656 lines
18 KiB
C
656 lines
18 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright(c) 2019 Intel Corporation. All rights rsvd. */
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/io-64-nonatomic-lo-hi.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/iommu.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <uapi/linux/idxd.h>
|
|
#include "../dmaengine.h"
|
|
#include "idxd.h"
|
|
#include "registers.h"
|
|
|
|
enum irq_work_type {
|
|
IRQ_WORK_NORMAL = 0,
|
|
IRQ_WORK_PROCESS_FAULT,
|
|
};
|
|
|
|
struct idxd_resubmit {
|
|
struct work_struct work;
|
|
struct idxd_desc *desc;
|
|
};
|
|
|
|
struct idxd_int_handle_revoke {
|
|
struct work_struct work;
|
|
struct idxd_device *idxd;
|
|
};
|
|
|
|
static void idxd_device_reinit(struct work_struct *work)
|
|
{
|
|
struct idxd_device *idxd = container_of(work, struct idxd_device, work);
|
|
struct device *dev = &idxd->pdev->dev;
|
|
int rc, i;
|
|
|
|
idxd_device_reset(idxd);
|
|
rc = idxd_device_config(idxd);
|
|
if (rc < 0)
|
|
goto out;
|
|
|
|
rc = idxd_device_enable(idxd);
|
|
if (rc < 0)
|
|
goto out;
|
|
|
|
for (i = 0; i < idxd->max_wqs; i++) {
|
|
if (test_bit(i, idxd->wq_enable_map)) {
|
|
struct idxd_wq *wq = idxd->wqs[i];
|
|
|
|
rc = idxd_wq_enable(wq);
|
|
if (rc < 0) {
|
|
clear_bit(i, idxd->wq_enable_map);
|
|
dev_warn(dev, "Unable to re-enable wq %s\n",
|
|
dev_name(wq_confdev(wq)));
|
|
}
|
|
}
|
|
}
|
|
|
|
return;
|
|
|
|
out:
|
|
idxd_device_clear_state(idxd);
|
|
}
|
|
|
|
/*
|
|
* The function sends a drain descriptor for the interrupt handle. The drain ensures
|
|
* all descriptors with this interrupt handle is flushed and the interrupt
|
|
* will allow the cleanup of the outstanding descriptors.
|
|
*/
|
|
static void idxd_int_handle_revoke_drain(struct idxd_irq_entry *ie)
|
|
{
|
|
struct idxd_wq *wq = ie_to_wq(ie);
|
|
struct idxd_device *idxd = wq->idxd;
|
|
struct device *dev = &idxd->pdev->dev;
|
|
struct dsa_hw_desc desc = {};
|
|
void __iomem *portal;
|
|
int rc;
|
|
|
|
/* Issue a simple drain operation with interrupt but no completion record */
|
|
desc.flags = IDXD_OP_FLAG_RCI;
|
|
desc.opcode = DSA_OPCODE_DRAIN;
|
|
desc.priv = 1;
|
|
|
|
if (ie->pasid != IOMMU_PASID_INVALID)
|
|
desc.pasid = ie->pasid;
|
|
desc.int_handle = ie->int_handle;
|
|
portal = idxd_wq_portal_addr(wq);
|
|
|
|
/*
|
|
* The wmb() makes sure that the descriptor is all there before we
|
|
* issue.
|
|
*/
|
|
wmb();
|
|
if (wq_dedicated(wq)) {
|
|
iosubmit_cmds512(portal, &desc, 1);
|
|
} else {
|
|
rc = idxd_enqcmds(wq, portal, &desc);
|
|
/* This should not fail unless hardware failed. */
|
|
if (rc < 0)
|
|
dev_warn(dev, "Failed to submit drain desc on wq %d\n", wq->id);
|
|
}
|
|
}
|
|
|
|
static void idxd_abort_invalid_int_handle_descs(struct idxd_irq_entry *ie)
|
|
{
|
|
LIST_HEAD(flist);
|
|
struct idxd_desc *d, *t;
|
|
struct llist_node *head;
|
|
|
|
spin_lock(&ie->list_lock);
|
|
head = llist_del_all(&ie->pending_llist);
|
|
if (head) {
|
|
llist_for_each_entry_safe(d, t, head, llnode)
|
|
list_add_tail(&d->list, &ie->work_list);
|
|
}
|
|
|
|
list_for_each_entry_safe(d, t, &ie->work_list, list) {
|
|
if (d->completion->status == DSA_COMP_INT_HANDLE_INVAL)
|
|
list_move_tail(&d->list, &flist);
|
|
}
|
|
spin_unlock(&ie->list_lock);
|
|
|
|
list_for_each_entry_safe(d, t, &flist, list) {
|
|
list_del(&d->list);
|
|
idxd_dma_complete_txd(d, IDXD_COMPLETE_ABORT, true);
|
|
}
|
|
}
|
|
|
|
static void idxd_int_handle_revoke(struct work_struct *work)
|
|
{
|
|
struct idxd_int_handle_revoke *revoke =
|
|
container_of(work, struct idxd_int_handle_revoke, work);
|
|
struct idxd_device *idxd = revoke->idxd;
|
|
struct pci_dev *pdev = idxd->pdev;
|
|
struct device *dev = &pdev->dev;
|
|
int i, new_handle, rc;
|
|
|
|
if (!idxd->request_int_handles) {
|
|
kfree(revoke);
|
|
dev_warn(dev, "Unexpected int handle refresh interrupt.\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The loop attempts to acquire new interrupt handle for all interrupt
|
|
* vectors that supports a handle. If a new interrupt handle is acquired and the
|
|
* wq is kernel type, the driver will kill the percpu_ref to pause all
|
|
* ongoing descriptor submissions. The interrupt handle is then changed.
|
|
* After change, the percpu_ref is revived and all the pending submissions
|
|
* are woken to try again. A drain is sent to for the interrupt handle
|
|
* at the end to make sure all invalid int handle descriptors are processed.
|
|
*/
|
|
for (i = 1; i < idxd->irq_cnt; i++) {
|
|
struct idxd_irq_entry *ie = idxd_get_ie(idxd, i);
|
|
struct idxd_wq *wq = ie_to_wq(ie);
|
|
|
|
if (ie->int_handle == INVALID_INT_HANDLE)
|
|
continue;
|
|
|
|
rc = idxd_device_request_int_handle(idxd, i, &new_handle, IDXD_IRQ_MSIX);
|
|
if (rc < 0) {
|
|
dev_warn(dev, "get int handle %d failed: %d\n", i, rc);
|
|
/*
|
|
* Failed to acquire new interrupt handle. Kill the WQ
|
|
* and release all the pending submitters. The submitters will
|
|
* get error return code and handle appropriately.
|
|
*/
|
|
ie->int_handle = INVALID_INT_HANDLE;
|
|
idxd_wq_quiesce(wq);
|
|
idxd_abort_invalid_int_handle_descs(ie);
|
|
continue;
|
|
}
|
|
|
|
/* No change in interrupt handle, nothing needs to be done */
|
|
if (ie->int_handle == new_handle)
|
|
continue;
|
|
|
|
if (wq->state != IDXD_WQ_ENABLED || wq->type != IDXD_WQT_KERNEL) {
|
|
/*
|
|
* All the MSIX interrupts are allocated at once during probe.
|
|
* Therefore we need to update all interrupts even if the WQ
|
|
* isn't supporting interrupt operations.
|
|
*/
|
|
ie->int_handle = new_handle;
|
|
continue;
|
|
}
|
|
|
|
mutex_lock(&wq->wq_lock);
|
|
reinit_completion(&wq->wq_resurrect);
|
|
|
|
/* Kill percpu_ref to pause additional descriptor submissions */
|
|
percpu_ref_kill(&wq->wq_active);
|
|
|
|
/* Wait for all submitters quiesce before we change interrupt handle */
|
|
wait_for_completion(&wq->wq_dead);
|
|
|
|
ie->int_handle = new_handle;
|
|
|
|
/* Revive percpu ref and wake up all the waiting submitters */
|
|
percpu_ref_reinit(&wq->wq_active);
|
|
complete_all(&wq->wq_resurrect);
|
|
mutex_unlock(&wq->wq_lock);
|
|
|
|
/*
|
|
* The delay here is to wait for all possible MOVDIR64B that
|
|
* are issued before percpu_ref_kill() has happened to have
|
|
* reached the PCIe domain before the drain is issued. The driver
|
|
* needs to ensure that the drain descriptor issued does not pass
|
|
* all the other issued descriptors that contain the invalid
|
|
* interrupt handle in order to ensure that the drain descriptor
|
|
* interrupt will allow the cleanup of all the descriptors with
|
|
* invalid interrupt handle.
|
|
*/
|
|
if (wq_dedicated(wq))
|
|
udelay(100);
|
|
idxd_int_handle_revoke_drain(ie);
|
|
}
|
|
kfree(revoke);
|
|
}
|
|
|
|
static void idxd_evl_fault_work(struct work_struct *work)
|
|
{
|
|
struct idxd_evl_fault *fault = container_of(work, struct idxd_evl_fault, work);
|
|
struct idxd_wq *wq = fault->wq;
|
|
struct idxd_device *idxd = wq->idxd;
|
|
struct device *dev = &idxd->pdev->dev;
|
|
struct idxd_evl *evl = idxd->evl;
|
|
struct __evl_entry *entry_head = fault->entry;
|
|
void *cr = (void *)entry_head + idxd->data->evl_cr_off;
|
|
int cr_size = idxd->data->compl_size;
|
|
u8 *status = (u8 *)cr + idxd->data->cr_status_off;
|
|
u8 *result = (u8 *)cr + idxd->data->cr_result_off;
|
|
int copied, copy_size;
|
|
bool *bf;
|
|
|
|
switch (fault->status) {
|
|
case DSA_COMP_CRA_XLAT:
|
|
if (entry_head->batch && entry_head->first_err_in_batch)
|
|
evl->batch_fail[entry_head->batch_id] = false;
|
|
|
|
copy_size = cr_size;
|
|
idxd_user_counter_increment(wq, entry_head->pasid, COUNTER_FAULTS);
|
|
break;
|
|
case DSA_COMP_BATCH_EVL_ERR:
|
|
bf = &evl->batch_fail[entry_head->batch_id];
|
|
|
|
copy_size = entry_head->rcr || *bf ? cr_size : 0;
|
|
if (*bf) {
|
|
if (*status == DSA_COMP_SUCCESS)
|
|
*status = DSA_COMP_BATCH_FAIL;
|
|
*result = 1;
|
|
*bf = false;
|
|
}
|
|
idxd_user_counter_increment(wq, entry_head->pasid, COUNTER_FAULTS);
|
|
break;
|
|
case DSA_COMP_DRAIN_EVL:
|
|
copy_size = cr_size;
|
|
break;
|
|
default:
|
|
copy_size = 0;
|
|
dev_dbg_ratelimited(dev, "Unrecognized error code: %#x\n", fault->status);
|
|
break;
|
|
}
|
|
|
|
if (copy_size == 0)
|
|
return;
|
|
|
|
/*
|
|
* Copy completion record to fault_addr in user address space
|
|
* that is found by wq and PASID.
|
|
*/
|
|
copied = idxd_copy_cr(wq, entry_head->pasid, entry_head->fault_addr,
|
|
cr, copy_size);
|
|
/*
|
|
* The task that triggered the page fault is unknown currently
|
|
* because multiple threads may share the user address
|
|
* space or the task exits already before this fault.
|
|
* So if the copy fails, SIGSEGV can not be sent to the task.
|
|
* Just print an error for the failure. The user application
|
|
* waiting for the completion record will time out on this
|
|
* failure.
|
|
*/
|
|
switch (fault->status) {
|
|
case DSA_COMP_CRA_XLAT:
|
|
if (copied != copy_size) {
|
|
idxd_user_counter_increment(wq, entry_head->pasid, COUNTER_FAULT_FAILS);
|
|
dev_dbg_ratelimited(dev, "Failed to write to completion record: (%d:%d)\n",
|
|
copy_size, copied);
|
|
if (entry_head->batch)
|
|
evl->batch_fail[entry_head->batch_id] = true;
|
|
}
|
|
break;
|
|
case DSA_COMP_BATCH_EVL_ERR:
|
|
if (copied != copy_size) {
|
|
idxd_user_counter_increment(wq, entry_head->pasid, COUNTER_FAULT_FAILS);
|
|
dev_dbg_ratelimited(dev, "Failed to write to batch completion record: (%d:%d)\n",
|
|
copy_size, copied);
|
|
}
|
|
break;
|
|
case DSA_COMP_DRAIN_EVL:
|
|
if (copied != copy_size)
|
|
dev_dbg_ratelimited(dev, "Failed to write to drain completion record: (%d:%d)\n",
|
|
copy_size, copied);
|
|
break;
|
|
}
|
|
|
|
kmem_cache_free(idxd->evl_cache, fault);
|
|
}
|
|
|
|
static void process_evl_entry(struct idxd_device *idxd,
|
|
struct __evl_entry *entry_head, unsigned int index)
|
|
{
|
|
struct device *dev = &idxd->pdev->dev;
|
|
struct idxd_evl *evl = idxd->evl;
|
|
u8 status;
|
|
|
|
if (test_bit(index, evl->bmap)) {
|
|
clear_bit(index, evl->bmap);
|
|
} else {
|
|
status = DSA_COMP_STATUS(entry_head->error);
|
|
|
|
if (status == DSA_COMP_CRA_XLAT || status == DSA_COMP_DRAIN_EVL ||
|
|
status == DSA_COMP_BATCH_EVL_ERR) {
|
|
struct idxd_evl_fault *fault;
|
|
int ent_size = evl_ent_size(idxd);
|
|
|
|
if (entry_head->rci)
|
|
dev_dbg(dev, "Completion Int Req set, ignoring!\n");
|
|
|
|
if (!entry_head->rcr && status == DSA_COMP_DRAIN_EVL)
|
|
return;
|
|
|
|
fault = kmem_cache_alloc(idxd->evl_cache, GFP_ATOMIC);
|
|
if (fault) {
|
|
struct idxd_wq *wq = idxd->wqs[entry_head->wq_idx];
|
|
|
|
fault->wq = wq;
|
|
fault->status = status;
|
|
memcpy(&fault->entry, entry_head, ent_size);
|
|
INIT_WORK(&fault->work, idxd_evl_fault_work);
|
|
queue_work(wq->wq, &fault->work);
|
|
} else {
|
|
dev_warn(dev, "Failed to service fault work.\n");
|
|
}
|
|
} else {
|
|
dev_warn_ratelimited(dev, "Device error %#x operation: %#x fault addr: %#llx\n",
|
|
status, entry_head->operation,
|
|
entry_head->fault_addr);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void process_evl_entries(struct idxd_device *idxd)
|
|
{
|
|
union evl_status_reg evl_status;
|
|
unsigned int h, t;
|
|
struct idxd_evl *evl = idxd->evl;
|
|
struct __evl_entry *entry_head;
|
|
unsigned int ent_size = evl_ent_size(idxd);
|
|
u32 size;
|
|
|
|
evl_status.bits = 0;
|
|
evl_status.int_pending = 1;
|
|
|
|
spin_lock(&evl->lock);
|
|
/* Clear interrupt pending bit */
|
|
iowrite32(evl_status.bits_upper32,
|
|
idxd->reg_base + IDXD_EVLSTATUS_OFFSET + sizeof(u32));
|
|
h = evl->head;
|
|
evl_status.bits = ioread64(idxd->reg_base + IDXD_EVLSTATUS_OFFSET);
|
|
t = evl_status.tail;
|
|
size = idxd->evl->size;
|
|
|
|
while (h != t) {
|
|
entry_head = (struct __evl_entry *)(evl->log + (h * ent_size));
|
|
process_evl_entry(idxd, entry_head, h);
|
|
h = (h + 1) % size;
|
|
}
|
|
|
|
evl->head = h;
|
|
evl_status.head = h;
|
|
iowrite32(evl_status.bits_lower32, idxd->reg_base + IDXD_EVLSTATUS_OFFSET);
|
|
spin_unlock(&evl->lock);
|
|
}
|
|
|
|
irqreturn_t idxd_misc_thread(int vec, void *data)
|
|
{
|
|
struct idxd_irq_entry *irq_entry = data;
|
|
struct idxd_device *idxd = ie_to_idxd(irq_entry);
|
|
struct device *dev = &idxd->pdev->dev;
|
|
union gensts_reg gensts;
|
|
u32 val = 0;
|
|
int i;
|
|
bool err = false;
|
|
u32 cause;
|
|
|
|
cause = ioread32(idxd->reg_base + IDXD_INTCAUSE_OFFSET);
|
|
if (!cause)
|
|
return IRQ_NONE;
|
|
|
|
iowrite32(cause, idxd->reg_base + IDXD_INTCAUSE_OFFSET);
|
|
|
|
if (cause & IDXD_INTC_HALT_STATE)
|
|
goto halt;
|
|
|
|
if (cause & IDXD_INTC_ERR) {
|
|
spin_lock(&idxd->dev_lock);
|
|
for (i = 0; i < 4; i++)
|
|
idxd->sw_err.bits[i] = ioread64(idxd->reg_base +
|
|
IDXD_SWERR_OFFSET + i * sizeof(u64));
|
|
|
|
iowrite64(idxd->sw_err.bits[0] & IDXD_SWERR_ACK,
|
|
idxd->reg_base + IDXD_SWERR_OFFSET);
|
|
|
|
if (idxd->sw_err.valid && idxd->sw_err.wq_idx_valid) {
|
|
int id = idxd->sw_err.wq_idx;
|
|
struct idxd_wq *wq = idxd->wqs[id];
|
|
|
|
if (wq->type == IDXD_WQT_USER)
|
|
wake_up_interruptible(&wq->err_queue);
|
|
} else {
|
|
int i;
|
|
|
|
for (i = 0; i < idxd->max_wqs; i++) {
|
|
struct idxd_wq *wq = idxd->wqs[i];
|
|
|
|
if (wq->type == IDXD_WQT_USER)
|
|
wake_up_interruptible(&wq->err_queue);
|
|
}
|
|
}
|
|
|
|
spin_unlock(&idxd->dev_lock);
|
|
val |= IDXD_INTC_ERR;
|
|
|
|
for (i = 0; i < 4; i++)
|
|
dev_warn(dev, "err[%d]: %#16.16llx\n",
|
|
i, idxd->sw_err.bits[i]);
|
|
err = true;
|
|
}
|
|
|
|
if (cause & IDXD_INTC_INT_HANDLE_REVOKED) {
|
|
struct idxd_int_handle_revoke *revoke;
|
|
|
|
val |= IDXD_INTC_INT_HANDLE_REVOKED;
|
|
|
|
revoke = kzalloc(sizeof(*revoke), GFP_ATOMIC);
|
|
if (revoke) {
|
|
revoke->idxd = idxd;
|
|
INIT_WORK(&revoke->work, idxd_int_handle_revoke);
|
|
queue_work(idxd->wq, &revoke->work);
|
|
|
|
} else {
|
|
dev_err(dev, "Failed to allocate work for int handle revoke\n");
|
|
idxd_wqs_quiesce(idxd);
|
|
}
|
|
}
|
|
|
|
if (cause & IDXD_INTC_CMD) {
|
|
val |= IDXD_INTC_CMD;
|
|
complete(idxd->cmd_done);
|
|
}
|
|
|
|
if (cause & IDXD_INTC_OCCUPY) {
|
|
/* Driver does not utilize occupancy interrupt */
|
|
val |= IDXD_INTC_OCCUPY;
|
|
}
|
|
|
|
if (cause & IDXD_INTC_PERFMON_OVFL) {
|
|
val |= IDXD_INTC_PERFMON_OVFL;
|
|
perfmon_counter_overflow(idxd);
|
|
}
|
|
|
|
if (cause & IDXD_INTC_EVL) {
|
|
val |= IDXD_INTC_EVL;
|
|
process_evl_entries(idxd);
|
|
}
|
|
|
|
val ^= cause;
|
|
if (val)
|
|
dev_warn_once(dev, "Unexpected interrupt cause bits set: %#x\n",
|
|
val);
|
|
|
|
if (!err)
|
|
goto out;
|
|
|
|
halt:
|
|
gensts.bits = ioread32(idxd->reg_base + IDXD_GENSTATS_OFFSET);
|
|
if (gensts.state == IDXD_DEVICE_STATE_HALT) {
|
|
idxd->state = IDXD_DEV_HALTED;
|
|
if (gensts.reset_type == IDXD_DEVICE_RESET_SOFTWARE) {
|
|
/*
|
|
* If we need a software reset, we will throw the work
|
|
* on a system workqueue in order to allow interrupts
|
|
* for the device command completions.
|
|
*/
|
|
INIT_WORK(&idxd->work, idxd_device_reinit);
|
|
queue_work(idxd->wq, &idxd->work);
|
|
} else {
|
|
idxd->state = IDXD_DEV_HALTED;
|
|
idxd_wqs_quiesce(idxd);
|
|
idxd_wqs_unmap_portal(idxd);
|
|
idxd_device_clear_state(idxd);
|
|
dev_err(&idxd->pdev->dev,
|
|
"idxd halted, need %s.\n",
|
|
gensts.reset_type == IDXD_DEVICE_RESET_FLR ?
|
|
"FLR" : "system reset");
|
|
}
|
|
}
|
|
|
|
out:
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void idxd_int_handle_resubmit_work(struct work_struct *work)
|
|
{
|
|
struct idxd_resubmit *irw = container_of(work, struct idxd_resubmit, work);
|
|
struct idxd_desc *desc = irw->desc;
|
|
struct idxd_wq *wq = desc->wq;
|
|
int rc;
|
|
|
|
desc->completion->status = 0;
|
|
rc = idxd_submit_desc(wq, desc);
|
|
if (rc < 0) {
|
|
dev_dbg(&wq->idxd->pdev->dev, "Failed to resubmit desc %d to wq %d.\n",
|
|
desc->id, wq->id);
|
|
/*
|
|
* If the error is not -EAGAIN, it means the submission failed due to wq
|
|
* has been killed instead of ENQCMDS failure. Here the driver needs to
|
|
* notify the submitter of the failure by reporting abort status.
|
|
*
|
|
* -EAGAIN comes from ENQCMDS failure. idxd_submit_desc() will handle the
|
|
* abort.
|
|
*/
|
|
if (rc != -EAGAIN) {
|
|
desc->completion->status = IDXD_COMP_DESC_ABORT;
|
|
idxd_dma_complete_txd(desc, IDXD_COMPLETE_ABORT, false);
|
|
}
|
|
idxd_free_desc(wq, desc);
|
|
}
|
|
kfree(irw);
|
|
}
|
|
|
|
bool idxd_queue_int_handle_resubmit(struct idxd_desc *desc)
|
|
{
|
|
struct idxd_wq *wq = desc->wq;
|
|
struct idxd_device *idxd = wq->idxd;
|
|
struct idxd_resubmit *irw;
|
|
|
|
irw = kzalloc(sizeof(*irw), GFP_KERNEL);
|
|
if (!irw)
|
|
return false;
|
|
|
|
irw->desc = desc;
|
|
INIT_WORK(&irw->work, idxd_int_handle_resubmit_work);
|
|
queue_work(idxd->wq, &irw->work);
|
|
return true;
|
|
}
|
|
|
|
static void irq_process_pending_llist(struct idxd_irq_entry *irq_entry)
|
|
{
|
|
struct idxd_desc *desc, *t;
|
|
struct llist_node *head;
|
|
|
|
head = llist_del_all(&irq_entry->pending_llist);
|
|
if (!head)
|
|
return;
|
|
|
|
llist_for_each_entry_safe(desc, t, head, llnode) {
|
|
u8 status = desc->completion->status & DSA_COMP_STATUS_MASK;
|
|
|
|
if (status) {
|
|
/*
|
|
* Check against the original status as ABORT is software defined
|
|
* and 0xff, which DSA_COMP_STATUS_MASK can mask out.
|
|
*/
|
|
if (unlikely(desc->completion->status == IDXD_COMP_DESC_ABORT)) {
|
|
idxd_dma_complete_txd(desc, IDXD_COMPLETE_ABORT, true);
|
|
continue;
|
|
}
|
|
|
|
idxd_dma_complete_txd(desc, IDXD_COMPLETE_NORMAL, true);
|
|
} else {
|
|
spin_lock(&irq_entry->list_lock);
|
|
list_add_tail(&desc->list,
|
|
&irq_entry->work_list);
|
|
spin_unlock(&irq_entry->list_lock);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void irq_process_work_list(struct idxd_irq_entry *irq_entry)
|
|
{
|
|
LIST_HEAD(flist);
|
|
struct idxd_desc *desc, *n;
|
|
|
|
/*
|
|
* This lock protects list corruption from access of list outside of the irq handler
|
|
* thread.
|
|
*/
|
|
spin_lock(&irq_entry->list_lock);
|
|
if (list_empty(&irq_entry->work_list)) {
|
|
spin_unlock(&irq_entry->list_lock);
|
|
return;
|
|
}
|
|
|
|
list_for_each_entry_safe(desc, n, &irq_entry->work_list, list) {
|
|
if (desc->completion->status) {
|
|
list_move_tail(&desc->list, &flist);
|
|
}
|
|
}
|
|
|
|
spin_unlock(&irq_entry->list_lock);
|
|
|
|
list_for_each_entry(desc, &flist, list) {
|
|
/*
|
|
* Check against the original status as ABORT is software defined
|
|
* and 0xff, which DSA_COMP_STATUS_MASK can mask out.
|
|
*/
|
|
if (unlikely(desc->completion->status == IDXD_COMP_DESC_ABORT)) {
|
|
idxd_dma_complete_txd(desc, IDXD_COMPLETE_ABORT, true);
|
|
continue;
|
|
}
|
|
|
|
idxd_dma_complete_txd(desc, IDXD_COMPLETE_NORMAL, true);
|
|
}
|
|
}
|
|
|
|
irqreturn_t idxd_wq_thread(int irq, void *data)
|
|
{
|
|
struct idxd_irq_entry *irq_entry = data;
|
|
|
|
/*
|
|
* There are two lists we are processing. The pending_llist is where
|
|
* submmiter adds all the submitted descriptor after sending it to
|
|
* the workqueue. It's a lockless singly linked list. The work_list
|
|
* is the common linux double linked list. We are in a scenario of
|
|
* multiple producers and a single consumer. The producers are all
|
|
* the kernel submitters of descriptors, and the consumer is the
|
|
* kernel irq handler thread for the msix vector when using threaded
|
|
* irq. To work with the restrictions of llist to remain lockless,
|
|
* we are doing the following steps:
|
|
* 1. Iterate through the work_list and process any completed
|
|
* descriptor. Delete the completed entries during iteration.
|
|
* 2. llist_del_all() from the pending list.
|
|
* 3. Iterate through the llist that was deleted from the pending list
|
|
* and process the completed entries.
|
|
* 4. If the entry is still waiting on hardware, list_add_tail() to
|
|
* the work_list.
|
|
*/
|
|
irq_process_work_list(irq_entry);
|
|
irq_process_pending_llist(irq_entry);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|