linux-zen-desktop/drivers/crypto/ccree/cc_request_mgr.c

663 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (C) 2012-2019 ARM Limited (or its affiliates). */
#include <linux/kernel.h>
#include <linux/nospec.h>
#include "cc_driver.h"
#include "cc_buffer_mgr.h"
#include "cc_request_mgr.h"
#include "cc_pm.h"
#define CC_MAX_POLL_ITER 10
/* The highest descriptor count in used */
#define CC_MAX_DESC_SEQ_LEN 23
struct cc_req_mgr_handle {
/* Request manager resources */
unsigned int hw_queue_size; /* HW capability */
unsigned int min_free_hw_slots;
unsigned int max_used_sw_slots;
struct cc_crypto_req req_queue[MAX_REQUEST_QUEUE_SIZE];
u32 req_queue_head;
u32 req_queue_tail;
u32 axi_completed;
u32 q_free_slots;
/* This lock protects access to HW register
* that must be single request at a time
*/
spinlock_t hw_lock;
struct cc_hw_desc compl_desc;
u8 *dummy_comp_buff;
dma_addr_t dummy_comp_buff_dma;
/* backlog queue */
struct list_head backlog;
unsigned int bl_len;
spinlock_t bl_lock; /* protect backlog queue */
#ifdef COMP_IN_WQ
struct workqueue_struct *workq;
struct delayed_work compwork;
#else
struct tasklet_struct comptask;
#endif
};
struct cc_bl_item {
struct cc_crypto_req creq;
struct cc_hw_desc desc[CC_MAX_DESC_SEQ_LEN];
unsigned int len;
struct list_head list;
bool notif;
};
static const u32 cc_cpp_int_masks[CC_CPP_NUM_ALGS][CC_CPP_NUM_SLOTS] = {
{ BIT(CC_HOST_IRR_REE_OP_ABORTED_AES_0_INT_BIT_SHIFT),
BIT(CC_HOST_IRR_REE_OP_ABORTED_AES_1_INT_BIT_SHIFT),
BIT(CC_HOST_IRR_REE_OP_ABORTED_AES_2_INT_BIT_SHIFT),
BIT(CC_HOST_IRR_REE_OP_ABORTED_AES_3_INT_BIT_SHIFT),
BIT(CC_HOST_IRR_REE_OP_ABORTED_AES_4_INT_BIT_SHIFT),
BIT(CC_HOST_IRR_REE_OP_ABORTED_AES_5_INT_BIT_SHIFT),
BIT(CC_HOST_IRR_REE_OP_ABORTED_AES_6_INT_BIT_SHIFT),
BIT(CC_HOST_IRR_REE_OP_ABORTED_AES_7_INT_BIT_SHIFT) },
{ BIT(CC_HOST_IRR_REE_OP_ABORTED_SM_0_INT_BIT_SHIFT),
BIT(CC_HOST_IRR_REE_OP_ABORTED_SM_1_INT_BIT_SHIFT),
BIT(CC_HOST_IRR_REE_OP_ABORTED_SM_2_INT_BIT_SHIFT),
BIT(CC_HOST_IRR_REE_OP_ABORTED_SM_3_INT_BIT_SHIFT),
BIT(CC_HOST_IRR_REE_OP_ABORTED_SM_4_INT_BIT_SHIFT),
BIT(CC_HOST_IRR_REE_OP_ABORTED_SM_5_INT_BIT_SHIFT),
BIT(CC_HOST_IRR_REE_OP_ABORTED_SM_6_INT_BIT_SHIFT),
BIT(CC_HOST_IRR_REE_OP_ABORTED_SM_7_INT_BIT_SHIFT) }
};
static void comp_handler(unsigned long devarg);
#ifdef COMP_IN_WQ
static void comp_work_handler(struct work_struct *work);
#endif
static inline u32 cc_cpp_int_mask(enum cc_cpp_alg alg, int slot)
{
alg = array_index_nospec(alg, CC_CPP_NUM_ALGS);
slot = array_index_nospec(slot, CC_CPP_NUM_SLOTS);
return cc_cpp_int_masks[alg][slot];
}
void cc_req_mgr_fini(struct cc_drvdata *drvdata)
{
struct cc_req_mgr_handle *req_mgr_h = drvdata->request_mgr_handle;
struct device *dev = drvdata_to_dev(drvdata);
if (!req_mgr_h)
return; /* Not allocated */
if (req_mgr_h->dummy_comp_buff_dma) {
dma_free_coherent(dev, sizeof(u32), req_mgr_h->dummy_comp_buff,
req_mgr_h->dummy_comp_buff_dma);
}
dev_dbg(dev, "max_used_hw_slots=%d\n", (req_mgr_h->hw_queue_size -
req_mgr_h->min_free_hw_slots));
dev_dbg(dev, "max_used_sw_slots=%d\n", req_mgr_h->max_used_sw_slots);
#ifdef COMP_IN_WQ
destroy_workqueue(req_mgr_h->workq);
#else
/* Kill tasklet */
tasklet_kill(&req_mgr_h->comptask);
#endif
kfree_sensitive(req_mgr_h);
drvdata->request_mgr_handle = NULL;
}
int cc_req_mgr_init(struct cc_drvdata *drvdata)
{
struct cc_req_mgr_handle *req_mgr_h;
struct device *dev = drvdata_to_dev(drvdata);
int rc = 0;
req_mgr_h = kzalloc(sizeof(*req_mgr_h), GFP_KERNEL);
if (!req_mgr_h) {
rc = -ENOMEM;
goto req_mgr_init_err;
}
drvdata->request_mgr_handle = req_mgr_h;
spin_lock_init(&req_mgr_h->hw_lock);
spin_lock_init(&req_mgr_h->bl_lock);
INIT_LIST_HEAD(&req_mgr_h->backlog);
#ifdef COMP_IN_WQ
dev_dbg(dev, "Initializing completion workqueue\n");
req_mgr_h->workq = create_singlethread_workqueue("ccree");
if (!req_mgr_h->workq) {
dev_err(dev, "Failed creating work queue\n");
rc = -ENOMEM;
goto req_mgr_init_err;
}
INIT_DELAYED_WORK(&req_mgr_h->compwork, comp_work_handler);
#else
dev_dbg(dev, "Initializing completion tasklet\n");
tasklet_init(&req_mgr_h->comptask, comp_handler,
(unsigned long)drvdata);
#endif
req_mgr_h->hw_queue_size = cc_ioread(drvdata,
CC_REG(DSCRPTR_QUEUE_SRAM_SIZE));
dev_dbg(dev, "hw_queue_size=0x%08X\n", req_mgr_h->hw_queue_size);
if (req_mgr_h->hw_queue_size < MIN_HW_QUEUE_SIZE) {
dev_err(dev, "Invalid HW queue size = %u (Min. required is %u)\n",
req_mgr_h->hw_queue_size, MIN_HW_QUEUE_SIZE);
rc = -ENOMEM;
goto req_mgr_init_err;
}
req_mgr_h->min_free_hw_slots = req_mgr_h->hw_queue_size;
req_mgr_h->max_used_sw_slots = 0;
/* Allocate DMA word for "dummy" completion descriptor use */
req_mgr_h->dummy_comp_buff =
dma_alloc_coherent(dev, sizeof(u32),
&req_mgr_h->dummy_comp_buff_dma,
GFP_KERNEL);
if (!req_mgr_h->dummy_comp_buff) {
dev_err(dev, "Not enough memory to allocate DMA (%zu) dropped buffer\n",
sizeof(u32));
rc = -ENOMEM;
goto req_mgr_init_err;
}
/* Init. "dummy" completion descriptor */
hw_desc_init(&req_mgr_h->compl_desc);
set_din_const(&req_mgr_h->compl_desc, 0, sizeof(u32));
set_dout_dlli(&req_mgr_h->compl_desc, req_mgr_h->dummy_comp_buff_dma,
sizeof(u32), NS_BIT, 1);
set_flow_mode(&req_mgr_h->compl_desc, BYPASS);
set_queue_last_ind(drvdata, &req_mgr_h->compl_desc);
return 0;
req_mgr_init_err:
cc_req_mgr_fini(drvdata);
return rc;
}
static void enqueue_seq(struct cc_drvdata *drvdata, struct cc_hw_desc seq[],
unsigned int seq_len)
{
int i, w;
void __iomem *reg = drvdata->cc_base + CC_REG(DSCRPTR_QUEUE_WORD0);
struct device *dev = drvdata_to_dev(drvdata);
/*
* We do indeed write all 6 command words to the same
* register. The HW supports this.
*/
for (i = 0; i < seq_len; i++) {
for (w = 0; w <= 5; w++)
writel_relaxed(seq[i].word[w], reg);
if (cc_dump_desc)
dev_dbg(dev, "desc[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
i, seq[i].word[0], seq[i].word[1],
seq[i].word[2], seq[i].word[3],
seq[i].word[4], seq[i].word[5]);
}
}
/**
* request_mgr_complete() - Completion will take place if and only if user
* requested completion by cc_send_sync_request().
*
* @dev: Device pointer
* @dx_compl_h: The completion event to signal
* @dummy: unused error code
*/
static void request_mgr_complete(struct device *dev, void *dx_compl_h,
int dummy)
{
struct completion *this_compl = dx_compl_h;
complete(this_compl);
}
static int cc_queues_status(struct cc_drvdata *drvdata,
struct cc_req_mgr_handle *req_mgr_h,
unsigned int total_seq_len)
{
unsigned long poll_queue;
struct device *dev = drvdata_to_dev(drvdata);
/* SW queue is checked only once as it will not
* be changed during the poll because the spinlock_bh
* is held by the thread
*/
if (((req_mgr_h->req_queue_head + 1) & (MAX_REQUEST_QUEUE_SIZE - 1)) ==
req_mgr_h->req_queue_tail) {
dev_err(dev, "SW FIFO is full. req_queue_head=%d sw_fifo_len=%d\n",
req_mgr_h->req_queue_head, MAX_REQUEST_QUEUE_SIZE);
return -ENOSPC;
}
if (req_mgr_h->q_free_slots >= total_seq_len)
return 0;
/* Wait for space in HW queue. Poll constant num of iterations. */
for (poll_queue = 0; poll_queue < CC_MAX_POLL_ITER ; poll_queue++) {
req_mgr_h->q_free_slots =
cc_ioread(drvdata, CC_REG(DSCRPTR_QUEUE_CONTENT));
if (req_mgr_h->q_free_slots < req_mgr_h->min_free_hw_slots)
req_mgr_h->min_free_hw_slots = req_mgr_h->q_free_slots;
if (req_mgr_h->q_free_slots >= total_seq_len) {
/* If there is enough place return */
return 0;
}
dev_dbg(dev, "HW FIFO is full. q_free_slots=%d total_seq_len=%d\n",
req_mgr_h->q_free_slots, total_seq_len);
}
/* No room in the HW queue try again later */
dev_dbg(dev, "HW FIFO full, timeout. req_queue_head=%d sw_fifo_len=%d q_free_slots=%d total_seq_len=%d\n",
req_mgr_h->req_queue_head, MAX_REQUEST_QUEUE_SIZE,
req_mgr_h->q_free_slots, total_seq_len);
return -ENOSPC;
}
/**
* cc_do_send_request() - Enqueue caller request to crypto hardware.
* Need to be called with HW lock held and PM running
*
* @drvdata: Associated device driver context
* @cc_req: The request to enqueue
* @desc: The crypto sequence
* @len: The crypto sequence length
* @add_comp: If "true": add an artificial dout DMA to mark completion
*
*/
static void cc_do_send_request(struct cc_drvdata *drvdata,
struct cc_crypto_req *cc_req,
struct cc_hw_desc *desc, unsigned int len,
bool add_comp)
{
struct cc_req_mgr_handle *req_mgr_h = drvdata->request_mgr_handle;
unsigned int used_sw_slots;
unsigned int total_seq_len = len; /*initial sequence length*/
struct device *dev = drvdata_to_dev(drvdata);
used_sw_slots = ((req_mgr_h->req_queue_head -
req_mgr_h->req_queue_tail) &
(MAX_REQUEST_QUEUE_SIZE - 1));
if (used_sw_slots > req_mgr_h->max_used_sw_slots)
req_mgr_h->max_used_sw_slots = used_sw_slots;
/* Enqueue request - must be locked with HW lock*/
req_mgr_h->req_queue[req_mgr_h->req_queue_head] = *cc_req;
req_mgr_h->req_queue_head = (req_mgr_h->req_queue_head + 1) &
(MAX_REQUEST_QUEUE_SIZE - 1);
dev_dbg(dev, "Enqueue request head=%u\n", req_mgr_h->req_queue_head);
/*
* We are about to push command to the HW via the command registers
* that may reference host memory. We need to issue a memory barrier
* to make sure there are no outstanding memory writes
*/
wmb();
/* STAT_PHASE_4: Push sequence */
enqueue_seq(drvdata, desc, len);
if (add_comp) {
enqueue_seq(drvdata, &req_mgr_h->compl_desc, 1);
total_seq_len++;
}
if (req_mgr_h->q_free_slots < total_seq_len) {
/* This situation should never occur. Maybe indicating problem
* with resuming power. Set the free slot count to 0 and hope
* for the best.
*/
dev_err(dev, "HW free slot count mismatch.");
req_mgr_h->q_free_slots = 0;
} else {
/* Update the free slots in HW queue */
req_mgr_h->q_free_slots -= total_seq_len;
}
}
static void cc_enqueue_backlog(struct cc_drvdata *drvdata,
struct cc_bl_item *bli)
{
struct cc_req_mgr_handle *mgr = drvdata->request_mgr_handle;
struct device *dev = drvdata_to_dev(drvdata);
spin_lock_bh(&mgr->bl_lock);
list_add_tail(&bli->list, &mgr->backlog);
++mgr->bl_len;
dev_dbg(dev, "+++bl len: %d\n", mgr->bl_len);
spin_unlock_bh(&mgr->bl_lock);
tasklet_schedule(&mgr->comptask);
}
static void cc_proc_backlog(struct cc_drvdata *drvdata)
{
struct cc_req_mgr_handle *mgr = drvdata->request_mgr_handle;
struct cc_bl_item *bli;
struct cc_crypto_req *creq;
void *req;
struct device *dev = drvdata_to_dev(drvdata);
int rc;
spin_lock(&mgr->bl_lock);
while (mgr->bl_len) {
bli = list_first_entry(&mgr->backlog, struct cc_bl_item, list);
dev_dbg(dev, "---bl len: %d\n", mgr->bl_len);
spin_unlock(&mgr->bl_lock);
creq = &bli->creq;
req = creq->user_arg;
/*
* Notify the request we're moving out of the backlog
* but only if we haven't done so already.
*/
if (!bli->notif) {
creq->user_cb(dev, req, -EINPROGRESS);
bli->notif = true;
}
spin_lock(&mgr->hw_lock);
rc = cc_queues_status(drvdata, mgr, bli->len);
if (rc) {
/*
* There is still no room in the FIFO for
* this request. Bail out. We'll return here
* on the next completion irq.
*/
spin_unlock(&mgr->hw_lock);
return;
}
cc_do_send_request(drvdata, &bli->creq, bli->desc, bli->len,
false);
spin_unlock(&mgr->hw_lock);
/* Remove ourselves from the backlog list */
spin_lock(&mgr->bl_lock);
list_del(&bli->list);
--mgr->bl_len;
kfree(bli);
}
spin_unlock(&mgr->bl_lock);
}
int cc_send_request(struct cc_drvdata *drvdata, struct cc_crypto_req *cc_req,
struct cc_hw_desc *desc, unsigned int len,
struct crypto_async_request *req)
{
int rc;
struct cc_req_mgr_handle *mgr = drvdata->request_mgr_handle;
struct device *dev = drvdata_to_dev(drvdata);
bool backlog_ok = req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG;
gfp_t flags = cc_gfp_flags(req);
struct cc_bl_item *bli;
rc = cc_pm_get(dev);
if (rc) {
dev_err(dev, "cc_pm_get returned %x\n", rc);
return rc;
}
spin_lock_bh(&mgr->hw_lock);
rc = cc_queues_status(drvdata, mgr, len);
#ifdef CC_DEBUG_FORCE_BACKLOG
if (backlog_ok)
rc = -ENOSPC;
#endif /* CC_DEBUG_FORCE_BACKLOG */
if (rc == -ENOSPC && backlog_ok) {
spin_unlock_bh(&mgr->hw_lock);
bli = kmalloc(sizeof(*bli), flags);
if (!bli) {
cc_pm_put_suspend(dev);
return -ENOMEM;
}
memcpy(&bli->creq, cc_req, sizeof(*cc_req));
memcpy(&bli->desc, desc, len * sizeof(*desc));
bli->len = len;
bli->notif = false;
cc_enqueue_backlog(drvdata, bli);
return -EBUSY;
}
if (!rc) {
cc_do_send_request(drvdata, cc_req, desc, len, false);
rc = -EINPROGRESS;
}
spin_unlock_bh(&mgr->hw_lock);
return rc;
}
int cc_send_sync_request(struct cc_drvdata *drvdata,
struct cc_crypto_req *cc_req, struct cc_hw_desc *desc,
unsigned int len)
{
int rc;
struct device *dev = drvdata_to_dev(drvdata);
struct cc_req_mgr_handle *mgr = drvdata->request_mgr_handle;
init_completion(&cc_req->seq_compl);
cc_req->user_cb = request_mgr_complete;
cc_req->user_arg = &cc_req->seq_compl;
rc = cc_pm_get(dev);
if (rc) {
dev_err(dev, "cc_pm_get returned %x\n", rc);
return rc;
}
while (true) {
spin_lock_bh(&mgr->hw_lock);
rc = cc_queues_status(drvdata, mgr, len + 1);
if (!rc)
break;
spin_unlock_bh(&mgr->hw_lock);
wait_for_completion_interruptible(&drvdata->hw_queue_avail);
reinit_completion(&drvdata->hw_queue_avail);
}
cc_do_send_request(drvdata, cc_req, desc, len, true);
spin_unlock_bh(&mgr->hw_lock);
wait_for_completion(&cc_req->seq_compl);
return 0;
}
/**
* send_request_init() - Enqueue caller request to crypto hardware during init
* process.
* Assume this function is not called in the middle of a flow,
* since we set QUEUE_LAST_IND flag in the last descriptor.
*
* @drvdata: Associated device driver context
* @desc: The crypto sequence
* @len: The crypto sequence length
*
* Return:
* Returns "0" upon success
*/
int send_request_init(struct cc_drvdata *drvdata, struct cc_hw_desc *desc,
unsigned int len)
{
struct cc_req_mgr_handle *req_mgr_h = drvdata->request_mgr_handle;
unsigned int total_seq_len = len; /*initial sequence length*/
int rc = 0;
/* Wait for space in HW and SW FIFO. Poll for as much as FIFO_TIMEOUT.
*/
rc = cc_queues_status(drvdata, req_mgr_h, total_seq_len);
if (rc)
return rc;
set_queue_last_ind(drvdata, &desc[(len - 1)]);
/*
* We are about to push command to the HW via the command registers
* that may reference host memory. We need to issue a memory barrier
* to make sure there are no outstanding memory writes
*/
wmb();
enqueue_seq(drvdata, desc, len);
/* Update the free slots in HW queue */
req_mgr_h->q_free_slots =
cc_ioread(drvdata, CC_REG(DSCRPTR_QUEUE_CONTENT));
return 0;
}
void complete_request(struct cc_drvdata *drvdata)
{
struct cc_req_mgr_handle *request_mgr_handle =
drvdata->request_mgr_handle;
complete(&drvdata->hw_queue_avail);
#ifdef COMP_IN_WQ
queue_delayed_work(request_mgr_handle->workq,
&request_mgr_handle->compwork, 0);
#else
tasklet_schedule(&request_mgr_handle->comptask);
#endif
}
#ifdef COMP_IN_WQ
static void comp_work_handler(struct work_struct *work)
{
struct cc_drvdata *drvdata =
container_of(work, struct cc_drvdata, compwork.work);
comp_handler((unsigned long)drvdata);
}
#endif
static void proc_completions(struct cc_drvdata *drvdata)
{
struct cc_crypto_req *cc_req;
struct device *dev = drvdata_to_dev(drvdata);
struct cc_req_mgr_handle *request_mgr_handle =
drvdata->request_mgr_handle;
unsigned int *tail = &request_mgr_handle->req_queue_tail;
unsigned int *head = &request_mgr_handle->req_queue_head;
int rc;
u32 mask;
while (request_mgr_handle->axi_completed) {
request_mgr_handle->axi_completed--;
/* Dequeue request */
if (*head == *tail) {
/* We are supposed to handle a completion but our
* queue is empty. This is not normal. Return and
* hope for the best.
*/
dev_err(dev, "Request queue is empty head == tail %u\n",
*head);
break;
}
cc_req = &request_mgr_handle->req_queue[*tail];
if (cc_req->cpp.is_cpp) {
dev_dbg(dev, "CPP request completion slot: %d alg:%d\n",
cc_req->cpp.slot, cc_req->cpp.alg);
mask = cc_cpp_int_mask(cc_req->cpp.alg,
cc_req->cpp.slot);
rc = (drvdata->irq & mask ? -EPERM : 0);
dev_dbg(dev, "Got mask: %x irq: %x rc: %d\n", mask,
drvdata->irq, rc);
} else {
dev_dbg(dev, "None CPP request completion\n");
rc = 0;
}
if (cc_req->user_cb)
cc_req->user_cb(dev, cc_req->user_arg, rc);
*tail = (*tail + 1) & (MAX_REQUEST_QUEUE_SIZE - 1);
dev_dbg(dev, "Dequeue request tail=%u\n", *tail);
dev_dbg(dev, "Request completed. axi_completed=%d\n",
request_mgr_handle->axi_completed);
cc_pm_put_suspend(dev);
}
}
static inline u32 cc_axi_comp_count(struct cc_drvdata *drvdata)
{
return FIELD_GET(AXIM_MON_COMP_VALUE,
cc_ioread(drvdata, drvdata->axim_mon_offset));
}
/* Deferred service handler, run as interrupt-fired tasklet */
static void comp_handler(unsigned long devarg)
{
struct cc_drvdata *drvdata = (struct cc_drvdata *)devarg;
struct cc_req_mgr_handle *request_mgr_handle =
drvdata->request_mgr_handle;
struct device *dev = drvdata_to_dev(drvdata);
u32 irq;
dev_dbg(dev, "Completion handler called!\n");
irq = (drvdata->irq & drvdata->comp_mask);
/* To avoid the interrupt from firing as we unmask it,
* we clear it now
*/
cc_iowrite(drvdata, CC_REG(HOST_ICR), irq);
/* Avoid race with above clear: Test completion counter once more */
request_mgr_handle->axi_completed += cc_axi_comp_count(drvdata);
dev_dbg(dev, "AXI completion after updated: %d\n",
request_mgr_handle->axi_completed);
while (request_mgr_handle->axi_completed) {
do {
drvdata->irq |= cc_ioread(drvdata, CC_REG(HOST_IRR));
irq = (drvdata->irq & drvdata->comp_mask);
proc_completions(drvdata);
/* At this point (after proc_completions()),
* request_mgr_handle->axi_completed is 0.
*/
request_mgr_handle->axi_completed +=
cc_axi_comp_count(drvdata);
} while (request_mgr_handle->axi_completed > 0);
cc_iowrite(drvdata, CC_REG(HOST_ICR), irq);
request_mgr_handle->axi_completed += cc_axi_comp_count(drvdata);
}
/* after verifying that there is nothing to do,
* unmask AXI completion interrupt
*/
cc_iowrite(drvdata, CC_REG(HOST_IMR),
cc_ioread(drvdata, CC_REG(HOST_IMR)) & ~drvdata->comp_mask);
cc_proc_backlog(drvdata);
dev_dbg(dev, "Comp. handler done.\n");
}