2161 lines
58 KiB
C
2161 lines
58 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* VMware vSockets Driver
|
|
*
|
|
* Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/cred.h>
|
|
#include <linux/init.h>
|
|
#include <linux/io.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/kmod.h>
|
|
#include <linux/list.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/net.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/socket.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/unistd.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/workqueue.h>
|
|
#include <net/sock.h>
|
|
#include <net/af_vsock.h>
|
|
|
|
#include "vmci_transport_notify.h"
|
|
|
|
static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg);
|
|
static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg);
|
|
static void vmci_transport_peer_detach_cb(u32 sub_id,
|
|
const struct vmci_event_data *ed,
|
|
void *client_data);
|
|
static void vmci_transport_recv_pkt_work(struct work_struct *work);
|
|
static void vmci_transport_cleanup(struct work_struct *work);
|
|
static int vmci_transport_recv_listen(struct sock *sk,
|
|
struct vmci_transport_packet *pkt);
|
|
static int vmci_transport_recv_connecting_server(
|
|
struct sock *sk,
|
|
struct sock *pending,
|
|
struct vmci_transport_packet *pkt);
|
|
static int vmci_transport_recv_connecting_client(
|
|
struct sock *sk,
|
|
struct vmci_transport_packet *pkt);
|
|
static int vmci_transport_recv_connecting_client_negotiate(
|
|
struct sock *sk,
|
|
struct vmci_transport_packet *pkt);
|
|
static int vmci_transport_recv_connecting_client_invalid(
|
|
struct sock *sk,
|
|
struct vmci_transport_packet *pkt);
|
|
static int vmci_transport_recv_connected(struct sock *sk,
|
|
struct vmci_transport_packet *pkt);
|
|
static bool vmci_transport_old_proto_override(bool *old_pkt_proto);
|
|
static u16 vmci_transport_new_proto_supported_versions(void);
|
|
static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto,
|
|
bool old_pkt_proto);
|
|
static bool vmci_check_transport(struct vsock_sock *vsk);
|
|
|
|
struct vmci_transport_recv_pkt_info {
|
|
struct work_struct work;
|
|
struct sock *sk;
|
|
struct vmci_transport_packet pkt;
|
|
};
|
|
|
|
static LIST_HEAD(vmci_transport_cleanup_list);
|
|
static DEFINE_SPINLOCK(vmci_transport_cleanup_lock);
|
|
static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup);
|
|
|
|
static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID,
|
|
VMCI_INVALID_ID };
|
|
static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
|
|
|
|
static int PROTOCOL_OVERRIDE = -1;
|
|
|
|
static struct vsock_transport vmci_transport; /* forward declaration */
|
|
|
|
/* Helper function to convert from a VMCI error code to a VSock error code. */
|
|
|
|
static s32 vmci_transport_error_to_vsock_error(s32 vmci_error)
|
|
{
|
|
switch (vmci_error) {
|
|
case VMCI_ERROR_NO_MEM:
|
|
return -ENOMEM;
|
|
case VMCI_ERROR_DUPLICATE_ENTRY:
|
|
case VMCI_ERROR_ALREADY_EXISTS:
|
|
return -EADDRINUSE;
|
|
case VMCI_ERROR_NO_ACCESS:
|
|
return -EPERM;
|
|
case VMCI_ERROR_NO_RESOURCES:
|
|
return -ENOBUFS;
|
|
case VMCI_ERROR_INVALID_RESOURCE:
|
|
return -EHOSTUNREACH;
|
|
case VMCI_ERROR_INVALID_ARGS:
|
|
default:
|
|
break;
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
static u32 vmci_transport_peer_rid(u32 peer_cid)
|
|
{
|
|
if (VMADDR_CID_HYPERVISOR == peer_cid)
|
|
return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID;
|
|
|
|
return VMCI_TRANSPORT_PACKET_RID;
|
|
}
|
|
|
|
static inline void
|
|
vmci_transport_packet_init(struct vmci_transport_packet *pkt,
|
|
struct sockaddr_vm *src,
|
|
struct sockaddr_vm *dst,
|
|
u8 type,
|
|
u64 size,
|
|
u64 mode,
|
|
struct vmci_transport_waiting_info *wait,
|
|
u16 proto,
|
|
struct vmci_handle handle)
|
|
{
|
|
/* We register the stream control handler as an any cid handle so we
|
|
* must always send from a source address of VMADDR_CID_ANY
|
|
*/
|
|
pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY,
|
|
VMCI_TRANSPORT_PACKET_RID);
|
|
pkt->dg.dst = vmci_make_handle(dst->svm_cid,
|
|
vmci_transport_peer_rid(dst->svm_cid));
|
|
pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg);
|
|
pkt->version = VMCI_TRANSPORT_PACKET_VERSION;
|
|
pkt->type = type;
|
|
pkt->src_port = src->svm_port;
|
|
pkt->dst_port = dst->svm_port;
|
|
memset(&pkt->proto, 0, sizeof(pkt->proto));
|
|
memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2));
|
|
|
|
switch (pkt->type) {
|
|
case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
|
|
pkt->u.size = 0;
|
|
break;
|
|
|
|
case VMCI_TRANSPORT_PACKET_TYPE_REQUEST:
|
|
case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
|
|
pkt->u.size = size;
|
|
break;
|
|
|
|
case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
|
|
case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
|
|
pkt->u.handle = handle;
|
|
break;
|
|
|
|
case VMCI_TRANSPORT_PACKET_TYPE_WROTE:
|
|
case VMCI_TRANSPORT_PACKET_TYPE_READ:
|
|
case VMCI_TRANSPORT_PACKET_TYPE_RST:
|
|
pkt->u.size = 0;
|
|
break;
|
|
|
|
case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
|
|
pkt->u.mode = mode;
|
|
break;
|
|
|
|
case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ:
|
|
case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE:
|
|
memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait));
|
|
break;
|
|
|
|
case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2:
|
|
case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
|
|
pkt->u.size = size;
|
|
pkt->proto = proto;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt,
|
|
struct sockaddr_vm *local,
|
|
struct sockaddr_vm *remote)
|
|
{
|
|
vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port);
|
|
vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port);
|
|
}
|
|
|
|
static int
|
|
__vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt,
|
|
struct sockaddr_vm *src,
|
|
struct sockaddr_vm *dst,
|
|
enum vmci_transport_packet_type type,
|
|
u64 size,
|
|
u64 mode,
|
|
struct vmci_transport_waiting_info *wait,
|
|
u16 proto,
|
|
struct vmci_handle handle,
|
|
bool convert_error)
|
|
{
|
|
int err;
|
|
|
|
vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait,
|
|
proto, handle);
|
|
err = vmci_datagram_send(&pkt->dg);
|
|
if (convert_error && (err < 0))
|
|
return vmci_transport_error_to_vsock_error(err);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int
|
|
vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt,
|
|
enum vmci_transport_packet_type type,
|
|
u64 size,
|
|
u64 mode,
|
|
struct vmci_transport_waiting_info *wait,
|
|
struct vmci_handle handle)
|
|
{
|
|
struct vmci_transport_packet reply;
|
|
struct sockaddr_vm src, dst;
|
|
|
|
if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) {
|
|
return 0;
|
|
} else {
|
|
vmci_transport_packet_get_addresses(pkt, &src, &dst);
|
|
return __vmci_transport_send_control_pkt(&reply, &src, &dst,
|
|
type,
|
|
size, mode, wait,
|
|
VSOCK_PROTO_INVALID,
|
|
handle, true);
|
|
}
|
|
}
|
|
|
|
static int
|
|
vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src,
|
|
struct sockaddr_vm *dst,
|
|
enum vmci_transport_packet_type type,
|
|
u64 size,
|
|
u64 mode,
|
|
struct vmci_transport_waiting_info *wait,
|
|
struct vmci_handle handle)
|
|
{
|
|
/* Note that it is safe to use a single packet across all CPUs since
|
|
* two tasklets of the same type are guaranteed to not ever run
|
|
* simultaneously. If that ever changes, or VMCI stops using tasklets,
|
|
* we can use per-cpu packets.
|
|
*/
|
|
static struct vmci_transport_packet pkt;
|
|
|
|
return __vmci_transport_send_control_pkt(&pkt, src, dst, type,
|
|
size, mode, wait,
|
|
VSOCK_PROTO_INVALID, handle,
|
|
false);
|
|
}
|
|
|
|
static int
|
|
vmci_transport_alloc_send_control_pkt(struct sockaddr_vm *src,
|
|
struct sockaddr_vm *dst,
|
|
enum vmci_transport_packet_type type,
|
|
u64 size,
|
|
u64 mode,
|
|
struct vmci_transport_waiting_info *wait,
|
|
u16 proto,
|
|
struct vmci_handle handle)
|
|
{
|
|
struct vmci_transport_packet *pkt;
|
|
int err;
|
|
|
|
pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
|
|
if (!pkt)
|
|
return -ENOMEM;
|
|
|
|
err = __vmci_transport_send_control_pkt(pkt, src, dst, type, size,
|
|
mode, wait, proto, handle,
|
|
true);
|
|
kfree(pkt);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int
|
|
vmci_transport_send_control_pkt(struct sock *sk,
|
|
enum vmci_transport_packet_type type,
|
|
u64 size,
|
|
u64 mode,
|
|
struct vmci_transport_waiting_info *wait,
|
|
u16 proto,
|
|
struct vmci_handle handle)
|
|
{
|
|
struct vsock_sock *vsk;
|
|
|
|
vsk = vsock_sk(sk);
|
|
|
|
if (!vsock_addr_bound(&vsk->local_addr))
|
|
return -EINVAL;
|
|
|
|
if (!vsock_addr_bound(&vsk->remote_addr))
|
|
return -EINVAL;
|
|
|
|
return vmci_transport_alloc_send_control_pkt(&vsk->local_addr,
|
|
&vsk->remote_addr,
|
|
type, size, mode,
|
|
wait, proto, handle);
|
|
}
|
|
|
|
static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst,
|
|
struct sockaddr_vm *src,
|
|
struct vmci_transport_packet *pkt)
|
|
{
|
|
if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
|
|
return 0;
|
|
return vmci_transport_send_control_pkt_bh(
|
|
dst, src,
|
|
VMCI_TRANSPORT_PACKET_TYPE_RST, 0,
|
|
0, NULL, VMCI_INVALID_HANDLE);
|
|
}
|
|
|
|
static int vmci_transport_send_reset(struct sock *sk,
|
|
struct vmci_transport_packet *pkt)
|
|
{
|
|
struct sockaddr_vm *dst_ptr;
|
|
struct sockaddr_vm dst;
|
|
struct vsock_sock *vsk;
|
|
|
|
if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
|
|
return 0;
|
|
|
|
vsk = vsock_sk(sk);
|
|
|
|
if (!vsock_addr_bound(&vsk->local_addr))
|
|
return -EINVAL;
|
|
|
|
if (vsock_addr_bound(&vsk->remote_addr)) {
|
|
dst_ptr = &vsk->remote_addr;
|
|
} else {
|
|
vsock_addr_init(&dst, pkt->dg.src.context,
|
|
pkt->src_port);
|
|
dst_ptr = &dst;
|
|
}
|
|
return vmci_transport_alloc_send_control_pkt(&vsk->local_addr, dst_ptr,
|
|
VMCI_TRANSPORT_PACKET_TYPE_RST,
|
|
0, 0, NULL, VSOCK_PROTO_INVALID,
|
|
VMCI_INVALID_HANDLE);
|
|
}
|
|
|
|
static int vmci_transport_send_negotiate(struct sock *sk, size_t size)
|
|
{
|
|
return vmci_transport_send_control_pkt(
|
|
sk,
|
|
VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE,
|
|
size, 0, NULL,
|
|
VSOCK_PROTO_INVALID,
|
|
VMCI_INVALID_HANDLE);
|
|
}
|
|
|
|
static int vmci_transport_send_negotiate2(struct sock *sk, size_t size,
|
|
u16 version)
|
|
{
|
|
return vmci_transport_send_control_pkt(
|
|
sk,
|
|
VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2,
|
|
size, 0, NULL, version,
|
|
VMCI_INVALID_HANDLE);
|
|
}
|
|
|
|
static int vmci_transport_send_qp_offer(struct sock *sk,
|
|
struct vmci_handle handle)
|
|
{
|
|
return vmci_transport_send_control_pkt(
|
|
sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0,
|
|
0, NULL,
|
|
VSOCK_PROTO_INVALID, handle);
|
|
}
|
|
|
|
static int vmci_transport_send_attach(struct sock *sk,
|
|
struct vmci_handle handle)
|
|
{
|
|
return vmci_transport_send_control_pkt(
|
|
sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH,
|
|
0, 0, NULL, VSOCK_PROTO_INVALID,
|
|
handle);
|
|
}
|
|
|
|
static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt)
|
|
{
|
|
return vmci_transport_reply_control_pkt_fast(
|
|
pkt,
|
|
VMCI_TRANSPORT_PACKET_TYPE_RST,
|
|
0, 0, NULL,
|
|
VMCI_INVALID_HANDLE);
|
|
}
|
|
|
|
static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst,
|
|
struct sockaddr_vm *src)
|
|
{
|
|
return vmci_transport_send_control_pkt_bh(
|
|
dst, src,
|
|
VMCI_TRANSPORT_PACKET_TYPE_INVALID,
|
|
0, 0, NULL, VMCI_INVALID_HANDLE);
|
|
}
|
|
|
|
int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst,
|
|
struct sockaddr_vm *src)
|
|
{
|
|
return vmci_transport_send_control_pkt_bh(
|
|
dst, src,
|
|
VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
|
|
0, NULL, VMCI_INVALID_HANDLE);
|
|
}
|
|
|
|
int vmci_transport_send_read_bh(struct sockaddr_vm *dst,
|
|
struct sockaddr_vm *src)
|
|
{
|
|
return vmci_transport_send_control_pkt_bh(
|
|
dst, src,
|
|
VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
|
|
0, NULL, VMCI_INVALID_HANDLE);
|
|
}
|
|
|
|
int vmci_transport_send_wrote(struct sock *sk)
|
|
{
|
|
return vmci_transport_send_control_pkt(
|
|
sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
|
|
0, NULL, VSOCK_PROTO_INVALID,
|
|
VMCI_INVALID_HANDLE);
|
|
}
|
|
|
|
int vmci_transport_send_read(struct sock *sk)
|
|
{
|
|
return vmci_transport_send_control_pkt(
|
|
sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
|
|
0, NULL, VSOCK_PROTO_INVALID,
|
|
VMCI_INVALID_HANDLE);
|
|
}
|
|
|
|
int vmci_transport_send_waiting_write(struct sock *sk,
|
|
struct vmci_transport_waiting_info *wait)
|
|
{
|
|
return vmci_transport_send_control_pkt(
|
|
sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE,
|
|
0, 0, wait, VSOCK_PROTO_INVALID,
|
|
VMCI_INVALID_HANDLE);
|
|
}
|
|
|
|
int vmci_transport_send_waiting_read(struct sock *sk,
|
|
struct vmci_transport_waiting_info *wait)
|
|
{
|
|
return vmci_transport_send_control_pkt(
|
|
sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ,
|
|
0, 0, wait, VSOCK_PROTO_INVALID,
|
|
VMCI_INVALID_HANDLE);
|
|
}
|
|
|
|
static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode)
|
|
{
|
|
return vmci_transport_send_control_pkt(
|
|
&vsk->sk,
|
|
VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN,
|
|
0, mode, NULL,
|
|
VSOCK_PROTO_INVALID,
|
|
VMCI_INVALID_HANDLE);
|
|
}
|
|
|
|
static int vmci_transport_send_conn_request(struct sock *sk, size_t size)
|
|
{
|
|
return vmci_transport_send_control_pkt(sk,
|
|
VMCI_TRANSPORT_PACKET_TYPE_REQUEST,
|
|
size, 0, NULL,
|
|
VSOCK_PROTO_INVALID,
|
|
VMCI_INVALID_HANDLE);
|
|
}
|
|
|
|
static int vmci_transport_send_conn_request2(struct sock *sk, size_t size,
|
|
u16 version)
|
|
{
|
|
return vmci_transport_send_control_pkt(
|
|
sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2,
|
|
size, 0, NULL, version,
|
|
VMCI_INVALID_HANDLE);
|
|
}
|
|
|
|
static struct sock *vmci_transport_get_pending(
|
|
struct sock *listener,
|
|
struct vmci_transport_packet *pkt)
|
|
{
|
|
struct vsock_sock *vlistener;
|
|
struct vsock_sock *vpending;
|
|
struct sock *pending;
|
|
struct sockaddr_vm src;
|
|
|
|
vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
|
|
|
|
vlistener = vsock_sk(listener);
|
|
|
|
list_for_each_entry(vpending, &vlistener->pending_links,
|
|
pending_links) {
|
|
if (vsock_addr_equals_addr(&src, &vpending->remote_addr) &&
|
|
pkt->dst_port == vpending->local_addr.svm_port) {
|
|
pending = sk_vsock(vpending);
|
|
sock_hold(pending);
|
|
goto found;
|
|
}
|
|
}
|
|
|
|
pending = NULL;
|
|
found:
|
|
return pending;
|
|
|
|
}
|
|
|
|
static void vmci_transport_release_pending(struct sock *pending)
|
|
{
|
|
sock_put(pending);
|
|
}
|
|
|
|
/* We allow two kinds of sockets to communicate with a restricted VM: 1)
|
|
* trusted sockets 2) sockets from applications running as the same user as the
|
|
* VM (this is only true for the host side and only when using hosted products)
|
|
*/
|
|
|
|
static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid)
|
|
{
|
|
return vsock->trusted ||
|
|
vmci_is_context_owner(peer_cid, vsock->owner->uid);
|
|
}
|
|
|
|
/* We allow sending datagrams to and receiving datagrams from a restricted VM
|
|
* only if it is trusted as described in vmci_transport_is_trusted.
|
|
*/
|
|
|
|
static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid)
|
|
{
|
|
if (VMADDR_CID_HYPERVISOR == peer_cid)
|
|
return true;
|
|
|
|
if (vsock->cached_peer != peer_cid) {
|
|
vsock->cached_peer = peer_cid;
|
|
if (!vmci_transport_is_trusted(vsock, peer_cid) &&
|
|
(vmci_context_get_priv_flags(peer_cid) &
|
|
VMCI_PRIVILEGE_FLAG_RESTRICTED)) {
|
|
vsock->cached_peer_allow_dgram = false;
|
|
} else {
|
|
vsock->cached_peer_allow_dgram = true;
|
|
}
|
|
}
|
|
|
|
return vsock->cached_peer_allow_dgram;
|
|
}
|
|
|
|
static int
|
|
vmci_transport_queue_pair_alloc(struct vmci_qp **qpair,
|
|
struct vmci_handle *handle,
|
|
u64 produce_size,
|
|
u64 consume_size,
|
|
u32 peer, u32 flags, bool trusted)
|
|
{
|
|
int err = 0;
|
|
|
|
if (trusted) {
|
|
/* Try to allocate our queue pair as trusted. This will only
|
|
* work if vsock is running in the host.
|
|
*/
|
|
|
|
err = vmci_qpair_alloc(qpair, handle, produce_size,
|
|
consume_size,
|
|
peer, flags,
|
|
VMCI_PRIVILEGE_FLAG_TRUSTED);
|
|
if (err != VMCI_ERROR_NO_ACCESS)
|
|
goto out;
|
|
|
|
}
|
|
|
|
err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size,
|
|
peer, flags, VMCI_NO_PRIVILEGE_FLAGS);
|
|
out:
|
|
if (err < 0) {
|
|
pr_err_once("Could not attach to queue pair with %d\n", err);
|
|
err = vmci_transport_error_to_vsock_error(err);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int
|
|
vmci_transport_datagram_create_hnd(u32 resource_id,
|
|
u32 flags,
|
|
vmci_datagram_recv_cb recv_cb,
|
|
void *client_data,
|
|
struct vmci_handle *out_handle)
|
|
{
|
|
int err = 0;
|
|
|
|
/* Try to allocate our datagram handler as trusted. This will only work
|
|
* if vsock is running in the host.
|
|
*/
|
|
|
|
err = vmci_datagram_create_handle_priv(resource_id, flags,
|
|
VMCI_PRIVILEGE_FLAG_TRUSTED,
|
|
recv_cb,
|
|
client_data, out_handle);
|
|
|
|
if (err == VMCI_ERROR_NO_ACCESS)
|
|
err = vmci_datagram_create_handle(resource_id, flags,
|
|
recv_cb, client_data,
|
|
out_handle);
|
|
|
|
return err;
|
|
}
|
|
|
|
/* This is invoked as part of a tasklet that's scheduled when the VMCI
|
|
* interrupt fires. This is run in bottom-half context and if it ever needs to
|
|
* sleep it should defer that work to a work queue.
|
|
*/
|
|
|
|
static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg)
|
|
{
|
|
struct sock *sk;
|
|
size_t size;
|
|
struct sk_buff *skb;
|
|
struct vsock_sock *vsk;
|
|
|
|
sk = (struct sock *)data;
|
|
|
|
/* This handler is privileged when this module is running on the host.
|
|
* We will get datagrams from all endpoints (even VMs that are in a
|
|
* restricted context). If we get one from a restricted context then
|
|
* the destination socket must be trusted.
|
|
*
|
|
* NOTE: We access the socket struct without holding the lock here.
|
|
* This is ok because the field we are interested is never modified
|
|
* outside of the create and destruct socket functions.
|
|
*/
|
|
vsk = vsock_sk(sk);
|
|
if (!vmci_transport_allow_dgram(vsk, dg->src.context))
|
|
return VMCI_ERROR_NO_ACCESS;
|
|
|
|
size = VMCI_DG_SIZE(dg);
|
|
|
|
/* Attach the packet to the socket's receive queue as an sk_buff. */
|
|
skb = alloc_skb(size, GFP_ATOMIC);
|
|
if (!skb)
|
|
return VMCI_ERROR_NO_MEM;
|
|
|
|
/* sk_receive_skb() will do a sock_put(), so hold here. */
|
|
sock_hold(sk);
|
|
skb_put(skb, size);
|
|
memcpy(skb->data, dg, size);
|
|
sk_receive_skb(sk, skb, 0);
|
|
|
|
return VMCI_SUCCESS;
|
|
}
|
|
|
|
static bool vmci_transport_stream_allow(u32 cid, u32 port)
|
|
{
|
|
static const u32 non_socket_contexts[] = {
|
|
VMADDR_CID_LOCAL,
|
|
};
|
|
int i;
|
|
|
|
BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts));
|
|
|
|
for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) {
|
|
if (cid == non_socket_contexts[i])
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* This is invoked as part of a tasklet that's scheduled when the VMCI
|
|
* interrupt fires. This is run in bottom-half context but it defers most of
|
|
* its work to the packet handling work queue.
|
|
*/
|
|
|
|
static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg)
|
|
{
|
|
struct sock *sk;
|
|
struct sockaddr_vm dst;
|
|
struct sockaddr_vm src;
|
|
struct vmci_transport_packet *pkt;
|
|
struct vsock_sock *vsk;
|
|
bool bh_process_pkt;
|
|
int err;
|
|
|
|
sk = NULL;
|
|
err = VMCI_SUCCESS;
|
|
bh_process_pkt = false;
|
|
|
|
/* Ignore incoming packets from contexts without sockets, or resources
|
|
* that aren't vsock implementations.
|
|
*/
|
|
|
|
if (!vmci_transport_stream_allow(dg->src.context, -1)
|
|
|| vmci_transport_peer_rid(dg->src.context) != dg->src.resource)
|
|
return VMCI_ERROR_NO_ACCESS;
|
|
|
|
if (VMCI_DG_SIZE(dg) < sizeof(*pkt))
|
|
/* Drop datagrams that do not contain full VSock packets. */
|
|
return VMCI_ERROR_INVALID_ARGS;
|
|
|
|
pkt = (struct vmci_transport_packet *)dg;
|
|
|
|
/* Find the socket that should handle this packet. First we look for a
|
|
* connected socket and if there is none we look for a socket bound to
|
|
* the destintation address.
|
|
*/
|
|
vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
|
|
vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
|
|
|
|
sk = vsock_find_connected_socket(&src, &dst);
|
|
if (!sk) {
|
|
sk = vsock_find_bound_socket(&dst);
|
|
if (!sk) {
|
|
/* We could not find a socket for this specified
|
|
* address. If this packet is a RST, we just drop it.
|
|
* If it is another packet, we send a RST. Note that
|
|
* we do not send a RST reply to RSTs so that we do not
|
|
* continually send RSTs between two endpoints.
|
|
*
|
|
* Note that since this is a reply, dst is src and src
|
|
* is dst.
|
|
*/
|
|
if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
|
|
pr_err("unable to send reset\n");
|
|
|
|
err = VMCI_ERROR_NOT_FOUND;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* If the received packet type is beyond all types known to this
|
|
* implementation, reply with an invalid message. Hopefully this will
|
|
* help when implementing backwards compatibility in the future.
|
|
*/
|
|
if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) {
|
|
vmci_transport_send_invalid_bh(&dst, &src);
|
|
err = VMCI_ERROR_INVALID_ARGS;
|
|
goto out;
|
|
}
|
|
|
|
/* This handler is privileged when this module is running on the host.
|
|
* We will get datagram connect requests from all endpoints (even VMs
|
|
* that are in a restricted context). If we get one from a restricted
|
|
* context then the destination socket must be trusted.
|
|
*
|
|
* NOTE: We access the socket struct without holding the lock here.
|
|
* This is ok because the field we are interested is never modified
|
|
* outside of the create and destruct socket functions.
|
|
*/
|
|
vsk = vsock_sk(sk);
|
|
if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) {
|
|
err = VMCI_ERROR_NO_ACCESS;
|
|
goto out;
|
|
}
|
|
|
|
/* We do most everything in a work queue, but let's fast path the
|
|
* notification of reads and writes to help data transfer performance.
|
|
* We can only do this if there is no process context code executing
|
|
* for this socket since that may change the state.
|
|
*/
|
|
bh_lock_sock(sk);
|
|
|
|
if (!sock_owned_by_user(sk)) {
|
|
/* The local context ID may be out of date, update it. */
|
|
vsk->local_addr.svm_cid = dst.svm_cid;
|
|
|
|
if (sk->sk_state == TCP_ESTABLISHED)
|
|
vmci_trans(vsk)->notify_ops->handle_notify_pkt(
|
|
sk, pkt, true, &dst, &src,
|
|
&bh_process_pkt);
|
|
}
|
|
|
|
bh_unlock_sock(sk);
|
|
|
|
if (!bh_process_pkt) {
|
|
struct vmci_transport_recv_pkt_info *recv_pkt_info;
|
|
|
|
recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC);
|
|
if (!recv_pkt_info) {
|
|
if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
|
|
pr_err("unable to send reset\n");
|
|
|
|
err = VMCI_ERROR_NO_MEM;
|
|
goto out;
|
|
}
|
|
|
|
recv_pkt_info->sk = sk;
|
|
memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt));
|
|
INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work);
|
|
|
|
schedule_work(&recv_pkt_info->work);
|
|
/* Clear sk so that the reference count incremented by one of
|
|
* the Find functions above is not decremented below. We need
|
|
* that reference count for the packet handler we've scheduled
|
|
* to run.
|
|
*/
|
|
sk = NULL;
|
|
}
|
|
|
|
out:
|
|
if (sk)
|
|
sock_put(sk);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void vmci_transport_handle_detach(struct sock *sk)
|
|
{
|
|
struct vsock_sock *vsk;
|
|
|
|
vsk = vsock_sk(sk);
|
|
if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
|
|
sock_set_flag(sk, SOCK_DONE);
|
|
|
|
/* On a detach the peer will not be sending or receiving
|
|
* anymore.
|
|
*/
|
|
vsk->peer_shutdown = SHUTDOWN_MASK;
|
|
|
|
/* We should not be sending anymore since the peer won't be
|
|
* there to receive, but we can still receive if there is data
|
|
* left in our consume queue. If the local endpoint is a host,
|
|
* we can't call vsock_stream_has_data, since that may block,
|
|
* but a host endpoint can't read data once the VM has
|
|
* detached, so there is no available data in that case.
|
|
*/
|
|
if (vsk->local_addr.svm_cid == VMADDR_CID_HOST ||
|
|
vsock_stream_has_data(vsk) <= 0) {
|
|
if (sk->sk_state == TCP_SYN_SENT) {
|
|
/* The peer may detach from a queue pair while
|
|
* we are still in the connecting state, i.e.,
|
|
* if the peer VM is killed after attaching to
|
|
* a queue pair, but before we complete the
|
|
* handshake. In that case, we treat the detach
|
|
* event like a reset.
|
|
*/
|
|
|
|
sk->sk_state = TCP_CLOSE;
|
|
sk->sk_err = ECONNRESET;
|
|
sk_error_report(sk);
|
|
return;
|
|
}
|
|
sk->sk_state = TCP_CLOSE;
|
|
}
|
|
sk->sk_state_change(sk);
|
|
}
|
|
}
|
|
|
|
static void vmci_transport_peer_detach_cb(u32 sub_id,
|
|
const struct vmci_event_data *e_data,
|
|
void *client_data)
|
|
{
|
|
struct vmci_transport *trans = client_data;
|
|
const struct vmci_event_payload_qp *e_payload;
|
|
|
|
e_payload = vmci_event_data_const_payload(e_data);
|
|
|
|
/* XXX This is lame, we should provide a way to lookup sockets by
|
|
* qp_handle.
|
|
*/
|
|
if (vmci_handle_is_invalid(e_payload->handle) ||
|
|
!vmci_handle_is_equal(trans->qp_handle, e_payload->handle))
|
|
return;
|
|
|
|
/* We don't ask for delayed CBs when we subscribe to this event (we
|
|
* pass 0 as flags to vmci_event_subscribe()). VMCI makes no
|
|
* guarantees in that case about what context we might be running in,
|
|
* so it could be BH or process, blockable or non-blockable. So we
|
|
* need to account for all possible contexts here.
|
|
*/
|
|
spin_lock_bh(&trans->lock);
|
|
if (!trans->sk)
|
|
goto out;
|
|
|
|
/* Apart from here, trans->lock is only grabbed as part of sk destruct,
|
|
* where trans->sk isn't locked.
|
|
*/
|
|
bh_lock_sock(trans->sk);
|
|
|
|
vmci_transport_handle_detach(trans->sk);
|
|
|
|
bh_unlock_sock(trans->sk);
|
|
out:
|
|
spin_unlock_bh(&trans->lock);
|
|
}
|
|
|
|
static void vmci_transport_qp_resumed_cb(u32 sub_id,
|
|
const struct vmci_event_data *e_data,
|
|
void *client_data)
|
|
{
|
|
vsock_for_each_connected_socket(&vmci_transport,
|
|
vmci_transport_handle_detach);
|
|
}
|
|
|
|
static void vmci_transport_recv_pkt_work(struct work_struct *work)
|
|
{
|
|
struct vmci_transport_recv_pkt_info *recv_pkt_info;
|
|
struct vmci_transport_packet *pkt;
|
|
struct sock *sk;
|
|
|
|
recv_pkt_info =
|
|
container_of(work, struct vmci_transport_recv_pkt_info, work);
|
|
sk = recv_pkt_info->sk;
|
|
pkt = &recv_pkt_info->pkt;
|
|
|
|
lock_sock(sk);
|
|
|
|
/* The local context ID may be out of date. */
|
|
vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context;
|
|
|
|
switch (sk->sk_state) {
|
|
case TCP_LISTEN:
|
|
vmci_transport_recv_listen(sk, pkt);
|
|
break;
|
|
case TCP_SYN_SENT:
|
|
/* Processing of pending connections for servers goes through
|
|
* the listening socket, so see vmci_transport_recv_listen()
|
|
* for that path.
|
|
*/
|
|
vmci_transport_recv_connecting_client(sk, pkt);
|
|
break;
|
|
case TCP_ESTABLISHED:
|
|
vmci_transport_recv_connected(sk, pkt);
|
|
break;
|
|
default:
|
|
/* Because this function does not run in the same context as
|
|
* vmci_transport_recv_stream_cb it is possible that the
|
|
* socket has closed. We need to let the other side know or it
|
|
* could be sitting in a connect and hang forever. Send a
|
|
* reset to prevent that.
|
|
*/
|
|
vmci_transport_send_reset(sk, pkt);
|
|
break;
|
|
}
|
|
|
|
release_sock(sk);
|
|
kfree(recv_pkt_info);
|
|
/* Release reference obtained in the stream callback when we fetched
|
|
* this socket out of the bound or connected list.
|
|
*/
|
|
sock_put(sk);
|
|
}
|
|
|
|
static int vmci_transport_recv_listen(struct sock *sk,
|
|
struct vmci_transport_packet *pkt)
|
|
{
|
|
struct sock *pending;
|
|
struct vsock_sock *vpending;
|
|
int err;
|
|
u64 qp_size;
|
|
bool old_request = false;
|
|
bool old_pkt_proto = false;
|
|
|
|
/* Because we are in the listen state, we could be receiving a packet
|
|
* for ourself or any previous connection requests that we received.
|
|
* If it's the latter, we try to find a socket in our list of pending
|
|
* connections and, if we do, call the appropriate handler for the
|
|
* state that socket is in. Otherwise we try to service the
|
|
* connection request.
|
|
*/
|
|
pending = vmci_transport_get_pending(sk, pkt);
|
|
if (pending) {
|
|
lock_sock(pending);
|
|
|
|
/* The local context ID may be out of date. */
|
|
vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context;
|
|
|
|
switch (pending->sk_state) {
|
|
case TCP_SYN_SENT:
|
|
err = vmci_transport_recv_connecting_server(sk,
|
|
pending,
|
|
pkt);
|
|
break;
|
|
default:
|
|
vmci_transport_send_reset(pending, pkt);
|
|
err = -EINVAL;
|
|
}
|
|
|
|
if (err < 0)
|
|
vsock_remove_pending(sk, pending);
|
|
|
|
release_sock(pending);
|
|
vmci_transport_release_pending(pending);
|
|
|
|
return err;
|
|
}
|
|
|
|
/* The listen state only accepts connection requests. Reply with a
|
|
* reset unless we received a reset.
|
|
*/
|
|
|
|
if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST ||
|
|
pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) {
|
|
vmci_transport_reply_reset(pkt);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (pkt->u.size == 0) {
|
|
vmci_transport_reply_reset(pkt);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* If this socket can't accommodate this connection request, we send a
|
|
* reset. Otherwise we create and initialize a child socket and reply
|
|
* with a connection negotiation.
|
|
*/
|
|
if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) {
|
|
vmci_transport_reply_reset(pkt);
|
|
return -ECONNREFUSED;
|
|
}
|
|
|
|
pending = vsock_create_connected(sk);
|
|
if (!pending) {
|
|
vmci_transport_send_reset(sk, pkt);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
vpending = vsock_sk(pending);
|
|
|
|
vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context,
|
|
pkt->dst_port);
|
|
vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context,
|
|
pkt->src_port);
|
|
|
|
err = vsock_assign_transport(vpending, vsock_sk(sk));
|
|
/* Transport assigned (looking at remote_addr) must be the same
|
|
* where we received the request.
|
|
*/
|
|
if (err || !vmci_check_transport(vpending)) {
|
|
vmci_transport_send_reset(sk, pkt);
|
|
sock_put(pending);
|
|
return err;
|
|
}
|
|
|
|
/* If the proposed size fits within our min/max, accept it. Otherwise
|
|
* propose our own size.
|
|
*/
|
|
if (pkt->u.size >= vpending->buffer_min_size &&
|
|
pkt->u.size <= vpending->buffer_max_size) {
|
|
qp_size = pkt->u.size;
|
|
} else {
|
|
qp_size = vpending->buffer_size;
|
|
}
|
|
|
|
/* Figure out if we are using old or new requests based on the
|
|
* overrides pkt types sent by our peer.
|
|
*/
|
|
if (vmci_transport_old_proto_override(&old_pkt_proto)) {
|
|
old_request = old_pkt_proto;
|
|
} else {
|
|
if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST)
|
|
old_request = true;
|
|
else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)
|
|
old_request = false;
|
|
|
|
}
|
|
|
|
if (old_request) {
|
|
/* Handle a REQUEST (or override) */
|
|
u16 version = VSOCK_PROTO_INVALID;
|
|
if (vmci_transport_proto_to_notify_struct(
|
|
pending, &version, true))
|
|
err = vmci_transport_send_negotiate(pending, qp_size);
|
|
else
|
|
err = -EINVAL;
|
|
|
|
} else {
|
|
/* Handle a REQUEST2 (or override) */
|
|
int proto_int = pkt->proto;
|
|
int pos;
|
|
u16 active_proto_version = 0;
|
|
|
|
/* The list of possible protocols is the intersection of all
|
|
* protocols the client supports ... plus all the protocols we
|
|
* support.
|
|
*/
|
|
proto_int &= vmci_transport_new_proto_supported_versions();
|
|
|
|
/* We choose the highest possible protocol version and use that
|
|
* one.
|
|
*/
|
|
pos = fls(proto_int);
|
|
if (pos) {
|
|
active_proto_version = (1 << (pos - 1));
|
|
if (vmci_transport_proto_to_notify_struct(
|
|
pending, &active_proto_version, false))
|
|
err = vmci_transport_send_negotiate2(pending,
|
|
qp_size,
|
|
active_proto_version);
|
|
else
|
|
err = -EINVAL;
|
|
|
|
} else {
|
|
err = -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (err < 0) {
|
|
vmci_transport_send_reset(sk, pkt);
|
|
sock_put(pending);
|
|
err = vmci_transport_error_to_vsock_error(err);
|
|
goto out;
|
|
}
|
|
|
|
vsock_add_pending(sk, pending);
|
|
sk_acceptq_added(sk);
|
|
|
|
pending->sk_state = TCP_SYN_SENT;
|
|
vmci_trans(vpending)->produce_size =
|
|
vmci_trans(vpending)->consume_size = qp_size;
|
|
vpending->buffer_size = qp_size;
|
|
|
|
vmci_trans(vpending)->notify_ops->process_request(pending);
|
|
|
|
/* We might never receive another message for this socket and it's not
|
|
* connected to any process, so we have to ensure it gets cleaned up
|
|
* ourself. Our delayed work function will take care of that. Note
|
|
* that we do not ever cancel this function since we have few
|
|
* guarantees about its state when calling cancel_delayed_work().
|
|
* Instead we hold a reference on the socket for that function and make
|
|
* it capable of handling cases where it needs to do nothing but
|
|
* release that reference.
|
|
*/
|
|
vpending->listener = sk;
|
|
sock_hold(sk);
|
|
sock_hold(pending);
|
|
schedule_delayed_work(&vpending->pending_work, HZ);
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
static int
|
|
vmci_transport_recv_connecting_server(struct sock *listener,
|
|
struct sock *pending,
|
|
struct vmci_transport_packet *pkt)
|
|
{
|
|
struct vsock_sock *vpending;
|
|
struct vmci_handle handle;
|
|
struct vmci_qp *qpair;
|
|
bool is_local;
|
|
u32 flags;
|
|
u32 detach_sub_id;
|
|
int err;
|
|
int skerr;
|
|
|
|
vpending = vsock_sk(pending);
|
|
detach_sub_id = VMCI_INVALID_ID;
|
|
|
|
switch (pkt->type) {
|
|
case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
|
|
if (vmci_handle_is_invalid(pkt->u.handle)) {
|
|
vmci_transport_send_reset(pending, pkt);
|
|
skerr = EPROTO;
|
|
err = -EINVAL;
|
|
goto destroy;
|
|
}
|
|
break;
|
|
default:
|
|
/* Close and cleanup the connection. */
|
|
vmci_transport_send_reset(pending, pkt);
|
|
skerr = EPROTO;
|
|
err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL;
|
|
goto destroy;
|
|
}
|
|
|
|
/* In order to complete the connection we need to attach to the offered
|
|
* queue pair and send an attach notification. We also subscribe to the
|
|
* detach event so we know when our peer goes away, and we do that
|
|
* before attaching so we don't miss an event. If all this succeeds,
|
|
* we update our state and wakeup anything waiting in accept() for a
|
|
* connection.
|
|
*/
|
|
|
|
/* We don't care about attach since we ensure the other side has
|
|
* attached by specifying the ATTACH_ONLY flag below.
|
|
*/
|
|
err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
|
|
vmci_transport_peer_detach_cb,
|
|
vmci_trans(vpending), &detach_sub_id);
|
|
if (err < VMCI_SUCCESS) {
|
|
vmci_transport_send_reset(pending, pkt);
|
|
err = vmci_transport_error_to_vsock_error(err);
|
|
skerr = -err;
|
|
goto destroy;
|
|
}
|
|
|
|
vmci_trans(vpending)->detach_sub_id = detach_sub_id;
|
|
|
|
/* Now attach to the queue pair the client created. */
|
|
handle = pkt->u.handle;
|
|
|
|
/* vpending->local_addr always has a context id so we do not need to
|
|
* worry about VMADDR_CID_ANY in this case.
|
|
*/
|
|
is_local =
|
|
vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid;
|
|
flags = VMCI_QPFLAG_ATTACH_ONLY;
|
|
flags |= is_local ? VMCI_QPFLAG_LOCAL : 0;
|
|
|
|
err = vmci_transport_queue_pair_alloc(
|
|
&qpair,
|
|
&handle,
|
|
vmci_trans(vpending)->produce_size,
|
|
vmci_trans(vpending)->consume_size,
|
|
pkt->dg.src.context,
|
|
flags,
|
|
vmci_transport_is_trusted(
|
|
vpending,
|
|
vpending->remote_addr.svm_cid));
|
|
if (err < 0) {
|
|
vmci_transport_send_reset(pending, pkt);
|
|
skerr = -err;
|
|
goto destroy;
|
|
}
|
|
|
|
vmci_trans(vpending)->qp_handle = handle;
|
|
vmci_trans(vpending)->qpair = qpair;
|
|
|
|
/* When we send the attach message, we must be ready to handle incoming
|
|
* control messages on the newly connected socket. So we move the
|
|
* pending socket to the connected state before sending the attach
|
|
* message. Otherwise, an incoming packet triggered by the attach being
|
|
* received by the peer may be processed concurrently with what happens
|
|
* below after sending the attach message, and that incoming packet
|
|
* will find the listening socket instead of the (currently) pending
|
|
* socket. Note that enqueueing the socket increments the reference
|
|
* count, so even if a reset comes before the connection is accepted,
|
|
* the socket will be valid until it is removed from the queue.
|
|
*
|
|
* If we fail sending the attach below, we remove the socket from the
|
|
* connected list and move the socket to TCP_CLOSE before
|
|
* releasing the lock, so a pending slow path processing of an incoming
|
|
* packet will not see the socket in the connected state in that case.
|
|
*/
|
|
pending->sk_state = TCP_ESTABLISHED;
|
|
|
|
vsock_insert_connected(vpending);
|
|
|
|
/* Notify our peer of our attach. */
|
|
err = vmci_transport_send_attach(pending, handle);
|
|
if (err < 0) {
|
|
vsock_remove_connected(vpending);
|
|
pr_err("Could not send attach\n");
|
|
vmci_transport_send_reset(pending, pkt);
|
|
err = vmci_transport_error_to_vsock_error(err);
|
|
skerr = -err;
|
|
goto destroy;
|
|
}
|
|
|
|
/* We have a connection. Move the now connected socket from the
|
|
* listener's pending list to the accept queue so callers of accept()
|
|
* can find it.
|
|
*/
|
|
vsock_remove_pending(listener, pending);
|
|
vsock_enqueue_accept(listener, pending);
|
|
|
|
/* Callers of accept() will be waiting on the listening socket, not
|
|
* the pending socket.
|
|
*/
|
|
listener->sk_data_ready(listener);
|
|
|
|
return 0;
|
|
|
|
destroy:
|
|
pending->sk_err = skerr;
|
|
pending->sk_state = TCP_CLOSE;
|
|
/* As long as we drop our reference, all necessary cleanup will handle
|
|
* when the cleanup function drops its reference and our destruct
|
|
* implementation is called. Note that since the listen handler will
|
|
* remove pending from the pending list upon our failure, the cleanup
|
|
* function won't drop the additional reference, which is why we do it
|
|
* here.
|
|
*/
|
|
sock_put(pending);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int
|
|
vmci_transport_recv_connecting_client(struct sock *sk,
|
|
struct vmci_transport_packet *pkt)
|
|
{
|
|
struct vsock_sock *vsk;
|
|
int err;
|
|
int skerr;
|
|
|
|
vsk = vsock_sk(sk);
|
|
|
|
switch (pkt->type) {
|
|
case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
|
|
if (vmci_handle_is_invalid(pkt->u.handle) ||
|
|
!vmci_handle_is_equal(pkt->u.handle,
|
|
vmci_trans(vsk)->qp_handle)) {
|
|
skerr = EPROTO;
|
|
err = -EINVAL;
|
|
goto destroy;
|
|
}
|
|
|
|
/* Signify the socket is connected and wakeup the waiter in
|
|
* connect(). Also place the socket in the connected table for
|
|
* accounting (it can already be found since it's in the bound
|
|
* table).
|
|
*/
|
|
sk->sk_state = TCP_ESTABLISHED;
|
|
sk->sk_socket->state = SS_CONNECTED;
|
|
vsock_insert_connected(vsk);
|
|
sk->sk_state_change(sk);
|
|
|
|
break;
|
|
case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
|
|
case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
|
|
if (pkt->u.size == 0
|
|
|| pkt->dg.src.context != vsk->remote_addr.svm_cid
|
|
|| pkt->src_port != vsk->remote_addr.svm_port
|
|
|| !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)
|
|
|| vmci_trans(vsk)->qpair
|
|
|| vmci_trans(vsk)->produce_size != 0
|
|
|| vmci_trans(vsk)->consume_size != 0
|
|
|| vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
|
|
skerr = EPROTO;
|
|
err = -EINVAL;
|
|
|
|
goto destroy;
|
|
}
|
|
|
|
err = vmci_transport_recv_connecting_client_negotiate(sk, pkt);
|
|
if (err) {
|
|
skerr = -err;
|
|
goto destroy;
|
|
}
|
|
|
|
break;
|
|
case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
|
|
err = vmci_transport_recv_connecting_client_invalid(sk, pkt);
|
|
if (err) {
|
|
skerr = -err;
|
|
goto destroy;
|
|
}
|
|
|
|
break;
|
|
case VMCI_TRANSPORT_PACKET_TYPE_RST:
|
|
/* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
|
|
* continue processing here after they sent an INVALID packet.
|
|
* This meant that we got a RST after the INVALID. We ignore a
|
|
* RST after an INVALID. The common code doesn't send the RST
|
|
* ... so we can hang if an old version of the common code
|
|
* fails between getting a REQUEST and sending an OFFER back.
|
|
* Not much we can do about it... except hope that it doesn't
|
|
* happen.
|
|
*/
|
|
if (vsk->ignore_connecting_rst) {
|
|
vsk->ignore_connecting_rst = false;
|
|
} else {
|
|
skerr = ECONNRESET;
|
|
err = 0;
|
|
goto destroy;
|
|
}
|
|
|
|
break;
|
|
default:
|
|
/* Close and cleanup the connection. */
|
|
skerr = EPROTO;
|
|
err = -EINVAL;
|
|
goto destroy;
|
|
}
|
|
|
|
return 0;
|
|
|
|
destroy:
|
|
vmci_transport_send_reset(sk, pkt);
|
|
|
|
sk->sk_state = TCP_CLOSE;
|
|
sk->sk_err = skerr;
|
|
sk_error_report(sk);
|
|
return err;
|
|
}
|
|
|
|
static int vmci_transport_recv_connecting_client_negotiate(
|
|
struct sock *sk,
|
|
struct vmci_transport_packet *pkt)
|
|
{
|
|
int err;
|
|
struct vsock_sock *vsk;
|
|
struct vmci_handle handle;
|
|
struct vmci_qp *qpair;
|
|
u32 detach_sub_id;
|
|
bool is_local;
|
|
u32 flags;
|
|
bool old_proto = true;
|
|
bool old_pkt_proto;
|
|
u16 version;
|
|
|
|
vsk = vsock_sk(sk);
|
|
handle = VMCI_INVALID_HANDLE;
|
|
detach_sub_id = VMCI_INVALID_ID;
|
|
|
|
/* If we have gotten here then we should be past the point where old
|
|
* linux vsock could have sent the bogus rst.
|
|
*/
|
|
vsk->sent_request = false;
|
|
vsk->ignore_connecting_rst = false;
|
|
|
|
/* Verify that we're OK with the proposed queue pair size */
|
|
if (pkt->u.size < vsk->buffer_min_size ||
|
|
pkt->u.size > vsk->buffer_max_size) {
|
|
err = -EINVAL;
|
|
goto destroy;
|
|
}
|
|
|
|
/* At this point we know the CID the peer is using to talk to us. */
|
|
|
|
if (vsk->local_addr.svm_cid == VMADDR_CID_ANY)
|
|
vsk->local_addr.svm_cid = pkt->dg.dst.context;
|
|
|
|
/* Setup the notify ops to be the highest supported version that both
|
|
* the server and the client support.
|
|
*/
|
|
|
|
if (vmci_transport_old_proto_override(&old_pkt_proto)) {
|
|
old_proto = old_pkt_proto;
|
|
} else {
|
|
if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE)
|
|
old_proto = true;
|
|
else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2)
|
|
old_proto = false;
|
|
|
|
}
|
|
|
|
if (old_proto)
|
|
version = VSOCK_PROTO_INVALID;
|
|
else
|
|
version = pkt->proto;
|
|
|
|
if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) {
|
|
err = -EINVAL;
|
|
goto destroy;
|
|
}
|
|
|
|
/* Subscribe to detach events first.
|
|
*
|
|
* XXX We attach once for each queue pair created for now so it is easy
|
|
* to find the socket (it's provided), but later we should only
|
|
* subscribe once and add a way to lookup sockets by queue pair handle.
|
|
*/
|
|
err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
|
|
vmci_transport_peer_detach_cb,
|
|
vmci_trans(vsk), &detach_sub_id);
|
|
if (err < VMCI_SUCCESS) {
|
|
err = vmci_transport_error_to_vsock_error(err);
|
|
goto destroy;
|
|
}
|
|
|
|
/* Make VMCI select the handle for us. */
|
|
handle = VMCI_INVALID_HANDLE;
|
|
is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid;
|
|
flags = is_local ? VMCI_QPFLAG_LOCAL : 0;
|
|
|
|
err = vmci_transport_queue_pair_alloc(&qpair,
|
|
&handle,
|
|
pkt->u.size,
|
|
pkt->u.size,
|
|
vsk->remote_addr.svm_cid,
|
|
flags,
|
|
vmci_transport_is_trusted(
|
|
vsk,
|
|
vsk->
|
|
remote_addr.svm_cid));
|
|
if (err < 0)
|
|
goto destroy;
|
|
|
|
err = vmci_transport_send_qp_offer(sk, handle);
|
|
if (err < 0) {
|
|
err = vmci_transport_error_to_vsock_error(err);
|
|
goto destroy;
|
|
}
|
|
|
|
vmci_trans(vsk)->qp_handle = handle;
|
|
vmci_trans(vsk)->qpair = qpair;
|
|
|
|
vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size =
|
|
pkt->u.size;
|
|
|
|
vmci_trans(vsk)->detach_sub_id = detach_sub_id;
|
|
|
|
vmci_trans(vsk)->notify_ops->process_negotiate(sk);
|
|
|
|
return 0;
|
|
|
|
destroy:
|
|
if (detach_sub_id != VMCI_INVALID_ID)
|
|
vmci_event_unsubscribe(detach_sub_id);
|
|
|
|
if (!vmci_handle_is_invalid(handle))
|
|
vmci_qpair_detach(&qpair);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int
|
|
vmci_transport_recv_connecting_client_invalid(struct sock *sk,
|
|
struct vmci_transport_packet *pkt)
|
|
{
|
|
int err = 0;
|
|
struct vsock_sock *vsk = vsock_sk(sk);
|
|
|
|
if (vsk->sent_request) {
|
|
vsk->sent_request = false;
|
|
vsk->ignore_connecting_rst = true;
|
|
|
|
err = vmci_transport_send_conn_request(sk, vsk->buffer_size);
|
|
if (err < 0)
|
|
err = vmci_transport_error_to_vsock_error(err);
|
|
else
|
|
err = 0;
|
|
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int vmci_transport_recv_connected(struct sock *sk,
|
|
struct vmci_transport_packet *pkt)
|
|
{
|
|
struct vsock_sock *vsk;
|
|
bool pkt_processed = false;
|
|
|
|
/* In cases where we are closing the connection, it's sufficient to
|
|
* mark the state change (and maybe error) and wake up any waiting
|
|
* threads. Since this is a connected socket, it's owned by a user
|
|
* process and will be cleaned up when the failure is passed back on
|
|
* the current or next system call. Our system call implementations
|
|
* must therefore check for error and state changes on entry and when
|
|
* being awoken.
|
|
*/
|
|
switch (pkt->type) {
|
|
case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
|
|
if (pkt->u.mode) {
|
|
vsk = vsock_sk(sk);
|
|
|
|
vsk->peer_shutdown |= pkt->u.mode;
|
|
sk->sk_state_change(sk);
|
|
}
|
|
break;
|
|
|
|
case VMCI_TRANSPORT_PACKET_TYPE_RST:
|
|
vsk = vsock_sk(sk);
|
|
/* It is possible that we sent our peer a message (e.g a
|
|
* WAITING_READ) right before we got notified that the peer had
|
|
* detached. If that happens then we can get a RST pkt back
|
|
* from our peer even though there is data available for us to
|
|
* read. In that case, don't shutdown the socket completely but
|
|
* instead allow the local client to finish reading data off
|
|
* the queuepair. Always treat a RST pkt in connected mode like
|
|
* a clean shutdown.
|
|
*/
|
|
sock_set_flag(sk, SOCK_DONE);
|
|
vsk->peer_shutdown = SHUTDOWN_MASK;
|
|
if (vsock_stream_has_data(vsk) <= 0)
|
|
sk->sk_state = TCP_CLOSING;
|
|
|
|
sk->sk_state_change(sk);
|
|
break;
|
|
|
|
default:
|
|
vsk = vsock_sk(sk);
|
|
vmci_trans(vsk)->notify_ops->handle_notify_pkt(
|
|
sk, pkt, false, NULL, NULL,
|
|
&pkt_processed);
|
|
if (!pkt_processed)
|
|
return -EINVAL;
|
|
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vmci_transport_socket_init(struct vsock_sock *vsk,
|
|
struct vsock_sock *psk)
|
|
{
|
|
vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL);
|
|
if (!vsk->trans)
|
|
return -ENOMEM;
|
|
|
|
vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
|
|
vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
|
|
vmci_trans(vsk)->qpair = NULL;
|
|
vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0;
|
|
vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID;
|
|
vmci_trans(vsk)->notify_ops = NULL;
|
|
INIT_LIST_HEAD(&vmci_trans(vsk)->elem);
|
|
vmci_trans(vsk)->sk = &vsk->sk;
|
|
spin_lock_init(&vmci_trans(vsk)->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void vmci_transport_free_resources(struct list_head *transport_list)
|
|
{
|
|
while (!list_empty(transport_list)) {
|
|
struct vmci_transport *transport =
|
|
list_first_entry(transport_list, struct vmci_transport,
|
|
elem);
|
|
list_del(&transport->elem);
|
|
|
|
if (transport->detach_sub_id != VMCI_INVALID_ID) {
|
|
vmci_event_unsubscribe(transport->detach_sub_id);
|
|
transport->detach_sub_id = VMCI_INVALID_ID;
|
|
}
|
|
|
|
if (!vmci_handle_is_invalid(transport->qp_handle)) {
|
|
vmci_qpair_detach(&transport->qpair);
|
|
transport->qp_handle = VMCI_INVALID_HANDLE;
|
|
transport->produce_size = 0;
|
|
transport->consume_size = 0;
|
|
}
|
|
|
|
kfree(transport);
|
|
}
|
|
}
|
|
|
|
static void vmci_transport_cleanup(struct work_struct *work)
|
|
{
|
|
LIST_HEAD(pending);
|
|
|
|
spin_lock_bh(&vmci_transport_cleanup_lock);
|
|
list_replace_init(&vmci_transport_cleanup_list, &pending);
|
|
spin_unlock_bh(&vmci_transport_cleanup_lock);
|
|
vmci_transport_free_resources(&pending);
|
|
}
|
|
|
|
static void vmci_transport_destruct(struct vsock_sock *vsk)
|
|
{
|
|
/* transport can be NULL if we hit a failure at init() time */
|
|
if (!vmci_trans(vsk))
|
|
return;
|
|
|
|
/* Ensure that the detach callback doesn't use the sk/vsk
|
|
* we are about to destruct.
|
|
*/
|
|
spin_lock_bh(&vmci_trans(vsk)->lock);
|
|
vmci_trans(vsk)->sk = NULL;
|
|
spin_unlock_bh(&vmci_trans(vsk)->lock);
|
|
|
|
if (vmci_trans(vsk)->notify_ops)
|
|
vmci_trans(vsk)->notify_ops->socket_destruct(vsk);
|
|
|
|
spin_lock_bh(&vmci_transport_cleanup_lock);
|
|
list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list);
|
|
spin_unlock_bh(&vmci_transport_cleanup_lock);
|
|
schedule_work(&vmci_transport_cleanup_work);
|
|
|
|
vsk->trans = NULL;
|
|
}
|
|
|
|
static void vmci_transport_release(struct vsock_sock *vsk)
|
|
{
|
|
vsock_remove_sock(vsk);
|
|
|
|
if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) {
|
|
vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle);
|
|
vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
|
|
}
|
|
}
|
|
|
|
static int vmci_transport_dgram_bind(struct vsock_sock *vsk,
|
|
struct sockaddr_vm *addr)
|
|
{
|
|
u32 port;
|
|
u32 flags;
|
|
int err;
|
|
|
|
/* VMCI will select a resource ID for us if we provide
|
|
* VMCI_INVALID_ID.
|
|
*/
|
|
port = addr->svm_port == VMADDR_PORT_ANY ?
|
|
VMCI_INVALID_ID : addr->svm_port;
|
|
|
|
if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE))
|
|
return -EACCES;
|
|
|
|
flags = addr->svm_cid == VMADDR_CID_ANY ?
|
|
VMCI_FLAG_ANYCID_DG_HND : 0;
|
|
|
|
err = vmci_transport_datagram_create_hnd(port, flags,
|
|
vmci_transport_recv_dgram_cb,
|
|
&vsk->sk,
|
|
&vmci_trans(vsk)->dg_handle);
|
|
if (err < VMCI_SUCCESS)
|
|
return vmci_transport_error_to_vsock_error(err);
|
|
vsock_addr_init(&vsk->local_addr, addr->svm_cid,
|
|
vmci_trans(vsk)->dg_handle.resource);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vmci_transport_dgram_enqueue(
|
|
struct vsock_sock *vsk,
|
|
struct sockaddr_vm *remote_addr,
|
|
struct msghdr *msg,
|
|
size_t len)
|
|
{
|
|
int err;
|
|
struct vmci_datagram *dg;
|
|
|
|
if (len > VMCI_MAX_DG_PAYLOAD_SIZE)
|
|
return -EMSGSIZE;
|
|
|
|
if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid))
|
|
return -EPERM;
|
|
|
|
/* Allocate a buffer for the user's message and our packet header. */
|
|
dg = kmalloc(len + sizeof(*dg), GFP_KERNEL);
|
|
if (!dg)
|
|
return -ENOMEM;
|
|
|
|
err = memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len);
|
|
if (err) {
|
|
kfree(dg);
|
|
return err;
|
|
}
|
|
|
|
dg->dst = vmci_make_handle(remote_addr->svm_cid,
|
|
remote_addr->svm_port);
|
|
dg->src = vmci_make_handle(vsk->local_addr.svm_cid,
|
|
vsk->local_addr.svm_port);
|
|
dg->payload_size = len;
|
|
|
|
err = vmci_datagram_send(dg);
|
|
kfree(dg);
|
|
if (err < 0)
|
|
return vmci_transport_error_to_vsock_error(err);
|
|
|
|
return err - sizeof(*dg);
|
|
}
|
|
|
|
static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk,
|
|
struct msghdr *msg, size_t len,
|
|
int flags)
|
|
{
|
|
int err;
|
|
struct vmci_datagram *dg;
|
|
size_t payload_len;
|
|
struct sk_buff *skb;
|
|
|
|
if (flags & MSG_OOB || flags & MSG_ERRQUEUE)
|
|
return -EOPNOTSUPP;
|
|
|
|
/* Retrieve the head sk_buff from the socket's receive queue. */
|
|
err = 0;
|
|
skb = skb_recv_datagram(&vsk->sk, flags, &err);
|
|
if (!skb)
|
|
return err;
|
|
|
|
dg = (struct vmci_datagram *)skb->data;
|
|
if (!dg)
|
|
/* err is 0, meaning we read zero bytes. */
|
|
goto out;
|
|
|
|
payload_len = dg->payload_size;
|
|
/* Ensure the sk_buff matches the payload size claimed in the packet. */
|
|
if (payload_len != skb->len - sizeof(*dg)) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (payload_len > len) {
|
|
payload_len = len;
|
|
msg->msg_flags |= MSG_TRUNC;
|
|
}
|
|
|
|
/* Place the datagram payload in the user's iovec. */
|
|
err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len);
|
|
if (err)
|
|
goto out;
|
|
|
|
if (msg->msg_name) {
|
|
/* Provide the address of the sender. */
|
|
DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name);
|
|
vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);
|
|
msg->msg_namelen = sizeof(*vm_addr);
|
|
}
|
|
err = payload_len;
|
|
|
|
out:
|
|
skb_free_datagram(&vsk->sk, skb);
|
|
return err;
|
|
}
|
|
|
|
static bool vmci_transport_dgram_allow(u32 cid, u32 port)
|
|
{
|
|
if (cid == VMADDR_CID_HYPERVISOR) {
|
|
/* Registrations of PBRPC Servers do not modify VMX/Hypervisor
|
|
* state and are allowed.
|
|
*/
|
|
return port == VMCI_UNITY_PBRPC_REGISTER;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int vmci_transport_connect(struct vsock_sock *vsk)
|
|
{
|
|
int err;
|
|
bool old_pkt_proto = false;
|
|
struct sock *sk = &vsk->sk;
|
|
|
|
if (vmci_transport_old_proto_override(&old_pkt_proto) &&
|
|
old_pkt_proto) {
|
|
err = vmci_transport_send_conn_request(sk, vsk->buffer_size);
|
|
if (err < 0) {
|
|
sk->sk_state = TCP_CLOSE;
|
|
return err;
|
|
}
|
|
} else {
|
|
int supported_proto_versions =
|
|
vmci_transport_new_proto_supported_versions();
|
|
err = vmci_transport_send_conn_request2(sk, vsk->buffer_size,
|
|
supported_proto_versions);
|
|
if (err < 0) {
|
|
sk->sk_state = TCP_CLOSE;
|
|
return err;
|
|
}
|
|
|
|
vsk->sent_request = true;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static ssize_t vmci_transport_stream_dequeue(
|
|
struct vsock_sock *vsk,
|
|
struct msghdr *msg,
|
|
size_t len,
|
|
int flags)
|
|
{
|
|
ssize_t err;
|
|
|
|
if (flags & MSG_PEEK)
|
|
err = vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0);
|
|
else
|
|
err = vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0);
|
|
|
|
if (err < 0)
|
|
err = -ENOMEM;
|
|
|
|
return err;
|
|
}
|
|
|
|
static ssize_t vmci_transport_stream_enqueue(
|
|
struct vsock_sock *vsk,
|
|
struct msghdr *msg,
|
|
size_t len)
|
|
{
|
|
ssize_t err;
|
|
|
|
err = vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0);
|
|
if (err < 0)
|
|
err = -ENOMEM;
|
|
|
|
return err;
|
|
}
|
|
|
|
static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk)
|
|
{
|
|
return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair);
|
|
}
|
|
|
|
static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk)
|
|
{
|
|
return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair);
|
|
}
|
|
|
|
static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk)
|
|
{
|
|
return vmci_trans(vsk)->consume_size;
|
|
}
|
|
|
|
static bool vmci_transport_stream_is_active(struct vsock_sock *vsk)
|
|
{
|
|
return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle);
|
|
}
|
|
|
|
static int vmci_transport_notify_poll_in(
|
|
struct vsock_sock *vsk,
|
|
size_t target,
|
|
bool *data_ready_now)
|
|
{
|
|
return vmci_trans(vsk)->notify_ops->poll_in(
|
|
&vsk->sk, target, data_ready_now);
|
|
}
|
|
|
|
static int vmci_transport_notify_poll_out(
|
|
struct vsock_sock *vsk,
|
|
size_t target,
|
|
bool *space_available_now)
|
|
{
|
|
return vmci_trans(vsk)->notify_ops->poll_out(
|
|
&vsk->sk, target, space_available_now);
|
|
}
|
|
|
|
static int vmci_transport_notify_recv_init(
|
|
struct vsock_sock *vsk,
|
|
size_t target,
|
|
struct vsock_transport_recv_notify_data *data)
|
|
{
|
|
return vmci_trans(vsk)->notify_ops->recv_init(
|
|
&vsk->sk, target,
|
|
(struct vmci_transport_recv_notify_data *)data);
|
|
}
|
|
|
|
static int vmci_transport_notify_recv_pre_block(
|
|
struct vsock_sock *vsk,
|
|
size_t target,
|
|
struct vsock_transport_recv_notify_data *data)
|
|
{
|
|
return vmci_trans(vsk)->notify_ops->recv_pre_block(
|
|
&vsk->sk, target,
|
|
(struct vmci_transport_recv_notify_data *)data);
|
|
}
|
|
|
|
static int vmci_transport_notify_recv_pre_dequeue(
|
|
struct vsock_sock *vsk,
|
|
size_t target,
|
|
struct vsock_transport_recv_notify_data *data)
|
|
{
|
|
return vmci_trans(vsk)->notify_ops->recv_pre_dequeue(
|
|
&vsk->sk, target,
|
|
(struct vmci_transport_recv_notify_data *)data);
|
|
}
|
|
|
|
static int vmci_transport_notify_recv_post_dequeue(
|
|
struct vsock_sock *vsk,
|
|
size_t target,
|
|
ssize_t copied,
|
|
bool data_read,
|
|
struct vsock_transport_recv_notify_data *data)
|
|
{
|
|
return vmci_trans(vsk)->notify_ops->recv_post_dequeue(
|
|
&vsk->sk, target, copied, data_read,
|
|
(struct vmci_transport_recv_notify_data *)data);
|
|
}
|
|
|
|
static int vmci_transport_notify_send_init(
|
|
struct vsock_sock *vsk,
|
|
struct vsock_transport_send_notify_data *data)
|
|
{
|
|
return vmci_trans(vsk)->notify_ops->send_init(
|
|
&vsk->sk,
|
|
(struct vmci_transport_send_notify_data *)data);
|
|
}
|
|
|
|
static int vmci_transport_notify_send_pre_block(
|
|
struct vsock_sock *vsk,
|
|
struct vsock_transport_send_notify_data *data)
|
|
{
|
|
return vmci_trans(vsk)->notify_ops->send_pre_block(
|
|
&vsk->sk,
|
|
(struct vmci_transport_send_notify_data *)data);
|
|
}
|
|
|
|
static int vmci_transport_notify_send_pre_enqueue(
|
|
struct vsock_sock *vsk,
|
|
struct vsock_transport_send_notify_data *data)
|
|
{
|
|
return vmci_trans(vsk)->notify_ops->send_pre_enqueue(
|
|
&vsk->sk,
|
|
(struct vmci_transport_send_notify_data *)data);
|
|
}
|
|
|
|
static int vmci_transport_notify_send_post_enqueue(
|
|
struct vsock_sock *vsk,
|
|
ssize_t written,
|
|
struct vsock_transport_send_notify_data *data)
|
|
{
|
|
return vmci_trans(vsk)->notify_ops->send_post_enqueue(
|
|
&vsk->sk, written,
|
|
(struct vmci_transport_send_notify_data *)data);
|
|
}
|
|
|
|
static bool vmci_transport_old_proto_override(bool *old_pkt_proto)
|
|
{
|
|
if (PROTOCOL_OVERRIDE != -1) {
|
|
if (PROTOCOL_OVERRIDE == 0)
|
|
*old_pkt_proto = true;
|
|
else
|
|
*old_pkt_proto = false;
|
|
|
|
pr_info("Proto override in use\n");
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool vmci_transport_proto_to_notify_struct(struct sock *sk,
|
|
u16 *proto,
|
|
bool old_pkt_proto)
|
|
{
|
|
struct vsock_sock *vsk = vsock_sk(sk);
|
|
|
|
if (old_pkt_proto) {
|
|
if (*proto != VSOCK_PROTO_INVALID) {
|
|
pr_err("Can't set both an old and new protocol\n");
|
|
return false;
|
|
}
|
|
vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops;
|
|
goto exit;
|
|
}
|
|
|
|
switch (*proto) {
|
|
case VSOCK_PROTO_PKT_ON_NOTIFY:
|
|
vmci_trans(vsk)->notify_ops =
|
|
&vmci_transport_notify_pkt_q_state_ops;
|
|
break;
|
|
default:
|
|
pr_err("Unknown notify protocol version\n");
|
|
return false;
|
|
}
|
|
|
|
exit:
|
|
vmci_trans(vsk)->notify_ops->socket_init(sk);
|
|
return true;
|
|
}
|
|
|
|
static u16 vmci_transport_new_proto_supported_versions(void)
|
|
{
|
|
if (PROTOCOL_OVERRIDE != -1)
|
|
return PROTOCOL_OVERRIDE;
|
|
|
|
return VSOCK_PROTO_ALL_SUPPORTED;
|
|
}
|
|
|
|
static u32 vmci_transport_get_local_cid(void)
|
|
{
|
|
return vmci_get_context_id();
|
|
}
|
|
|
|
static struct vsock_transport vmci_transport = {
|
|
.module = THIS_MODULE,
|
|
.init = vmci_transport_socket_init,
|
|
.destruct = vmci_transport_destruct,
|
|
.release = vmci_transport_release,
|
|
.connect = vmci_transport_connect,
|
|
.dgram_bind = vmci_transport_dgram_bind,
|
|
.dgram_dequeue = vmci_transport_dgram_dequeue,
|
|
.dgram_enqueue = vmci_transport_dgram_enqueue,
|
|
.dgram_allow = vmci_transport_dgram_allow,
|
|
.stream_dequeue = vmci_transport_stream_dequeue,
|
|
.stream_enqueue = vmci_transport_stream_enqueue,
|
|
.stream_has_data = vmci_transport_stream_has_data,
|
|
.stream_has_space = vmci_transport_stream_has_space,
|
|
.stream_rcvhiwat = vmci_transport_stream_rcvhiwat,
|
|
.stream_is_active = vmci_transport_stream_is_active,
|
|
.stream_allow = vmci_transport_stream_allow,
|
|
.notify_poll_in = vmci_transport_notify_poll_in,
|
|
.notify_poll_out = vmci_transport_notify_poll_out,
|
|
.notify_recv_init = vmci_transport_notify_recv_init,
|
|
.notify_recv_pre_block = vmci_transport_notify_recv_pre_block,
|
|
.notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue,
|
|
.notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue,
|
|
.notify_send_init = vmci_transport_notify_send_init,
|
|
.notify_send_pre_block = vmci_transport_notify_send_pre_block,
|
|
.notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue,
|
|
.notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue,
|
|
.shutdown = vmci_transport_shutdown,
|
|
.get_local_cid = vmci_transport_get_local_cid,
|
|
};
|
|
|
|
static bool vmci_check_transport(struct vsock_sock *vsk)
|
|
{
|
|
return vsk->transport == &vmci_transport;
|
|
}
|
|
|
|
static void vmci_vsock_transport_cb(bool is_host)
|
|
{
|
|
int features;
|
|
|
|
if (is_host)
|
|
features = VSOCK_TRANSPORT_F_H2G;
|
|
else
|
|
features = VSOCK_TRANSPORT_F_G2H;
|
|
|
|
vsock_core_register(&vmci_transport, features);
|
|
}
|
|
|
|
static int __init vmci_transport_init(void)
|
|
{
|
|
int err;
|
|
|
|
/* Create the datagram handle that we will use to send and receive all
|
|
* VSocket control messages for this context.
|
|
*/
|
|
err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID,
|
|
VMCI_FLAG_ANYCID_DG_HND,
|
|
vmci_transport_recv_stream_cb,
|
|
NULL,
|
|
&vmci_transport_stream_handle);
|
|
if (err < VMCI_SUCCESS) {
|
|
pr_err("Unable to create datagram handle. (%d)\n", err);
|
|
return vmci_transport_error_to_vsock_error(err);
|
|
}
|
|
err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED,
|
|
vmci_transport_qp_resumed_cb,
|
|
NULL, &vmci_transport_qp_resumed_sub_id);
|
|
if (err < VMCI_SUCCESS) {
|
|
pr_err("Unable to subscribe to resumed event. (%d)\n", err);
|
|
err = vmci_transport_error_to_vsock_error(err);
|
|
vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
|
|
goto err_destroy_stream_handle;
|
|
}
|
|
|
|
/* Register only with dgram feature, other features (H2G, G2H) will be
|
|
* registered when the first host or guest becomes active.
|
|
*/
|
|
err = vsock_core_register(&vmci_transport, VSOCK_TRANSPORT_F_DGRAM);
|
|
if (err < 0)
|
|
goto err_unsubscribe;
|
|
|
|
err = vmci_register_vsock_callback(vmci_vsock_transport_cb);
|
|
if (err < 0)
|
|
goto err_unregister;
|
|
|
|
return 0;
|
|
|
|
err_unregister:
|
|
vsock_core_unregister(&vmci_transport);
|
|
err_unsubscribe:
|
|
vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
|
|
err_destroy_stream_handle:
|
|
vmci_datagram_destroy_handle(vmci_transport_stream_handle);
|
|
return err;
|
|
}
|
|
module_init(vmci_transport_init);
|
|
|
|
static void __exit vmci_transport_exit(void)
|
|
{
|
|
cancel_work_sync(&vmci_transport_cleanup_work);
|
|
vmci_transport_free_resources(&vmci_transport_cleanup_list);
|
|
|
|
if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) {
|
|
if (vmci_datagram_destroy_handle(
|
|
vmci_transport_stream_handle) != VMCI_SUCCESS)
|
|
pr_err("Couldn't destroy datagram handle\n");
|
|
vmci_transport_stream_handle = VMCI_INVALID_HANDLE;
|
|
}
|
|
|
|
if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) {
|
|
vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
|
|
vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
|
|
}
|
|
|
|
vmci_register_vsock_callback(NULL);
|
|
vsock_core_unregister(&vmci_transport);
|
|
}
|
|
module_exit(vmci_transport_exit);
|
|
|
|
MODULE_AUTHOR("VMware, Inc.");
|
|
MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
|
|
MODULE_VERSION("1.0.5.0-k");
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_ALIAS("vmware_vsock");
|
|
MODULE_ALIAS_NETPROTO(PF_VSOCK);
|