linux-zen-desktop/drivers/crypto/qat/qat_common/adf_gen2_pfvf.c

400 lines
12 KiB
C

// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only)
/* Copyright(c) 2021 Intel Corporation */
#include <linux/delay.h>
#include <linux/iopoll.h>
#include <linux/mutex.h>
#include <linux/types.h>
#include "adf_accel_devices.h"
#include "adf_common_drv.h"
#include "adf_gen2_pfvf.h"
#include "adf_pfvf_msg.h"
#include "adf_pfvf_pf_proto.h"
#include "adf_pfvf_vf_proto.h"
#include "adf_pfvf_utils.h"
/* VF2PF interrupts */
#define ADF_GEN2_VF_MSK 0xFFFF
#define ADF_GEN2_ERR_REG_VF2PF(vf_src) (((vf_src) & 0x01FFFE00) >> 9)
#define ADF_GEN2_ERR_MSK_VF2PF(vf_mask) (((vf_mask) & ADF_GEN2_VF_MSK) << 9)
#define ADF_GEN2_PF_PF2VF_OFFSET(i) (0x3A000 + 0x280 + ((i) * 0x04))
#define ADF_GEN2_VF_PF2VF_OFFSET 0x200
#define ADF_GEN2_CSR_IN_USE 0x6AC2
#define ADF_GEN2_CSR_IN_USE_MASK 0xFFFE
enum gen2_csr_pos {
ADF_GEN2_CSR_PF2VF_OFFSET = 0,
ADF_GEN2_CSR_VF2PF_OFFSET = 16,
};
#define ADF_PFVF_GEN2_MSGTYPE_SHIFT 2
#define ADF_PFVF_GEN2_MSGTYPE_MASK 0x0F
#define ADF_PFVF_GEN2_MSGDATA_SHIFT 6
#define ADF_PFVF_GEN2_MSGDATA_MASK 0x3FF
static const struct pfvf_csr_format csr_gen2_fmt = {
{ ADF_PFVF_GEN2_MSGTYPE_SHIFT, ADF_PFVF_GEN2_MSGTYPE_MASK },
{ ADF_PFVF_GEN2_MSGDATA_SHIFT, ADF_PFVF_GEN2_MSGDATA_MASK },
};
#define ADF_PFVF_MSG_RETRY_DELAY 5
#define ADF_PFVF_MSG_MAX_RETRIES 3
static u32 adf_gen2_pf_get_pfvf_offset(u32 i)
{
return ADF_GEN2_PF_PF2VF_OFFSET(i);
}
static u32 adf_gen2_vf_get_pfvf_offset(u32 i)
{
return ADF_GEN2_VF_PF2VF_OFFSET;
}
static void adf_gen2_enable_vf2pf_interrupts(void __iomem *pmisc_addr, u32 vf_mask)
{
/* Enable VF2PF Messaging Ints - VFs 0 through 15 per vf_mask[15:0] */
if (vf_mask & ADF_GEN2_VF_MSK) {
u32 val = ADF_CSR_RD(pmisc_addr, ADF_GEN2_ERRMSK3)
& ~ADF_GEN2_ERR_MSK_VF2PF(vf_mask);
ADF_CSR_WR(pmisc_addr, ADF_GEN2_ERRMSK3, val);
}
}
static void adf_gen2_disable_all_vf2pf_interrupts(void __iomem *pmisc_addr)
{
/* Disable VF2PF interrupts for VFs 0 through 15 per vf_mask[15:0] */
u32 val = ADF_CSR_RD(pmisc_addr, ADF_GEN2_ERRMSK3)
| ADF_GEN2_ERR_MSK_VF2PF(ADF_GEN2_VF_MSK);
ADF_CSR_WR(pmisc_addr, ADF_GEN2_ERRMSK3, val);
}
static u32 adf_gen2_disable_pending_vf2pf_interrupts(void __iomem *pmisc_addr)
{
u32 sources, disabled, pending;
u32 errsou3, errmsk3;
/* Get the interrupt sources triggered by VFs */
errsou3 = ADF_CSR_RD(pmisc_addr, ADF_GEN2_ERRSOU3);
sources = ADF_GEN2_ERR_REG_VF2PF(errsou3);
if (!sources)
return 0;
/* Get the already disabled interrupts */
errmsk3 = ADF_CSR_RD(pmisc_addr, ADF_GEN2_ERRMSK3);
disabled = ADF_GEN2_ERR_REG_VF2PF(errmsk3);
pending = sources & ~disabled;
if (!pending)
return 0;
/* Due to HW limitations, when disabling the interrupts, we can't
* just disable the requested sources, as this would lead to missed
* interrupts if ERRSOU3 changes just before writing to ERRMSK3.
* To work around it, disable all and re-enable only the sources that
* are not in vf_mask and were not already disabled. Re-enabling will
* trigger a new interrupt for the sources that have changed in the
* meantime, if any.
*/
errmsk3 |= ADF_GEN2_ERR_MSK_VF2PF(ADF_GEN2_VF_MSK);
ADF_CSR_WR(pmisc_addr, ADF_GEN2_ERRMSK3, errmsk3);
errmsk3 &= ADF_GEN2_ERR_MSK_VF2PF(sources | disabled);
ADF_CSR_WR(pmisc_addr, ADF_GEN2_ERRMSK3, errmsk3);
/* Return the sources of the (new) interrupt(s) */
return pending;
}
static u32 gen2_csr_get_int_bit(enum gen2_csr_pos offset)
{
return ADF_PFVF_INT << offset;
}
static u32 gen2_csr_msg_to_position(u32 csr_msg, enum gen2_csr_pos offset)
{
return (csr_msg & 0xFFFF) << offset;
}
static u32 gen2_csr_msg_from_position(u32 csr_val, enum gen2_csr_pos offset)
{
return (csr_val >> offset) & 0xFFFF;
}
static bool gen2_csr_is_in_use(u32 msg, enum gen2_csr_pos offset)
{
return ((msg >> offset) & ADF_GEN2_CSR_IN_USE_MASK) == ADF_GEN2_CSR_IN_USE;
}
static void gen2_csr_clear_in_use(u32 *msg, enum gen2_csr_pos offset)
{
*msg &= ~(ADF_GEN2_CSR_IN_USE_MASK << offset);
}
static void gen2_csr_set_in_use(u32 *msg, enum gen2_csr_pos offset)
{
*msg |= (ADF_GEN2_CSR_IN_USE << offset);
}
static bool is_legacy_user_pfvf_message(u32 msg)
{
return !(msg & ADF_PFVF_MSGORIGIN_SYSTEM);
}
static bool is_pf2vf_notification(u8 msg_type)
{
switch (msg_type) {
case ADF_PF2VF_MSGTYPE_RESTARTING:
return true;
default:
return false;
}
}
static bool is_vf2pf_notification(u8 msg_type)
{
switch (msg_type) {
case ADF_VF2PF_MSGTYPE_INIT:
case ADF_VF2PF_MSGTYPE_SHUTDOWN:
return true;
default:
return false;
}
}
struct pfvf_gen2_params {
u32 pfvf_offset;
struct mutex *csr_lock; /* lock preventing concurrent access of CSR */
enum gen2_csr_pos local_offset;
enum gen2_csr_pos remote_offset;
bool (*is_notification_message)(u8 msg_type);
u8 compat_ver;
};
static int adf_gen2_pfvf_send(struct adf_accel_dev *accel_dev,
struct pfvf_message msg,
struct pfvf_gen2_params *params)
{
void __iomem *pmisc_addr = adf_get_pmisc_base(accel_dev);
enum gen2_csr_pos remote_offset = params->remote_offset;
enum gen2_csr_pos local_offset = params->local_offset;
unsigned int retries = ADF_PFVF_MSG_MAX_RETRIES;
struct mutex *lock = params->csr_lock;
u32 pfvf_offset = params->pfvf_offset;
u32 int_bit;
u32 csr_val;
u32 csr_msg;
int ret;
/* Gen2 messages, both PF->VF and VF->PF, are all 16 bits long. This
* allows us to build and read messages as if they where all 0 based.
* However, send and receive are in a single shared 32 bits register,
* so we need to shift and/or mask the message half before decoding
* it and after encoding it. Which one to shift depends on the
* direction.
*/
int_bit = gen2_csr_get_int_bit(local_offset);
csr_msg = adf_pfvf_csr_msg_of(accel_dev, msg, &csr_gen2_fmt);
if (unlikely(!csr_msg))
return -EINVAL;
/* Prepare for CSR format, shifting the wire message in place and
* setting the in use pattern
*/
csr_msg = gen2_csr_msg_to_position(csr_msg, local_offset);
gen2_csr_set_in_use(&csr_msg, remote_offset);
mutex_lock(lock);
start:
/* Check if the PFVF CSR is in use by remote function */
csr_val = ADF_CSR_RD(pmisc_addr, pfvf_offset);
if (gen2_csr_is_in_use(csr_val, local_offset)) {
dev_dbg(&GET_DEV(accel_dev),
"PFVF CSR in use by remote function\n");
goto retry;
}
/* Attempt to get ownership of the PFVF CSR */
ADF_CSR_WR(pmisc_addr, pfvf_offset, csr_msg | int_bit);
/* Wait for confirmation from remote func it received the message */
ret = read_poll_timeout(ADF_CSR_RD, csr_val, !(csr_val & int_bit),
ADF_PFVF_MSG_ACK_DELAY_US,
ADF_PFVF_MSG_ACK_MAX_DELAY_US,
true, pmisc_addr, pfvf_offset);
if (unlikely(ret < 0)) {
dev_dbg(&GET_DEV(accel_dev), "ACK not received from remote\n");
csr_val &= ~int_bit;
}
/* For fire-and-forget notifications, the receiver does not clear
* the in-use pattern. This is used to detect collisions.
*/
if (params->is_notification_message(msg.type) && csr_val != csr_msg) {
/* Collision must have overwritten the message */
dev_err(&GET_DEV(accel_dev),
"Collision on notification - PFVF CSR overwritten by remote function\n");
goto retry;
}
/* If the far side did not clear the in-use pattern it is either
* 1) Notification - message left intact to detect collision
* 2) Older protocol (compatibility version < 3) on the far side
* where the sender is responsible for clearing the in-use
* pattern after the received has acknowledged receipt.
* In either case, clear the in-use pattern now.
*/
if (gen2_csr_is_in_use(csr_val, remote_offset)) {
gen2_csr_clear_in_use(&csr_val, remote_offset);
ADF_CSR_WR(pmisc_addr, pfvf_offset, csr_val);
}
out:
mutex_unlock(lock);
return ret;
retry:
if (--retries) {
msleep(ADF_PFVF_MSG_RETRY_DELAY);
goto start;
} else {
ret = -EBUSY;
goto out;
}
}
static struct pfvf_message adf_gen2_pfvf_recv(struct adf_accel_dev *accel_dev,
struct pfvf_gen2_params *params)
{
void __iomem *pmisc_addr = adf_get_pmisc_base(accel_dev);
enum gen2_csr_pos remote_offset = params->remote_offset;
enum gen2_csr_pos local_offset = params->local_offset;
u32 pfvf_offset = params->pfvf_offset;
struct pfvf_message msg = { 0 };
u32 int_bit;
u32 csr_val;
u16 csr_msg;
int_bit = gen2_csr_get_int_bit(local_offset);
/* Read message */
csr_val = ADF_CSR_RD(pmisc_addr, pfvf_offset);
if (!(csr_val & int_bit)) {
dev_info(&GET_DEV(accel_dev),
"Spurious PFVF interrupt, msg 0x%.8x. Ignored\n", csr_val);
return msg;
}
/* Extract the message from the CSR */
csr_msg = gen2_csr_msg_from_position(csr_val, local_offset);
/* Ignore legacy non-system (non-kernel) messages */
if (unlikely(is_legacy_user_pfvf_message(csr_msg))) {
dev_dbg(&GET_DEV(accel_dev),
"Ignored non-system message (0x%.8x);\n", csr_val);
/* Because this must be a legacy message, the far side
* must clear the in-use pattern, so don't do it.
*/
return msg;
}
/* Return the pfvf_message format */
msg = adf_pfvf_message_of(accel_dev, csr_msg, &csr_gen2_fmt);
/* The in-use pattern is not cleared for notifications (so that
* it can be used for collision detection) or older implementations
*/
if (params->compat_ver >= ADF_PFVF_COMPAT_FAST_ACK &&
!params->is_notification_message(msg.type))
gen2_csr_clear_in_use(&csr_val, remote_offset);
/* To ACK, clear the INT bit */
csr_val &= ~int_bit;
ADF_CSR_WR(pmisc_addr, pfvf_offset, csr_val);
return msg;
}
static int adf_gen2_pf2vf_send(struct adf_accel_dev *accel_dev, struct pfvf_message msg,
u32 pfvf_offset, struct mutex *csr_lock)
{
struct pfvf_gen2_params params = {
.csr_lock = csr_lock,
.pfvf_offset = pfvf_offset,
.local_offset = ADF_GEN2_CSR_PF2VF_OFFSET,
.remote_offset = ADF_GEN2_CSR_VF2PF_OFFSET,
.is_notification_message = is_pf2vf_notification,
};
return adf_gen2_pfvf_send(accel_dev, msg, &params);
}
static int adf_gen2_vf2pf_send(struct adf_accel_dev *accel_dev, struct pfvf_message msg,
u32 pfvf_offset, struct mutex *csr_lock)
{
struct pfvf_gen2_params params = {
.csr_lock = csr_lock,
.pfvf_offset = pfvf_offset,
.local_offset = ADF_GEN2_CSR_VF2PF_OFFSET,
.remote_offset = ADF_GEN2_CSR_PF2VF_OFFSET,
.is_notification_message = is_vf2pf_notification,
};
return adf_gen2_pfvf_send(accel_dev, msg, &params);
}
static struct pfvf_message adf_gen2_pf2vf_recv(struct adf_accel_dev *accel_dev,
u32 pfvf_offset, u8 compat_ver)
{
struct pfvf_gen2_params params = {
.pfvf_offset = pfvf_offset,
.local_offset = ADF_GEN2_CSR_PF2VF_OFFSET,
.remote_offset = ADF_GEN2_CSR_VF2PF_OFFSET,
.is_notification_message = is_pf2vf_notification,
.compat_ver = compat_ver,
};
return adf_gen2_pfvf_recv(accel_dev, &params);
}
static struct pfvf_message adf_gen2_vf2pf_recv(struct adf_accel_dev *accel_dev,
u32 pfvf_offset, u8 compat_ver)
{
struct pfvf_gen2_params params = {
.pfvf_offset = pfvf_offset,
.local_offset = ADF_GEN2_CSR_VF2PF_OFFSET,
.remote_offset = ADF_GEN2_CSR_PF2VF_OFFSET,
.is_notification_message = is_vf2pf_notification,
.compat_ver = compat_ver,
};
return adf_gen2_pfvf_recv(accel_dev, &params);
}
void adf_gen2_init_pf_pfvf_ops(struct adf_pfvf_ops *pfvf_ops)
{
pfvf_ops->enable_comms = adf_enable_pf2vf_comms;
pfvf_ops->get_pf2vf_offset = adf_gen2_pf_get_pfvf_offset;
pfvf_ops->get_vf2pf_offset = adf_gen2_pf_get_pfvf_offset;
pfvf_ops->enable_vf2pf_interrupts = adf_gen2_enable_vf2pf_interrupts;
pfvf_ops->disable_all_vf2pf_interrupts = adf_gen2_disable_all_vf2pf_interrupts;
pfvf_ops->disable_pending_vf2pf_interrupts = adf_gen2_disable_pending_vf2pf_interrupts;
pfvf_ops->send_msg = adf_gen2_pf2vf_send;
pfvf_ops->recv_msg = adf_gen2_vf2pf_recv;
}
EXPORT_SYMBOL_GPL(adf_gen2_init_pf_pfvf_ops);
void adf_gen2_init_vf_pfvf_ops(struct adf_pfvf_ops *pfvf_ops)
{
pfvf_ops->enable_comms = adf_enable_vf2pf_comms;
pfvf_ops->get_pf2vf_offset = adf_gen2_vf_get_pfvf_offset;
pfvf_ops->get_vf2pf_offset = adf_gen2_vf_get_pfvf_offset;
pfvf_ops->send_msg = adf_gen2_vf2pf_send;
pfvf_ops->recv_msg = adf_gen2_pf2vf_recv;
}
EXPORT_SYMBOL_GPL(adf_gen2_init_vf_pfvf_ops);