770 lines
21 KiB
C
770 lines
21 KiB
C
/*
|
|
* Copyright 2018 Advanced Micro Devices, Inc.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include <linux/pci.h>
|
|
#include <linux/reboot.h>
|
|
|
|
#include "hwmgr.h"
|
|
#include "pp_debug.h"
|
|
#include "ppatomctrl.h"
|
|
#include "ppsmc.h"
|
|
#include "atom.h"
|
|
#include "ivsrcid/thm/irqsrcs_thm_9_0.h"
|
|
#include "ivsrcid/smuio/irqsrcs_smuio_9_0.h"
|
|
#include "ivsrcid/ivsrcid_vislands30.h"
|
|
|
|
uint8_t convert_to_vid(uint16_t vddc)
|
|
{
|
|
return (uint8_t) ((6200 - (vddc * VOLTAGE_SCALE)) / 25);
|
|
}
|
|
|
|
uint16_t convert_to_vddc(uint8_t vid)
|
|
{
|
|
return (uint16_t) ((6200 - (vid * 25)) / VOLTAGE_SCALE);
|
|
}
|
|
|
|
int phm_copy_clock_limits_array(
|
|
struct pp_hwmgr *hwmgr,
|
|
uint32_t **pptable_info_array,
|
|
const uint32_t *pptable_array,
|
|
uint32_t power_saving_clock_count)
|
|
{
|
|
uint32_t array_size, i;
|
|
uint32_t *table;
|
|
|
|
array_size = sizeof(uint32_t) * power_saving_clock_count;
|
|
table = kzalloc(array_size, GFP_KERNEL);
|
|
if (NULL == table)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < power_saving_clock_count; i++)
|
|
table[i] = le32_to_cpu(pptable_array[i]);
|
|
|
|
*pptable_info_array = table;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int phm_copy_overdrive_settings_limits_array(
|
|
struct pp_hwmgr *hwmgr,
|
|
uint32_t **pptable_info_array,
|
|
const uint32_t *pptable_array,
|
|
uint32_t od_setting_count)
|
|
{
|
|
uint32_t array_size, i;
|
|
uint32_t *table;
|
|
|
|
array_size = sizeof(uint32_t) * od_setting_count;
|
|
table = kzalloc(array_size, GFP_KERNEL);
|
|
if (NULL == table)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < od_setting_count; i++)
|
|
table[i] = le32_to_cpu(pptable_array[i]);
|
|
|
|
*pptable_info_array = table;
|
|
|
|
return 0;
|
|
}
|
|
|
|
uint32_t phm_set_field_to_u32(u32 offset, u32 original_data, u32 field, u32 size)
|
|
{
|
|
u32 mask = 0;
|
|
u32 shift = 0;
|
|
|
|
shift = (offset % 4) << 3;
|
|
if (size == sizeof(uint8_t))
|
|
mask = 0xFF << shift;
|
|
else if (size == sizeof(uint16_t))
|
|
mask = 0xFFFF << shift;
|
|
|
|
original_data &= ~mask;
|
|
original_data |= (field << shift);
|
|
return original_data;
|
|
}
|
|
|
|
/*
|
|
* Returns once the part of the register indicated by the mask has
|
|
* reached the given value.
|
|
*/
|
|
int phm_wait_on_register(struct pp_hwmgr *hwmgr, uint32_t index,
|
|
uint32_t value, uint32_t mask)
|
|
{
|
|
uint32_t i;
|
|
uint32_t cur_value;
|
|
|
|
if (hwmgr == NULL || hwmgr->device == NULL) {
|
|
pr_err("Invalid Hardware Manager!");
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (i = 0; i < hwmgr->usec_timeout; i++) {
|
|
cur_value = cgs_read_register(hwmgr->device, index);
|
|
if ((cur_value & mask) == (value & mask))
|
|
break;
|
|
udelay(1);
|
|
}
|
|
|
|
/* timeout means wrong logic*/
|
|
if (i == hwmgr->usec_timeout)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Returns once the part of the register indicated by the mask has
|
|
* reached the given value.The indirect space is described by giving
|
|
* the memory-mapped index of the indirect index register.
|
|
*/
|
|
int phm_wait_on_indirect_register(struct pp_hwmgr *hwmgr,
|
|
uint32_t indirect_port,
|
|
uint32_t index,
|
|
uint32_t value,
|
|
uint32_t mask)
|
|
{
|
|
if (hwmgr == NULL || hwmgr->device == NULL) {
|
|
pr_err("Invalid Hardware Manager!");
|
|
return -EINVAL;
|
|
}
|
|
|
|
cgs_write_register(hwmgr->device, indirect_port, index);
|
|
return phm_wait_on_register(hwmgr, indirect_port + 1, mask, value);
|
|
}
|
|
|
|
int phm_wait_for_register_unequal(struct pp_hwmgr *hwmgr,
|
|
uint32_t index,
|
|
uint32_t value, uint32_t mask)
|
|
{
|
|
uint32_t i;
|
|
uint32_t cur_value;
|
|
|
|
if (hwmgr == NULL || hwmgr->device == NULL)
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < hwmgr->usec_timeout; i++) {
|
|
cur_value = cgs_read_register(hwmgr->device,
|
|
index);
|
|
if ((cur_value & mask) != (value & mask))
|
|
break;
|
|
udelay(1);
|
|
}
|
|
|
|
/* timeout means wrong logic */
|
|
if (i == hwmgr->usec_timeout)
|
|
return -ETIME;
|
|
return 0;
|
|
}
|
|
|
|
int phm_wait_for_indirect_register_unequal(struct pp_hwmgr *hwmgr,
|
|
uint32_t indirect_port,
|
|
uint32_t index,
|
|
uint32_t value,
|
|
uint32_t mask)
|
|
{
|
|
if (hwmgr == NULL || hwmgr->device == NULL)
|
|
return -EINVAL;
|
|
|
|
cgs_write_register(hwmgr->device, indirect_port, index);
|
|
return phm_wait_for_register_unequal(hwmgr, indirect_port + 1,
|
|
value, mask);
|
|
}
|
|
|
|
bool phm_cf_want_uvd_power_gating(struct pp_hwmgr *hwmgr)
|
|
{
|
|
return phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDPowerGating);
|
|
}
|
|
|
|
bool phm_cf_want_vce_power_gating(struct pp_hwmgr *hwmgr)
|
|
{
|
|
return phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_VCEPowerGating);
|
|
}
|
|
|
|
|
|
int phm_trim_voltage_table(struct pp_atomctrl_voltage_table *vol_table)
|
|
{
|
|
uint32_t i, j;
|
|
uint16_t vvalue;
|
|
bool found = false;
|
|
struct pp_atomctrl_voltage_table *table;
|
|
|
|
PP_ASSERT_WITH_CODE((NULL != vol_table),
|
|
"Voltage Table empty.", return -EINVAL);
|
|
|
|
table = kzalloc(sizeof(struct pp_atomctrl_voltage_table),
|
|
GFP_KERNEL);
|
|
|
|
if (NULL == table)
|
|
return -EINVAL;
|
|
|
|
table->mask_low = vol_table->mask_low;
|
|
table->phase_delay = vol_table->phase_delay;
|
|
|
|
for (i = 0; i < vol_table->count; i++) {
|
|
vvalue = vol_table->entries[i].value;
|
|
found = false;
|
|
|
|
for (j = 0; j < table->count; j++) {
|
|
if (vvalue == table->entries[j].value) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found) {
|
|
table->entries[table->count].value = vvalue;
|
|
table->entries[table->count].smio_low =
|
|
vol_table->entries[i].smio_low;
|
|
table->count++;
|
|
}
|
|
}
|
|
|
|
memcpy(vol_table, table, sizeof(struct pp_atomctrl_voltage_table));
|
|
kfree(table);
|
|
table = NULL;
|
|
return 0;
|
|
}
|
|
|
|
int phm_get_svi2_mvdd_voltage_table(struct pp_atomctrl_voltage_table *vol_table,
|
|
phm_ppt_v1_clock_voltage_dependency_table *dep_table)
|
|
{
|
|
uint32_t i;
|
|
int result;
|
|
|
|
PP_ASSERT_WITH_CODE((0 != dep_table->count),
|
|
"Voltage Dependency Table empty.", return -EINVAL);
|
|
|
|
PP_ASSERT_WITH_CODE((NULL != vol_table),
|
|
"vol_table empty.", return -EINVAL);
|
|
|
|
vol_table->mask_low = 0;
|
|
vol_table->phase_delay = 0;
|
|
vol_table->count = dep_table->count;
|
|
|
|
for (i = 0; i < dep_table->count; i++) {
|
|
vol_table->entries[i].value = dep_table->entries[i].mvdd;
|
|
vol_table->entries[i].smio_low = 0;
|
|
}
|
|
|
|
result = phm_trim_voltage_table(vol_table);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"Failed to trim MVDD table.", return result);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int phm_get_svi2_vddci_voltage_table(struct pp_atomctrl_voltage_table *vol_table,
|
|
phm_ppt_v1_clock_voltage_dependency_table *dep_table)
|
|
{
|
|
uint32_t i;
|
|
int result;
|
|
|
|
PP_ASSERT_WITH_CODE((0 != dep_table->count),
|
|
"Voltage Dependency Table empty.", return -EINVAL);
|
|
|
|
PP_ASSERT_WITH_CODE((NULL != vol_table),
|
|
"vol_table empty.", return -EINVAL);
|
|
|
|
vol_table->mask_low = 0;
|
|
vol_table->phase_delay = 0;
|
|
vol_table->count = dep_table->count;
|
|
|
|
for (i = 0; i < dep_table->count; i++) {
|
|
vol_table->entries[i].value = dep_table->entries[i].vddci;
|
|
vol_table->entries[i].smio_low = 0;
|
|
}
|
|
|
|
result = phm_trim_voltage_table(vol_table);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"Failed to trim VDDCI table.", return result);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int phm_get_svi2_vdd_voltage_table(struct pp_atomctrl_voltage_table *vol_table,
|
|
phm_ppt_v1_voltage_lookup_table *lookup_table)
|
|
{
|
|
int i = 0;
|
|
|
|
PP_ASSERT_WITH_CODE((0 != lookup_table->count),
|
|
"Voltage Lookup Table empty.", return -EINVAL);
|
|
|
|
PP_ASSERT_WITH_CODE((NULL != vol_table),
|
|
"vol_table empty.", return -EINVAL);
|
|
|
|
vol_table->mask_low = 0;
|
|
vol_table->phase_delay = 0;
|
|
|
|
vol_table->count = lookup_table->count;
|
|
|
|
for (i = 0; i < vol_table->count; i++) {
|
|
vol_table->entries[i].value = lookup_table->entries[i].us_vdd;
|
|
vol_table->entries[i].smio_low = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void phm_trim_voltage_table_to_fit_state_table(uint32_t max_vol_steps,
|
|
struct pp_atomctrl_voltage_table *vol_table)
|
|
{
|
|
unsigned int i, diff;
|
|
|
|
if (vol_table->count <= max_vol_steps)
|
|
return;
|
|
|
|
diff = vol_table->count - max_vol_steps;
|
|
|
|
for (i = 0; i < max_vol_steps; i++)
|
|
vol_table->entries[i] = vol_table->entries[i + diff];
|
|
|
|
vol_table->count = max_vol_steps;
|
|
|
|
return;
|
|
}
|
|
|
|
int phm_reset_single_dpm_table(void *table,
|
|
uint32_t count, int max)
|
|
{
|
|
int i;
|
|
|
|
struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;
|
|
|
|
dpm_table->count = count > max ? max : count;
|
|
|
|
for (i = 0; i < dpm_table->count; i++)
|
|
dpm_table->dpm_level[i].enabled = false;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void phm_setup_pcie_table_entry(
|
|
void *table,
|
|
uint32_t index, uint32_t pcie_gen,
|
|
uint32_t pcie_lanes)
|
|
{
|
|
struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;
|
|
dpm_table->dpm_level[index].value = pcie_gen;
|
|
dpm_table->dpm_level[index].param1 = pcie_lanes;
|
|
dpm_table->dpm_level[index].enabled = 1;
|
|
}
|
|
|
|
int32_t phm_get_dpm_level_enable_mask_value(void *table)
|
|
{
|
|
int32_t i;
|
|
int32_t mask = 0;
|
|
struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;
|
|
|
|
for (i = dpm_table->count; i > 0; i--) {
|
|
mask = mask << 1;
|
|
if (dpm_table->dpm_level[i - 1].enabled)
|
|
mask |= 0x1;
|
|
else
|
|
mask &= 0xFFFFFFFE;
|
|
}
|
|
|
|
return mask;
|
|
}
|
|
|
|
uint8_t phm_get_voltage_index(
|
|
struct phm_ppt_v1_voltage_lookup_table *lookup_table, uint16_t voltage)
|
|
{
|
|
uint8_t count = (uint8_t) (lookup_table->count);
|
|
uint8_t i;
|
|
|
|
PP_ASSERT_WITH_CODE((NULL != lookup_table),
|
|
"Lookup Table empty.", return 0);
|
|
PP_ASSERT_WITH_CODE((0 != count),
|
|
"Lookup Table empty.", return 0);
|
|
|
|
for (i = 0; i < lookup_table->count; i++) {
|
|
/* find first voltage equal or bigger than requested */
|
|
if (lookup_table->entries[i].us_vdd >= voltage)
|
|
return i;
|
|
}
|
|
/* voltage is bigger than max voltage in the table */
|
|
return i - 1;
|
|
}
|
|
|
|
uint8_t phm_get_voltage_id(pp_atomctrl_voltage_table *voltage_table,
|
|
uint32_t voltage)
|
|
{
|
|
uint8_t count = (uint8_t) (voltage_table->count);
|
|
uint8_t i = 0;
|
|
|
|
PP_ASSERT_WITH_CODE((NULL != voltage_table),
|
|
"Voltage Table empty.", return 0;);
|
|
PP_ASSERT_WITH_CODE((0 != count),
|
|
"Voltage Table empty.", return 0;);
|
|
|
|
for (i = 0; i < count; i++) {
|
|
/* find first voltage bigger than requested */
|
|
if (voltage_table->entries[i].value >= voltage)
|
|
return i;
|
|
}
|
|
|
|
/* voltage is bigger than max voltage in the table */
|
|
return i - 1;
|
|
}
|
|
|
|
uint16_t phm_find_closest_vddci(struct pp_atomctrl_voltage_table *vddci_table, uint16_t vddci)
|
|
{
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < vddci_table->count; i++) {
|
|
if (vddci_table->entries[i].value >= vddci)
|
|
return vddci_table->entries[i].value;
|
|
}
|
|
|
|
pr_debug("vddci is larger than max value in vddci_table\n");
|
|
return vddci_table->entries[i-1].value;
|
|
}
|
|
|
|
int phm_find_boot_level(void *table,
|
|
uint32_t value, uint32_t *boot_level)
|
|
{
|
|
int result = -EINVAL;
|
|
uint32_t i;
|
|
struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;
|
|
|
|
for (i = 0; i < dpm_table->count; i++) {
|
|
if (value == dpm_table->dpm_level[i].value) {
|
|
*boot_level = i;
|
|
result = 0;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
int phm_get_sclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
|
|
phm_ppt_v1_voltage_lookup_table *lookup_table,
|
|
uint16_t virtual_voltage_id, int32_t *sclk)
|
|
{
|
|
uint8_t entry_id;
|
|
uint8_t voltage_id;
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
|
|
PP_ASSERT_WITH_CODE(lookup_table->count != 0, "Lookup table is empty", return -EINVAL);
|
|
|
|
/* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
|
|
for (entry_id = 0; entry_id < table_info->vdd_dep_on_sclk->count; entry_id++) {
|
|
voltage_id = table_info->vdd_dep_on_sclk->entries[entry_id].vddInd;
|
|
if (lookup_table->entries[voltage_id].us_vdd == virtual_voltage_id)
|
|
break;
|
|
}
|
|
|
|
if (entry_id >= table_info->vdd_dep_on_sclk->count) {
|
|
pr_debug("Can't find requested voltage id in vdd_dep_on_sclk table\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
*sclk = table_info->vdd_dep_on_sclk->entries[entry_id].clk;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* phm_initializa_dynamic_state_adjustment_rule_settings - Initialize Dynamic State Adjustment Rule Settings
|
|
*
|
|
* @hwmgr: the address of the powerplay hardware manager.
|
|
*/
|
|
int phm_initializa_dynamic_state_adjustment_rule_settings(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct phm_clock_voltage_dependency_table *table_clk_vlt;
|
|
struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
|
|
/* initialize vddc_dep_on_dal_pwrl table */
|
|
table_clk_vlt = kzalloc(struct_size(table_clk_vlt, entries, 4),
|
|
GFP_KERNEL);
|
|
|
|
if (NULL == table_clk_vlt) {
|
|
pr_err("Can not allocate space for vddc_dep_on_dal_pwrl! \n");
|
|
return -ENOMEM;
|
|
} else {
|
|
table_clk_vlt->count = 4;
|
|
table_clk_vlt->entries[0].clk = PP_DAL_POWERLEVEL_ULTRALOW;
|
|
if (hwmgr->chip_id >= CHIP_POLARIS10 &&
|
|
hwmgr->chip_id <= CHIP_VEGAM)
|
|
table_clk_vlt->entries[0].v = 700;
|
|
else
|
|
table_clk_vlt->entries[0].v = 0;
|
|
table_clk_vlt->entries[1].clk = PP_DAL_POWERLEVEL_LOW;
|
|
if (hwmgr->chip_id >= CHIP_POLARIS10 &&
|
|
hwmgr->chip_id <= CHIP_VEGAM)
|
|
table_clk_vlt->entries[1].v = 740;
|
|
else
|
|
table_clk_vlt->entries[1].v = 720;
|
|
table_clk_vlt->entries[2].clk = PP_DAL_POWERLEVEL_NOMINAL;
|
|
if (hwmgr->chip_id >= CHIP_POLARIS10 &&
|
|
hwmgr->chip_id <= CHIP_VEGAM)
|
|
table_clk_vlt->entries[2].v = 800;
|
|
else
|
|
table_clk_vlt->entries[2].v = 810;
|
|
table_clk_vlt->entries[3].clk = PP_DAL_POWERLEVEL_PERFORMANCE;
|
|
table_clk_vlt->entries[3].v = 900;
|
|
if (pptable_info != NULL)
|
|
pptable_info->vddc_dep_on_dal_pwrl = table_clk_vlt;
|
|
hwmgr->dyn_state.vddc_dep_on_dal_pwrl = table_clk_vlt;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
uint32_t phm_get_lowest_enabled_level(struct pp_hwmgr *hwmgr, uint32_t mask)
|
|
{
|
|
uint32_t level = 0;
|
|
|
|
while (0 == (mask & (1 << level)))
|
|
level++;
|
|
|
|
return level;
|
|
}
|
|
|
|
void phm_apply_dal_min_voltage_request(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)hwmgr->pptable;
|
|
struct phm_clock_voltage_dependency_table *table =
|
|
table_info->vddc_dep_on_dal_pwrl;
|
|
struct phm_ppt_v1_clock_voltage_dependency_table *vddc_table;
|
|
enum PP_DAL_POWERLEVEL dal_power_level = hwmgr->dal_power_level;
|
|
uint32_t req_vddc = 0, req_volt, i;
|
|
|
|
if (!table || table->count <= 0
|
|
|| dal_power_level < PP_DAL_POWERLEVEL_ULTRALOW
|
|
|| dal_power_level > PP_DAL_POWERLEVEL_PERFORMANCE)
|
|
return;
|
|
|
|
for (i = 0; i < table->count; i++) {
|
|
if (dal_power_level == table->entries[i].clk) {
|
|
req_vddc = table->entries[i].v;
|
|
break;
|
|
}
|
|
}
|
|
|
|
vddc_table = table_info->vdd_dep_on_sclk;
|
|
for (i = 0; i < vddc_table->count; i++) {
|
|
if (req_vddc <= vddc_table->entries[i].vddc) {
|
|
req_volt = (((uint32_t)vddc_table->entries[i].vddc) * VOLTAGE_SCALE);
|
|
smum_send_msg_to_smc_with_parameter(hwmgr,
|
|
PPSMC_MSG_VddC_Request,
|
|
req_volt,
|
|
NULL);
|
|
return;
|
|
}
|
|
}
|
|
pr_err("DAL requested level can not"
|
|
" found a available voltage in VDDC DPM Table \n");
|
|
}
|
|
|
|
int phm_get_voltage_evv_on_sclk(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
|
|
uint32_t sclk, uint16_t id, uint16_t *voltage)
|
|
{
|
|
uint32_t vol;
|
|
int ret = 0;
|
|
|
|
if (hwmgr->chip_id < CHIP_TONGA) {
|
|
ret = atomctrl_get_voltage_evv(hwmgr, id, voltage);
|
|
} else if (hwmgr->chip_id < CHIP_POLARIS10) {
|
|
ret = atomctrl_get_voltage_evv_on_sclk(hwmgr, voltage_type, sclk, id, voltage);
|
|
if (*voltage >= 2000 || *voltage == 0)
|
|
*voltage = 1150;
|
|
} else {
|
|
ret = atomctrl_get_voltage_evv_on_sclk_ai(hwmgr, voltage_type, sclk, id, &vol);
|
|
*voltage = (uint16_t)(vol/100);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
int phm_irq_process(struct amdgpu_device *adev,
|
|
struct amdgpu_irq_src *source,
|
|
struct amdgpu_iv_entry *entry)
|
|
{
|
|
struct pp_hwmgr *hwmgr = adev->powerplay.pp_handle;
|
|
uint32_t client_id = entry->client_id;
|
|
uint32_t src_id = entry->src_id;
|
|
|
|
if (client_id == AMDGPU_IRQ_CLIENTID_LEGACY) {
|
|
if (src_id == VISLANDS30_IV_SRCID_CG_TSS_THERMAL_LOW_TO_HIGH) {
|
|
schedule_delayed_work(&hwmgr->swctf_delayed_work,
|
|
msecs_to_jiffies(AMDGPU_SWCTF_EXTRA_DELAY));
|
|
} else if (src_id == VISLANDS30_IV_SRCID_CG_TSS_THERMAL_HIGH_TO_LOW) {
|
|
dev_emerg(adev->dev, "ERROR: GPU under temperature range detected!\n");
|
|
} else if (src_id == VISLANDS30_IV_SRCID_GPIO_19) {
|
|
dev_emerg(adev->dev, "ERROR: GPU HW Critical Temperature Fault(aka CTF) detected!\n");
|
|
/*
|
|
* HW CTF just occurred. Shutdown to prevent further damage.
|
|
*/
|
|
dev_emerg(adev->dev, "ERROR: System is going to shutdown due to GPU HW CTF!\n");
|
|
orderly_poweroff(true);
|
|
}
|
|
} else if (client_id == SOC15_IH_CLIENTID_THM) {
|
|
if (src_id == 0)
|
|
schedule_delayed_work(&hwmgr->swctf_delayed_work,
|
|
msecs_to_jiffies(AMDGPU_SWCTF_EXTRA_DELAY));
|
|
else
|
|
dev_emerg(adev->dev, "ERROR: GPU under temperature range detected!\n");
|
|
} else if (client_id == SOC15_IH_CLIENTID_ROM_SMUIO) {
|
|
dev_emerg(adev->dev, "ERROR: GPU HW Critical Temperature Fault(aka CTF) detected!\n");
|
|
/*
|
|
* HW CTF just occurred. Shutdown to prevent further damage.
|
|
*/
|
|
dev_emerg(adev->dev, "ERROR: System is going to shutdown due to GPU HW CTF!\n");
|
|
orderly_poweroff(true);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct amdgpu_irq_src_funcs smu9_irq_funcs = {
|
|
.process = phm_irq_process,
|
|
};
|
|
|
|
int smu9_register_irq_handlers(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct amdgpu_irq_src *source =
|
|
kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL);
|
|
|
|
if (!source)
|
|
return -ENOMEM;
|
|
|
|
source->funcs = &smu9_irq_funcs;
|
|
|
|
amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
|
|
SOC15_IH_CLIENTID_THM,
|
|
THM_9_0__SRCID__THM_DIG_THERM_L2H,
|
|
source);
|
|
amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
|
|
SOC15_IH_CLIENTID_THM,
|
|
THM_9_0__SRCID__THM_DIG_THERM_H2L,
|
|
source);
|
|
|
|
/* Register CTF(GPIO_19) interrupt */
|
|
amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
|
|
SOC15_IH_CLIENTID_ROM_SMUIO,
|
|
SMUIO_9_0__SRCID__SMUIO_GPIO19,
|
|
source);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void *smu_atom_get_data_table(void *dev, uint32_t table, uint16_t *size,
|
|
uint8_t *frev, uint8_t *crev)
|
|
{
|
|
struct amdgpu_device *adev = dev;
|
|
uint16_t data_start;
|
|
|
|
if (amdgpu_atom_parse_data_header(
|
|
adev->mode_info.atom_context, table, size,
|
|
frev, crev, &data_start))
|
|
return (uint8_t *)adev->mode_info.atom_context->bios +
|
|
data_start;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
int smu_get_voltage_dependency_table_ppt_v1(
|
|
const struct phm_ppt_v1_clock_voltage_dependency_table *allowed_dep_table,
|
|
struct phm_ppt_v1_clock_voltage_dependency_table *dep_table)
|
|
{
|
|
uint8_t i = 0;
|
|
PP_ASSERT_WITH_CODE((0 != allowed_dep_table->count),
|
|
"Voltage Lookup Table empty",
|
|
return -EINVAL);
|
|
|
|
dep_table->count = allowed_dep_table->count;
|
|
for (i=0; i<dep_table->count; i++) {
|
|
dep_table->entries[i].clk = allowed_dep_table->entries[i].clk;
|
|
dep_table->entries[i].vddInd = allowed_dep_table->entries[i].vddInd;
|
|
dep_table->entries[i].vdd_offset = allowed_dep_table->entries[i].vdd_offset;
|
|
dep_table->entries[i].vddc = allowed_dep_table->entries[i].vddc;
|
|
dep_table->entries[i].vddgfx = allowed_dep_table->entries[i].vddgfx;
|
|
dep_table->entries[i].vddci = allowed_dep_table->entries[i].vddci;
|
|
dep_table->entries[i].mvdd = allowed_dep_table->entries[i].mvdd;
|
|
dep_table->entries[i].phases = allowed_dep_table->entries[i].phases;
|
|
dep_table->entries[i].cks_enable = allowed_dep_table->entries[i].cks_enable;
|
|
dep_table->entries[i].cks_voffset = allowed_dep_table->entries[i].cks_voffset;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int smu_set_watermarks_for_clocks_ranges(void *wt_table,
|
|
struct dm_pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges)
|
|
{
|
|
uint32_t i;
|
|
struct watermarks *table = wt_table;
|
|
|
|
if (!table || !wm_with_clock_ranges)
|
|
return -EINVAL;
|
|
|
|
if (wm_with_clock_ranges->num_wm_dmif_sets > 4 || wm_with_clock_ranges->num_wm_mcif_sets > 4)
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < wm_with_clock_ranges->num_wm_dmif_sets; i++) {
|
|
table->WatermarkRow[1][i].MinClock =
|
|
cpu_to_le16((uint16_t)
|
|
(wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_min_dcfclk_clk_in_khz /
|
|
1000));
|
|
table->WatermarkRow[1][i].MaxClock =
|
|
cpu_to_le16((uint16_t)
|
|
(wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_max_dcfclk_clk_in_khz /
|
|
1000));
|
|
table->WatermarkRow[1][i].MinUclk =
|
|
cpu_to_le16((uint16_t)
|
|
(wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_min_mem_clk_in_khz /
|
|
1000));
|
|
table->WatermarkRow[1][i].MaxUclk =
|
|
cpu_to_le16((uint16_t)
|
|
(wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_max_mem_clk_in_khz /
|
|
1000));
|
|
table->WatermarkRow[1][i].WmSetting = (uint8_t)
|
|
wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_set_id;
|
|
}
|
|
|
|
for (i = 0; i < wm_with_clock_ranges->num_wm_mcif_sets; i++) {
|
|
table->WatermarkRow[0][i].MinClock =
|
|
cpu_to_le16((uint16_t)
|
|
(wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_min_socclk_clk_in_khz /
|
|
1000));
|
|
table->WatermarkRow[0][i].MaxClock =
|
|
cpu_to_le16((uint16_t)
|
|
(wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_max_socclk_clk_in_khz /
|
|
1000));
|
|
table->WatermarkRow[0][i].MinUclk =
|
|
cpu_to_le16((uint16_t)
|
|
(wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_min_mem_clk_in_khz /
|
|
1000));
|
|
table->WatermarkRow[0][i].MaxUclk =
|
|
cpu_to_le16((uint16_t)
|
|
(wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_max_mem_clk_in_khz /
|
|
1000));
|
|
table->WatermarkRow[0][i].WmSetting = (uint8_t)
|
|
wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_set_id;
|
|
}
|
|
return 0;
|
|
}
|