157 lines
5.8 KiB
Rust
157 lines
5.8 KiB
Rust
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
//! A wrapper for data protected by a lock that does not wrap it.
|
|
|
|
use super::{lock::Backend, lock::Lock};
|
|
use crate::build_assert;
|
|
use core::{cell::UnsafeCell, mem::size_of, ptr};
|
|
|
|
/// Allows access to some data to be serialised by a lock that does not wrap it.
|
|
///
|
|
/// In most cases, data protected by a lock is wrapped by the appropriate lock type, e.g.,
|
|
/// [`super::Mutex`] or [`super::SpinLock`]. [`LockedBy`] is meant for cases when this is not
|
|
/// possible. For example, if a container has a lock and some data in the contained elements needs
|
|
/// to be protected by the same lock.
|
|
///
|
|
/// [`LockedBy`] wraps the data in lieu of another locking primitive, and only allows access to it
|
|
/// when the caller shows evidence that the 'external' lock is locked. It panics if the evidence
|
|
/// refers to the wrong instance of the lock.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// The following is an example for illustrative purposes: `InnerDirectory::bytes_used` is an
|
|
/// aggregate of all `InnerFile::bytes_used` and must be kept consistent; so we wrap `InnerFile` in
|
|
/// a `LockedBy` so that it shares a lock with `InnerDirectory`. This allows us to enforce at
|
|
/// compile-time that access to `InnerFile` is only granted when an `InnerDirectory` is also
|
|
/// locked; we enforce at run time that the right `InnerDirectory` is locked.
|
|
///
|
|
/// ```
|
|
/// use kernel::sync::{LockedBy, Mutex};
|
|
///
|
|
/// struct InnerFile {
|
|
/// bytes_used: u64,
|
|
/// }
|
|
///
|
|
/// struct File {
|
|
/// _ino: u32,
|
|
/// inner: LockedBy<InnerFile, InnerDirectory>,
|
|
/// }
|
|
///
|
|
/// struct InnerDirectory {
|
|
/// /// The sum of the bytes used by all files.
|
|
/// bytes_used: u64,
|
|
/// _files: Vec<File>,
|
|
/// }
|
|
///
|
|
/// struct Directory {
|
|
/// _ino: u32,
|
|
/// inner: Mutex<InnerDirectory>,
|
|
/// }
|
|
///
|
|
/// /// Prints `bytes_used` from both the directory and file.
|
|
/// fn print_bytes_used(dir: &Directory, file: &File) {
|
|
/// let guard = dir.inner.lock();
|
|
/// let inner_file = file.inner.access(&guard);
|
|
/// pr_info!("{} {}", guard.bytes_used, inner_file.bytes_used);
|
|
/// }
|
|
///
|
|
/// /// Increments `bytes_used` for both the directory and file.
|
|
/// fn inc_bytes_used(dir: &Directory, file: &File) {
|
|
/// let mut guard = dir.inner.lock();
|
|
/// guard.bytes_used += 10;
|
|
///
|
|
/// let file_inner = file.inner.access_mut(&mut guard);
|
|
/// file_inner.bytes_used += 10;
|
|
/// }
|
|
///
|
|
/// /// Creates a new file.
|
|
/// fn new_file(ino: u32, dir: &Directory) -> File {
|
|
/// File {
|
|
/// _ino: ino,
|
|
/// inner: LockedBy::new(&dir.inner, InnerFile { bytes_used: 0 }),
|
|
/// }
|
|
/// }
|
|
/// ```
|
|
pub struct LockedBy<T: ?Sized, U: ?Sized> {
|
|
owner: *const U,
|
|
data: UnsafeCell<T>,
|
|
}
|
|
|
|
// SAFETY: `LockedBy` can be transferred across thread boundaries iff the data it protects can.
|
|
unsafe impl<T: ?Sized + Send, U: ?Sized> Send for LockedBy<T, U> {}
|
|
|
|
// SAFETY: `LockedBy` serialises the interior mutability it provides, so it is `Sync` as long as the
|
|
// data it protects is `Send`.
|
|
unsafe impl<T: ?Sized + Send, U: ?Sized> Sync for LockedBy<T, U> {}
|
|
|
|
impl<T, U> LockedBy<T, U> {
|
|
/// Constructs a new instance of [`LockedBy`].
|
|
///
|
|
/// It stores a raw pointer to the owner that is never dereferenced. It is only used to ensure
|
|
/// that the right owner is being used to access the protected data. If the owner is freed, the
|
|
/// data becomes inaccessible; if another instance of the owner is allocated *on the same
|
|
/// memory location*, the data becomes accessible again: none of this affects memory safety
|
|
/// because in any case at most one thread (or CPU) can access the protected data at a time.
|
|
pub fn new<B: Backend>(owner: &Lock<U, B>, data: T) -> Self {
|
|
build_assert!(
|
|
size_of::<Lock<U, B>>() > 0,
|
|
"The lock type cannot be a ZST because it may be impossible to distinguish instances"
|
|
);
|
|
Self {
|
|
owner: owner.data.get(),
|
|
data: UnsafeCell::new(data),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<T: ?Sized, U> LockedBy<T, U> {
|
|
/// Returns a reference to the protected data when the caller provides evidence (via a
|
|
/// reference) that the owner is locked.
|
|
///
|
|
/// `U` cannot be a zero-sized type (ZST) because there are ways to get an `&U` that matches
|
|
/// the data protected by the lock without actually holding it.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if `owner` is different from the data protected by the lock used in
|
|
/// [`new`](LockedBy::new).
|
|
pub fn access<'a>(&'a self, owner: &'a U) -> &'a T {
|
|
build_assert!(
|
|
size_of::<U>() > 0,
|
|
"`U` cannot be a ZST because `owner` wouldn't be unique"
|
|
);
|
|
if !ptr::eq(owner, self.owner) {
|
|
panic!("mismatched owners");
|
|
}
|
|
|
|
// SAFETY: `owner` is evidence that the owner is locked.
|
|
unsafe { &*self.data.get() }
|
|
}
|
|
|
|
/// Returns a mutable reference to the protected data when the caller provides evidence (via a
|
|
/// mutable owner) that the owner is locked mutably.
|
|
///
|
|
/// `U` cannot be a zero-sized type (ZST) because there are ways to get an `&mut U` that
|
|
/// matches the data protected by the lock without actually holding it.
|
|
///
|
|
/// Showing a mutable reference to the owner is sufficient because we know no other references
|
|
/// can exist to it.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if `owner` is different from the data protected by the lock used in
|
|
/// [`new`](LockedBy::new).
|
|
pub fn access_mut<'a>(&'a self, owner: &'a mut U) -> &'a mut T {
|
|
build_assert!(
|
|
size_of::<U>() > 0,
|
|
"`U` cannot be a ZST because `owner` wouldn't be unique"
|
|
);
|
|
if !ptr::eq(owner, self.owner) {
|
|
panic!("mismatched owners");
|
|
}
|
|
|
|
// SAFETY: `owner` is evidence that there is only one reference to the owner.
|
|
unsafe { &mut *self.data.get() }
|
|
}
|
|
}
|