888 lines
24 KiB
C
888 lines
24 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* The file intends to implement the platform dependent EEH operations on pseries.
|
|
* Actually, the pseries platform is built based on RTAS heavily. That means the
|
|
* pseries platform dependent EEH operations will be built on RTAS calls. The functions
|
|
* are derived from arch/powerpc/platforms/pseries/eeh.c and necessary cleanup has
|
|
* been done.
|
|
*
|
|
* Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2011.
|
|
* Copyright IBM Corporation 2001, 2005, 2006
|
|
* Copyright Dave Engebretsen & Todd Inglett 2001
|
|
* Copyright Linas Vepstas 2005, 2006
|
|
*/
|
|
|
|
#include <linux/atomic.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/export.h>
|
|
#include <linux/init.h>
|
|
#include <linux/list.h>
|
|
#include <linux/of.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/rbtree.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/crash_dump.h>
|
|
|
|
#include <asm/eeh.h>
|
|
#include <asm/eeh_event.h>
|
|
#include <asm/io.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/ppc-pci.h>
|
|
#include <asm/rtas.h>
|
|
|
|
/* RTAS tokens */
|
|
static int ibm_set_eeh_option;
|
|
static int ibm_set_slot_reset;
|
|
static int ibm_read_slot_reset_state;
|
|
static int ibm_read_slot_reset_state2;
|
|
static int ibm_slot_error_detail;
|
|
static int ibm_get_config_addr_info;
|
|
static int ibm_get_config_addr_info2;
|
|
static int ibm_configure_pe;
|
|
|
|
static void pseries_eeh_init_edev(struct pci_dn *pdn);
|
|
|
|
static void pseries_pcibios_bus_add_device(struct pci_dev *pdev)
|
|
{
|
|
struct pci_dn *pdn = pci_get_pdn(pdev);
|
|
|
|
if (eeh_has_flag(EEH_FORCE_DISABLED))
|
|
return;
|
|
|
|
dev_dbg(&pdev->dev, "EEH: Setting up device\n");
|
|
#ifdef CONFIG_PCI_IOV
|
|
if (pdev->is_virtfn) {
|
|
pdn->device_id = pdev->device;
|
|
pdn->vendor_id = pdev->vendor;
|
|
pdn->class_code = pdev->class;
|
|
/*
|
|
* Last allow unfreeze return code used for retrieval
|
|
* by user space in eeh-sysfs to show the last command
|
|
* completion from platform.
|
|
*/
|
|
pdn->last_allow_rc = 0;
|
|
}
|
|
#endif
|
|
pseries_eeh_init_edev(pdn);
|
|
#ifdef CONFIG_PCI_IOV
|
|
if (pdev->is_virtfn) {
|
|
/*
|
|
* FIXME: This really should be handled by choosing the right
|
|
* parent PE in pseries_eeh_init_edev().
|
|
*/
|
|
struct eeh_pe *physfn_pe = pci_dev_to_eeh_dev(pdev->physfn)->pe;
|
|
struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
|
|
|
|
edev->pe_config_addr = (pdn->busno << 16) | (pdn->devfn << 8);
|
|
eeh_pe_tree_remove(edev); /* Remove as it is adding to bus pe */
|
|
eeh_pe_tree_insert(edev, physfn_pe); /* Add as VF PE type */
|
|
}
|
|
#endif
|
|
eeh_probe_device(pdev);
|
|
}
|
|
|
|
|
|
/**
|
|
* pseries_eeh_get_pe_config_addr - Find the pe_config_addr for a device
|
|
* @pdn: pci_dn of the input device
|
|
*
|
|
* The EEH RTAS calls use a tuple consisting of: (buid_hi, buid_lo,
|
|
* pe_config_addr) as a handle to a given PE. This function finds the
|
|
* pe_config_addr based on the device's config addr.
|
|
*
|
|
* Keep in mind that the pe_config_addr *might* be numerically identical to the
|
|
* device's config addr, but the two are conceptually distinct.
|
|
*
|
|
* Returns the pe_config_addr, or a negative error code.
|
|
*/
|
|
static int pseries_eeh_get_pe_config_addr(struct pci_dn *pdn)
|
|
{
|
|
int config_addr = rtas_config_addr(pdn->busno, pdn->devfn, 0);
|
|
struct pci_controller *phb = pdn->phb;
|
|
int ret, rets[3];
|
|
|
|
if (ibm_get_config_addr_info2 != RTAS_UNKNOWN_SERVICE) {
|
|
/*
|
|
* First of all, use function 1 to determine if this device is
|
|
* part of a PE or not. ret[0] being zero indicates it's not.
|
|
*/
|
|
ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets,
|
|
config_addr, BUID_HI(phb->buid),
|
|
BUID_LO(phb->buid), 1);
|
|
if (ret || (rets[0] == 0))
|
|
return -ENOENT;
|
|
|
|
/* Retrieve the associated PE config address with function 0 */
|
|
ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets,
|
|
config_addr, BUID_HI(phb->buid),
|
|
BUID_LO(phb->buid), 0);
|
|
if (ret) {
|
|
pr_warn("%s: Failed to get address for PHB#%x-PE#%x\n",
|
|
__func__, phb->global_number, config_addr);
|
|
return -ENXIO;
|
|
}
|
|
|
|
return rets[0];
|
|
}
|
|
|
|
if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
|
|
ret = rtas_call(ibm_get_config_addr_info, 4, 2, rets,
|
|
config_addr, BUID_HI(phb->buid),
|
|
BUID_LO(phb->buid), 0);
|
|
if (ret) {
|
|
pr_warn("%s: Failed to get address for PHB#%x-PE#%x\n",
|
|
__func__, phb->global_number, config_addr);
|
|
return -ENXIO;
|
|
}
|
|
|
|
return rets[0];
|
|
}
|
|
|
|
/*
|
|
* PAPR does describe a process for finding the pe_config_addr that was
|
|
* used before the ibm,get-config-addr-info calls were added. However,
|
|
* I haven't found *any* systems that don't have that RTAS call
|
|
* implemented. If you happen to find one that needs the old DT based
|
|
* process, patches are welcome!
|
|
*/
|
|
return -ENOENT;
|
|
}
|
|
|
|
/**
|
|
* pseries_eeh_phb_reset - Reset the specified PHB
|
|
* @phb: PCI controller
|
|
* @config_addr: the associated config address
|
|
* @option: reset option
|
|
*
|
|
* Reset the specified PHB/PE
|
|
*/
|
|
static int pseries_eeh_phb_reset(struct pci_controller *phb, int config_addr, int option)
|
|
{
|
|
int ret;
|
|
|
|
/* Reset PE through RTAS call */
|
|
ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
|
|
config_addr, BUID_HI(phb->buid),
|
|
BUID_LO(phb->buid), option);
|
|
|
|
/* If fundamental-reset not supported, try hot-reset */
|
|
if (option == EEH_RESET_FUNDAMENTAL && ret == -8) {
|
|
option = EEH_RESET_HOT;
|
|
ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
|
|
config_addr, BUID_HI(phb->buid),
|
|
BUID_LO(phb->buid), option);
|
|
}
|
|
|
|
/* We need reset hold or settlement delay */
|
|
if (option == EEH_RESET_FUNDAMENTAL || option == EEH_RESET_HOT)
|
|
msleep(EEH_PE_RST_HOLD_TIME);
|
|
else
|
|
msleep(EEH_PE_RST_SETTLE_TIME);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* pseries_eeh_phb_configure_bridge - Configure PCI bridges in the indicated PE
|
|
* @phb: PCI controller
|
|
* @config_addr: the associated config address
|
|
*
|
|
* The function will be called to reconfigure the bridges included
|
|
* in the specified PE so that the mulfunctional PE would be recovered
|
|
* again.
|
|
*/
|
|
static int pseries_eeh_phb_configure_bridge(struct pci_controller *phb, int config_addr)
|
|
{
|
|
int ret;
|
|
/* Waiting 0.2s maximum before skipping configuration */
|
|
int max_wait = 200;
|
|
|
|
while (max_wait > 0) {
|
|
ret = rtas_call(ibm_configure_pe, 3, 1, NULL,
|
|
config_addr, BUID_HI(phb->buid),
|
|
BUID_LO(phb->buid));
|
|
|
|
if (!ret)
|
|
return ret;
|
|
if (ret < 0)
|
|
break;
|
|
|
|
/*
|
|
* If RTAS returns a delay value that's above 100ms, cut it
|
|
* down to 100ms in case firmware made a mistake. For more
|
|
* on how these delay values work see rtas_busy_delay_time
|
|
*/
|
|
if (ret > RTAS_EXTENDED_DELAY_MIN+2 &&
|
|
ret <= RTAS_EXTENDED_DELAY_MAX)
|
|
ret = RTAS_EXTENDED_DELAY_MIN+2;
|
|
|
|
max_wait -= rtas_busy_delay_time(ret);
|
|
|
|
if (max_wait < 0)
|
|
break;
|
|
|
|
rtas_busy_delay(ret);
|
|
}
|
|
|
|
pr_warn("%s: Unable to configure bridge PHB#%x-PE#%x (%d)\n",
|
|
__func__, phb->global_number, config_addr, ret);
|
|
/* PAPR defines -3 as "Parameter Error" for this function: */
|
|
if (ret == -3)
|
|
return -EINVAL;
|
|
else
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* Buffer for reporting slot-error-detail rtas calls. Its here
|
|
* in BSS, and not dynamically alloced, so that it ends up in
|
|
* RMO where RTAS can access it.
|
|
*/
|
|
static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
|
|
static DEFINE_SPINLOCK(slot_errbuf_lock);
|
|
static int eeh_error_buf_size;
|
|
|
|
static int pseries_eeh_cap_start(struct pci_dn *pdn)
|
|
{
|
|
u32 status;
|
|
|
|
if (!pdn)
|
|
return 0;
|
|
|
|
rtas_read_config(pdn, PCI_STATUS, 2, &status);
|
|
if (!(status & PCI_STATUS_CAP_LIST))
|
|
return 0;
|
|
|
|
return PCI_CAPABILITY_LIST;
|
|
}
|
|
|
|
|
|
static int pseries_eeh_find_cap(struct pci_dn *pdn, int cap)
|
|
{
|
|
int pos = pseries_eeh_cap_start(pdn);
|
|
int cnt = 48; /* Maximal number of capabilities */
|
|
u32 id;
|
|
|
|
if (!pos)
|
|
return 0;
|
|
|
|
while (cnt--) {
|
|
rtas_read_config(pdn, pos, 1, &pos);
|
|
if (pos < 0x40)
|
|
break;
|
|
pos &= ~3;
|
|
rtas_read_config(pdn, pos + PCI_CAP_LIST_ID, 1, &id);
|
|
if (id == 0xff)
|
|
break;
|
|
if (id == cap)
|
|
return pos;
|
|
pos += PCI_CAP_LIST_NEXT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pseries_eeh_find_ecap(struct pci_dn *pdn, int cap)
|
|
{
|
|
struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
|
|
u32 header;
|
|
int pos = 256;
|
|
int ttl = (4096 - 256) / 8;
|
|
|
|
if (!edev || !edev->pcie_cap)
|
|
return 0;
|
|
if (rtas_read_config(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
|
|
return 0;
|
|
else if (!header)
|
|
return 0;
|
|
|
|
while (ttl-- > 0) {
|
|
if (PCI_EXT_CAP_ID(header) == cap && pos)
|
|
return pos;
|
|
|
|
pos = PCI_EXT_CAP_NEXT(header);
|
|
if (pos < 256)
|
|
break;
|
|
|
|
if (rtas_read_config(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* pseries_eeh_pe_get_parent - Retrieve the parent PE
|
|
* @edev: EEH device
|
|
*
|
|
* The whole PEs existing in the system are organized as hierarchy
|
|
* tree. The function is used to retrieve the parent PE according
|
|
* to the parent EEH device.
|
|
*/
|
|
static struct eeh_pe *pseries_eeh_pe_get_parent(struct eeh_dev *edev)
|
|
{
|
|
struct eeh_dev *parent;
|
|
struct pci_dn *pdn = eeh_dev_to_pdn(edev);
|
|
|
|
/*
|
|
* It might have the case for the indirect parent
|
|
* EEH device already having associated PE, but
|
|
* the direct parent EEH device doesn't have yet.
|
|
*/
|
|
if (edev->physfn)
|
|
pdn = pci_get_pdn(edev->physfn);
|
|
else
|
|
pdn = pdn ? pdn->parent : NULL;
|
|
while (pdn) {
|
|
/* We're poking out of PCI territory */
|
|
parent = pdn_to_eeh_dev(pdn);
|
|
if (!parent)
|
|
return NULL;
|
|
|
|
if (parent->pe)
|
|
return parent->pe;
|
|
|
|
pdn = pdn->parent;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* pseries_eeh_init_edev - initialise the eeh_dev and eeh_pe for a pci_dn
|
|
*
|
|
* @pdn: PCI device node
|
|
*
|
|
* When we discover a new PCI device via the device-tree we create a
|
|
* corresponding pci_dn and we allocate, but don't initialise, an eeh_dev.
|
|
* This function takes care of the initialisation and inserts the eeh_dev
|
|
* into the correct eeh_pe. If no eeh_pe exists we'll allocate one.
|
|
*/
|
|
static void pseries_eeh_init_edev(struct pci_dn *pdn)
|
|
{
|
|
struct eeh_pe pe, *parent;
|
|
struct eeh_dev *edev;
|
|
u32 pcie_flags;
|
|
int ret;
|
|
|
|
if (WARN_ON_ONCE(!eeh_has_flag(EEH_PROBE_MODE_DEVTREE)))
|
|
return;
|
|
|
|
/*
|
|
* Find the eeh_dev for this pdn. The storage for the eeh_dev was
|
|
* allocated at the same time as the pci_dn.
|
|
*
|
|
* XXX: We should probably re-visit that.
|
|
*/
|
|
edev = pdn_to_eeh_dev(pdn);
|
|
if (!edev)
|
|
return;
|
|
|
|
/*
|
|
* If ->pe is set then we've already probed this device. We hit
|
|
* this path when a pci_dev is removed and rescanned while recovering
|
|
* a PE (i.e. for devices where the driver doesn't support error
|
|
* recovery).
|
|
*/
|
|
if (edev->pe)
|
|
return;
|
|
|
|
/* Check class/vendor/device IDs */
|
|
if (!pdn->vendor_id || !pdn->device_id || !pdn->class_code)
|
|
return;
|
|
|
|
/* Skip for PCI-ISA bridge */
|
|
if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_ISA)
|
|
return;
|
|
|
|
eeh_edev_dbg(edev, "Probing device\n");
|
|
|
|
/*
|
|
* Update class code and mode of eeh device. We need
|
|
* correctly reflects that current device is root port
|
|
* or PCIe switch downstream port.
|
|
*/
|
|
edev->pcix_cap = pseries_eeh_find_cap(pdn, PCI_CAP_ID_PCIX);
|
|
edev->pcie_cap = pseries_eeh_find_cap(pdn, PCI_CAP_ID_EXP);
|
|
edev->aer_cap = pseries_eeh_find_ecap(pdn, PCI_EXT_CAP_ID_ERR);
|
|
edev->mode &= 0xFFFFFF00;
|
|
if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_PCI) {
|
|
edev->mode |= EEH_DEV_BRIDGE;
|
|
if (edev->pcie_cap) {
|
|
rtas_read_config(pdn, edev->pcie_cap + PCI_EXP_FLAGS,
|
|
2, &pcie_flags);
|
|
pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4;
|
|
if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT)
|
|
edev->mode |= EEH_DEV_ROOT_PORT;
|
|
else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM)
|
|
edev->mode |= EEH_DEV_DS_PORT;
|
|
}
|
|
}
|
|
|
|
/* first up, find the pe_config_addr for the PE containing the device */
|
|
ret = pseries_eeh_get_pe_config_addr(pdn);
|
|
if (ret < 0) {
|
|
eeh_edev_dbg(edev, "Unable to find pe_config_addr\n");
|
|
goto err;
|
|
}
|
|
|
|
/* Try enable EEH on the fake PE */
|
|
memset(&pe, 0, sizeof(struct eeh_pe));
|
|
pe.phb = pdn->phb;
|
|
pe.addr = ret;
|
|
|
|
eeh_edev_dbg(edev, "Enabling EEH on device\n");
|
|
ret = eeh_ops->set_option(&pe, EEH_OPT_ENABLE);
|
|
if (ret) {
|
|
eeh_edev_dbg(edev, "EEH failed to enable on device (code %d)\n", ret);
|
|
goto err;
|
|
}
|
|
|
|
edev->pe_config_addr = pe.addr;
|
|
|
|
eeh_add_flag(EEH_ENABLED);
|
|
|
|
parent = pseries_eeh_pe_get_parent(edev);
|
|
eeh_pe_tree_insert(edev, parent);
|
|
eeh_save_bars(edev);
|
|
eeh_edev_dbg(edev, "EEH enabled for device");
|
|
|
|
return;
|
|
|
|
err:
|
|
eeh_edev_dbg(edev, "EEH is unsupported on device (code = %d)\n", ret);
|
|
}
|
|
|
|
static struct eeh_dev *pseries_eeh_probe(struct pci_dev *pdev)
|
|
{
|
|
struct eeh_dev *edev;
|
|
struct pci_dn *pdn;
|
|
|
|
pdn = pci_get_pdn_by_devfn(pdev->bus, pdev->devfn);
|
|
if (!pdn)
|
|
return NULL;
|
|
|
|
/*
|
|
* If the system supports EEH on this device then the eeh_dev was
|
|
* configured and inserted into a PE in pseries_eeh_init_edev()
|
|
*/
|
|
edev = pdn_to_eeh_dev(pdn);
|
|
if (!edev || !edev->pe)
|
|
return NULL;
|
|
|
|
return edev;
|
|
}
|
|
|
|
/**
|
|
* pseries_eeh_init_edev_recursive - Enable EEH for the indicated device
|
|
* @pdn: PCI device node
|
|
*
|
|
* This routine must be used to perform EEH initialization for the
|
|
* indicated PCI device that was added after system boot (e.g.
|
|
* hotplug, dlpar).
|
|
*/
|
|
void pseries_eeh_init_edev_recursive(struct pci_dn *pdn)
|
|
{
|
|
struct pci_dn *n;
|
|
|
|
if (!pdn)
|
|
return;
|
|
|
|
list_for_each_entry(n, &pdn->child_list, list)
|
|
pseries_eeh_init_edev_recursive(n);
|
|
|
|
pseries_eeh_init_edev(pdn);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pseries_eeh_init_edev_recursive);
|
|
|
|
/**
|
|
* pseries_eeh_set_option - Initialize EEH or MMIO/DMA reenable
|
|
* @pe: EEH PE
|
|
* @option: operation to be issued
|
|
*
|
|
* The function is used to control the EEH functionality globally.
|
|
* Currently, following options are support according to PAPR:
|
|
* Enable EEH, Disable EEH, Enable MMIO and Enable DMA
|
|
*/
|
|
static int pseries_eeh_set_option(struct eeh_pe *pe, int option)
|
|
{
|
|
int ret = 0;
|
|
|
|
/*
|
|
* When we're enabling or disabling EEH functionality on
|
|
* the particular PE, the PE config address is possibly
|
|
* unavailable. Therefore, we have to figure it out from
|
|
* the FDT node.
|
|
*/
|
|
switch (option) {
|
|
case EEH_OPT_DISABLE:
|
|
case EEH_OPT_ENABLE:
|
|
case EEH_OPT_THAW_MMIO:
|
|
case EEH_OPT_THAW_DMA:
|
|
break;
|
|
case EEH_OPT_FREEZE_PE:
|
|
/* Not support */
|
|
return 0;
|
|
default:
|
|
pr_err("%s: Invalid option %d\n", __func__, option);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
|
|
pe->addr, BUID_HI(pe->phb->buid),
|
|
BUID_LO(pe->phb->buid), option);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* pseries_eeh_get_state - Retrieve PE state
|
|
* @pe: EEH PE
|
|
* @delay: suggested time to wait if state is unavailable
|
|
*
|
|
* Retrieve the state of the specified PE. On RTAS compliant
|
|
* pseries platform, there already has one dedicated RTAS function
|
|
* for the purpose. It's notable that the associated PE config address
|
|
* might be ready when calling the function. Therefore, endeavour to
|
|
* use the PE config address if possible. Further more, there're 2
|
|
* RTAS calls for the purpose, we need to try the new one and back
|
|
* to the old one if the new one couldn't work properly.
|
|
*/
|
|
static int pseries_eeh_get_state(struct eeh_pe *pe, int *delay)
|
|
{
|
|
int ret;
|
|
int rets[4];
|
|
int result;
|
|
|
|
if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
|
|
ret = rtas_call(ibm_read_slot_reset_state2, 3, 4, rets,
|
|
pe->addr, BUID_HI(pe->phb->buid),
|
|
BUID_LO(pe->phb->buid));
|
|
} else if (ibm_read_slot_reset_state != RTAS_UNKNOWN_SERVICE) {
|
|
/* Fake PE unavailable info */
|
|
rets[2] = 0;
|
|
ret = rtas_call(ibm_read_slot_reset_state, 3, 3, rets,
|
|
pe->addr, BUID_HI(pe->phb->buid),
|
|
BUID_LO(pe->phb->buid));
|
|
} else {
|
|
return EEH_STATE_NOT_SUPPORT;
|
|
}
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Parse the result out */
|
|
if (!rets[1])
|
|
return EEH_STATE_NOT_SUPPORT;
|
|
|
|
switch(rets[0]) {
|
|
case 0:
|
|
result = EEH_STATE_MMIO_ACTIVE |
|
|
EEH_STATE_DMA_ACTIVE;
|
|
break;
|
|
case 1:
|
|
result = EEH_STATE_RESET_ACTIVE |
|
|
EEH_STATE_MMIO_ACTIVE |
|
|
EEH_STATE_DMA_ACTIVE;
|
|
break;
|
|
case 2:
|
|
result = 0;
|
|
break;
|
|
case 4:
|
|
result = EEH_STATE_MMIO_ENABLED;
|
|
break;
|
|
case 5:
|
|
if (rets[2]) {
|
|
if (delay)
|
|
*delay = rets[2];
|
|
result = EEH_STATE_UNAVAILABLE;
|
|
} else {
|
|
result = EEH_STATE_NOT_SUPPORT;
|
|
}
|
|
break;
|
|
default:
|
|
result = EEH_STATE_NOT_SUPPORT;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* pseries_eeh_reset - Reset the specified PE
|
|
* @pe: EEH PE
|
|
* @option: reset option
|
|
*
|
|
* Reset the specified PE
|
|
*/
|
|
static int pseries_eeh_reset(struct eeh_pe *pe, int option)
|
|
{
|
|
return pseries_eeh_phb_reset(pe->phb, pe->addr, option);
|
|
}
|
|
|
|
/**
|
|
* pseries_eeh_get_log - Retrieve error log
|
|
* @pe: EEH PE
|
|
* @severity: temporary or permanent error log
|
|
* @drv_log: driver log to be combined with retrieved error log
|
|
* @len: length of driver log
|
|
*
|
|
* Retrieve the temporary or permanent error from the PE.
|
|
* Actually, the error will be retrieved through the dedicated
|
|
* RTAS call.
|
|
*/
|
|
static int pseries_eeh_get_log(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len)
|
|
{
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
spin_lock_irqsave(&slot_errbuf_lock, flags);
|
|
memset(slot_errbuf, 0, eeh_error_buf_size);
|
|
|
|
ret = rtas_call(ibm_slot_error_detail, 8, 1, NULL, pe->addr,
|
|
BUID_HI(pe->phb->buid), BUID_LO(pe->phb->buid),
|
|
virt_to_phys(drv_log), len,
|
|
virt_to_phys(slot_errbuf), eeh_error_buf_size,
|
|
severity);
|
|
if (!ret)
|
|
log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
|
|
spin_unlock_irqrestore(&slot_errbuf_lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* pseries_eeh_configure_bridge - Configure PCI bridges in the indicated PE
|
|
* @pe: EEH PE
|
|
*
|
|
*/
|
|
static int pseries_eeh_configure_bridge(struct eeh_pe *pe)
|
|
{
|
|
return pseries_eeh_phb_configure_bridge(pe->phb, pe->addr);
|
|
}
|
|
|
|
/**
|
|
* pseries_eeh_read_config - Read PCI config space
|
|
* @edev: EEH device handle
|
|
* @where: PCI config space offset
|
|
* @size: size to read
|
|
* @val: return value
|
|
*
|
|
* Read config space from the speicifed device
|
|
*/
|
|
static int pseries_eeh_read_config(struct eeh_dev *edev, int where, int size, u32 *val)
|
|
{
|
|
struct pci_dn *pdn = eeh_dev_to_pdn(edev);
|
|
|
|
return rtas_read_config(pdn, where, size, val);
|
|
}
|
|
|
|
/**
|
|
* pseries_eeh_write_config - Write PCI config space
|
|
* @edev: EEH device handle
|
|
* @where: PCI config space offset
|
|
* @size: size to write
|
|
* @val: value to be written
|
|
*
|
|
* Write config space to the specified device
|
|
*/
|
|
static int pseries_eeh_write_config(struct eeh_dev *edev, int where, int size, u32 val)
|
|
{
|
|
struct pci_dn *pdn = eeh_dev_to_pdn(edev);
|
|
|
|
return rtas_write_config(pdn, where, size, val);
|
|
}
|
|
|
|
#ifdef CONFIG_PCI_IOV
|
|
static int pseries_send_allow_unfreeze(struct pci_dn *pdn, u16 *vf_pe_array, int cur_vfs)
|
|
{
|
|
int rc;
|
|
int ibm_allow_unfreeze = rtas_function_token(RTAS_FN_IBM_OPEN_SRIOV_ALLOW_UNFREEZE);
|
|
unsigned long buid, addr;
|
|
|
|
addr = rtas_config_addr(pdn->busno, pdn->devfn, 0);
|
|
buid = pdn->phb->buid;
|
|
spin_lock(&rtas_data_buf_lock);
|
|
memcpy(rtas_data_buf, vf_pe_array, RTAS_DATA_BUF_SIZE);
|
|
rc = rtas_call(ibm_allow_unfreeze, 5, 1, NULL,
|
|
addr,
|
|
BUID_HI(buid),
|
|
BUID_LO(buid),
|
|
rtas_data_buf, cur_vfs * sizeof(u16));
|
|
spin_unlock(&rtas_data_buf_lock);
|
|
if (rc)
|
|
pr_warn("%s: Failed to allow unfreeze for PHB#%x-PE#%lx, rc=%x\n",
|
|
__func__,
|
|
pdn->phb->global_number, addr, rc);
|
|
return rc;
|
|
}
|
|
|
|
static int pseries_call_allow_unfreeze(struct eeh_dev *edev)
|
|
{
|
|
int cur_vfs = 0, rc = 0, vf_index, bus, devfn, vf_pe_num;
|
|
struct pci_dn *pdn, *tmp, *parent, *physfn_pdn;
|
|
u16 *vf_pe_array;
|
|
|
|
vf_pe_array = kzalloc(RTAS_DATA_BUF_SIZE, GFP_KERNEL);
|
|
if (!vf_pe_array)
|
|
return -ENOMEM;
|
|
if (pci_num_vf(edev->physfn ? edev->physfn : edev->pdev)) {
|
|
if (edev->pdev->is_physfn) {
|
|
cur_vfs = pci_num_vf(edev->pdev);
|
|
pdn = eeh_dev_to_pdn(edev);
|
|
parent = pdn->parent;
|
|
for (vf_index = 0; vf_index < cur_vfs; vf_index++)
|
|
vf_pe_array[vf_index] =
|
|
cpu_to_be16(pdn->pe_num_map[vf_index]);
|
|
rc = pseries_send_allow_unfreeze(pdn, vf_pe_array,
|
|
cur_vfs);
|
|
pdn->last_allow_rc = rc;
|
|
for (vf_index = 0; vf_index < cur_vfs; vf_index++) {
|
|
list_for_each_entry_safe(pdn, tmp,
|
|
&parent->child_list,
|
|
list) {
|
|
bus = pci_iov_virtfn_bus(edev->pdev,
|
|
vf_index);
|
|
devfn = pci_iov_virtfn_devfn(edev->pdev,
|
|
vf_index);
|
|
if (pdn->busno != bus ||
|
|
pdn->devfn != devfn)
|
|
continue;
|
|
pdn->last_allow_rc = rc;
|
|
}
|
|
}
|
|
} else {
|
|
pdn = pci_get_pdn(edev->pdev);
|
|
physfn_pdn = pci_get_pdn(edev->physfn);
|
|
|
|
vf_pe_num = physfn_pdn->pe_num_map[edev->vf_index];
|
|
vf_pe_array[0] = cpu_to_be16(vf_pe_num);
|
|
rc = pseries_send_allow_unfreeze(physfn_pdn,
|
|
vf_pe_array, 1);
|
|
pdn->last_allow_rc = rc;
|
|
}
|
|
}
|
|
|
|
kfree(vf_pe_array);
|
|
return rc;
|
|
}
|
|
|
|
static int pseries_notify_resume(struct eeh_dev *edev)
|
|
{
|
|
if (!edev)
|
|
return -EEXIST;
|
|
|
|
if (rtas_function_token(RTAS_FN_IBM_OPEN_SRIOV_ALLOW_UNFREEZE) == RTAS_UNKNOWN_SERVICE)
|
|
return -EINVAL;
|
|
|
|
if (edev->pdev->is_physfn || edev->pdev->is_virtfn)
|
|
return pseries_call_allow_unfreeze(edev);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static struct eeh_ops pseries_eeh_ops = {
|
|
.name = "pseries",
|
|
.probe = pseries_eeh_probe,
|
|
.set_option = pseries_eeh_set_option,
|
|
.get_state = pseries_eeh_get_state,
|
|
.reset = pseries_eeh_reset,
|
|
.get_log = pseries_eeh_get_log,
|
|
.configure_bridge = pseries_eeh_configure_bridge,
|
|
.err_inject = NULL,
|
|
.read_config = pseries_eeh_read_config,
|
|
.write_config = pseries_eeh_write_config,
|
|
.next_error = NULL,
|
|
.restore_config = NULL, /* NB: configure_bridge() does this */
|
|
#ifdef CONFIG_PCI_IOV
|
|
.notify_resume = pseries_notify_resume
|
|
#endif
|
|
};
|
|
|
|
/**
|
|
* eeh_pseries_init - Register platform dependent EEH operations
|
|
*
|
|
* EEH initialization on pseries platform. This function should be
|
|
* called before any EEH related functions.
|
|
*/
|
|
static int __init eeh_pseries_init(void)
|
|
{
|
|
struct pci_controller *phb;
|
|
struct pci_dn *pdn;
|
|
int ret, config_addr;
|
|
|
|
/* figure out EEH RTAS function call tokens */
|
|
ibm_set_eeh_option = rtas_function_token(RTAS_FN_IBM_SET_EEH_OPTION);
|
|
ibm_set_slot_reset = rtas_function_token(RTAS_FN_IBM_SET_SLOT_RESET);
|
|
ibm_read_slot_reset_state2 = rtas_function_token(RTAS_FN_IBM_READ_SLOT_RESET_STATE2);
|
|
ibm_read_slot_reset_state = rtas_function_token(RTAS_FN_IBM_READ_SLOT_RESET_STATE);
|
|
ibm_slot_error_detail = rtas_function_token(RTAS_FN_IBM_SLOT_ERROR_DETAIL);
|
|
ibm_get_config_addr_info2 = rtas_function_token(RTAS_FN_IBM_GET_CONFIG_ADDR_INFO2);
|
|
ibm_get_config_addr_info = rtas_function_token(RTAS_FN_IBM_GET_CONFIG_ADDR_INFO);
|
|
ibm_configure_pe = rtas_function_token(RTAS_FN_IBM_CONFIGURE_PE);
|
|
|
|
/*
|
|
* ibm,configure-pe and ibm,configure-bridge have the same semantics,
|
|
* however ibm,configure-pe can be faster. If we can't find
|
|
* ibm,configure-pe then fall back to using ibm,configure-bridge.
|
|
*/
|
|
if (ibm_configure_pe == RTAS_UNKNOWN_SERVICE)
|
|
ibm_configure_pe = rtas_function_token(RTAS_FN_IBM_CONFIGURE_BRIDGE);
|
|
|
|
/*
|
|
* Necessary sanity check. We needn't check "get-config-addr-info"
|
|
* and its variant since the old firmware probably support address
|
|
* of domain/bus/slot/function for EEH RTAS operations.
|
|
*/
|
|
if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE ||
|
|
ibm_set_slot_reset == RTAS_UNKNOWN_SERVICE ||
|
|
(ibm_read_slot_reset_state2 == RTAS_UNKNOWN_SERVICE &&
|
|
ibm_read_slot_reset_state == RTAS_UNKNOWN_SERVICE) ||
|
|
ibm_slot_error_detail == RTAS_UNKNOWN_SERVICE ||
|
|
ibm_configure_pe == RTAS_UNKNOWN_SERVICE) {
|
|
pr_info("EEH functionality not supported\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Initialize error log size */
|
|
eeh_error_buf_size = rtas_get_error_log_max();
|
|
|
|
/* Set EEH probe mode */
|
|
eeh_add_flag(EEH_PROBE_MODE_DEVTREE | EEH_ENABLE_IO_FOR_LOG);
|
|
|
|
/* Set EEH machine dependent code */
|
|
ppc_md.pcibios_bus_add_device = pseries_pcibios_bus_add_device;
|
|
|
|
if (is_kdump_kernel() || reset_devices) {
|
|
pr_info("Issue PHB reset ...\n");
|
|
list_for_each_entry(phb, &hose_list, list_node) {
|
|
// Skip if the slot is empty
|
|
if (list_empty(&PCI_DN(phb->dn)->child_list))
|
|
continue;
|
|
|
|
pdn = list_first_entry(&PCI_DN(phb->dn)->child_list, struct pci_dn, list);
|
|
config_addr = pseries_eeh_get_pe_config_addr(pdn);
|
|
|
|
/* invalid PE config addr */
|
|
if (config_addr < 0)
|
|
continue;
|
|
|
|
pseries_eeh_phb_reset(phb, config_addr, EEH_RESET_FUNDAMENTAL);
|
|
pseries_eeh_phb_reset(phb, config_addr, EEH_RESET_DEACTIVATE);
|
|
pseries_eeh_phb_configure_bridge(phb, config_addr);
|
|
}
|
|
}
|
|
|
|
ret = eeh_init(&pseries_eeh_ops);
|
|
if (!ret)
|
|
pr_info("EEH: pSeries platform initialized\n");
|
|
else
|
|
pr_info("EEH: pSeries platform initialization failure (%d)\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
machine_arch_initcall(pseries, eeh_pseries_init);
|