHOLD_SELECTOR] = { .type = NLA_U8 },
[TCA_FQ_CODEL_CE_THRESHOLD_MASK] = { .type = NLA_U8 },
};
static int fq_codel_change(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct fq_codel_sched_data *q = qdisc_priv(sch);
struct nlattr *tb[TCA_FQ_CODEL_MAX + 1];
u32 quantum = 0;
int err;
err = nla_parse_nested_deprecated(tb, TCA_FQ_CODEL_MAX, opt,
fq_codel_policy, NULL);
if (err < 0)
return err;
if (tb[TCA_FQ_CODEL_FLOWS]) {
if (q->flows)
return -EINVAL;
q->flows_cnt = nla_get_u32(tb[TCA_FQ_CODEL_FLOWS]);
if (!q->flows_cnt ||
q->flows_cnt > 65536)
return -EINVAL;
}
if (tb[TCA_FQ_CODEL_QUANTUM]) {
quantum = max(256U, nla_get_u32(tb[TCA_FQ_CODEL_QUANTUM]));
if (quantum > FQ_CODEL_QUANTUM_MAX) {
NL_SET_ERR_MSG(extack, "Invalid quantum");
return -EINVAL;
}
}
sch_tree_lock(sch);
if (tb[TCA_FQ_CODEL_TARGET]) {
u64 target = nla_get_u32(tb[TCA_FQ_CODEL_TARGET]);
q->cparams.target = (target * NSEC_PER_USEC) >> CODEL_SHIFT;
}
if (tb[TCA_FQ_CODEL_CE_THRESHOLD]) {
u64 val = nla_get_u32(tb[TCA_FQ_CODEL_CE_THRESHOLD]);
q->cparams.ce_threshold = (val * NSEC_PER_USEC) >> CODEL_SHIFT;
}
if (tb[TCA_FQ_CODEL_CE_THRESHOLD_SELECTOR])
q->cparams.ce_threshold_selector = nla_get_u8(tb[TCA_FQ_CODEL_CE_THRESHOLD_SELECTOR]);
if (tb[TCA_FQ_CODEL_CE_THRESHOLD_MASK])
q->cparams.ce_threshold_mask = nla_get_u8(tb[TCA_FQ_CODEL_CE_THRESHOLD_MASK]);
if (tb[TCA_FQ_CODEL_INTERVAL]) {
u64 interval = nla_get_u32(tb[TCA_FQ_CODEL_INTERVAL]);
q->cparams.interval = (interval * NSEC_PER_USEC) >> CODEL_SHIFT;
}
if (tb[TCA_FQ_CODEL_LIMIT])
sch->limit = nla_get_u32(tb[TCA_FQ_CODEL_LIMIT]);
if (tb[TCA_FQ_CODEL_ECN])
q->cparams.ecn = !!nla_get_u32(tb[TCA_FQ_CODEL_ECN]);
if (quantum)
q->quantum = quantum;
if (tb[TCA_FQ_CODEL_DROP_BATCH_SIZE])
q->drop_batch_size = max(1U, nla_get_u32(tb[TCA_FQ_CODEL_DROP_BATCH_SIZE]));
if (tb[TCA_FQ_CODEL_MEMORY_LIMIT])
q->memory_limit = min(1U << 31, nla_get_u32(tb[TCA_FQ_CODEL_MEMORY_LIMIT]));
while (sch->q.qlen > sch->limit ||
q->memory_usage > q->memory_limit) {
struct sk_buff *skb = fq_codel_dequeue(sch);
q->cstats.drop_len += qdisc_pkt_len(skb);
rtnl_kfree_skbs(skb, skb);
q->cstats.drop_count++;
}
qdisc_tree_reduce_backlog(sch, q->cstats.drop_count, q->cstats.drop_len);
q->cstats.drop_count = 0;
q->cstats.drop_len = 0;
sch_tree_unlock(sch);
return 0;
}
static void fq_codel_destroy(struct Qdisc *sch)
{
struct fq_codel_sched_data *q = qdisc_priv(sch);
tcf_block_put(q->block);
kvfree(q->backlogs);
kvfree(q->flows);
}
static int fq_codel_init(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct fq_codel_sched_data *q = qdisc_priv(sch);
int i;
int err;
sch->limit = 10*1024;
q->flows_cnt = 1024;
q->memory_limit = 32 << 20; /* 32 MBytes */
q->drop_batch_size = 64;
q->quantum = psched_mtu(qdisc_dev(sch));
INIT_LIST_HEAD(&q->new_flows);
INIT_LIST_HEAD(&q->old_flows);
codel_params_init(&q->cparams);
codel_stats_init(&q->cstats);
q->cparams.ecn = true;
q->cparams.mtu = psched_mtu(qdisc_dev(sch));
if (opt) {
err = fq_codel_change(sch, opt, extack);
if (err)
goto init_failure;
}
err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
if (err)
goto init_failure;
if (!q->flows) {
q->flows = kvcalloc(q->flows_cnt,
sizeof(struct fq_codel_flow),
GFP_KERNEL);
if (!q->flows) {
err = -ENOMEM;
goto init_failure;
}
q->backlogs = kvcalloc(q->flows_cnt, sizeof(u32), GFP_KERNEL);
if (!q->backlogs) {
err = -ENOMEM;
goto alloc_failure;
}
for (i = 0; i < q->flows_cnt; i++) {
struct fq_codel_flow *flow = q->flows + i;
INIT_LIST_HEAD(&flow->flowchain);
codel_vars_init(&flow->cvars);
}
}
if (sch->limit >= 1)
sch->flags |= TCQ_F_CAN_BYPASS;
else
sch->flags &= ~TCQ_F_CAN_BYPASS;
return 0;
alloc_failure:
kvfree(q->flows);
q->flows = NULL;
init_failure:
q->flows_cnt = 0;
return err;
}
static int fq_codel_dump(struct Qdisc *sch, struct sk_buff *skb)
{
struct fq_codel_sched_data *q = qdisc_priv(sch);
struct nlattr *opts;
opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
if (opts == NULL)
goto nla_put_failure;
if (nla_put_u32(skb, TCA_FQ_CODEL_TARGET,
codel_time_to_us(q->cparams.target)) ||
nla_put_u32(skb, TCA_FQ_CODEL_LIMIT,
sch->limit) ||
nla_put_u32(skb, TCA_FQ_CODEL_INTERVAL,
codel_time_to_us(q->cparams.interval)) ||
nla_put_u32(skb, TCA_FQ_CODEL_ECN,
q->cparams.ecn) ||
nla_put_u32(skb, TCA_FQ_CODEL_QUANTUM,
q->quantum) ||
nla_put_u32(skb, TCA_FQ_CODEL_DROP_BATCH_SIZE,
q->drop_batch_size) ||
nla_put_u32(skb, TCA_FQ_CODEL_MEMORY_LIMIT,
q->memory_limit) ||
nla_put_u32(skb, TCA_FQ_CODEL_FLOWS,
q->flows_cnt))
goto nla_put_failure;
if (q->cparams.ce_threshold != CODEL_DISABLED_THRESHOLD) {
if (nla_put_u32(skb, TCA_FQ_CODEL_CE_THRESHOLD,
codel_time_to_us(q->cparams.ce_threshold)))
goto nla_put_failure;
if (nla_put_u8(skb, TCA_FQ_CODEL_CE_THRESHOLD_SELECTOR, q->cparams.ce_threshold_selector))
goto nla_put_failure;
if (nla_put_u8(skb, TCA_FQ_CODEL_CE_THRESHOLD_MASK, q->cparams.ce_threshold_mask))
goto nla_put_failure;
}
return nla_nest_end(skb, opts);
nla_put_failure:
return -1;
}
static int fq_codel_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
{
struct fq_codel_sched_data *q = qdisc_priv(sch);
struct tc_fq_codel_xstats st = {
.type = TCA_FQ_CODEL_XSTATS_QDISC,
};
struct list_head *pos;
st.qdisc_stats.maxpacket = q->cstats.maxpacket;
st.qdisc_stats.drop_overlimit = q->drop_overlimit;
st.qdisc_stats.ecn_mark = q->cstats.ecn_mark;
st.qdisc_stats.new_flow_count = q->new_flow_count;
st.qdisc_stats.ce_mark = q->cstats.ce_mark;
st.qdisc_stats.memory_usage = q->memory_usage;
st.qdisc_stats.drop_overmemory = q->drop_overmemory;
sch_tree_lock(sch);
list_for_each(pos, &q->new_flows)
st.qdisc_stats.new_flows_len++;
list_for_each(pos, &q->old_flows)
st.qdisc_stats.old_flows_len++;
sch_tree_unlock(sch);
return gnet_stats_copy_app(d, &st, sizeof(st));
}
static struct Qdisc *fq_codel_leaf(struct Qdisc *sch, unsigned long arg)
{
return NULL;
}
static unsigned long fq_codel_find(struct Qdisc *sch, u32 classid)
{
return 0;
}
static unsigned long fq_codel_bind(struct Qdisc *sch, unsigned long parent,
u32 classid)
{
return 0;
}
static void fq_codel_unbind(struct Qdisc *q, unsigned long cl)
{
}
static struct tcf_block *fq_codel_tcf_block(struct Qdisc *sch, unsigned long cl,
struct netlink_ext_ack *extack)
{
struct fq_codel_sched_data *q = qdisc_priv(sch);
if (cl)
return NULL;
return q->block;
}
static int fq_codel_dump_class(struct Qdisc *sch, unsigned long cl,
struct sk_buff *skb, struct tcmsg *tcm)
{
tcm->tcm_handle |= TC_H_MIN(cl);
return 0;
}
static int fq_codel_dump_class_stats(struct Qdisc *sch, unsigned long cl,
struct gnet_dump *d)
{
struct fq_codel_sched_data *q = qdisc_priv(sch);
u32 idx = cl - 1;
struct gnet_stats_queue qs = { 0 };
struct tc_fq_codel_xstats xstats;
if (idx < q->flows_cnt) {
const struct fq_codel_flow *flow = &q->flows[idx];
const struct sk_buff *skb;
memset(&xstats, 0, sizeof(xstats));
xstats.type = TCA_FQ_CODEL_XSTATS_CLASS;
xstats.class_stats.deficit = flow->deficit;
xstats.class_stats.ldelay =
codel_time_to_us(flow->cvars.ldelay);
xstats.class_stats.count = flow->cvars.count;
xstats.class_stats.lastcount = flow->cvars.lastcount;
xstats.class_stats.dropping = flow->cvars.dropping;
if (flow->cvars.dropping) {
codel_tdiff_t delta = flow->cvars.drop_next -
codel_get_time();
xstats.class_stats.drop_next = (delta >= 0) ?
codel_time_to_us(delta) :
-codel_time_to_us(-delta);
}
if (flow->head) {
sch_tree_lock(sch);
skb = flow->head;
while (skb) {
qs.qlen++;
skb = skb->next;
}
sch_tree_unlock(sch);
}
qs.backlog = q->backlogs[idx];
qs.drops = 0;
}
if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0)
return -1;
if (idx < q->flows_cnt)
return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
return 0;
}
static void fq_codel_walk(struct Qdisc *sch, struct qdisc_walker *arg)
{
struct fq_codel_sched_data *q = qdisc_priv(sch);
unsigned int i;
if (arg->stop)
return;
for (i = 0; i < q->flows_cnt; i++) {
if (list_empty(&q->flows[i].flowchain)) {
arg->count++;
continue;
}
if (!tc_qdisc_stats_dump(sch, i + 1, arg))
break;
}
}
static const struct Qdisc_class_ops fq_codel_class_ops = {
.leaf = fq_codel_leaf,
.find = fq_codel_find,
.tcf_block = fq_codel_tcf_block,
.bind_tcf = fq_codel_bind,
.unbind_tcf = fq_codel_unbind,
.dump = fq_codel_dump_class,
.dump_stats = fq_codel_dump_class_stats,
.walk = fq_codel_walk,
};
static struct Qdisc_ops fq_codel_qdisc_ops __read_mostly = {
.cl_ops = &fq_codel_class_ops,
.id = "fq_codel",
.priv_size = sizeof(struct fq_codel_sched_data),
.enqueue = fq_codel_enqueue,
.dequeue = fq_codel_dequeue,
.peek = qdisc_peek_dequeued,
.init = fq_codel_init,
.reset = fq_codel_reset,
.destroy = fq_codel_destroy,
.change = fq_codel_change,
.dump = fq_codel_dump,
.dump_stats = fq_codel_dump_stats,
.owner = THIS_MODULE,
};
static int __init fq_codel_module_init(void)
{
return register_qdisc(&fq_codel_qdisc_ops);
}
static void __exit fq_codel_module_exit(void)
{
unregister_qdisc(&fq_codel_qdisc_ops);
}
module_init(fq_codel_module_init)
module_exit(fq_codel_module_exit)
MODULE_AUTHOR("Eric Dumazet");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Fair Queue CoDel discipline");