linux-zen-desktop/drivers/gpu/drm/drm_edid.c

7338 lines
223 KiB
C

/*
* Copyright (c) 2006 Luc Verhaegen (quirks list)
* Copyright (c) 2007-2008 Intel Corporation
* Jesse Barnes <jesse.barnes@intel.com>
* Copyright 2010 Red Hat, Inc.
*
* DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
* FB layer.
* Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sub license,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <linux/bitfield.h>
#include <linux/hdmi.h>
#include <linux/i2c.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/vga_switcheroo.h>
#include <drm/drm_displayid.h>
#include <drm/drm_drv.h>
#include <drm/drm_edid.h>
#include <drm/drm_encoder.h>
#include <drm/drm_print.h>
#include "drm_crtc_internal.h"
static int oui(u8 first, u8 second, u8 third)
{
return (first << 16) | (second << 8) | third;
}
#define EDID_EST_TIMINGS 16
#define EDID_STD_TIMINGS 8
#define EDID_DETAILED_TIMINGS 4
/*
* EDID blocks out in the wild have a variety of bugs, try to collect
* them here (note that userspace may work around broken monitors first,
* but fixes should make their way here so that the kernel "just works"
* on as many displays as possible).
*/
/* First detailed mode wrong, use largest 60Hz mode */
#define EDID_QUIRK_PREFER_LARGE_60 (1 << 0)
/* Reported 135MHz pixel clock is too high, needs adjustment */
#define EDID_QUIRK_135_CLOCK_TOO_HIGH (1 << 1)
/* Prefer the largest mode at 75 Hz */
#define EDID_QUIRK_PREFER_LARGE_75 (1 << 2)
/* Detail timing is in cm not mm */
#define EDID_QUIRK_DETAILED_IN_CM (1 << 3)
/* Detailed timing descriptors have bogus size values, so just take the
* maximum size and use that.
*/
#define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE (1 << 4)
/* use +hsync +vsync for detailed mode */
#define EDID_QUIRK_DETAILED_SYNC_PP (1 << 6)
/* Force reduced-blanking timings for detailed modes */
#define EDID_QUIRK_FORCE_REDUCED_BLANKING (1 << 7)
/* Force 8bpc */
#define EDID_QUIRK_FORCE_8BPC (1 << 8)
/* Force 12bpc */
#define EDID_QUIRK_FORCE_12BPC (1 << 9)
/* Force 6bpc */
#define EDID_QUIRK_FORCE_6BPC (1 << 10)
/* Force 10bpc */
#define EDID_QUIRK_FORCE_10BPC (1 << 11)
/* Non desktop display (i.e. HMD) */
#define EDID_QUIRK_NON_DESKTOP (1 << 12)
/* Cap the DSC target bitrate to 15bpp */
#define EDID_QUIRK_CAP_DSC_15BPP (1 << 13)
#define MICROSOFT_IEEE_OUI 0xca125c
struct detailed_mode_closure {
struct drm_connector *connector;
const struct drm_edid *drm_edid;
bool preferred;
int modes;
};
#define LEVEL_DMT 0
#define LEVEL_GTF 1
#define LEVEL_GTF2 2
#define LEVEL_CVT 3
#define EDID_QUIRK(vend_chr_0, vend_chr_1, vend_chr_2, product_id, _quirks) \
{ \
.panel_id = drm_edid_encode_panel_id(vend_chr_0, vend_chr_1, vend_chr_2, \
product_id), \
.quirks = _quirks \
}
static const struct edid_quirk {
u32 panel_id;
u32 quirks;
} edid_quirk_list[] = {
/* Acer AL1706 */
EDID_QUIRK('A', 'C', 'R', 44358, EDID_QUIRK_PREFER_LARGE_60),
/* Acer F51 */
EDID_QUIRK('A', 'P', 'I', 0x7602, EDID_QUIRK_PREFER_LARGE_60),
/* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
EDID_QUIRK('A', 'E', 'O', 0, EDID_QUIRK_FORCE_6BPC),
/* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */
EDID_QUIRK('B', 'O', 'E', 0x78b, EDID_QUIRK_FORCE_6BPC),
/* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
EDID_QUIRK('C', 'P', 'T', 0x17df, EDID_QUIRK_FORCE_6BPC),
/* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */
EDID_QUIRK('S', 'D', 'C', 0x3652, EDID_QUIRK_FORCE_6BPC),
/* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */
EDID_QUIRK('B', 'O', 'E', 0x0771, EDID_QUIRK_FORCE_6BPC),
/* Belinea 10 15 55 */
EDID_QUIRK('M', 'A', 'X', 1516, EDID_QUIRK_PREFER_LARGE_60),
EDID_QUIRK('M', 'A', 'X', 0x77e, EDID_QUIRK_PREFER_LARGE_60),
/* Envision Peripherals, Inc. EN-7100e */
EDID_QUIRK('E', 'P', 'I', 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH),
/* Envision EN2028 */
EDID_QUIRK('E', 'P', 'I', 8232, EDID_QUIRK_PREFER_LARGE_60),
/* Funai Electronics PM36B */
EDID_QUIRK('F', 'C', 'M', 13600, EDID_QUIRK_PREFER_LARGE_75 |
EDID_QUIRK_DETAILED_IN_CM),
/* LG 27GP950 */
EDID_QUIRK('G', 'S', 'M', 0x5bbf, EDID_QUIRK_CAP_DSC_15BPP),
/* LG 27GN950 */
EDID_QUIRK('G', 'S', 'M', 0x5b9a, EDID_QUIRK_CAP_DSC_15BPP),
/* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
EDID_QUIRK('L', 'G', 'D', 764, EDID_QUIRK_FORCE_10BPC),
/* LG Philips LCD LP154W01-A5 */
EDID_QUIRK('L', 'P', 'L', 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
EDID_QUIRK('L', 'P', 'L', 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
/* Samsung SyncMaster 205BW. Note: irony */
EDID_QUIRK('S', 'A', 'M', 541, EDID_QUIRK_DETAILED_SYNC_PP),
/* Samsung SyncMaster 22[5-6]BW */
EDID_QUIRK('S', 'A', 'M', 596, EDID_QUIRK_PREFER_LARGE_60),
EDID_QUIRK('S', 'A', 'M', 638, EDID_QUIRK_PREFER_LARGE_60),
/* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
EDID_QUIRK('S', 'N', 'Y', 0x2541, EDID_QUIRK_FORCE_12BPC),
/* ViewSonic VA2026w */
EDID_QUIRK('V', 'S', 'C', 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING),
/* Medion MD 30217 PG */
EDID_QUIRK('M', 'E', 'D', 0x7b8, EDID_QUIRK_PREFER_LARGE_75),
/* Lenovo G50 */
EDID_QUIRK('S', 'D', 'C', 18514, EDID_QUIRK_FORCE_6BPC),
/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
EDID_QUIRK('S', 'E', 'C', 0xd033, EDID_QUIRK_FORCE_8BPC),
/* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
EDID_QUIRK('E', 'T', 'R', 13896, EDID_QUIRK_FORCE_8BPC),
/* Valve Index Headset */
EDID_QUIRK('V', 'L', 'V', 0x91a8, EDID_QUIRK_NON_DESKTOP),
EDID_QUIRK('V', 'L', 'V', 0x91b0, EDID_QUIRK_NON_DESKTOP),
EDID_QUIRK('V', 'L', 'V', 0x91b1, EDID_QUIRK_NON_DESKTOP),
EDID_QUIRK('V', 'L', 'V', 0x91b2, EDID_QUIRK_NON_DESKTOP),
EDID_QUIRK('V', 'L', 'V', 0x91b3, EDID_QUIRK_NON_DESKTOP),
EDID_QUIRK('V', 'L', 'V', 0x91b4, EDID_QUIRK_NON_DESKTOP),
EDID_QUIRK('V', 'L', 'V', 0x91b5, EDID_QUIRK_NON_DESKTOP),
EDID_QUIRK('V', 'L', 'V', 0x91b6, EDID_QUIRK_NON_DESKTOP),
EDID_QUIRK('V', 'L', 'V', 0x91b7, EDID_QUIRK_NON_DESKTOP),
EDID_QUIRK('V', 'L', 'V', 0x91b8, EDID_QUIRK_NON_DESKTOP),
EDID_QUIRK('V', 'L', 'V', 0x91b9, EDID_QUIRK_NON_DESKTOP),
EDID_QUIRK('V', 'L', 'V', 0x91ba, EDID_QUIRK_NON_DESKTOP),
EDID_QUIRK('V', 'L', 'V', 0x91bb, EDID_QUIRK_NON_DESKTOP),
EDID_QUIRK('V', 'L', 'V', 0x91bc, EDID_QUIRK_NON_DESKTOP),
EDID_QUIRK('V', 'L', 'V', 0x91bd, EDID_QUIRK_NON_DESKTOP),
EDID_QUIRK('V', 'L', 'V', 0x91be, EDID_QUIRK_NON_DESKTOP),
EDID_QUIRK('V', 'L', 'V', 0x91bf, EDID_QUIRK_NON_DESKTOP),
/* HTC Vive and Vive Pro VR Headsets */
EDID_QUIRK('H', 'V', 'R', 0xaa01, EDID_QUIRK_NON_DESKTOP),
EDID_QUIRK('H', 'V', 'R', 0xaa02, EDID_QUIRK_NON_DESKTOP),
/* Oculus Rift DK1, DK2, CV1 and Rift S VR Headsets */
EDID_QUIRK('O', 'V', 'R', 0x0001, EDID_QUIRK_NON_DESKTOP),
EDID_QUIRK('O', 'V', 'R', 0x0003, EDID_QUIRK_NON_DESKTOP),
EDID_QUIRK('O', 'V', 'R', 0x0004, EDID_QUIRK_NON_DESKTOP),
EDID_QUIRK('O', 'V', 'R', 0x0012, EDID_QUIRK_NON_DESKTOP),
/* Windows Mixed Reality Headsets */
EDID_QUIRK('A', 'C', 'R', 0x7fce, EDID_QUIRK_NON_DESKTOP),
EDID_QUIRK('L', 'E', 'N', 0x0408, EDID_QUIRK_NON_DESKTOP),
EDID_QUIRK('F', 'U', 'J', 0x1970, EDID_QUIRK_NON_DESKTOP),
EDID_QUIRK('D', 'E', 'L', 0x7fce, EDID_QUIRK_NON_DESKTOP),
EDID_QUIRK('S', 'E', 'C', 0x144a, EDID_QUIRK_NON_DESKTOP),
EDID_QUIRK('A', 'U', 'S', 0xc102, EDID_QUIRK_NON_DESKTOP),
/* Sony PlayStation VR Headset */
EDID_QUIRK('S', 'N', 'Y', 0x0704, EDID_QUIRK_NON_DESKTOP),
/* Sensics VR Headsets */
EDID_QUIRK('S', 'E', 'N', 0x1019, EDID_QUIRK_NON_DESKTOP),
/* OSVR HDK and HDK2 VR Headsets */
EDID_QUIRK('S', 'V', 'R', 0x1019, EDID_QUIRK_NON_DESKTOP),
EDID_QUIRK('A', 'U', 'O', 0x1111, EDID_QUIRK_NON_DESKTOP),
};
/*
* Autogenerated from the DMT spec.
* This table is copied from xfree86/modes/xf86EdidModes.c.
*/
static const struct drm_display_mode drm_dmt_modes[] = {
/* 0x01 - 640x350@85Hz */
{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
736, 832, 0, 350, 382, 385, 445, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x02 - 640x400@85Hz */
{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
736, 832, 0, 400, 401, 404, 445, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x03 - 720x400@85Hz */
{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
828, 936, 0, 400, 401, 404, 446, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x04 - 640x480@60Hz */
{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
752, 800, 0, 480, 490, 492, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x05 - 640x480@72Hz */
{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
704, 832, 0, 480, 489, 492, 520, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x06 - 640x480@75Hz */
{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
720, 840, 0, 480, 481, 484, 500, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x07 - 640x480@85Hz */
{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
752, 832, 0, 480, 481, 484, 509, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x08 - 800x600@56Hz */
{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
896, 1024, 0, 600, 601, 603, 625, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x09 - 800x600@60Hz */
{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
968, 1056, 0, 600, 601, 605, 628, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x0a - 800x600@72Hz */
{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
976, 1040, 0, 600, 637, 643, 666, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x0b - 800x600@75Hz */
{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
896, 1056, 0, 600, 601, 604, 625, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x0c - 800x600@85Hz */
{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
896, 1048, 0, 600, 601, 604, 631, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x0d - 800x600@120Hz RB */
{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
880, 960, 0, 600, 603, 607, 636, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x0e - 848x480@60Hz */
{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
976, 1088, 0, 480, 486, 494, 517, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x0f - 1024x768@43Hz, interlace */
{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
1208, 1264, 0, 768, 768, 776, 817, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
DRM_MODE_FLAG_INTERLACE) },
/* 0x10 - 1024x768@60Hz */
{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
1184, 1344, 0, 768, 771, 777, 806, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x11 - 1024x768@70Hz */
{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
1184, 1328, 0, 768, 771, 777, 806, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x12 - 1024x768@75Hz */
{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
1136, 1312, 0, 768, 769, 772, 800, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x13 - 1024x768@85Hz */
{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
1168, 1376, 0, 768, 769, 772, 808, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x14 - 1024x768@120Hz RB */
{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
1104, 1184, 0, 768, 771, 775, 813, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x15 - 1152x864@75Hz */
{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
1344, 1600, 0, 864, 865, 868, 900, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x55 - 1280x720@60Hz */
{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1430, 1650, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x16 - 1280x768@60Hz RB */
{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
1360, 1440, 0, 768, 771, 778, 790, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x17 - 1280x768@60Hz */
{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
1472, 1664, 0, 768, 771, 778, 798, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x18 - 1280x768@75Hz */
{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
1488, 1696, 0, 768, 771, 778, 805, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x19 - 1280x768@85Hz */
{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
1496, 1712, 0, 768, 771, 778, 809, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x1a - 1280x768@120Hz RB */
{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
1360, 1440, 0, 768, 771, 778, 813, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x1b - 1280x800@60Hz RB */
{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
1360, 1440, 0, 800, 803, 809, 823, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x1c - 1280x800@60Hz */
{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
1480, 1680, 0, 800, 803, 809, 831, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x1d - 1280x800@75Hz */
{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
1488, 1696, 0, 800, 803, 809, 838, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x1e - 1280x800@85Hz */
{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
1496, 1712, 0, 800, 803, 809, 843, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x1f - 1280x800@120Hz RB */
{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
1360, 1440, 0, 800, 803, 809, 847, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x20 - 1280x960@60Hz */
{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
1488, 1800, 0, 960, 961, 964, 1000, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x21 - 1280x960@85Hz */
{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
1504, 1728, 0, 960, 961, 964, 1011, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x22 - 1280x960@120Hz RB */
{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
1360, 1440, 0, 960, 963, 967, 1017, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x23 - 1280x1024@60Hz */
{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x24 - 1280x1024@75Hz */
{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x25 - 1280x1024@85Hz */
{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x26 - 1280x1024@120Hz RB */
{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x27 - 1360x768@60Hz */
{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
1536, 1792, 0, 768, 771, 777, 795, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x28 - 1360x768@120Hz RB */
{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
1440, 1520, 0, 768, 771, 776, 813, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x51 - 1366x768@60Hz */
{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
1579, 1792, 0, 768, 771, 774, 798, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x56 - 1366x768@60Hz */
{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
1436, 1500, 0, 768, 769, 772, 800, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x29 - 1400x1050@60Hz RB */
{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x2a - 1400x1050@60Hz */
{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x2b - 1400x1050@75Hz */
{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x2c - 1400x1050@85Hz */
{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x2d - 1400x1050@120Hz RB */
{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x2e - 1440x900@60Hz RB */
{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
1520, 1600, 0, 900, 903, 909, 926, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x2f - 1440x900@60Hz */
{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
1672, 1904, 0, 900, 903, 909, 934, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x30 - 1440x900@75Hz */
{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
1688, 1936, 0, 900, 903, 909, 942, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x31 - 1440x900@85Hz */
{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
1696, 1952, 0, 900, 903, 909, 948, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x32 - 1440x900@120Hz RB */
{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
1520, 1600, 0, 900, 903, 909, 953, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x53 - 1600x900@60Hz */
{ DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
1704, 1800, 0, 900, 901, 904, 1000, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x33 - 1600x1200@60Hz */
{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x34 - 1600x1200@65Hz */
{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x35 - 1600x1200@70Hz */
{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x36 - 1600x1200@75Hz */
{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x37 - 1600x1200@85Hz */
{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x38 - 1600x1200@120Hz RB */
{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x39 - 1680x1050@60Hz RB */
{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x3a - 1680x1050@60Hz */
{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x3b - 1680x1050@75Hz */
{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x3c - 1680x1050@85Hz */
{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x3d - 1680x1050@120Hz RB */
{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x3e - 1792x1344@60Hz */
{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x3f - 1792x1344@75Hz */
{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x40 - 1792x1344@120Hz RB */
{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x41 - 1856x1392@60Hz */
{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x42 - 1856x1392@75Hz */
{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x43 - 1856x1392@120Hz RB */
{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x52 - 1920x1080@60Hz */
{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x44 - 1920x1200@60Hz RB */
{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x45 - 1920x1200@60Hz */
{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x46 - 1920x1200@75Hz */
{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x47 - 1920x1200@85Hz */
{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x48 - 1920x1200@120Hz RB */
{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x49 - 1920x1440@60Hz */
{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x4a - 1920x1440@75Hz */
{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x4b - 1920x1440@120Hz RB */
{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x54 - 2048x1152@60Hz */
{ DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x4c - 2560x1600@60Hz RB */
{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x4d - 2560x1600@60Hz */
{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x4e - 2560x1600@75Hz */
{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x4f - 2560x1600@85Hz */
{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x50 - 2560x1600@120Hz RB */
{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x57 - 4096x2160@60Hz RB */
{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x58 - 4096x2160@59.94Hz RB */
{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
};
/*
* These more or less come from the DMT spec. The 720x400 modes are
* inferred from historical 80x25 practice. The 640x480@67 and 832x624@75
* modes are old-school Mac modes. The EDID spec says the 1152x864@75 mode
* should be 1152x870, again for the Mac, but instead we use the x864 DMT
* mode.
*
* The DMT modes have been fact-checked; the rest are mild guesses.
*/
static const struct drm_display_mode edid_est_modes[] = {
{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
968, 1056, 0, 600, 601, 605, 628, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
896, 1024, 0, 600, 601, 603, 625, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
720, 840, 0, 480, 481, 484, 500, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
704, 832, 0, 480, 489, 492, 520, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
768, 864, 0, 480, 483, 486, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
752, 800, 0, 480, 490, 492, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
846, 900, 0, 400, 421, 423, 449, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
846, 900, 0, 400, 412, 414, 449, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
1136, 1312, 0, 768, 769, 772, 800, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
1184, 1328, 0, 768, 771, 777, 806, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
1184, 1344, 0, 768, 771, 777, 806, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
1208, 1264, 0, 768, 768, 776, 817, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
928, 1152, 0, 624, 625, 628, 667, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
896, 1056, 0, 600, 601, 604, 625, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
976, 1040, 0, 600, 637, 643, 666, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
1344, 1600, 0, 864, 865, 868, 900, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
};
struct minimode {
short w;
short h;
short r;
short rb;
};
static const struct minimode est3_modes[] = {
/* byte 6 */
{ 640, 350, 85, 0 },
{ 640, 400, 85, 0 },
{ 720, 400, 85, 0 },
{ 640, 480, 85, 0 },
{ 848, 480, 60, 0 },
{ 800, 600, 85, 0 },
{ 1024, 768, 85, 0 },
{ 1152, 864, 75, 0 },
/* byte 7 */
{ 1280, 768, 60, 1 },
{ 1280, 768, 60, 0 },
{ 1280, 768, 75, 0 },
{ 1280, 768, 85, 0 },
{ 1280, 960, 60, 0 },
{ 1280, 960, 85, 0 },
{ 1280, 1024, 60, 0 },
{ 1280, 1024, 85, 0 },
/* byte 8 */
{ 1360, 768, 60, 0 },
{ 1440, 900, 60, 1 },
{ 1440, 900, 60, 0 },
{ 1440, 900, 75, 0 },
{ 1440, 900, 85, 0 },
{ 1400, 1050, 60, 1 },
{ 1400, 1050, 60, 0 },
{ 1400, 1050, 75, 0 },
/* byte 9 */
{ 1400, 1050, 85, 0 },
{ 1680, 1050, 60, 1 },
{ 1680, 1050, 60, 0 },
{ 1680, 1050, 75, 0 },
{ 1680, 1050, 85, 0 },
{ 1600, 1200, 60, 0 },
{ 1600, 1200, 65, 0 },
{ 1600, 1200, 70, 0 },
/* byte 10 */
{ 1600, 1200, 75, 0 },
{ 1600, 1200, 85, 0 },
{ 1792, 1344, 60, 0 },
{ 1792, 1344, 75, 0 },
{ 1856, 1392, 60, 0 },
{ 1856, 1392, 75, 0 },
{ 1920, 1200, 60, 1 },
{ 1920, 1200, 60, 0 },
/* byte 11 */
{ 1920, 1200, 75, 0 },
{ 1920, 1200, 85, 0 },
{ 1920, 1440, 60, 0 },
{ 1920, 1440, 75, 0 },
};
static const struct minimode extra_modes[] = {
{ 1024, 576, 60, 0 },
{ 1366, 768, 60, 0 },
{ 1600, 900, 60, 0 },
{ 1680, 945, 60, 0 },
{ 1920, 1080, 60, 0 },
{ 2048, 1152, 60, 0 },
{ 2048, 1536, 60, 0 },
};
/*
* From CEA/CTA-861 spec.
*
* Do not access directly, instead always use cea_mode_for_vic().
*/
static const struct drm_display_mode edid_cea_modes_1[] = {
/* 1 - 640x480@60Hz 4:3 */
{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
752, 800, 0, 480, 490, 492, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 2 - 720x480@60Hz 4:3 */
{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
798, 858, 0, 480, 489, 495, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 3 - 720x480@60Hz 16:9 */
{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
798, 858, 0, 480, 489, 495, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 4 - 1280x720@60Hz 16:9 */
{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1430, 1650, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 5 - 1920x1080i@60Hz 16:9 */
{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
DRM_MODE_FLAG_INTERLACE),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 6 - 720(1440)x480i@60Hz 4:3 */
{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
801, 858, 0, 480, 488, 494, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 7 - 720(1440)x480i@60Hz 16:9 */
{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
801, 858, 0, 480, 488, 494, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 8 - 720(1440)x240@60Hz 4:3 */
{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
801, 858, 0, 240, 244, 247, 262, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_DBLCLK),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 9 - 720(1440)x240@60Hz 16:9 */
{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
801, 858, 0, 240, 244, 247, 262, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_DBLCLK),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 10 - 2880x480i@60Hz 4:3 */
{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
3204, 3432, 0, 480, 488, 494, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_INTERLACE),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 11 - 2880x480i@60Hz 16:9 */
{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
3204, 3432, 0, 480, 488, 494, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_INTERLACE),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 12 - 2880x240@60Hz 4:3 */
{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
3204, 3432, 0, 240, 244, 247, 262, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 13 - 2880x240@60Hz 16:9 */
{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
3204, 3432, 0, 240, 244, 247, 262, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 14 - 1440x480@60Hz 4:3 */
{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
1596, 1716, 0, 480, 489, 495, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 15 - 1440x480@60Hz 16:9 */
{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
1596, 1716, 0, 480, 489, 495, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 16 - 1920x1080@60Hz 16:9 */
{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 17 - 720x576@50Hz 4:3 */
{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
796, 864, 0, 576, 581, 586, 625, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 18 - 720x576@50Hz 16:9 */
{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
796, 864, 0, 576, 581, 586, 625, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 19 - 1280x720@50Hz 16:9 */
{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1760, 1980, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 20 - 1920x1080i@50Hz 16:9 */
{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
DRM_MODE_FLAG_INTERLACE),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 21 - 720(1440)x576i@50Hz 4:3 */
{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
795, 864, 0, 576, 580, 586, 625, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 22 - 720(1440)x576i@50Hz 16:9 */
{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
795, 864, 0, 576, 580, 586, 625, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 23 - 720(1440)x288@50Hz 4:3 */
{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
795, 864, 0, 288, 290, 293, 312, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_DBLCLK),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 24 - 720(1440)x288@50Hz 16:9 */
{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
795, 864, 0, 288, 290, 293, 312, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_DBLCLK),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 25 - 2880x576i@50Hz 4:3 */
{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
3180, 3456, 0, 576, 580, 586, 625, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_INTERLACE),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 26 - 2880x576i@50Hz 16:9 */
{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
3180, 3456, 0, 576, 580, 586, 625, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_INTERLACE),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 27 - 2880x288@50Hz 4:3 */
{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
3180, 3456, 0, 288, 290, 293, 312, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 28 - 2880x288@50Hz 16:9 */
{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
3180, 3456, 0, 288, 290, 293, 312, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 29 - 1440x576@50Hz 4:3 */
{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
1592, 1728, 0, 576, 581, 586, 625, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 30 - 1440x576@50Hz 16:9 */
{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
1592, 1728, 0, 576, 581, 586, 625, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 31 - 1920x1080@50Hz 16:9 */
{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 32 - 1920x1080@24Hz 16:9 */
{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 33 - 1920x1080@25Hz 16:9 */
{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 34 - 1920x1080@30Hz 16:9 */
{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 35 - 2880x480@60Hz 4:3 */
{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
3192, 3432, 0, 480, 489, 495, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 36 - 2880x480@60Hz 16:9 */
{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
3192, 3432, 0, 480, 489, 495, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 37 - 2880x576@50Hz 4:3 */
{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
3184, 3456, 0, 576, 581, 586, 625, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 38 - 2880x576@50Hz 16:9 */
{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
3184, 3456, 0, 576, 581, 586, 625, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 39 - 1920x1080i@50Hz 16:9 */
{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_INTERLACE),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 40 - 1920x1080i@100Hz 16:9 */
{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
DRM_MODE_FLAG_INTERLACE),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 41 - 1280x720@100Hz 16:9 */
{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1760, 1980, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 42 - 720x576@100Hz 4:3 */
{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
796, 864, 0, 576, 581, 586, 625, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 43 - 720x576@100Hz 16:9 */
{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
796, 864, 0, 576, 581, 586, 625, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 44 - 720(1440)x576i@100Hz 4:3 */
{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
795, 864, 0, 576, 580, 586, 625, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 45 - 720(1440)x576i@100Hz 16:9 */
{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
795, 864, 0, 576, 580, 586, 625, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 46 - 1920x1080i@120Hz 16:9 */
{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
DRM_MODE_FLAG_INTERLACE),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 47 - 1280x720@120Hz 16:9 */
{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1430, 1650, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 48 - 720x480@120Hz 4:3 */
{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
798, 858, 0, 480, 489, 495, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 49 - 720x480@120Hz 16:9 */
{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
798, 858, 0, 480, 489, 495, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 50 - 720(1440)x480i@120Hz 4:3 */
{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
801, 858, 0, 480, 488, 494, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 51 - 720(1440)x480i@120Hz 16:9 */
{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
801, 858, 0, 480, 488, 494, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 52 - 720x576@200Hz 4:3 */
{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
796, 864, 0, 576, 581, 586, 625, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 53 - 720x576@200Hz 16:9 */
{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
796, 864, 0, 576, 581, 586, 625, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 54 - 720(1440)x576i@200Hz 4:3 */
{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
795, 864, 0, 576, 580, 586, 625, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 55 - 720(1440)x576i@200Hz 16:9 */
{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
795, 864, 0, 576, 580, 586, 625, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 56 - 720x480@240Hz 4:3 */
{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
798, 858, 0, 480, 489, 495, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 57 - 720x480@240Hz 16:9 */
{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
798, 858, 0, 480, 489, 495, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 58 - 720(1440)x480i@240Hz 4:3 */
{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
801, 858, 0, 480, 488, 494, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 59 - 720(1440)x480i@240Hz 16:9 */
{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
801, 858, 0, 480, 488, 494, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 60 - 1280x720@24Hz 16:9 */
{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
3080, 3300, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 61 - 1280x720@25Hz 16:9 */
{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
3740, 3960, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 62 - 1280x720@30Hz 16:9 */
{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
3080, 3300, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 63 - 1920x1080@120Hz 16:9 */
{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 64 - 1920x1080@100Hz 16:9 */
{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 65 - 1280x720@24Hz 64:27 */
{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
3080, 3300, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 66 - 1280x720@25Hz 64:27 */
{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
3740, 3960, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 67 - 1280x720@30Hz 64:27 */
{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
3080, 3300, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 68 - 1280x720@50Hz 64:27 */
{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1760, 1980, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 69 - 1280x720@60Hz 64:27 */
{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1430, 1650, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 70 - 1280x720@100Hz 64:27 */
{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1760, 1980, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 71 - 1280x720@120Hz 64:27 */
{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1430, 1650, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 72 - 1920x1080@24Hz 64:27 */
{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 73 - 1920x1080@25Hz 64:27 */
{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 74 - 1920x1080@30Hz 64:27 */
{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 75 - 1920x1080@50Hz 64:27 */
{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 76 - 1920x1080@60Hz 64:27 */
{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 77 - 1920x1080@100Hz 64:27 */
{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 78 - 1920x1080@120Hz 64:27 */
{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 79 - 1680x720@24Hz 64:27 */
{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
3080, 3300, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 80 - 1680x720@25Hz 64:27 */
{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
2948, 3168, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 81 - 1680x720@30Hz 64:27 */
{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
2420, 2640, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 82 - 1680x720@50Hz 64:27 */
{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1980, 2200, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 83 - 1680x720@60Hz 64:27 */
{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1980, 2200, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 84 - 1680x720@100Hz 64:27 */
{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1780, 2000, 0, 720, 725, 730, 825, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 85 - 1680x720@120Hz 64:27 */
{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1780, 2000, 0, 720, 725, 730, 825, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 86 - 2560x1080@24Hz 64:27 */
{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 87 - 2560x1080@25Hz 64:27 */
{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 88 - 2560x1080@30Hz 64:27 */
{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 89 - 2560x1080@50Hz 64:27 */
{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 90 - 2560x1080@60Hz 64:27 */
{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 91 - 2560x1080@100Hz 64:27 */
{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 92 - 2560x1080@120Hz 64:27 */
{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 93 - 3840x2160@24Hz 16:9 */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 94 - 3840x2160@25Hz 16:9 */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 95 - 3840x2160@30Hz 16:9 */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 96 - 3840x2160@50Hz 16:9 */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 97 - 3840x2160@60Hz 16:9 */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 98 - 4096x2160@24Hz 256:135 */
{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
/* 99 - 4096x2160@25Hz 256:135 */
{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
/* 100 - 4096x2160@30Hz 256:135 */
{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
/* 101 - 4096x2160@50Hz 256:135 */
{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
/* 102 - 4096x2160@60Hz 256:135 */
{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
/* 103 - 3840x2160@24Hz 64:27 */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 104 - 3840x2160@25Hz 64:27 */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 105 - 3840x2160@30Hz 64:27 */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 106 - 3840x2160@50Hz 64:27 */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 107 - 3840x2160@60Hz 64:27 */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 108 - 1280x720@48Hz 16:9 */
{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
2280, 2500, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 109 - 1280x720@48Hz 64:27 */
{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
2280, 2500, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 110 - 1680x720@48Hz 64:27 */
{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490,
2530, 2750, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 111 - 1920x1080@48Hz 16:9 */
{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 112 - 1920x1080@48Hz 64:27 */
{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 113 - 2560x1080@48Hz 64:27 */
{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558,
3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 114 - 3840x2160@48Hz 16:9 */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 115 - 4096x2160@48Hz 256:135 */
{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116,
5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
/* 116 - 3840x2160@48Hz 64:27 */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 117 - 3840x2160@100Hz 16:9 */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 118 - 3840x2160@120Hz 16:9 */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 119 - 3840x2160@100Hz 64:27 */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 120 - 3840x2160@120Hz 64:27 */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 121 - 5120x2160@24Hz 64:27 */
{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116,
7204, 7500, 0, 2160, 2168, 2178, 2200, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 122 - 5120x2160@25Hz 64:27 */
{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816,
6904, 7200, 0, 2160, 2168, 2178, 2200, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 123 - 5120x2160@30Hz 64:27 */
{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784,
5872, 6000, 0, 2160, 2168, 2178, 2200, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 124 - 5120x2160@48Hz 64:27 */
{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866,
5954, 6250, 0, 2160, 2168, 2178, 2475, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 125 - 5120x2160@50Hz 64:27 */
{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216,
6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 126 - 5120x2160@60Hz 64:27 */
{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284,
5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 127 - 5120x2160@100Hz 64:27 */
{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216,
6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
};
/*
* From CEA/CTA-861 spec.
*
* Do not access directly, instead always use cea_mode_for_vic().
*/
static const struct drm_display_mode edid_cea_modes_193[] = {
/* 193 - 5120x2160@120Hz 64:27 */
{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284,
5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 194 - 7680x4320@24Hz 16:9 */
{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 195 - 7680x4320@25Hz 16:9 */
{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 196 - 7680x4320@30Hz 16:9 */
{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 197 - 7680x4320@48Hz 16:9 */
{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 198 - 7680x4320@50Hz 16:9 */
{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 199 - 7680x4320@60Hz 16:9 */
{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 200 - 7680x4320@100Hz 16:9 */
{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 201 - 7680x4320@120Hz 16:9 */
{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 202 - 7680x4320@24Hz 64:27 */
{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 203 - 7680x4320@25Hz 64:27 */
{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 204 - 7680x4320@30Hz 64:27 */
{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 205 - 7680x4320@48Hz 64:27 */
{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 206 - 7680x4320@50Hz 64:27 */
{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 207 - 7680x4320@60Hz 64:27 */
{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 208 - 7680x4320@100Hz 64:27 */
{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 209 - 7680x4320@120Hz 64:27 */
{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 210 - 10240x4320@24Hz 64:27 */
{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732,
11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 211 - 10240x4320@25Hz 64:27 */
{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732,
12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 212 - 10240x4320@30Hz 64:27 */
{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528,
10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 213 - 10240x4320@48Hz 64:27 */
{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732,
11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 214 - 10240x4320@50Hz 64:27 */
{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732,
12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 215 - 10240x4320@60Hz 64:27 */
{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528,
10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 216 - 10240x4320@100Hz 64:27 */
{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432,
12608, 13200, 0, 4320, 4336, 4356, 4500, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 217 - 10240x4320@120Hz 64:27 */
{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528,
10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 218 - 4096x2160@100Hz 256:135 */
{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896,
4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
/* 219 - 4096x2160@120Hz 256:135 */
{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184,
4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
};
/*
* HDMI 1.4 4k modes. Index using the VIC.
*/
static const struct drm_display_mode edid_4k_modes[] = {
/* 0 - dummy, VICs start at 1 */
{ },
/* 1 - 3840x2160@30Hz */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
3840, 4016, 4104, 4400, 0,
2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 2 - 3840x2160@25Hz */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
3840, 4896, 4984, 5280, 0,
2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 3 - 3840x2160@24Hz */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
3840, 5116, 5204, 5500, 0,
2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 4 - 4096x2160@24Hz (SMPTE) */
{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
4096, 5116, 5204, 5500, 0,
2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
};
/*** DDC fetch and block validation ***/
/*
* The opaque EDID type, internal to drm_edid.c.
*/
struct drm_edid {
/* Size allocated for edid */
size_t size;
const struct edid *edid;
};
static int edid_hfeeodb_extension_block_count(const struct edid *edid);
static int edid_hfeeodb_block_count(const struct edid *edid)
{
int eeodb = edid_hfeeodb_extension_block_count(edid);
return eeodb ? eeodb + 1 : 0;
}
static int edid_extension_block_count(const struct edid *edid)
{
return edid->extensions;
}
static int edid_block_count(const struct edid *edid)
{
return edid_extension_block_count(edid) + 1;
}
static int edid_size_by_blocks(int num_blocks)
{
return num_blocks * EDID_LENGTH;
}
static int edid_size(const struct edid *edid)
{
return edid_size_by_blocks(edid_block_count(edid));
}
static const void *edid_block_data(const struct edid *edid, int index)
{
BUILD_BUG_ON(sizeof(*edid) != EDID_LENGTH);
return edid + index;
}
static const void *edid_extension_block_data(const struct edid *edid, int index)
{
return edid_block_data(edid, index + 1);
}
/* EDID block count indicated in EDID, may exceed allocated size */
static int __drm_edid_block_count(const struct drm_edid *drm_edid)
{
int num_blocks;
/* Starting point */
num_blocks = edid_block_count(drm_edid->edid);
/* HF-EEODB override */
if (drm_edid->size >= edid_size_by_blocks(2)) {
int eeodb;
/*
* Note: HF-EEODB may specify a smaller extension count than the
* regular one. Unlike in buffer allocation, here we can use it.
*/
eeodb = edid_hfeeodb_block_count(drm_edid->edid);
if (eeodb)
num_blocks = eeodb;
}
return num_blocks;
}
/* EDID block count, limited by allocated size */
static int drm_edid_block_count(const struct drm_edid *drm_edid)
{
/* Limit by allocated size */
return min(__drm_edid_block_count(drm_edid),
(int)drm_edid->size / EDID_LENGTH);
}
/* EDID extension block count, limited by allocated size */
static int drm_edid_extension_block_count(const struct drm_edid *drm_edid)
{
return drm_edid_block_count(drm_edid) - 1;
}
static const void *drm_edid_block_data(const struct drm_edid *drm_edid, int index)
{
return edid_block_data(drm_edid->edid, index);
}
static const void *drm_edid_extension_block_data(const struct drm_edid *drm_edid,
int index)
{
return edid_extension_block_data(drm_edid->edid, index);
}
/*
* Initializer helper for legacy interfaces, where we have no choice but to
* trust edid size. Not for general purpose use.
*/
static const struct drm_edid *drm_edid_legacy_init(struct drm_edid *drm_edid,
const struct edid *edid)
{
if (!edid)
return NULL;
memset(drm_edid, 0, sizeof(*drm_edid));
drm_edid->edid = edid;
drm_edid->size = edid_size(edid);
return drm_edid;
}
/*
* EDID base and extension block iterator.
*
* struct drm_edid_iter iter;
* const u8 *block;
*
* drm_edid_iter_begin(drm_edid, &iter);
* drm_edid_iter_for_each(block, &iter) {
* // do stuff with block
* }
* drm_edid_iter_end(&iter);
*/
struct drm_edid_iter {
const struct drm_edid *drm_edid;
/* Current block index. */
int index;
};
static void drm_edid_iter_begin(const struct drm_edid *drm_edid,
struct drm_edid_iter *iter)
{
memset(iter, 0, sizeof(*iter));
iter->drm_edid = drm_edid;
}
static const void *__drm_edid_iter_next(struct drm_edid_iter *iter)
{
const void *block = NULL;
if (!iter->drm_edid)
return NULL;
if (iter->index < drm_edid_block_count(iter->drm_edid))
block = drm_edid_block_data(iter->drm_edid, iter->index++);
return block;
}
#define drm_edid_iter_for_each(__block, __iter) \
while (((__block) = __drm_edid_iter_next(__iter)))
static void drm_edid_iter_end(struct drm_edid_iter *iter)
{
memset(iter, 0, sizeof(*iter));
}
static const u8 edid_header[] = {
0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
};
static void edid_header_fix(void *edid)
{
memcpy(edid, edid_header, sizeof(edid_header));
}
/**
* drm_edid_header_is_valid - sanity check the header of the base EDID block
* @_edid: pointer to raw base EDID block
*
* Sanity check the header of the base EDID block.
*
* Return: 8 if the header is perfect, down to 0 if it's totally wrong.
*/
int drm_edid_header_is_valid(const void *_edid)
{
const struct edid *edid = _edid;
int i, score = 0;
for (i = 0; i < sizeof(edid_header); i++) {
if (edid->header[i] == edid_header[i])
score++;
}
return score;
}
EXPORT_SYMBOL(drm_edid_header_is_valid);
static int edid_fixup __read_mostly = 6;
module_param_named(edid_fixup, edid_fixup, int, 0400);
MODULE_PARM_DESC(edid_fixup,
"Minimum number of valid EDID header bytes (0-8, default 6)");
static int edid_block_compute_checksum(const void *_block)
{
const u8 *block = _block;
int i;
u8 csum = 0, crc = 0;
for (i = 0; i < EDID_LENGTH - 1; i++)
csum += block[i];
crc = 0x100 - csum;
return crc;
}
static int edid_block_get_checksum(const void *_block)
{
const struct edid *block = _block;
return block->checksum;
}
static int edid_block_tag(const void *_block)
{
const u8 *block = _block;
return block[0];
}
static bool edid_block_is_zero(const void *edid)
{
return !memchr_inv(edid, 0, EDID_LENGTH);
}
/**
* drm_edid_are_equal - compare two edid blobs.
* @edid1: pointer to first blob
* @edid2: pointer to second blob
* This helper can be used during probing to determine if
* edid had changed.
*/
bool drm_edid_are_equal(const struct edid *edid1, const struct edid *edid2)
{
int edid1_len, edid2_len;
bool edid1_present = edid1 != NULL;
bool edid2_present = edid2 != NULL;
if (edid1_present != edid2_present)
return false;
if (edid1) {
edid1_len = edid_size(edid1);
edid2_len = edid_size(edid2);
if (edid1_len != edid2_len)
return false;
if (memcmp(edid1, edid2, edid1_len))
return false;
}
return true;
}
EXPORT_SYMBOL(drm_edid_are_equal);
enum edid_block_status {
EDID_BLOCK_OK = 0,
EDID_BLOCK_READ_FAIL,
EDID_BLOCK_NULL,
EDID_BLOCK_ZERO,
EDID_BLOCK_HEADER_CORRUPT,
EDID_BLOCK_HEADER_REPAIR,
EDID_BLOCK_HEADER_FIXED,
EDID_BLOCK_CHECKSUM,
EDID_BLOCK_VERSION,
};
static enum edid_block_status edid_block_check(const void *_block,
bool is_base_block)
{
const struct edid *block = _block;
if (!block)
return EDID_BLOCK_NULL;
if (is_base_block) {
int score = drm_edid_header_is_valid(block);
if (score < clamp(edid_fixup, 0, 8)) {
if (edid_block_is_zero(block))
return EDID_BLOCK_ZERO;
else
return EDID_BLOCK_HEADER_CORRUPT;
}
if (score < 8)
return EDID_BLOCK_HEADER_REPAIR;
}
if (edid_block_compute_checksum(block) != edid_block_get_checksum(block)) {
if (edid_block_is_zero(block))
return EDID_BLOCK_ZERO;
else
return EDID_BLOCK_CHECKSUM;
}
if (is_base_block) {
if (block->version != 1)
return EDID_BLOCK_VERSION;
}
return EDID_BLOCK_OK;
}
static bool edid_block_status_valid(enum edid_block_status status, int tag)
{
return status == EDID_BLOCK_OK ||
status == EDID_BLOCK_HEADER_FIXED ||
(status == EDID_BLOCK_CHECKSUM && tag == CEA_EXT);
}
static bool edid_block_valid(const void *block, bool base)
{
return edid_block_status_valid(edid_block_check(block, base),
edid_block_tag(block));
}
static void edid_block_status_print(enum edid_block_status status,
const struct edid *block,
int block_num)
{
switch (status) {
case EDID_BLOCK_OK:
break;
case EDID_BLOCK_READ_FAIL:
pr_debug("EDID block %d read failed\n", block_num);
break;
case EDID_BLOCK_NULL:
pr_debug("EDID block %d pointer is NULL\n", block_num);
break;
case EDID_BLOCK_ZERO:
pr_notice("EDID block %d is all zeroes\n", block_num);
break;
case EDID_BLOCK_HEADER_CORRUPT:
pr_notice("EDID has corrupt header\n");
break;
case EDID_BLOCK_HEADER_REPAIR:
pr_debug("EDID corrupt header needs repair\n");
break;
case EDID_BLOCK_HEADER_FIXED:
pr_debug("EDID corrupt header fixed\n");
break;
case EDID_BLOCK_CHECKSUM:
if (edid_block_status_valid(status, edid_block_tag(block))) {
pr_debug("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d, ignoring\n",
block_num, edid_block_tag(block),
edid_block_compute_checksum(block));
} else {
pr_notice("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d\n",
block_num, edid_block_tag(block),
edid_block_compute_checksum(block));
}
break;
case EDID_BLOCK_VERSION:
pr_notice("EDID has major version %d, instead of 1\n",
block->version);
break;
default:
WARN(1, "EDID block %d unknown edid block status code %d\n",
block_num, status);
break;
}
}
static void edid_block_dump(const char *level, const void *block, int block_num)
{
enum edid_block_status status;
char prefix[20];
status = edid_block_check(block, block_num == 0);
if (status == EDID_BLOCK_ZERO)
sprintf(prefix, "\t[%02x] ZERO ", block_num);
else if (!edid_block_status_valid(status, edid_block_tag(block)))
sprintf(prefix, "\t[%02x] BAD ", block_num);
else
sprintf(prefix, "\t[%02x] GOOD ", block_num);
print_hex_dump(level, prefix, DUMP_PREFIX_NONE, 16, 1,
block, EDID_LENGTH, false);
}
/**
* drm_edid_block_valid - Sanity check the EDID block (base or extension)
* @_block: pointer to raw EDID block
* @block_num: type of block to validate (0 for base, extension otherwise)
* @print_bad_edid: if true, dump bad EDID blocks to the console
* @edid_corrupt: if true, the header or checksum is invalid
*
* Validate a base or extension EDID block and optionally dump bad blocks to
* the console.
*
* Return: True if the block is valid, false otherwise.
*/
bool drm_edid_block_valid(u8 *_block, int block_num, bool print_bad_edid,
bool *edid_corrupt)
{
struct edid *block = (struct edid *)_block;
enum edid_block_status status;
bool is_base_block = block_num == 0;
bool valid;
if (WARN_ON(!block))
return false;
status = edid_block_check(block, is_base_block);
if (status == EDID_BLOCK_HEADER_REPAIR) {
DRM_DEBUG_KMS("Fixing EDID header, your hardware may be failing\n");
edid_header_fix(block);
/* Retry with fixed header, update status if that worked. */
status = edid_block_check(block, is_base_block);
if (status == EDID_BLOCK_OK)
status = EDID_BLOCK_HEADER_FIXED;
}
if (edid_corrupt) {
/*
* Unknown major version isn't corrupt but we can't use it. Only
* the base block can reset edid_corrupt to false.
*/
if (is_base_block &&
(status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION))
*edid_corrupt = false;
else if (status != EDID_BLOCK_OK)
*edid_corrupt = true;
}
edid_block_status_print(status, block, block_num);
/* Determine whether we can use this block with this status. */
valid = edid_block_status_valid(status, edid_block_tag(block));
if (!valid && print_bad_edid && status != EDID_BLOCK_ZERO) {
pr_notice("Raw EDID:\n");
edid_block_dump(KERN_NOTICE, block, block_num);
}
return valid;
}
EXPORT_SYMBOL(drm_edid_block_valid);
/**
* drm_edid_is_valid - sanity check EDID data
* @edid: EDID data
*
* Sanity-check an entire EDID record (including extensions)
*
* Return: True if the EDID data is valid, false otherwise.
*/
bool drm_edid_is_valid(struct edid *edid)
{
int i;
if (!edid)
return false;
for (i = 0; i < edid_block_count(edid); i++) {
void *block = (void *)edid_block_data(edid, i);
if (!drm_edid_block_valid(block, i, true, NULL))
return false;
}
return true;
}
EXPORT_SYMBOL(drm_edid_is_valid);
/**
* drm_edid_valid - sanity check EDID data
* @drm_edid: EDID data
*
* Sanity check an EDID. Cross check block count against allocated size and
* checksum the blocks.
*
* Return: True if the EDID data is valid, false otherwise.
*/
bool drm_edid_valid(const struct drm_edid *drm_edid)
{
int i;
if (!drm_edid)
return false;
if (edid_size_by_blocks(__drm_edid_block_count(drm_edid)) != drm_edid->size)
return false;
for (i = 0; i < drm_edid_block_count(drm_edid); i++) {
const void *block = drm_edid_block_data(drm_edid, i);
if (!edid_block_valid(block, i == 0))
return false;
}
return true;
}
EXPORT_SYMBOL(drm_edid_valid);
static struct edid *edid_filter_invalid_blocks(struct edid *edid,
size_t *alloc_size)
{
struct edid *new;
int i, valid_blocks = 0;
/*
* Note: If the EDID uses HF-EEODB, but has invalid blocks, we'll revert
* back to regular extension count here. We don't want to start
* modifying the HF-EEODB extension too.
*/
for (i = 0; i < edid_block_count(edid); i++) {
const void *src_block = edid_block_data(edid, i);
if (edid_block_valid(src_block, i == 0)) {
void *dst_block = (void *)edid_block_data(edid, valid_blocks);
memmove(dst_block, src_block, EDID_LENGTH);
valid_blocks++;
}
}
/* We already trusted the base block to be valid here... */
if (WARN_ON(!valid_blocks)) {
kfree(edid);
return NULL;
}
edid->extensions = valid_blocks - 1;
edid->checksum = edid_block_compute_checksum(edid);
*alloc_size = edid_size_by_blocks(valid_blocks);
new = krealloc(edid, *alloc_size, GFP_KERNEL);
if (!new)
kfree(edid);
return new;
}
#define DDC_SEGMENT_ADDR 0x30
/**
* drm_do_probe_ddc_edid() - get EDID information via I2C
* @data: I2C device adapter
* @buf: EDID data buffer to be filled
* @block: 128 byte EDID block to start fetching from
* @len: EDID data buffer length to fetch
*
* Try to fetch EDID information by calling I2C driver functions.
*
* Return: 0 on success or -1 on failure.
*/
static int
drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
{
struct i2c_adapter *adapter = data;
unsigned char start = block * EDID_LENGTH;
unsigned char segment = block >> 1;
unsigned char xfers = segment ? 3 : 2;
int ret, retries = 5;
/*
* The core I2C driver will automatically retry the transfer if the
* adapter reports EAGAIN. However, we find that bit-banging transfers
* are susceptible to errors under a heavily loaded machine and
* generate spurious NAKs and timeouts. Retrying the transfer
* of the individual block a few times seems to overcome this.
*/
do {
struct i2c_msg msgs[] = {
{
.addr = DDC_SEGMENT_ADDR,
.flags = 0,
.len = 1,
.buf = &segment,
}, {
.addr = DDC_ADDR,
.flags = 0,
.len = 1,
.buf = &start,
}, {
.addr = DDC_ADDR,
.flags = I2C_M_RD,
.len = len,
.buf = buf,
}
};
/*
* Avoid sending the segment addr to not upset non-compliant
* DDC monitors.
*/
ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
if (ret == -ENXIO) {
DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
adapter->name);
break;
}
} while (ret != xfers && --retries);
return ret == xfers ? 0 : -1;
}
static void connector_bad_edid(struct drm_connector *connector,
const struct edid *edid, int num_blocks)
{
int i;
u8 last_block;
/*
* 0x7e in the EDID is the number of extension blocks. The EDID
* is 1 (base block) + num_ext_blocks big. That means we can think
* of 0x7e in the EDID of the _index_ of the last block in the
* combined chunk of memory.
*/
last_block = edid->extensions;
/* Calculate real checksum for the last edid extension block data */
if (last_block < num_blocks)
connector->real_edid_checksum =
edid_block_compute_checksum(edid + last_block);
if (connector->bad_edid_counter++ && !drm_debug_enabled(DRM_UT_KMS))
return;
drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID is invalid:\n",
connector->base.id, connector->name);
for (i = 0; i < num_blocks; i++)
edid_block_dump(KERN_DEBUG, edid + i, i);
}
/* Get override or firmware EDID */
static const struct drm_edid *drm_edid_override_get(struct drm_connector *connector)
{
const struct drm_edid *override = NULL;
mutex_lock(&connector->edid_override_mutex);
if (connector->edid_override)
override = drm_edid_dup(connector->edid_override);
mutex_unlock(&connector->edid_override_mutex);
if (!override)
override = drm_edid_load_firmware(connector);
return IS_ERR(override) ? NULL : override;
}
/* For debugfs edid_override implementation */
int drm_edid_override_show(struct drm_connector *connector, struct seq_file *m)
{
const struct drm_edid *drm_edid;
mutex_lock(&connector->edid_override_mutex);
drm_edid = connector->edid_override;
if (drm_edid)
seq_write(m, drm_edid->edid, drm_edid->size);
mutex_unlock(&connector->edid_override_mutex);
return 0;
}
/* For debugfs edid_override implementation */
int drm_edid_override_set(struct drm_connector *connector, const void *edid,
size_t size)
{
const struct drm_edid *drm_edid;
drm_edid = drm_edid_alloc(edid, size);
if (!drm_edid_valid(drm_edid)) {
drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override invalid\n",
connector->base.id, connector->name);
drm_edid_free(drm_edid);
return -EINVAL;
}
drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override set\n",
connector->base.id, connector->name);
mutex_lock(&connector->edid_override_mutex);
drm_edid_free(connector->edid_override);
connector->edid_override = drm_edid;
mutex_unlock(&connector->edid_override_mutex);
return 0;
}
/* For debugfs edid_override implementation */
int drm_edid_override_reset(struct drm_connector *connector)
{
drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override reset\n",
connector->base.id, connector->name);
mutex_lock(&connector->edid_override_mutex);
drm_edid_free(connector->edid_override);
connector->edid_override = NULL;
mutex_unlock(&connector->edid_override_mutex);
return 0;
}
/**
* drm_edid_override_connector_update - add modes from override/firmware EDID
* @connector: connector we're probing
*
* Add modes from the override/firmware EDID, if available. Only to be used from
* drm_helper_probe_single_connector_modes() as a fallback for when DDC probe
* failed during drm_get_edid() and caused the override/firmware EDID to be
* skipped.
*
* Return: The number of modes added or 0 if we couldn't find any.
*/
int drm_edid_override_connector_update(struct drm_connector *connector)
{
const struct drm_edid *override;
int num_modes = 0;
override = drm_edid_override_get(connector);
if (override) {
num_modes = drm_edid_connector_update(connector, override);
drm_edid_free(override);
drm_dbg_kms(connector->dev,
"[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n",
connector->base.id, connector->name, num_modes);
}
return num_modes;
}
EXPORT_SYMBOL(drm_edid_override_connector_update);
typedef int read_block_fn(void *context, u8 *buf, unsigned int block, size_t len);
static enum edid_block_status edid_block_read(void *block, unsigned int block_num,
read_block_fn read_block,
void *context)
{
enum edid_block_status status;
bool is_base_block = block_num == 0;
int try;
for (try = 0; try < 4; try++) {
if (read_block(context, block, block_num, EDID_LENGTH))
return EDID_BLOCK_READ_FAIL;
status = edid_block_check(block, is_base_block);
if (status == EDID_BLOCK_HEADER_REPAIR) {
edid_header_fix(block);
/* Retry with fixed header, update status if that worked. */
status = edid_block_check(block, is_base_block);
if (status == EDID_BLOCK_OK)
status = EDID_BLOCK_HEADER_FIXED;
}
if (edid_block_status_valid(status, edid_block_tag(block)))
break;
/* Fail early for unrepairable base block all zeros. */
if (try == 0 && is_base_block && status == EDID_BLOCK_ZERO)
break;
}
return status;
}
static struct edid *_drm_do_get_edid(struct drm_connector *connector,
read_block_fn read_block, void *context,
size_t *size)
{
enum edid_block_status status;
int i, num_blocks, invalid_blocks = 0;
const struct drm_edid *override;
struct edid *edid, *new;
size_t alloc_size = EDID_LENGTH;
override = drm_edid_override_get(connector);
if (override) {
alloc_size = override->size;
edid = kmemdup(override->edid, alloc_size, GFP_KERNEL);
drm_edid_free(override);
if (!edid)
return NULL;
goto ok;
}
edid = kmalloc(alloc_size, GFP_KERNEL);
if (!edid)
return NULL;
status = edid_block_read(edid, 0, read_block, context);
edid_block_status_print(status, edid, 0);
if (status == EDID_BLOCK_READ_FAIL)
goto fail;
/* FIXME: Clarify what a corrupt EDID actually means. */
if (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION)
connector->edid_corrupt = false;
else
connector->edid_corrupt = true;
if (!edid_block_status_valid(status, edid_block_tag(edid))) {
if (status == EDID_BLOCK_ZERO)
connector->null_edid_counter++;
connector_bad_edid(connector, edid, 1);
goto fail;
}
if (!edid_extension_block_count(edid))
goto ok;
alloc_size = edid_size(edid);
new = krealloc(edid, alloc_size, GFP_KERNEL);
if (!new)
goto fail;
edid = new;
num_blocks = edid_block_count(edid);
for (i = 1; i < num_blocks; i++) {
void *block = (void *)edid_block_data(edid, i);
status = edid_block_read(block, i, read_block, context);
edid_block_status_print(status, block, i);
if (!edid_block_status_valid(status, edid_block_tag(block))) {
if (status == EDID_BLOCK_READ_FAIL)
goto fail;
invalid_blocks++;
} else if (i == 1) {
/*
* If the first EDID extension is a CTA extension, and
* the first Data Block is HF-EEODB, override the
* extension block count.
*
* Note: HF-EEODB could specify a smaller extension
* count too, but we can't risk allocating a smaller
* amount.
*/
int eeodb = edid_hfeeodb_block_count(edid);
if (eeodb > num_blocks) {
num_blocks = eeodb;
alloc_size = edid_size_by_blocks(num_blocks);
new = krealloc(edid, alloc_size, GFP_KERNEL);
if (!new)
goto fail;
edid = new;
}
}
}
if (invalid_blocks) {
connector_bad_edid(connector, edid, num_blocks);
edid = edid_filter_invalid_blocks(edid, &alloc_size);
}
ok:
if (size)
*size = alloc_size;
return edid;
fail:
kfree(edid);
return NULL;
}
/**
* drm_do_get_edid - get EDID data using a custom EDID block read function
* @connector: connector we're probing
* @read_block: EDID block read function
* @context: private data passed to the block read function
*
* When the I2C adapter connected to the DDC bus is hidden behind a device that
* exposes a different interface to read EDID blocks this function can be used
* to get EDID data using a custom block read function.
*
* As in the general case the DDC bus is accessible by the kernel at the I2C
* level, drivers must make all reasonable efforts to expose it as an I2C
* adapter and use drm_get_edid() instead of abusing this function.
*
* The EDID may be overridden using debugfs override_edid or firmware EDID
* (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
* order. Having either of them bypasses actual EDID reads.
*
* Return: Pointer to valid EDID or NULL if we couldn't find any.
*/
struct edid *drm_do_get_edid(struct drm_connector *connector,
read_block_fn read_block,
void *context)
{
return _drm_do_get_edid(connector, read_block, context, NULL);
}
EXPORT_SYMBOL_GPL(drm_do_get_edid);
/**
* drm_edid_raw - Get a pointer to the raw EDID data.
* @drm_edid: drm_edid container
*
* Get a pointer to the raw EDID data.
*
* This is for transition only. Avoid using this like the plague.
*
* Return: Pointer to raw EDID data.
*/
const struct edid *drm_edid_raw(const struct drm_edid *drm_edid)
{
if (!drm_edid || !drm_edid->size)
return NULL;
/*
* Do not return pointers where relying on EDID extension count would
* lead to buffer overflow.
*/
if (WARN_ON(edid_size(drm_edid->edid) > drm_edid->size))
return NULL;
return drm_edid->edid;
}
EXPORT_SYMBOL(drm_edid_raw);
/* Allocate struct drm_edid container *without* duplicating the edid data */
static const struct drm_edid *_drm_edid_alloc(const void *edid, size_t size)
{
struct drm_edid *drm_edid;
if (!edid || !size || size < EDID_LENGTH)
return NULL;
drm_edid = kzalloc(sizeof(*drm_edid), GFP_KERNEL);
if (drm_edid) {
drm_edid->edid = edid;
drm_edid->size = size;
}
return drm_edid;
}
/**
* drm_edid_alloc - Allocate a new drm_edid container
* @edid: Pointer to raw EDID data
* @size: Size of memory allocated for EDID
*
* Allocate a new drm_edid container. Do not calculate edid size from edid, pass
* the actual size that has been allocated for the data. There is no validation
* of the raw EDID data against the size, but at least the EDID base block must
* fit in the buffer.
*
* The returned pointer must be freed using drm_edid_free().
*
* Return: drm_edid container, or NULL on errors
*/
const struct drm_edid *drm_edid_alloc(const void *edid, size_t size)
{
const struct drm_edid *drm_edid;
if (!edid || !size || size < EDID_LENGTH)
return NULL;
edid = kmemdup(edid, size, GFP_KERNEL);
if (!edid)
return NULL;
drm_edid = _drm_edid_alloc(edid, size);
if (!drm_edid)
kfree(edid);
return drm_edid;
}
EXPORT_SYMBOL(drm_edid_alloc);
/**
* drm_edid_dup - Duplicate a drm_edid container
* @drm_edid: EDID to duplicate
*
* The returned pointer must be freed using drm_edid_free().
*
* Returns: drm_edid container copy, or NULL on errors
*/
const struct drm_edid *drm_edid_dup(const struct drm_edid *drm_edid)
{
if (!drm_edid)
return NULL;
return drm_edid_alloc(drm_edid->edid, drm_edid->size);
}
EXPORT_SYMBOL(drm_edid_dup);
/**
* drm_edid_free - Free the drm_edid container
* @drm_edid: EDID to free
*/
void drm_edid_free(const struct drm_edid *drm_edid)
{
if (!drm_edid)
return;
kfree(drm_edid->edid);
kfree(drm_edid);
}
EXPORT_SYMBOL(drm_edid_free);
/**
* drm_probe_ddc() - probe DDC presence
* @adapter: I2C adapter to probe
*
* Return: True on success, false on failure.
*/
bool
drm_probe_ddc(struct i2c_adapter *adapter)
{
unsigned char out;
return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
}
EXPORT_SYMBOL(drm_probe_ddc);
/**
* drm_get_edid - get EDID data, if available
* @connector: connector we're probing
* @adapter: I2C adapter to use for DDC
*
* Poke the given I2C channel to grab EDID data if possible. If found,
* attach it to the connector.
*
* Return: Pointer to valid EDID or NULL if we couldn't find any.
*/
struct edid *drm_get_edid(struct drm_connector *connector,
struct i2c_adapter *adapter)
{
struct edid *edid;
if (connector->force == DRM_FORCE_OFF)
return NULL;
if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
return NULL;
edid = _drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter, NULL);
drm_connector_update_edid_property(connector, edid);
return edid;
}
EXPORT_SYMBOL(drm_get_edid);
/**
* drm_edid_read_custom - Read EDID data using given EDID block read function
* @connector: Connector to use
* @read_block: EDID block read function
* @context: Private data passed to the block read function
*
* When the I2C adapter connected to the DDC bus is hidden behind a device that
* exposes a different interface to read EDID blocks this function can be used
* to get EDID data using a custom block read function.
*
* As in the general case the DDC bus is accessible by the kernel at the I2C
* level, drivers must make all reasonable efforts to expose it as an I2C
* adapter and use drm_edid_read() or drm_edid_read_ddc() instead of abusing
* this function.
*
* The EDID may be overridden using debugfs override_edid or firmware EDID
* (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
* order. Having either of them bypasses actual EDID reads.
*
* The returned pointer must be freed using drm_edid_free().
*
* Return: Pointer to EDID, or NULL if probe/read failed.
*/
const struct drm_edid *drm_edid_read_custom(struct drm_connector *connector,
read_block_fn read_block,
void *context)
{
const struct drm_edid *drm_edid;
struct edid *edid;
size_t size = 0;
edid = _drm_do_get_edid(connector, read_block, context, &size);
if (!edid)
return NULL;
/* Sanity check for now */
drm_WARN_ON(connector->dev, !size);
drm_edid = _drm_edid_alloc(edid, size);
if (!drm_edid)
kfree(edid);
return drm_edid;
}
EXPORT_SYMBOL(drm_edid_read_custom);
/**
* drm_edid_read_ddc - Read EDID data using given I2C adapter
* @connector: Connector to use
* @adapter: I2C adapter to use for DDC
*
* Read EDID using the given I2C adapter.
*
* The EDID may be overridden using debugfs override_edid or firmware EDID
* (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
* order. Having either of them bypasses actual EDID reads.
*
* Prefer initializing connector->ddc with drm_connector_init_with_ddc() and
* using drm_edid_read() instead of this function.
*
* The returned pointer must be freed using drm_edid_free().
*
* Return: Pointer to EDID, or NULL if probe/read failed.
*/
const struct drm_edid *drm_edid_read_ddc(struct drm_connector *connector,
struct i2c_adapter *adapter)
{
const struct drm_edid *drm_edid;
if (connector->force == DRM_FORCE_OFF)
return NULL;
if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
return NULL;
drm_edid = drm_edid_read_custom(connector, drm_do_probe_ddc_edid, adapter);
/* Note: Do *not* call connector updates here. */
return drm_edid;
}
EXPORT_SYMBOL(drm_edid_read_ddc);
/**
* drm_edid_read - Read EDID data using connector's I2C adapter
* @connector: Connector to use
*
* Read EDID using the connector's I2C adapter.
*
* The EDID may be overridden using debugfs override_edid or firmware EDID
* (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
* order. Having either of them bypasses actual EDID reads.
*
* The returned pointer must be freed using drm_edid_free().
*
* Return: Pointer to EDID, or NULL if probe/read failed.
*/
const struct drm_edid *drm_edid_read(struct drm_connector *connector)
{
if (drm_WARN_ON(connector->dev, !connector->ddc))
return NULL;
return drm_edid_read_ddc(connector, connector->ddc);
}
EXPORT_SYMBOL(drm_edid_read);
static u32 edid_extract_panel_id(const struct edid *edid)
{
/*
* We represent the ID as a 32-bit number so it can easily be compared
* with "==".
*
* NOTE that we deal with endianness differently for the top half
* of this ID than for the bottom half. The bottom half (the product
* id) gets decoded as little endian by the EDID_PRODUCT_ID because
* that's how everyone seems to interpret it. The top half (the mfg_id)
* gets stored as big endian because that makes
* drm_edid_encode_panel_id() and drm_edid_decode_panel_id() easier
* to write (it's easier to extract the ASCII). It doesn't really
* matter, though, as long as the number here is unique.
*/
return (u32)edid->mfg_id[0] << 24 |
(u32)edid->mfg_id[1] << 16 |
(u32)EDID_PRODUCT_ID(edid);
}
/**
* drm_edid_get_panel_id - Get a panel's ID through DDC
* @adapter: I2C adapter to use for DDC
*
* This function reads the first block of the EDID of a panel and (assuming
* that the EDID is valid) extracts the ID out of it. The ID is a 32-bit value
* (16 bits of manufacturer ID and 16 bits of per-manufacturer ID) that's
* supposed to be different for each different modem of panel.
*
* This function is intended to be used during early probing on devices where
* more than one panel might be present. Because of its intended use it must
* assume that the EDID of the panel is correct, at least as far as the ID
* is concerned (in other words, we don't process any overrides here).
*
* NOTE: it's expected that this function and drm_do_get_edid() will both
* be read the EDID, but there is no caching between them. Since we're only
* reading the first block, hopefully this extra overhead won't be too big.
*
* Return: A 32-bit ID that should be different for each make/model of panel.
* See the functions drm_edid_encode_panel_id() and
* drm_edid_decode_panel_id() for some details on the structure of this
* ID.
*/
u32 drm_edid_get_panel_id(struct i2c_adapter *adapter)
{
enum edid_block_status status;
void *base_block;
u32 panel_id = 0;
/*
* There are no manufacturer IDs of 0, so if there is a problem reading
* the EDID then we'll just return 0.
*/
base_block = kzalloc(EDID_LENGTH, GFP_KERNEL);
if (!base_block)
return 0;
status = edid_block_read(base_block, 0, drm_do_probe_ddc_edid, adapter);
edid_block_status_print(status, base_block, 0);
if (edid_block_status_valid(status, edid_block_tag(base_block)))
panel_id = edid_extract_panel_id(base_block);
else
edid_block_dump(KERN_NOTICE, base_block, 0);
kfree(base_block);
return panel_id;
}
EXPORT_SYMBOL(drm_edid_get_panel_id);
/**
* drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
* @connector: connector we're probing
* @adapter: I2C adapter to use for DDC
*
* Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
* outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
* switch DDC to the GPU which is retrieving EDID.
*
* Return: Pointer to valid EDID or %NULL if we couldn't find any.
*/
struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
struct i2c_adapter *adapter)
{
struct drm_device *dev = connector->dev;
struct pci_dev *pdev = to_pci_dev(dev->dev);
struct edid *edid;
if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
return NULL;
vga_switcheroo_lock_ddc(pdev);
edid = drm_get_edid(connector, adapter);
vga_switcheroo_unlock_ddc(pdev);
return edid;
}
EXPORT_SYMBOL(drm_get_edid_switcheroo);
/**
* drm_edid_read_switcheroo - get EDID data for a vga_switcheroo output
* @connector: connector we're probing
* @adapter: I2C adapter to use for DDC
*
* Wrapper around drm_edid_read_ddc() for laptops with dual GPUs using one set
* of outputs. The wrapper adds the requisite vga_switcheroo calls to
* temporarily switch DDC to the GPU which is retrieving EDID.
*
* Return: Pointer to valid EDID or %NULL if we couldn't find any.
*/
const struct drm_edid *drm_edid_read_switcheroo(struct drm_connector *connector,
struct i2c_adapter *adapter)
{
struct drm_device *dev = connector->dev;
struct pci_dev *pdev = to_pci_dev(dev->dev);
const struct drm_edid *drm_edid;
if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
return NULL;
vga_switcheroo_lock_ddc(pdev);
drm_edid = drm_edid_read_ddc(connector, adapter);
vga_switcheroo_unlock_ddc(pdev);
return drm_edid;
}
EXPORT_SYMBOL(drm_edid_read_switcheroo);
/**
* drm_edid_duplicate - duplicate an EDID and the extensions
* @edid: EDID to duplicate
*
* Return: Pointer to duplicated EDID or NULL on allocation failure.
*/
struct edid *drm_edid_duplicate(const struct edid *edid)
{
if (!edid)
return NULL;
return kmemdup(edid, edid_size(edid), GFP_KERNEL);
}
EXPORT_SYMBOL(drm_edid_duplicate);
/*** EDID parsing ***/
/**
* edid_get_quirks - return quirk flags for a given EDID
* @drm_edid: EDID to process
*
* This tells subsequent routines what fixes they need to apply.
*/
static u32 edid_get_quirks(const struct drm_edid *drm_edid)
{
u32 panel_id = edid_extract_panel_id(drm_edid->edid);
const struct edid_quirk *quirk;
int i;
for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
quirk = &edid_quirk_list[i];
if (quirk->panel_id == panel_id)
return quirk->quirks;
}
return 0;
}
#define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
#define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
/*
* Walk the mode list for connector, clearing the preferred status on existing
* modes and setting it anew for the right mode ala quirks.
*/
static void edid_fixup_preferred(struct drm_connector *connector)
{
const struct drm_display_info *info = &connector->display_info;
struct drm_display_mode *t, *cur_mode, *preferred_mode;
int target_refresh = 0;
int cur_vrefresh, preferred_vrefresh;
if (list_empty(&connector->probed_modes))
return;
if (info->quirks & EDID_QUIRK_PREFER_LARGE_60)
target_refresh = 60;
if (info->quirks & EDID_QUIRK_PREFER_LARGE_75)
target_refresh = 75;
preferred_mode = list_first_entry(&connector->probed_modes,
struct drm_display_mode, head);
list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
if (cur_mode == preferred_mode)
continue;
/* Largest mode is preferred */
if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
preferred_mode = cur_mode;
cur_vrefresh = drm_mode_vrefresh(cur_mode);
preferred_vrefresh = drm_mode_vrefresh(preferred_mode);
/* At a given size, try to get closest to target refresh */
if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
preferred_mode = cur_mode;
}
}
preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
}
static bool
mode_is_rb(const struct drm_display_mode *mode)
{
return (mode->htotal - mode->hdisplay == 160) &&
(mode->hsync_end - mode->hdisplay == 80) &&
(mode->hsync_end - mode->hsync_start == 32) &&
(mode->vsync_start - mode->vdisplay == 3);
}
/*
* drm_mode_find_dmt - Create a copy of a mode if present in DMT
* @dev: Device to duplicate against
* @hsize: Mode width
* @vsize: Mode height
* @fresh: Mode refresh rate
* @rb: Mode reduced-blanking-ness
*
* Walk the DMT mode list looking for a match for the given parameters.
*
* Return: A newly allocated copy of the mode, or NULL if not found.
*/
struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
int hsize, int vsize, int fresh,
bool rb)
{
int i;
for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
const struct drm_display_mode *ptr = &drm_dmt_modes[i];
if (hsize != ptr->hdisplay)
continue;
if (vsize != ptr->vdisplay)
continue;
if (fresh != drm_mode_vrefresh(ptr))
continue;
if (rb != mode_is_rb(ptr))
continue;
return drm_mode_duplicate(dev, ptr);
}
return NULL;
}
EXPORT_SYMBOL(drm_mode_find_dmt);
static bool is_display_descriptor(const struct detailed_timing *descriptor, u8 type)
{
BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.pad1) != 2);
BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.type) != 3);
return descriptor->pixel_clock == 0 &&
descriptor->data.other_data.pad1 == 0 &&
descriptor->data.other_data.type == type;
}
static bool is_detailed_timing_descriptor(const struct detailed_timing *descriptor)
{
BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
return descriptor->pixel_clock != 0;
}
typedef void detailed_cb(const struct detailed_timing *timing, void *closure);
static void
cea_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
{
int i, n;
u8 d = ext[0x02];
const u8 *det_base = ext + d;
if (d < 4 || d > 127)
return;
n = (127 - d) / 18;
for (i = 0; i < n; i++)
cb((const struct detailed_timing *)(det_base + 18 * i), closure);
}
static void
vtb_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
{
unsigned int i, n = min((int)ext[0x02], 6);
const u8 *det_base = ext + 5;
if (ext[0x01] != 1)
return; /* unknown version */
for (i = 0; i < n; i++)
cb((const struct detailed_timing *)(det_base + 18 * i), closure);
}
static void drm_for_each_detailed_block(const struct drm_edid *drm_edid,
detailed_cb *cb, void *closure)
{
struct drm_edid_iter edid_iter;
const u8 *ext;
int i;
if (!drm_edid)
return;
for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
cb(&drm_edid->edid->detailed_timings[i], closure);
drm_edid_iter_begin(drm_edid, &edid_iter);
drm_edid_iter_for_each(ext, &edid_iter) {
switch (*ext) {
case CEA_EXT:
cea_for_each_detailed_block(ext, cb, closure);
break;
case VTB_EXT:
vtb_for_each_detailed_block(ext, cb, closure);
break;
default:
break;
}
}
drm_edid_iter_end(&edid_iter);
}
static void
is_rb(const struct detailed_timing *descriptor, void *data)
{
bool *res = data;
if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
return;
BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.cvt.flags) != 15);
if (descriptor->data.other_data.data.range.flags == DRM_EDID_CVT_SUPPORT_FLAG &&
descriptor->data.other_data.data.range.formula.cvt.flags & DRM_EDID_CVT_FLAGS_REDUCED_BLANKING)
*res = true;
}
/* EDID 1.4 defines this explicitly. For EDID 1.3, we guess, badly. */
static bool
drm_monitor_supports_rb(const struct drm_edid *drm_edid)
{
if (drm_edid->edid->revision >= 4) {
bool ret = false;
drm_for_each_detailed_block(drm_edid, is_rb, &ret);
return ret;
}
return ((drm_edid->edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
}
static void
find_gtf2(const struct detailed_timing *descriptor, void *data)
{
const struct detailed_timing **res = data;
if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
return;
BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
if (descriptor->data.other_data.data.range.flags == DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG)
*res = descriptor;
}
/* Secondary GTF curve kicks in above some break frequency */
static int
drm_gtf2_hbreak(const struct drm_edid *drm_edid)
{
const struct detailed_timing *descriptor = NULL;
drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.hfreq_start_khz) != 12);
return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.hfreq_start_khz * 2 : 0;
}
static int
drm_gtf2_2c(const struct drm_edid *drm_edid)
{
const struct detailed_timing *descriptor = NULL;
drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.c) != 13);
return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.c : 0;
}
static int
drm_gtf2_m(const struct drm_edid *drm_edid)
{
const struct detailed_timing *descriptor = NULL;
drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.m) != 14);
return descriptor ? le16_to_cpu(descriptor->data.other_data.data.range.formula.gtf2.m) : 0;
}
static int
drm_gtf2_k(const struct drm_edid *drm_edid)
{
const struct detailed_timing *descriptor = NULL;
drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.k) != 16);
return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.k : 0;
}
static int
drm_gtf2_2j(const struct drm_edid *drm_edid)
{
const struct detailed_timing *descriptor = NULL;
drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.j) != 17);
return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.j : 0;
}
static void
get_timing_level(const struct detailed_timing *descriptor, void *data)
{
int *res = data;
if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
return;
BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
switch (descriptor->data.other_data.data.range.flags) {
case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
*res = LEVEL_GTF;
break;
case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
*res = LEVEL_GTF2;
break;
case DRM_EDID_CVT_SUPPORT_FLAG:
*res = LEVEL_CVT;
break;
default:
break;
}
}
/* Get standard timing level (CVT/GTF/DMT). */
static int standard_timing_level(const struct drm_edid *drm_edid)
{
const struct edid *edid = drm_edid->edid;
if (edid->revision >= 4) {
/*
* If the range descriptor doesn't
* indicate otherwise default to CVT
*/
int ret = LEVEL_CVT;
drm_for_each_detailed_block(drm_edid, get_timing_level, &ret);
return ret;
} else if (edid->revision >= 3 && drm_gtf2_hbreak(drm_edid)) {
return LEVEL_GTF2;
} else if (edid->revision >= 2) {
return LEVEL_GTF;
} else {
return LEVEL_DMT;
}
}
/*
* 0 is reserved. The spec says 0x01 fill for unused timings. Some old
* monitors fill with ascii space (0x20) instead.
*/
static int
bad_std_timing(u8 a, u8 b)
{
return (a == 0x00 && b == 0x00) ||
(a == 0x01 && b == 0x01) ||
(a == 0x20 && b == 0x20);
}
static int drm_mode_hsync(const struct drm_display_mode *mode)
{
if (mode->htotal <= 0)
return 0;
return DIV_ROUND_CLOSEST(mode->clock, mode->htotal);
}
static struct drm_display_mode *
drm_gtf2_mode(struct drm_device *dev,
const struct drm_edid *drm_edid,
int hsize, int vsize, int vrefresh_rate)
{
struct drm_display_mode *mode;
/*
* This is potentially wrong if there's ever a monitor with
* more than one ranges section, each claiming a different
* secondary GTF curve. Please don't do that.
*/
mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
if (!mode)
return NULL;
if (drm_mode_hsync(mode) > drm_gtf2_hbreak(drm_edid)) {
drm_mode_destroy(dev, mode);
mode = drm_gtf_mode_complex(dev, hsize, vsize,
vrefresh_rate, 0, 0,
drm_gtf2_m(drm_edid),
drm_gtf2_2c(drm_edid),
drm_gtf2_k(drm_edid),
drm_gtf2_2j(drm_edid));
}
return mode;
}
/*
* Take the standard timing params (in this case width, aspect, and refresh)
* and convert them into a real mode using CVT/GTF/DMT.
*/
static struct drm_display_mode *drm_mode_std(struct drm_connector *connector,
const struct drm_edid *drm_edid,
const struct std_timing *t)
{
struct drm_device *dev = connector->dev;
struct drm_display_mode *m, *mode = NULL;
int hsize, vsize;
int vrefresh_rate;
unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
>> EDID_TIMING_ASPECT_SHIFT;
unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
>> EDID_TIMING_VFREQ_SHIFT;
int timing_level = standard_timing_level(drm_edid);
if (bad_std_timing(t->hsize, t->vfreq_aspect))
return NULL;
/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
hsize = t->hsize * 8 + 248;
/* vrefresh_rate = vfreq + 60 */
vrefresh_rate = vfreq + 60;
/* the vdisplay is calculated based on the aspect ratio */
if (aspect_ratio == 0) {
if (drm_edid->edid->revision < 3)
vsize = hsize;
else
vsize = (hsize * 10) / 16;
} else if (aspect_ratio == 1)
vsize = (hsize * 3) / 4;
else if (aspect_ratio == 2)
vsize = (hsize * 4) / 5;
else
vsize = (hsize * 9) / 16;
/* HDTV hack, part 1 */
if (vrefresh_rate == 60 &&
((hsize == 1360 && vsize == 765) ||
(hsize == 1368 && vsize == 769))) {
hsize = 1366;
vsize = 768;
}
/*
* If this connector already has a mode for this size and refresh
* rate (because it came from detailed or CVT info), use that
* instead. This way we don't have to guess at interlace or
* reduced blanking.
*/
list_for_each_entry(m, &connector->probed_modes, head)
if (m->hdisplay == hsize && m->vdisplay == vsize &&
drm_mode_vrefresh(m) == vrefresh_rate)
return NULL;
/* HDTV hack, part 2 */
if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
false);
if (!mode)
return NULL;
mode->hdisplay = 1366;
mode->hsync_start = mode->hsync_start - 1;
mode->hsync_end = mode->hsync_end - 1;
return mode;
}
/* check whether it can be found in default mode table */
if (drm_monitor_supports_rb(drm_edid)) {
mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
true);
if (mode)
return mode;
}
mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
if (mode)
return mode;
/* okay, generate it */
switch (timing_level) {
case LEVEL_DMT:
break;
case LEVEL_GTF:
mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
break;
case LEVEL_GTF2:
mode = drm_gtf2_mode(dev, drm_edid, hsize, vsize, vrefresh_rate);
break;
case LEVEL_CVT:
mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
false);
break;
}
return mode;
}
/*
* EDID is delightfully ambiguous about how interlaced modes are to be
* encoded. Our internal representation is of frame height, but some
* HDTV detailed timings are encoded as field height.
*
* The format list here is from CEA, in frame size. Technically we
* should be checking refresh rate too. Whatever.
*/
static void
drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
const struct detailed_pixel_timing *pt)
{
int i;
static const struct {
int w, h;
} cea_interlaced[] = {
{ 1920, 1080 },
{ 720, 480 },
{ 1440, 480 },
{ 2880, 480 },
{ 720, 576 },
{ 1440, 576 },
{ 2880, 576 },
};
if (!(pt->misc & DRM_EDID_PT_INTERLACED))
return;
for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
if ((mode->hdisplay == cea_interlaced[i].w) &&
(mode->vdisplay == cea_interlaced[i].h / 2)) {
mode->vdisplay *= 2;
mode->vsync_start *= 2;
mode->vsync_end *= 2;
mode->vtotal *= 2;
mode->vtotal |= 1;
}
}
mode->flags |= DRM_MODE_FLAG_INTERLACE;
}
/*
* Create a new mode from an EDID detailed timing section. An EDID detailed
* timing block contains enough info for us to create and return a new struct
* drm_display_mode.
*/
static struct drm_display_mode *drm_mode_detailed(struct drm_connector *connector,
const struct drm_edid *drm_edid,
const struct detailed_timing *timing)
{
const struct drm_display_info *info = &connector->display_info;
struct drm_device *dev = connector->dev;
struct drm_display_mode *mode;
const struct detailed_pixel_timing *pt = &timing->data.pixel_data;
unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
/* ignore tiny modes */
if (hactive < 64 || vactive < 64)
return NULL;
if (pt->misc & DRM_EDID_PT_STEREO) {
drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Stereo mode not supported\n",
connector->base.id, connector->name);
return NULL;
}
if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Composite sync not supported\n",
connector->base.id, connector->name);
}
/* it is incorrect if hsync/vsync width is zero */
if (!hsync_pulse_width || !vsync_pulse_width) {
drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Incorrect Detailed timing. Wrong Hsync/Vsync pulse width\n",
connector->base.id, connector->name);
return NULL;
}
if (info->quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
if (!mode)
return NULL;
goto set_size;
}
mode = drm_mode_create(dev);
if (!mode)
return NULL;
if (info->quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
mode->clock = 1088 * 10;
else
mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
mode->hdisplay = hactive;
mode->hsync_start = mode->hdisplay + hsync_offset;
mode->hsync_end = mode->hsync_start + hsync_pulse_width;
mode->htotal = mode->hdisplay + hblank;
mode->vdisplay = vactive;
mode->vsync_start = mode->vdisplay + vsync_offset;
mode->vsync_end = mode->vsync_start + vsync_pulse_width;
mode->vtotal = mode->vdisplay + vblank;
/* Some EDIDs have bogus h/vtotal values */
if (mode->hsync_end > mode->htotal)
mode->htotal = mode->hsync_end + 1;
if (mode->vsync_end > mode->vtotal)
mode->vtotal = mode->vsync_end + 1;
drm_mode_do_interlace_quirk(mode, pt);
if (info->quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
mode->flags |= DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC;
} else {
mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
}
set_size:
mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
if (info->quirks & EDID_QUIRK_DETAILED_IN_CM) {
mode->width_mm *= 10;
mode->height_mm *= 10;
}
if (info->quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
mode->width_mm = drm_edid->edid->width_cm * 10;
mode->height_mm = drm_edid->edid->height_cm * 10;
}
mode->type = DRM_MODE_TYPE_DRIVER;
drm_mode_set_name(mode);
return mode;
}
static bool
mode_in_hsync_range(const struct drm_display_mode *mode,
const struct edid *edid, const u8 *t)
{
int hsync, hmin, hmax;
hmin = t[7];
if (edid->revision >= 4)
hmin += ((t[4] & 0x04) ? 255 : 0);
hmax = t[8];
if (edid->revision >= 4)
hmax += ((t[4] & 0x08) ? 255 : 0);
hsync = drm_mode_hsync(mode);
return (hsync <= hmax && hsync >= hmin);
}
static bool
mode_in_vsync_range(const struct drm_display_mode *mode,
const struct edid *edid, const u8 *t)
{
int vsync, vmin, vmax;
vmin = t[5];
if (edid->revision >= 4)
vmin += ((t[4] & 0x01) ? 255 : 0);
vmax = t[6];
if (edid->revision >= 4)
vmax += ((t[4] & 0x02) ? 255 : 0);
vsync = drm_mode_vrefresh(mode);
return (vsync <= vmax && vsync >= vmin);
}
static u32
range_pixel_clock(const struct edid *edid, const u8 *t)
{
/* unspecified */
if (t[9] == 0 || t[9] == 255)
return 0;
/* 1.4 with CVT support gives us real precision, yay */
if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
return (t[9] * 10000) - ((t[12] >> 2) * 250);
/* 1.3 is pathetic, so fuzz up a bit */
return t[9] * 10000 + 5001;
}
static bool mode_in_range(const struct drm_display_mode *mode,
const struct drm_edid *drm_edid,
const struct detailed_timing *timing)
{
const struct edid *edid = drm_edid->edid;
u32 max_clock;
const u8 *t = (const u8 *)timing;
if (!mode_in_hsync_range(mode, edid, t))
return false;
if (!mode_in_vsync_range(mode, edid, t))
return false;
if ((max_clock = range_pixel_clock(edid, t)))
if (mode->clock > max_clock)
return false;
/* 1.4 max horizontal check */
if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
return false;
if (mode_is_rb(mode) && !drm_monitor_supports_rb(drm_edid))
return false;
return true;
}
static bool valid_inferred_mode(const struct drm_connector *connector,
const struct drm_display_mode *mode)
{
const struct drm_display_mode *m;
bool ok = false;
list_for_each_entry(m, &connector->probed_modes, head) {
if (mode->hdisplay == m->hdisplay &&
mode->vdisplay == m->vdisplay &&
drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
return false; /* duplicated */
if (mode->hdisplay <= m->hdisplay &&
mode->vdisplay <= m->vdisplay)
ok = true;
}
return ok;
}
static int drm_dmt_modes_for_range(struct drm_connector *connector,
const struct drm_edid *drm_edid,
const struct detailed_timing *timing)
{
int i, modes = 0;
struct drm_display_mode *newmode;
struct drm_device *dev = connector->dev;
for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
if (mode_in_range(drm_dmt_modes + i, drm_edid, timing) &&
valid_inferred_mode(connector, drm_dmt_modes + i)) {
newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
if (newmode) {
drm_mode_probed_add(connector, newmode);
modes++;
}
}
}
return modes;
}
/* fix up 1366x768 mode from 1368x768;
* GFT/CVT can't express 1366 width which isn't dividable by 8
*/
void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
{
if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
mode->hdisplay = 1366;
mode->hsync_start--;
mode->hsync_end--;
drm_mode_set_name(mode);
}
}
static int drm_gtf_modes_for_range(struct drm_connector *connector,
const struct drm_edid *drm_edid,
const struct detailed_timing *timing)
{
int i, modes = 0;
struct drm_display_mode *newmode;
struct drm_device *dev = connector->dev;
for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
const struct minimode *m = &extra_modes[i];
newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
if (!newmode)
return modes;
drm_mode_fixup_1366x768(newmode);
if (!mode_in_range(newmode, drm_edid, timing) ||
!valid_inferred_mode(connector, newmode)) {
drm_mode_destroy(dev, newmode);
continue;
}
drm_mode_probed_add(connector, newmode);
modes++;
}
return modes;
}
static int drm_gtf2_modes_for_range(struct drm_connector *connector,
const struct drm_edid *drm_edid,
const struct detailed_timing *timing)
{
int i, modes = 0;
struct drm_display_mode *newmode;
struct drm_device *dev = connector->dev;
for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
const struct minimode *m = &extra_modes[i];
newmode = drm_gtf2_mode(dev, drm_edid, m->w, m->h, m->r);
if (!newmode)
return modes;
drm_mode_fixup_1366x768(newmode);
if (!mode_in_range(newmode, drm_edid, timing) ||
!valid_inferred_mode(connector, newmode)) {
drm_mode_destroy(dev, newmode);
continue;
}
drm_mode_probed_add(connector, newmode);
modes++;
}
return modes;
}
static int drm_cvt_modes_for_range(struct drm_connector *connector,
const struct drm_edid *drm_edid,
const struct detailed_timing *timing)
{
int i, modes = 0;
struct drm_display_mode *newmode;
struct drm_device *dev = connector->dev;
bool rb = drm_monitor_supports_rb(drm_edid);
for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
const struct minimode *m = &extra_modes[i];
newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
if (!newmode)
return modes;
drm_mode_fixup_1366x768(newmode);
if (!mode_in_range(newmode, drm_edid, timing) ||
!valid_inferred_mode(connector, newmode)) {
drm_mode_destroy(dev, newmode);
continue;
}
drm_mode_probed_add(connector, newmode);
modes++;
}
return modes;
}
static void
do_inferred_modes(const struct detailed_timing *timing, void *c)
{
struct detailed_mode_closure *closure = c;
const struct detailed_non_pixel *data = &timing->data.other_data;
const struct detailed_data_monitor_range *range = &data->data.range;
if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
return;
closure->modes += drm_dmt_modes_for_range(closure->connector,
closure->drm_edid,
timing);
if (closure->drm_edid->edid->revision < 2)
return; /* GTF not defined yet */
switch (range->flags) {
case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
closure->modes += drm_gtf2_modes_for_range(closure->connector,
closure->drm_edid,
timing);
break;
case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
closure->modes += drm_gtf_modes_for_range(closure->connector,
closure->drm_edid,
timing);
break;
case DRM_EDID_CVT_SUPPORT_FLAG:
if (closure->drm_edid->edid->revision < 4)
break;
closure->modes += drm_cvt_modes_for_range(closure->connector,
closure->drm_edid,
timing);
break;
case DRM_EDID_RANGE_LIMITS_ONLY_FLAG:
default:
break;
}
}
static int add_inferred_modes(struct drm_connector *connector,
const struct drm_edid *drm_edid)
{
struct detailed_mode_closure closure = {
.connector = connector,
.drm_edid = drm_edid,
};
if (drm_edid->edid->revision >= 1)
drm_for_each_detailed_block(drm_edid, do_inferred_modes, &closure);
return closure.modes;
}
static int
drm_est3_modes(struct drm_connector *connector, const struct detailed_timing *timing)
{
int i, j, m, modes = 0;
struct drm_display_mode *mode;
const u8 *est = ((const u8 *)timing) + 6;
for (i = 0; i < 6; i++) {
for (j = 7; j >= 0; j--) {
m = (i * 8) + (7 - j);
if (m >= ARRAY_SIZE(est3_modes))
break;
if (est[i] & (1 << j)) {
mode = drm_mode_find_dmt(connector->dev,
est3_modes[m].w,
est3_modes[m].h,
est3_modes[m].r,
est3_modes[m].rb);
if (mode) {
drm_mode_probed_add(connector, mode);
modes++;
}
}
}
}
return modes;
}
static void
do_established_modes(const struct detailed_timing *timing, void *c)
{
struct detailed_mode_closure *closure = c;
if (!is_display_descriptor(timing, EDID_DETAIL_EST_TIMINGS))
return;
closure->modes += drm_est3_modes(closure->connector, timing);
}
/*
* Get established modes from EDID and add them. Each EDID block contains a
* bitmap of the supported "established modes" list (defined above). Tease them
* out and add them to the global modes list.
*/
static int add_established_modes(struct drm_connector *connector,
const struct drm_edid *drm_edid)
{
struct drm_device *dev = connector->dev;
const struct edid *edid = drm_edid->edid;
unsigned long est_bits = edid->established_timings.t1 |
(edid->established_timings.t2 << 8) |
((edid->established_timings.mfg_rsvd & 0x80) << 9);
int i, modes = 0;
struct detailed_mode_closure closure = {
.connector = connector,
.drm_edid = drm_edid,
};
for (i = 0; i <= EDID_EST_TIMINGS; i++) {
if (est_bits & (1<<i)) {
struct drm_display_mode *newmode;
newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
if (newmode) {
drm_mode_probed_add(connector, newmode);
modes++;
}
}
}
if (edid->revision >= 1)
drm_for_each_detailed_block(drm_edid, do_established_modes,
&closure);
return modes + closure.modes;
}
static void
do_standard_modes(const struct detailed_timing *timing, void *c)
{
struct detailed_mode_closure *closure = c;
const struct detailed_non_pixel *data = &timing->data.other_data;
struct drm_connector *connector = closure->connector;
int i;
if (!is_display_descriptor(timing, EDID_DETAIL_STD_MODES))
return;
for (i = 0; i < 6; i++) {
const struct std_timing *std = &data->data.timings[i];
struct drm_display_mode *newmode;
newmode = drm_mode_std(connector, closure->drm_edid, std);
if (newmode) {
drm_mode_probed_add(connector, newmode);
closure->modes++;
}
}
}
/*
* Get standard modes from EDID and add them. Standard modes can be calculated
* using the appropriate standard (DMT, GTF, or CVT). Grab them from EDID and
* add them to the list.
*/
static int add_standard_modes(struct drm_connector *connector,
const struct drm_edid *drm_edid)
{
int i, modes = 0;
struct detailed_mode_closure closure = {
.connector = connector,
.drm_edid = drm_edid,
};
for (i = 0; i < EDID_STD_TIMINGS; i++) {
struct drm_display_mode *newmode;
newmode = drm_mode_std(connector, drm_edid,
&drm_edid->edid->standard_timings[i]);
if (newmode) {
drm_mode_probed_add(connector, newmode);
modes++;
}
}
if (drm_edid->edid->revision >= 1)
drm_for_each_detailed_block(drm_edid, do_standard_modes,
&closure);
/* XXX should also look for standard codes in VTB blocks */
return modes + closure.modes;
}
static int drm_cvt_modes(struct drm_connector *connector,
const struct detailed_timing *timing)
{
int i, j, modes = 0;
struct drm_display_mode *newmode;
struct drm_device *dev = connector->dev;
const struct cvt_timing *cvt;
const int rates[] = { 60, 85, 75, 60, 50 };
const u8 empty[3] = { 0, 0, 0 };
for (i = 0; i < 4; i++) {
int width, height;
cvt = &(timing->data.other_data.data.cvt[i]);
if (!memcmp(cvt->code, empty, 3))
continue;
height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
switch (cvt->code[1] & 0x0c) {
/* default - because compiler doesn't see that we've enumerated all cases */
default:
case 0x00:
width = height * 4 / 3;
break;
case 0x04:
width = height * 16 / 9;
break;
case 0x08:
width = height * 16 / 10;
break;
case 0x0c:
width = height * 15 / 9;
break;
}
for (j = 1; j < 5; j++) {
if (cvt->code[2] & (1 << j)) {
newmode = drm_cvt_mode(dev, width, height,
rates[j], j == 0,
false, false);
if (newmode) {
drm_mode_probed_add(connector, newmode);
modes++;
}
}
}
}
return modes;
}
static void
do_cvt_mode(const struct detailed_timing *timing, void *c)
{
struct detailed_mode_closure *closure = c;
if (!is_display_descriptor(timing, EDID_DETAIL_CVT_3BYTE))
return;
closure->modes += drm_cvt_modes(closure->connector, timing);
}
static int
add_cvt_modes(struct drm_connector *connector, const struct drm_edid *drm_edid)
{
struct detailed_mode_closure closure = {
.connector = connector,
.drm_edid = drm_edid,
};
if (drm_edid->edid->revision >= 3)
drm_for_each_detailed_block(drm_edid, do_cvt_mode, &closure);
/* XXX should also look for CVT codes in VTB blocks */
return closure.modes;
}
static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
struct drm_display_mode *mode);
static void
do_detailed_mode(const struct detailed_timing *timing, void *c)
{
struct detailed_mode_closure *closure = c;
struct drm_display_mode *newmode;
if (!is_detailed_timing_descriptor(timing))
return;
newmode = drm_mode_detailed(closure->connector,
closure->drm_edid, timing);
if (!newmode)
return;
if (closure->preferred)
newmode->type |= DRM_MODE_TYPE_PREFERRED;
/*
* Detailed modes are limited to 10kHz pixel clock resolution,
* so fix up anything that looks like CEA/HDMI mode, but the clock
* is just slightly off.
*/
fixup_detailed_cea_mode_clock(closure->connector, newmode);
drm_mode_probed_add(closure->connector, newmode);
closure->modes++;
closure->preferred = false;
}
/*
* add_detailed_modes - Add modes from detailed timings
* @connector: attached connector
* @drm_edid: EDID block to scan
*/
static int add_detailed_modes(struct drm_connector *connector,
const struct drm_edid *drm_edid)
{
struct detailed_mode_closure closure = {
.connector = connector,
.drm_edid = drm_edid,
};
if (drm_edid->edid->revision >= 4)
closure.preferred = true; /* first detailed timing is always preferred */
else
closure.preferred =
drm_edid->edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING;
drm_for_each_detailed_block(drm_edid, do_detailed_mode, &closure);
return closure.modes;
}
/* CTA-861-H Table 60 - CTA Tag Codes */
#define CTA_DB_AUDIO 1
#define CTA_DB_VIDEO 2
#define CTA_DB_VENDOR 3
#define CTA_DB_SPEAKER 4
#define CTA_DB_EXTENDED_TAG 7
/* CTA-861-H Table 62 - CTA Extended Tag Codes */
#define CTA_EXT_DB_VIDEO_CAP 0
#define CTA_EXT_DB_VENDOR 1
#define CTA_EXT_DB_HDR_STATIC_METADATA 6
#define CTA_EXT_DB_420_VIDEO_DATA 14
#define CTA_EXT_DB_420_VIDEO_CAP_MAP 15
#define CTA_EXT_DB_HF_EEODB 0x78
#define CTA_EXT_DB_HF_SCDB 0x79
#define EDID_BASIC_AUDIO (1 << 6)
#define EDID_CEA_YCRCB444 (1 << 5)
#define EDID_CEA_YCRCB422 (1 << 4)
#define EDID_CEA_VCDB_QS (1 << 6)
/*
* Search EDID for CEA extension block.
*
* FIXME: Prefer not returning pointers to raw EDID data.
*/
const u8 *drm_find_edid_extension(const struct drm_edid *drm_edid,
int ext_id, int *ext_index)
{
const u8 *edid_ext = NULL;
int i;
/* No EDID or EDID extensions */
if (!drm_edid || !drm_edid_extension_block_count(drm_edid))
return NULL;
/* Find CEA extension */
for (i = *ext_index; i < drm_edid_extension_block_count(drm_edid); i++) {
edid_ext = drm_edid_extension_block_data(drm_edid, i);
if (edid_block_tag(edid_ext) == ext_id)
break;
}
if (i >= drm_edid_extension_block_count(drm_edid))
return NULL;
*ext_index = i + 1;
return edid_ext;
}
/* Return true if the EDID has a CTA extension or a DisplayID CTA data block */
static bool drm_edid_has_cta_extension(const struct drm_edid *drm_edid)
{
const struct displayid_block *block;
struct displayid_iter iter;
int ext_index = 0;
bool found = false;
/* Look for a top level CEA extension block */
if (drm_find_edid_extension(drm_edid, CEA_EXT, &ext_index))
return true;
/* CEA blocks can also be found embedded in a DisplayID block */
displayid_iter_edid_begin(drm_edid, &iter);
displayid_iter_for_each(block, &iter) {
if (block->tag == DATA_BLOCK_CTA) {
found = true;
break;
}
}
displayid_iter_end(&iter);
return found;
}
static __always_inline const struct drm_display_mode *cea_mode_for_vic(u8 vic)
{
BUILD_BUG_ON(1 + ARRAY_SIZE(edid_cea_modes_1) - 1 != 127);
BUILD_BUG_ON(193 + ARRAY_SIZE(edid_cea_modes_193) - 1 != 219);
if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1))
return &edid_cea_modes_1[vic - 1];
if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193))
return &edid_cea_modes_193[vic - 193];
return NULL;
}
static u8 cea_num_vics(void)
{
return 193 + ARRAY_SIZE(edid_cea_modes_193);
}
static u8 cea_next_vic(u8 vic)
{
if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1))
vic = 193;
return vic;
}
/*
* Calculate the alternate clock for the CEA mode
* (60Hz vs. 59.94Hz etc.)
*/
static unsigned int
cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
{
unsigned int clock = cea_mode->clock;
if (drm_mode_vrefresh(cea_mode) % 6 != 0)
return clock;
/*
* edid_cea_modes contains the 59.94Hz
* variant for 240 and 480 line modes,
* and the 60Hz variant otherwise.
*/
if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
else
clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
return clock;
}
static bool
cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
{
/*
* For certain VICs the spec allows the vertical
* front porch to vary by one or two lines.
*
* cea_modes[] stores the variant with the shortest
* vertical front porch. We can adjust the mode to
* get the other variants by simply increasing the
* vertical front porch length.
*/
BUILD_BUG_ON(cea_mode_for_vic(8)->vtotal != 262 ||
cea_mode_for_vic(9)->vtotal != 262 ||
cea_mode_for_vic(12)->vtotal != 262 ||
cea_mode_for_vic(13)->vtotal != 262 ||
cea_mode_for_vic(23)->vtotal != 312 ||
cea_mode_for_vic(24)->vtotal != 312 ||
cea_mode_for_vic(27)->vtotal != 312 ||
cea_mode_for_vic(28)->vtotal != 312);
if (((vic == 8 || vic == 9 ||
vic == 12 || vic == 13) && mode->vtotal < 263) ||
((vic == 23 || vic == 24 ||
vic == 27 || vic == 28) && mode->vtotal < 314)) {
mode->vsync_start++;
mode->vsync_end++;
mode->vtotal++;
return true;
}
return false;
}
static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
unsigned int clock_tolerance)
{
unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
u8 vic;
if (!to_match->clock)
return 0;
if (to_match->picture_aspect_ratio)
match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
struct drm_display_mode cea_mode;
unsigned int clock1, clock2;
drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
/* Check both 60Hz and 59.94Hz */
clock1 = cea_mode.clock;
clock2 = cea_mode_alternate_clock(&cea_mode);
if (abs(to_match->clock - clock1) > clock_tolerance &&
abs(to_match->clock - clock2) > clock_tolerance)
continue;
do {
if (drm_mode_match(to_match, &cea_mode, match_flags))
return vic;
} while (cea_mode_alternate_timings(vic, &cea_mode));
}
return 0;
}
/**
* drm_match_cea_mode - look for a CEA mode matching given mode
* @to_match: display mode
*
* Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
* mode.
*/
u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
{
unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
u8 vic;
if (!to_match->clock)
return 0;
if (to_match->picture_aspect_ratio)
match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
struct drm_display_mode cea_mode;
unsigned int clock1, clock2;
drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
/* Check both 60Hz and 59.94Hz */
clock1 = cea_mode.clock;
clock2 = cea_mode_alternate_clock(&cea_mode);
if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
continue;
do {
if (drm_mode_match(to_match, &cea_mode, match_flags))
return vic;
} while (cea_mode_alternate_timings(vic, &cea_mode));
}
return 0;
}
EXPORT_SYMBOL(drm_match_cea_mode);
static bool drm_valid_cea_vic(u8 vic)
{
return cea_mode_for_vic(vic) != NULL;
}
static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
{
const struct drm_display_mode *mode = cea_mode_for_vic(video_code);
if (mode)
return mode->picture_aspect_ratio;
return HDMI_PICTURE_ASPECT_NONE;
}
static enum hdmi_picture_aspect drm_get_hdmi_aspect_ratio(const u8 video_code)
{
return edid_4k_modes[video_code].picture_aspect_ratio;
}
/*
* Calculate the alternate clock for HDMI modes (those from the HDMI vendor
* specific block).
*/
static unsigned int
hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
{
return cea_mode_alternate_clock(hdmi_mode);
}
static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
unsigned int clock_tolerance)
{
unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
u8 vic;
if (!to_match->clock)
return 0;
if (to_match->picture_aspect_ratio)
match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
unsigned int clock1, clock2;
/* Make sure to also match alternate clocks */
clock1 = hdmi_mode->clock;
clock2 = hdmi_mode_alternate_clock(hdmi_mode);
if (abs(to_match->clock - clock1) > clock_tolerance &&
abs(to_match->clock - clock2) > clock_tolerance)
continue;
if (drm_mode_match(to_match, hdmi_mode, match_flags))
return vic;
}
return 0;
}
/*
* drm_match_hdmi_mode - look for a HDMI mode matching given mode
* @to_match: display mode
*
* An HDMI mode is one defined in the HDMI vendor specific block.
*
* Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
*/
static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
{
unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
u8 vic;
if (!to_match->clock)
return 0;
if (to_match->picture_aspect_ratio)
match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
unsigned int clock1, clock2;
/* Make sure to also match alternate clocks */
clock1 = hdmi_mode->clock;
clock2 = hdmi_mode_alternate_clock(hdmi_mode);
if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
drm_mode_match(to_match, hdmi_mode, match_flags))
return vic;
}
return 0;
}
static bool drm_valid_hdmi_vic(u8 vic)
{
return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
}
static int add_alternate_cea_modes(struct drm_connector *connector,
const struct drm_edid *drm_edid)
{
struct drm_device *dev = connector->dev;
struct drm_display_mode *mode, *tmp;
LIST_HEAD(list);
int modes = 0;
/* Don't add CTA modes if the CTA extension block is missing */
if (!drm_edid_has_cta_extension(drm_edid))
return 0;
/*
* Go through all probed modes and create a new mode
* with the alternate clock for certain CEA modes.
*/
list_for_each_entry(mode, &connector->probed_modes, head) {
const struct drm_display_mode *cea_mode = NULL;
struct drm_display_mode *newmode;
u8 vic = drm_match_cea_mode(mode);
unsigned int clock1, clock2;
if (drm_valid_cea_vic(vic)) {
cea_mode = cea_mode_for_vic(vic);
clock2 = cea_mode_alternate_clock(cea_mode);
} else {
vic = drm_match_hdmi_mode(mode);
if (drm_valid_hdmi_vic(vic)) {
cea_mode = &edid_4k_modes[vic];
clock2 = hdmi_mode_alternate_clock(cea_mode);
}
}
if (!cea_mode)
continue;
clock1 = cea_mode->clock;
if (clock1 == clock2)
continue;
if (mode->clock != clock1 && mode->clock != clock2)
continue;
newmode = drm_mode_duplicate(dev, cea_mode);
if (!newmode)
continue;
/* Carry over the stereo flags */
newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
/*
* The current mode could be either variant. Make
* sure to pick the "other" clock for the new mode.
*/
if (mode->clock != clock1)
newmode->clock = clock1;
else
newmode->clock = clock2;
list_add_tail(&newmode->head, &list);
}
list_for_each_entry_safe(mode, tmp, &list, head) {
list_del(&mode->head);
drm_mode_probed_add(connector, mode);
modes++;
}
return modes;
}
static u8 svd_to_vic(u8 svd)
{
/* 0-6 bit vic, 7th bit native mode indicator */
if ((svd >= 1 && svd <= 64) || (svd >= 129 && svd <= 192))
return svd & 127;
return svd;
}
/*
* Return a display mode for the 0-based vic_index'th VIC across all CTA VDBs in
* the EDID, or NULL on errors.
*/
static struct drm_display_mode *
drm_display_mode_from_vic_index(struct drm_connector *connector, int vic_index)
{
const struct drm_display_info *info = &connector->display_info;
struct drm_device *dev = connector->dev;
if (!info->vics || vic_index >= info->vics_len || !info->vics[vic_index])
return NULL;
return drm_display_mode_from_cea_vic(dev, info->vics[vic_index]);
}
/*
* do_y420vdb_modes - Parse YCBCR 420 only modes
* @connector: connector corresponding to the HDMI sink
* @svds: start of the data block of CEA YCBCR 420 VDB
* @len: length of the CEA YCBCR 420 VDB
*
* Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
* which contains modes which can be supported in YCBCR 420
* output format only.
*/
static int do_y420vdb_modes(struct drm_connector *connector,
const u8 *svds, u8 svds_len)
{
struct drm_device *dev = connector->dev;
int modes = 0, i;
for (i = 0; i < svds_len; i++) {
u8 vic = svd_to_vic(svds[i]);
struct drm_display_mode *newmode;
if (!drm_valid_cea_vic(vic))
continue;
newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
if (!newmode)
break;
drm_mode_probed_add(connector, newmode);
modes++;
}
return modes;
}
/**
* drm_display_mode_from_cea_vic() - return a mode for CEA VIC
* @dev: DRM device
* @video_code: CEA VIC of the mode
*
* Creates a new mode matching the specified CEA VIC.
*
* Returns: A new drm_display_mode on success or NULL on failure
*/
struct drm_display_mode *
drm_display_mode_from_cea_vic(struct drm_device *dev,
u8 video_code)
{
const struct drm_display_mode *cea_mode;
struct drm_display_mode *newmode;
cea_mode = cea_mode_for_vic(video_code);
if (!cea_mode)
return NULL;
newmode = drm_mode_duplicate(dev, cea_mode);
if (!newmode)
return NULL;
return newmode;
}
EXPORT_SYMBOL(drm_display_mode_from_cea_vic);
/* Add modes based on VICs parsed in parse_cta_vdb() */
static int add_cta_vdb_modes(struct drm_connector *connector)
{
const struct drm_display_info *info = &connector->display_info;
int i, modes = 0;
if (!info->vics)
return 0;
for (i = 0; i < info->vics_len; i++) {
struct drm_display_mode *mode;
mode = drm_display_mode_from_vic_index(connector, i);
if (mode) {
drm_mode_probed_add(connector, mode);
modes++;
}
}
return modes;
}
struct stereo_mandatory_mode {
int width, height, vrefresh;
unsigned int flags;
};
static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
{ 1920, 1080, 50,
DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
{ 1920, 1080, 60,
DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
{ 1280, 720, 50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
{ 1280, 720, 50, DRM_MODE_FLAG_3D_FRAME_PACKING },
{ 1280, 720, 60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
{ 1280, 720, 60, DRM_MODE_FLAG_3D_FRAME_PACKING }
};
static bool
stereo_match_mandatory(const struct drm_display_mode *mode,
const struct stereo_mandatory_mode *stereo_mode)
{
unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
return mode->hdisplay == stereo_mode->width &&
mode->vdisplay == stereo_mode->height &&
interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
}
static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
{
struct drm_device *dev = connector->dev;
const struct drm_display_mode *mode;
struct list_head stereo_modes;
int modes = 0, i;
INIT_LIST_HEAD(&stereo_modes);
list_for_each_entry(mode, &connector->probed_modes, head) {
for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
const struct stereo_mandatory_mode *mandatory;
struct drm_display_mode *new_mode;
if (!stereo_match_mandatory(mode,
&stereo_mandatory_modes[i]))
continue;
mandatory = &stereo_mandatory_modes[i];
new_mode = drm_mode_duplicate(dev, mode);
if (!new_mode)
continue;
new_mode->flags |= mandatory->flags;
list_add_tail(&new_mode->head, &stereo_modes);
modes++;
}
}
list_splice_tail(&stereo_modes, &connector->probed_modes);
return modes;
}
static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
{
struct drm_device *dev = connector->dev;
struct drm_display_mode *newmode;
if (!drm_valid_hdmi_vic(vic)) {
drm_err(connector->dev, "[CONNECTOR:%d:%s] Unknown HDMI VIC: %d\n",
connector->base.id, connector->name, vic);
return 0;
}
newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
if (!newmode)
return 0;
drm_mode_probed_add(connector, newmode);
return 1;
}
static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
int vic_index)
{
struct drm_display_mode *newmode;
int modes = 0;
if (structure & (1 << 0)) {
newmode = drm_display_mode_from_vic_index(connector, vic_index);
if (newmode) {
newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
drm_mode_probed_add(connector, newmode);
modes++;
}
}
if (structure & (1 << 6)) {
newmode = drm_display_mode_from_vic_index(connector, vic_index);
if (newmode) {
newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
drm_mode_probed_add(connector, newmode);
modes++;
}
}
if (structure & (1 << 8)) {
newmode = drm_display_mode_from_vic_index(connector, vic_index);
if (newmode) {
newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
drm_mode_probed_add(connector, newmode);
modes++;
}
}
return modes;
}
static bool hdmi_vsdb_latency_present(const u8 *db)
{
return db[8] & BIT(7);
}
static bool hdmi_vsdb_i_latency_present(const u8 *db)
{
return hdmi_vsdb_latency_present(db) && db[8] & BIT(6);
}
static int hdmi_vsdb_latency_length(const u8 *db)
{
if (hdmi_vsdb_i_latency_present(db))
return 4;
else if (hdmi_vsdb_latency_present(db))
return 2;
else
return 0;
}
/*
* do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
* @connector: connector corresponding to the HDMI sink
* @db: start of the CEA vendor specific block
* @len: length of the CEA block payload, ie. one can access up to db[len]
*
* Parses the HDMI VSDB looking for modes to add to @connector. This function
* also adds the stereo 3d modes when applicable.
*/
static int
do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len)
{
int modes = 0, offset = 0, i, multi_present = 0, multi_len;
u8 vic_len, hdmi_3d_len = 0;
u16 mask;
u16 structure_all;
if (len < 8)
goto out;
/* no HDMI_Video_Present */
if (!(db[8] & (1 << 5)))
goto out;
offset += hdmi_vsdb_latency_length(db);
/* the declared length is not long enough for the 2 first bytes
* of additional video format capabilities */
if (len < (8 + offset + 2))
goto out;
/* 3D_Present */
offset++;
if (db[8 + offset] & (1 << 7)) {
modes += add_hdmi_mandatory_stereo_modes(connector);
/* 3D_Multi_present */
multi_present = (db[8 + offset] & 0x60) >> 5;
}
offset++;
vic_len = db[8 + offset] >> 5;
hdmi_3d_len = db[8 + offset] & 0x1f;
for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
u8 vic;
vic = db[9 + offset + i];
modes += add_hdmi_mode(connector, vic);
}
offset += 1 + vic_len;
if (multi_present == 1)
multi_len = 2;
else if (multi_present == 2)
multi_len = 4;
else
multi_len = 0;
if (len < (8 + offset + hdmi_3d_len - 1))
goto out;
if (hdmi_3d_len < multi_len)
goto out;
if (multi_present == 1 || multi_present == 2) {
/* 3D_Structure_ALL */
structure_all = (db[8 + offset] << 8) | db[9 + offset];
/* check if 3D_MASK is present */
if (multi_present == 2)
mask = (db[10 + offset] << 8) | db[11 + offset];
else
mask = 0xffff;
for (i = 0; i < 16; i++) {
if (mask & (1 << i))
modes += add_3d_struct_modes(connector,
structure_all, i);
}
}
offset += multi_len;
for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
int vic_index;
struct drm_display_mode *newmode = NULL;
unsigned int newflag = 0;
bool detail_present;
detail_present = ((db[8 + offset + i] & 0x0f) > 7);
if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
break;
/* 2D_VIC_order_X */
vic_index = db[8 + offset + i] >> 4;
/* 3D_Structure_X */
switch (db[8 + offset + i] & 0x0f) {
case 0:
newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
break;
case 6:
newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
break;
case 8:
/* 3D_Detail_X */
if ((db[9 + offset + i] >> 4) == 1)
newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
break;
}
if (newflag != 0) {
newmode = drm_display_mode_from_vic_index(connector,
vic_index);
if (newmode) {
newmode->flags |= newflag;
drm_mode_probed_add(connector, newmode);
modes++;
}
}
if (detail_present)
i++;
}
out:
return modes;
}
static int
cea_revision(const u8 *cea)
{
/*
* FIXME is this correct for the DispID variant?
* The DispID spec doesn't really specify whether
* this is the revision of the CEA extension or
* the DispID CEA data block. And the only value
* given as an example is 0.
*/
return cea[1];
}
/*
* CTA Data Block iterator.
*
* Iterate through all CTA Data Blocks in both EDID CTA Extensions and DisplayID
* CTA Data Blocks.
*
* struct cea_db *db:
* struct cea_db_iter iter;
*
* cea_db_iter_edid_begin(edid, &iter);
* cea_db_iter_for_each(db, &iter) {
* // do stuff with db
* }
* cea_db_iter_end(&iter);
*/
struct cea_db_iter {
struct drm_edid_iter edid_iter;
struct displayid_iter displayid_iter;
/* Current Data Block Collection. */
const u8 *collection;
/* Current Data Block index in current collection. */
int index;
/* End index in current collection. */
int end;
};
/* CTA-861-H section 7.4 CTA Data BLock Collection */
struct cea_db {
u8 tag_length;
u8 data[];
} __packed;
static int cea_db_tag(const struct cea_db *db)
{
return db->tag_length >> 5;
}
static int cea_db_payload_len(const void *_db)
{
/* FIXME: Transition to passing struct cea_db * everywhere. */
const struct cea_db *db = _db;
return db->tag_length & 0x1f;
}
static const void *cea_db_data(const struct cea_db *db)
{
return db->data;
}
static bool cea_db_is_extended_tag(const struct cea_db *db, int tag)
{
return cea_db_tag(db) == CTA_DB_EXTENDED_TAG &&
cea_db_payload_len(db) >= 1 &&
db->data[0] == tag;
}
static bool cea_db_is_vendor(const struct cea_db *db, int vendor_oui)
{
const u8 *data = cea_db_data(db);
return cea_db_tag(db) == CTA_DB_VENDOR &&
cea_db_payload_len(db) >= 3 &&
oui(data[2], data[1], data[0]) == vendor_oui;
}
static void cea_db_iter_edid_begin(const struct drm_edid *drm_edid,
struct cea_db_iter *iter)
{
memset(iter, 0, sizeof(*iter));
drm_edid_iter_begin(drm_edid, &iter->edid_iter);
displayid_iter_edid_begin(drm_edid, &iter->displayid_iter);
}
static const struct cea_db *
__cea_db_iter_current_block(const struct cea_db_iter *iter)
{
const struct cea_db *db;
if (!iter->collection)
return NULL;
db = (const struct cea_db *)&iter->collection[iter->index];
if (iter->index + sizeof(*db) <= iter->end &&
iter->index + sizeof(*db) + cea_db_payload_len(db) <= iter->end)
return db;
return NULL;
}
/*
* References:
* - CTA-861-H section 7.3.3 CTA Extension Version 3
*/
static int cea_db_collection_size(const u8 *cta)
{
u8 d = cta[2];
if (d < 4 || d > 127)
return 0;
return d - 4;
}
/*
* References:
* - VESA E-EDID v1.4
* - CTA-861-H section 7.3.3 CTA Extension Version 3
*/
static const void *__cea_db_iter_edid_next(struct cea_db_iter *iter)
{
const u8 *ext;
drm_edid_iter_for_each(ext, &iter->edid_iter) {
int size;
/* Only support CTA Extension revision 3+ */
if (ext[0] != CEA_EXT || cea_revision(ext) < 3)
continue;
size = cea_db_collection_size(ext);
if (!size)
continue;
iter->index = 4;
iter->end = iter->index + size;
return ext;
}
return NULL;
}
/*
* References:
* - DisplayID v1.3 Appendix C: CEA Data Block within a DisplayID Data Block
* - DisplayID v2.0 section 4.10 CTA DisplayID Data Block
*
* Note that the above do not specify any connection between DisplayID Data
* Block revision and CTA Extension versions.
*/
static const void *__cea_db_iter_displayid_next(struct cea_db_iter *iter)
{
const struct displayid_block *block;
displayid_iter_for_each(block, &iter->displayid_iter) {
if (block->tag != DATA_BLOCK_CTA)
continue;
/*
* The displayid iterator has already verified the block bounds
* in displayid_iter_block().
*/
iter->index = sizeof(*block);
iter->end = iter->index + block->num_bytes;
return block;
}
return NULL;
}
static const struct cea_db *__cea_db_iter_next(struct cea_db_iter *iter)
{
const struct cea_db *db;
if (iter->collection) {
/* Current collection should always be valid. */
db = __cea_db_iter_current_block(iter);
if (WARN_ON(!db)) {
iter->collection = NULL;
return NULL;
}
/* Next block in CTA Data Block Collection */
iter->index += sizeof(*db) + cea_db_payload_len(db);
db = __cea_db_iter_current_block(iter);
if (db)
return db;
}
for (;;) {
/*
* Find the next CTA Data Block Collection. First iterate all
* the EDID CTA Extensions, then all the DisplayID CTA blocks.
*
* Per DisplayID v1.3 Appendix B: DisplayID as an EDID
* Extension, it's recommended that DisplayID extensions are
* exposed after all of the CTA Extensions.
*/
iter->collection = __cea_db_iter_edid_next(iter);
if (!iter->collection)
iter->collection = __cea_db_iter_displayid_next(iter);
if (!iter->collection)
return NULL;
db = __cea_db_iter_current_block(iter);
if (db)
return db;
}
}
#define cea_db_iter_for_each(__db, __iter) \
while (((__db) = __cea_db_iter_next(__iter)))
static void cea_db_iter_end(struct cea_db_iter *iter)
{
displayid_iter_end(&iter->displayid_iter);
drm_edid_iter_end(&iter->edid_iter);
memset(iter, 0, sizeof(*iter));
}
static bool cea_db_is_hdmi_vsdb(const struct cea_db *db)
{
return cea_db_is_vendor(db, HDMI_IEEE_OUI) &&
cea_db_payload_len(db) >= 5;
}
static bool cea_db_is_hdmi_forum_vsdb(const struct cea_db *db)
{
return cea_db_is_vendor(db, HDMI_FORUM_IEEE_OUI) &&
cea_db_payload_len(db) >= 7;
}
static bool cea_db_is_hdmi_forum_eeodb(const void *db)
{
return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_EEODB) &&
cea_db_payload_len(db) >= 2;
}
static bool cea_db_is_microsoft_vsdb(const struct cea_db *db)
{
return cea_db_is_vendor(db, MICROSOFT_IEEE_OUI) &&
cea_db_payload_len(db) == 21;
}
static bool cea_db_is_vcdb(const struct cea_db *db)
{
return cea_db_is_extended_tag(db, CTA_EXT_DB_VIDEO_CAP) &&
cea_db_payload_len(db) == 2;
}
static bool cea_db_is_hdmi_forum_scdb(const struct cea_db *db)
{
return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_SCDB) &&
cea_db_payload_len(db) >= 7;
}
static bool cea_db_is_y420cmdb(const struct cea_db *db)
{
return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_CAP_MAP);
}
static bool cea_db_is_y420vdb(const struct cea_db *db)
{
return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_DATA);
}
static bool cea_db_is_hdmi_hdr_metadata_block(const struct cea_db *db)
{
return cea_db_is_extended_tag(db, CTA_EXT_DB_HDR_STATIC_METADATA) &&
cea_db_payload_len(db) >= 3;
}
/*
* Get the HF-EEODB override extension block count from EDID.
*
* The passed in EDID may be partially read, as long as it has at least two
* blocks (base block and one extension block) if EDID extension count is > 0.
*
* Note that this is *not* how you should parse CTA Data Blocks in general; this
* is only to handle partially read EDIDs. Normally, use the CTA Data Block
* iterators instead.
*
* References:
* - HDMI 2.1 section 10.3.6 HDMI Forum EDID Extension Override Data Block
*/
static int edid_hfeeodb_extension_block_count(const struct edid *edid)
{
const u8 *cta;
/* No extensions according to base block, no HF-EEODB. */
if (!edid_extension_block_count(edid))
return 0;
/* HF-EEODB is always in the first EDID extension block only */
cta = edid_extension_block_data(edid, 0);
if (edid_block_tag(cta) != CEA_EXT || cea_revision(cta) < 3)
return 0;
/* Need to have the data block collection, and at least 3 bytes. */
if (cea_db_collection_size(cta) < 3)
return 0;
/*
* Sinks that include the HF-EEODB in their E-EDID shall include one and
* only one instance of the HF-EEODB in the E-EDID, occupying bytes 4
* through 6 of Block 1 of the E-EDID.
*/
if (!cea_db_is_hdmi_forum_eeodb(&cta[4]))
return 0;
return cta[4 + 2];
}
/*
* CTA-861 YCbCr 4:2:0 Capability Map Data Block (CTA Y420CMDB)
*
* Y420CMDB contains a bitmap which gives the index of CTA modes from CTA VDB,
* which can support YCBCR 420 sampling output also (apart from RGB/YCBCR444
* etc). For example, if the bit 0 in bitmap is set, first mode in VDB can
* support YCBCR420 output too.
*/
static void parse_cta_y420cmdb(struct drm_connector *connector,
const struct cea_db *db, u64 *y420cmdb_map)
{
struct drm_display_info *info = &connector->display_info;
int i, map_len = cea_db_payload_len(db) - 1;
const u8 *data = cea_db_data(db) + 1;
u64 map = 0;
if (map_len == 0) {
/* All CEA modes support ycbcr420 sampling also.*/
map = U64_MAX;
goto out;
}
/*
* This map indicates which of the existing CEA block modes
* from VDB can support YCBCR420 output too. So if bit=0 is
* set, first mode from VDB can support YCBCR420 output too.
* We will parse and keep this map, before parsing VDB itself
* to avoid going through the same block again and again.
*
* Spec is not clear about max possible size of this block.
* Clamping max bitmap block size at 8 bytes. Every byte can
* address 8 CEA modes, in this way this map can address
* 8*8 = first 64 SVDs.
*/
if (WARN_ON_ONCE(map_len > 8))
map_len = 8;
for (i = 0; i < map_len; i++)
map |= (u64)data[i] << (8 * i);
out:
if (map)
info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
*y420cmdb_map = map;
}
static int add_cea_modes(struct drm_connector *connector,
const struct drm_edid *drm_edid)
{
const struct cea_db *db;
struct cea_db_iter iter;
int modes;
/* CTA VDB block VICs parsed earlier */
modes = add_cta_vdb_modes(connector);
cea_db_iter_edid_begin(drm_edid, &iter);
cea_db_iter_for_each(db, &iter) {
if (cea_db_is_hdmi_vsdb(db)) {
modes += do_hdmi_vsdb_modes(connector, (const u8 *)db,
cea_db_payload_len(db));
} else if (cea_db_is_y420vdb(db)) {
const u8 *vdb420 = cea_db_data(db) + 1;
/* Add 4:2:0(only) modes present in EDID */
modes += do_y420vdb_modes(connector, vdb420,
cea_db_payload_len(db) - 1);
}
}
cea_db_iter_end(&iter);
return modes;
}
static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
struct drm_display_mode *mode)
{
const struct drm_display_mode *cea_mode;
int clock1, clock2, clock;
u8 vic;
const char *type;
/*
* allow 5kHz clock difference either way to account for
* the 10kHz clock resolution limit of detailed timings.
*/
vic = drm_match_cea_mode_clock_tolerance(mode, 5);
if (drm_valid_cea_vic(vic)) {
type = "CEA";
cea_mode = cea_mode_for_vic(vic);
clock1 = cea_mode->clock;
clock2 = cea_mode_alternate_clock(cea_mode);
} else {
vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
if (drm_valid_hdmi_vic(vic)) {
type = "HDMI";
cea_mode = &edid_4k_modes[vic];
clock1 = cea_mode->clock;
clock2 = hdmi_mode_alternate_clock(cea_mode);
} else {
return;
}
}
/* pick whichever is closest */
if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
clock = clock1;
else
clock = clock2;
if (mode->clock == clock)
return;
drm_dbg_kms(connector->dev,
"[CONNECTOR:%d:%s] detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
connector->base.id, connector->name,
type, vic, mode->clock, clock);
mode->clock = clock;
}
static void drm_calculate_luminance_range(struct drm_connector *connector)
{
struct hdr_static_metadata *hdr_metadata = &connector->hdr_sink_metadata.hdmi_type1;
struct drm_luminance_range_info *luminance_range =
&connector->display_info.luminance_range;
static const u8 pre_computed_values[] = {
50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69,
71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98
};
u32 max_avg, min_cll, max, min, q, r;
if (!(hdr_metadata->metadata_type & BIT(HDMI_STATIC_METADATA_TYPE1)))
return;
max_avg = hdr_metadata->max_fall;
min_cll = hdr_metadata->min_cll;
/*
* From the specification (CTA-861-G), for calculating the maximum
* luminance we need to use:
* Luminance = 50*2**(CV/32)
* Where CV is a one-byte value.
* For calculating this expression we may need float point precision;
* to avoid this complexity level, we take advantage that CV is divided
* by a constant. From the Euclids division algorithm, we know that CV
* can be written as: CV = 32*q + r. Next, we replace CV in the
* Luminance expression and get 50*(2**q)*(2**(r/32)), hence we just
* need to pre-compute the value of r/32. For pre-computing the values
* We just used the following Ruby line:
* (0...32).each {|cv| puts (50*2**(cv/32.0)).round}
* The results of the above expressions can be verified at
* pre_computed_values.
*/
q = max_avg >> 5;
r = max_avg % 32;
max = (1 << q) * pre_computed_values[r];
/* min luminance: maxLum * (CV/255)^2 / 100 */
q = DIV_ROUND_CLOSEST(min_cll, 255);
min = max * DIV_ROUND_CLOSEST((q * q), 100);
luminance_range->min_luminance = min;
luminance_range->max_luminance = max;
}
static uint8_t eotf_supported(const u8 *edid_ext)
{
return edid_ext[2] &
(BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) |
BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) |
BIT(HDMI_EOTF_SMPTE_ST2084) |
BIT(HDMI_EOTF_BT_2100_HLG));
}
static uint8_t hdr_metadata_type(const u8 *edid_ext)
{
return edid_ext[3] &
BIT(HDMI_STATIC_METADATA_TYPE1);
}
static void
drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db)
{
u16 len;
len = cea_db_payload_len(db);
connector->hdr_sink_metadata.hdmi_type1.eotf =
eotf_supported(db);
connector->hdr_sink_metadata.hdmi_type1.metadata_type =
hdr_metadata_type(db);
if (len >= 4)
connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4];
if (len >= 5)
connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5];
if (len >= 6) {
connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6];
/* Calculate only when all values are available */
drm_calculate_luminance_range(connector);
}
}
/* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
static void
drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
{
u8 len = cea_db_payload_len(db);
if (len >= 6 && (db[6] & (1 << 7)))
connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
if (len >= 10 && hdmi_vsdb_latency_present(db)) {
connector->latency_present[0] = true;
connector->video_latency[0] = db[9];
connector->audio_latency[0] = db[10];
}
if (len >= 12 && hdmi_vsdb_i_latency_present(db)) {
connector->latency_present[1] = true;
connector->video_latency[1] = db[11];
connector->audio_latency[1] = db[12];
}
drm_dbg_kms(connector->dev,
"[CONNECTOR:%d:%s] HDMI: latency present %d %d, video latency %d %d, audio latency %d %d\n",
connector->base.id, connector->name,
connector->latency_present[0], connector->latency_present[1],
connector->video_latency[0], connector->video_latency[1],
connector->audio_latency[0], connector->audio_latency[1]);
}
static void
monitor_name(const struct detailed_timing *timing, void *data)
{
const char **res = data;
if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME))
return;
*res = timing->data.other_data.data.str.str;
}
static int get_monitor_name(const struct drm_edid *drm_edid, char name[13])
{
const char *edid_name = NULL;
int mnl;
if (!drm_edid || !name)
return 0;
drm_for_each_detailed_block(drm_edid, monitor_name, &edid_name);
for (mnl = 0; edid_name && mnl < 13; mnl++) {
if (edid_name[mnl] == 0x0a)
break;
name[mnl] = edid_name[mnl];
}
return mnl;
}
/**
* drm_edid_get_monitor_name - fetch the monitor name from the edid
* @edid: monitor EDID information
* @name: pointer to a character array to hold the name of the monitor
* @bufsize: The size of the name buffer (should be at least 14 chars.)
*
*/
void drm_edid_get_monitor_name(const struct edid *edid, char *name, int bufsize)
{
int name_length = 0;
if (bufsize <= 0)
return;
if (edid) {
char buf[13];
struct drm_edid drm_edid = {
.edid = edid,
.size = edid_size(edid),
};
name_length = min(get_monitor_name(&drm_edid, buf), bufsize - 1);
memcpy(name, buf, name_length);
}
name[name_length] = '\0';
}
EXPORT_SYMBOL(drm_edid_get_monitor_name);
static void clear_eld(struct drm_connector *connector)
{
memset(connector->eld, 0, sizeof(connector->eld));
connector->latency_present[0] = false;
connector->latency_present[1] = false;
connector->video_latency[0] = 0;
connector->audio_latency[0] = 0;
connector->video_latency[1] = 0;
connector->audio_latency[1] = 0;
}
/*
* drm_edid_to_eld - build ELD from EDID
* @connector: connector corresponding to the HDMI/DP sink
* @drm_edid: EDID to parse
*
* Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
* HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
*/
static void drm_edid_to_eld(struct drm_connector *connector,
const struct drm_edid *drm_edid)
{
const struct drm_display_info *info = &connector->display_info;
const struct cea_db *db;
struct cea_db_iter iter;
uint8_t *eld = connector->eld;
int total_sad_count = 0;
int mnl;
if (!drm_edid)
return;
mnl = get_monitor_name(drm_edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD monitor %s\n",
connector->base.id, connector->name,
&eld[DRM_ELD_MONITOR_NAME_STRING]);
eld[DRM_ELD_CEA_EDID_VER_MNL] = info->cea_rev << DRM_ELD_CEA_EDID_VER_SHIFT;
eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
eld[DRM_ELD_MANUFACTURER_NAME0] = drm_edid->edid->mfg_id[0];
eld[DRM_ELD_MANUFACTURER_NAME1] = drm_edid->edid->mfg_id[1];
eld[DRM_ELD_PRODUCT_CODE0] = drm_edid->edid->prod_code[0];
eld[DRM_ELD_PRODUCT_CODE1] = drm_edid->edid->prod_code[1];
cea_db_iter_edid_begin(drm_edid, &iter);
cea_db_iter_for_each(db, &iter) {
const u8 *data = cea_db_data(db);
int len = cea_db_payload_len(db);
int sad_count;
switch (cea_db_tag(db)) {
case CTA_DB_AUDIO:
/* Audio Data Block, contains SADs */
sad_count = min(len / 3, 15 - total_sad_count);
if (sad_count >= 1)
memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
data, sad_count * 3);
total_sad_count += sad_count;
break;
case CTA_DB_SPEAKER:
/* Speaker Allocation Data Block */
if (len >= 1)
eld[DRM_ELD_SPEAKER] = data[0];
break;
case CTA_DB_VENDOR:
/* HDMI Vendor-Specific Data Block */
if (cea_db_is_hdmi_vsdb(db))
drm_parse_hdmi_vsdb_audio(connector, (const u8 *)db);
break;
default:
break;
}
}
cea_db_iter_end(&iter);
eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
connector->connector_type == DRM_MODE_CONNECTOR_eDP)
eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
else
eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
eld[DRM_ELD_BASELINE_ELD_LEN] =
DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD size %d, SAD count %d\n",
connector->base.id, connector->name,
drm_eld_size(eld), total_sad_count);
}
static int _drm_edid_to_sad(const struct drm_edid *drm_edid,
struct cea_sad **sads)
{
const struct cea_db *db;
struct cea_db_iter iter;
int count = 0;
cea_db_iter_edid_begin(drm_edid, &iter);
cea_db_iter_for_each(db, &iter) {
if (cea_db_tag(db) == CTA_DB_AUDIO) {
int j;
count = cea_db_payload_len(db) / 3; /* SAD is 3B */
*sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
if (!*sads)
return -ENOMEM;
for (j = 0; j < count; j++) {
const u8 *sad = &db->data[j * 3];
(*sads)[j].format = (sad[0] & 0x78) >> 3;
(*sads)[j].channels = sad[0] & 0x7;
(*sads)[j].freq = sad[1] & 0x7F;
(*sads)[j].byte2 = sad[2];
}
break;
}
}
cea_db_iter_end(&iter);
DRM_DEBUG_KMS("Found %d Short Audio Descriptors\n", count);
return count;
}
/**
* drm_edid_to_sad - extracts SADs from EDID
* @edid: EDID to parse
* @sads: pointer that will be set to the extracted SADs
*
* Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
*
* Note: The returned pointer needs to be freed using kfree().
*
* Return: The number of found SADs or negative number on error.
*/
int drm_edid_to_sad(const struct edid *edid, struct cea_sad **sads)
{
struct drm_edid drm_edid;
return _drm_edid_to_sad(drm_edid_legacy_init(&drm_edid, edid), sads);
}
EXPORT_SYMBOL(drm_edid_to_sad);
static int _drm_edid_to_speaker_allocation(const struct drm_edid *drm_edid,
u8 **sadb)
{
const struct cea_db *db;
struct cea_db_iter iter;
int count = 0;
cea_db_iter_edid_begin(drm_edid, &iter);
cea_db_iter_for_each(db, &iter) {
if (cea_db_tag(db) == CTA_DB_SPEAKER &&
cea_db_payload_len(db) == 3) {
*sadb = kmemdup(db->data, cea_db_payload_len(db),
GFP_KERNEL);
if (!*sadb)
return -ENOMEM;
count = cea_db_payload_len(db);
break;
}
}
cea_db_iter_end(&iter);
DRM_DEBUG_KMS("Found %d Speaker Allocation Data Blocks\n", count);
return count;
}
/**
* drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
* @edid: EDID to parse
* @sadb: pointer to the speaker block
*
* Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
*
* Note: The returned pointer needs to be freed using kfree().
*
* Return: The number of found Speaker Allocation Blocks or negative number on
* error.
*/
int drm_edid_to_speaker_allocation(const struct edid *edid, u8 **sadb)
{
struct drm_edid drm_edid;
return _drm_edid_to_speaker_allocation(drm_edid_legacy_init(&drm_edid, edid),
sadb);
}
EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
/**
* drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
* @connector: connector associated with the HDMI/DP sink
* @mode: the display mode
*
* Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
* the sink doesn't support audio or video.
*/
int drm_av_sync_delay(struct drm_connector *connector,
const struct drm_display_mode *mode)
{
int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
int a, v;
if (!connector->latency_present[0])
return 0;
if (!connector->latency_present[1])
i = 0;
a = connector->audio_latency[i];
v = connector->video_latency[i];
/*
* HDMI/DP sink doesn't support audio or video?
*/
if (a == 255 || v == 255)
return 0;
/*
* Convert raw EDID values to millisecond.
* Treat unknown latency as 0ms.
*/
if (a)
a = min(2 * (a - 1), 500);
if (v)
v = min(2 * (v - 1), 500);
return max(v - a, 0);
}
EXPORT_SYMBOL(drm_av_sync_delay);
static bool _drm_detect_hdmi_monitor(const struct drm_edid *drm_edid)
{
const struct cea_db *db;
struct cea_db_iter iter;
bool hdmi = false;
/*
* Because HDMI identifier is in Vendor Specific Block,
* search it from all data blocks of CEA extension.
*/
cea_db_iter_edid_begin(drm_edid, &iter);
cea_db_iter_for_each(db, &iter) {
if (cea_db_is_hdmi_vsdb(db)) {
hdmi = true;
break;
}
}
cea_db_iter_end(&iter);
return hdmi;
}
/**
* drm_detect_hdmi_monitor - detect whether monitor is HDMI
* @edid: monitor EDID information
*
* Parse the CEA extension according to CEA-861-B.
*
* Drivers that have added the modes parsed from EDID to drm_display_info
* should use &drm_display_info.is_hdmi instead of calling this function.
*
* Return: True if the monitor is HDMI, false if not or unknown.
*/
bool drm_detect_hdmi_monitor(const struct edid *edid)
{
struct drm_edid drm_edid;
return _drm_detect_hdmi_monitor(drm_edid_legacy_init(&drm_edid, edid));
}
EXPORT_SYMBOL(drm_detect_hdmi_monitor);
static bool _drm_detect_monitor_audio(const struct drm_edid *drm_edid)
{
struct drm_edid_iter edid_iter;
const struct cea_db *db;
struct cea_db_iter iter;
const u8 *edid_ext;
bool has_audio = false;
drm_edid_iter_begin(drm_edid, &edid_iter);
drm_edid_iter_for_each(edid_ext, &edid_iter) {
if (edid_ext[0] == CEA_EXT) {
has_audio = edid_ext[3] & EDID_BASIC_AUDIO;
if (has_audio)
break;
}
}
drm_edid_iter_end(&edid_iter);
if (has_audio) {
DRM_DEBUG_KMS("Monitor has basic audio support\n");
goto end;
}
cea_db_iter_edid_begin(drm_edid, &iter);
cea_db_iter_for_each(db, &iter) {
if (cea_db_tag(db) == CTA_DB_AUDIO) {
const u8 *data = cea_db_data(db);
int i;
for (i = 0; i < cea_db_payload_len(db); i += 3)
DRM_DEBUG_KMS("CEA audio format %d\n",
(data[i] >> 3) & 0xf);
has_audio = true;
break;
}
}
cea_db_iter_end(&iter);
end:
return has_audio;
}
/**
* drm_detect_monitor_audio - check monitor audio capability
* @edid: EDID block to scan
*
* Monitor should have CEA extension block.
* If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
* audio' only. If there is any audio extension block and supported
* audio format, assume at least 'basic audio' support, even if 'basic
* audio' is not defined in EDID.
*
* Return: True if the monitor supports audio, false otherwise.
*/
bool drm_detect_monitor_audio(const struct edid *edid)
{
struct drm_edid drm_edid;
return _drm_detect_monitor_audio(drm_edid_legacy_init(&drm_edid, edid));
}
EXPORT_SYMBOL(drm_detect_monitor_audio);
/**
* drm_default_rgb_quant_range - default RGB quantization range
* @mode: display mode
*
* Determine the default RGB quantization range for the mode,
* as specified in CEA-861.
*
* Return: The default RGB quantization range for the mode
*/
enum hdmi_quantization_range
drm_default_rgb_quant_range(const struct drm_display_mode *mode)
{
/* All CEA modes other than VIC 1 use limited quantization range. */
return drm_match_cea_mode(mode) > 1 ?
HDMI_QUANTIZATION_RANGE_LIMITED :
HDMI_QUANTIZATION_RANGE_FULL;
}
EXPORT_SYMBOL(drm_default_rgb_quant_range);
/* CTA-861 Video Data Block (CTA VDB) */
static void parse_cta_vdb(struct drm_connector *connector, const struct cea_db *db)
{
struct drm_display_info *info = &connector->display_info;
int i, vic_index, len = cea_db_payload_len(db);
const u8 *svds = cea_db_data(db);
u8 *vics;
if (!len)
return;
/* Gracefully handle multiple VDBs, however unlikely that is */
vics = krealloc(info->vics, info->vics_len + len, GFP_KERNEL);
if (!vics)
return;
vic_index = info->vics_len;
info->vics_len += len;
info->vics = vics;
for (i = 0; i < len; i++) {
u8 vic = svd_to_vic(svds[i]);
if (!drm_valid_cea_vic(vic))
vic = 0;
info->vics[vic_index++] = vic;
}
}
/*
* Update y420_cmdb_modes based on previously parsed CTA VDB and Y420CMDB.
*
* Translate the y420cmdb_map based on VIC indexes to y420_cmdb_modes indexed
* using the VICs themselves.
*/
static void update_cta_y420cmdb(struct drm_connector *connector, u64 y420cmdb_map)
{
struct drm_display_info *info = &connector->display_info;
struct drm_hdmi_info *hdmi = &info->hdmi;
int i, len = min_t(int, info->vics_len, BITS_PER_TYPE(y420cmdb_map));
for (i = 0; i < len; i++) {
u8 vic = info->vics[i];
if (vic && y420cmdb_map & BIT_ULL(i))
bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
}
}
static bool cta_vdb_has_vic(const struct drm_connector *connector, u8 vic)
{
const struct drm_display_info *info = &connector->display_info;
int i;
if (!vic || !info->vics)
return false;
for (i = 0; i < info->vics_len; i++) {
if (info->vics[i] == vic)
return true;
}
return false;
}
/* CTA-861-H YCbCr 4:2:0 Video Data Block (CTA Y420VDB) */
static void parse_cta_y420vdb(struct drm_connector *connector,
const struct cea_db *db)
{
struct drm_display_info *info = &connector->display_info;
struct drm_hdmi_info *hdmi = &info->hdmi;
const u8 *svds = cea_db_data(db) + 1;
int i;
for (i = 0; i < cea_db_payload_len(db) - 1; i++) {
u8 vic = svd_to_vic(svds[i]);
if (!drm_valid_cea_vic(vic))
continue;
bitmap_set(hdmi->y420_vdb_modes, vic, 1);
info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
}
}
static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db)
{
struct drm_display_info *info = &connector->display_info;
drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] CEA VCDB 0x%02x\n",
connector->base.id, connector->name, db[2]);
if (db[2] & EDID_CEA_VCDB_QS)
info->rgb_quant_range_selectable = true;
}
static
void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane)
{
switch (max_frl_rate) {
case 1:
*max_lanes = 3;
*max_rate_per_lane = 3;
break;
case 2:
*max_lanes = 3;
*max_rate_per_lane = 6;
break;
case 3:
*max_lanes = 4;
*max_rate_per_lane = 6;
break;
case 4:
*max_lanes = 4;
*max_rate_per_lane = 8;
break;
case 5:
*max_lanes = 4;
*max_rate_per_lane = 10;
break;
case 6:
*max_lanes = 4;
*max_rate_per_lane = 12;
break;
case 0:
default:
*max_lanes = 0;
*max_rate_per_lane = 0;
}
}
static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
const u8 *db)
{
u8 dc_mask;
struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
hdmi->y420_dc_modes = dc_mask;
}
static void drm_parse_dsc_info(struct drm_hdmi_dsc_cap *hdmi_dsc,
const u8 *hf_scds)
{
hdmi_dsc->v_1p2 = hf_scds[11] & DRM_EDID_DSC_1P2;
if (!hdmi_dsc->v_1p2)
return;
hdmi_dsc->native_420 = hf_scds[11] & DRM_EDID_DSC_NATIVE_420;
hdmi_dsc->all_bpp = hf_scds[11] & DRM_EDID_DSC_ALL_BPP;
if (hf_scds[11] & DRM_EDID_DSC_16BPC)
hdmi_dsc->bpc_supported = 16;
else if (hf_scds[11] & DRM_EDID_DSC_12BPC)
hdmi_dsc->bpc_supported = 12;
else if (hf_scds[11] & DRM_EDID_DSC_10BPC)
hdmi_dsc->bpc_supported = 10;
else
/* Supports min 8 BPC if DSC 1.2 is supported*/
hdmi_dsc->bpc_supported = 8;
if (cea_db_payload_len(hf_scds) >= 12 && hf_scds[12]) {
u8 dsc_max_slices;
u8 dsc_max_frl_rate;
dsc_max_frl_rate = (hf_scds[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4;
drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes,
&hdmi_dsc->max_frl_rate_per_lane);
dsc_max_slices = hf_scds[12] & DRM_EDID_DSC_MAX_SLICES;
switch (dsc_max_slices) {
case 1:
hdmi_dsc->max_slices = 1;
hdmi_dsc->clk_per_slice = 340;
break;
case 2:
hdmi_dsc->max_slices = 2;
hdmi_dsc->clk_per_slice = 340;
break;
case 3:
hdmi_dsc->max_slices = 4;
hdmi_dsc->clk_per_slice = 340;
break;
case 4:
hdmi_dsc->max_slices = 8;
hdmi_dsc->clk_per_slice = 340;
break;
case 5:
hdmi_dsc->max_slices = 8;
hdmi_dsc->clk_per_slice = 400;
break;
case 6:
hdmi_dsc->max_slices = 12;
hdmi_dsc->clk_per_slice = 400;
break;
case 7:
hdmi_dsc->max_slices = 16;
hdmi_dsc->clk_per_slice = 400;
break;
case 0:
default:
hdmi_dsc->max_slices = 0;
hdmi_dsc->clk_per_slice = 0;
}
}
if (cea_db_payload_len(hf_scds) >= 13 && hf_scds[13])
hdmi_dsc->total_chunk_kbytes = hf_scds[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES;
}
/* Sink Capability Data Structure */
static void drm_parse_hdmi_forum_scds(struct drm_connector *connector,
const u8 *hf_scds)
{
struct drm_display_info *info = &connector->display_info;
struct drm_hdmi_info *hdmi = &info->hdmi;
struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap;
int max_tmds_clock = 0;
u8 max_frl_rate = 0;
bool dsc_support = false;
info->has_hdmi_infoframe = true;
if (hf_scds[6] & 0x80) {
hdmi->scdc.supported = true;
if (hf_scds[6] & 0x40)
hdmi->scdc.read_request = true;
}
/*
* All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
* And as per the spec, three factors confirm this:
* * Availability of a HF-VSDB block in EDID (check)
* * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
* * SCDC support available (let's check)
* Lets check it out.
*/
if (hf_scds[5]) {
struct drm_scdc *scdc = &hdmi->scdc;
/* max clock is 5000 KHz times block value */
max_tmds_clock = hf_scds[5] * 5000;
if (max_tmds_clock > 340000) {
info->max_tmds_clock = max_tmds_clock;
}
if (scdc->supported) {
scdc->scrambling.supported = true;
/* Few sinks support scrambling for clocks < 340M */
if ((hf_scds[6] & 0x8))
scdc->scrambling.low_rates = true;
}
}
if (hf_scds[7]) {
max_frl_rate = (hf_scds[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4;
drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes,
&hdmi->max_frl_rate_per_lane);
}
drm_parse_ycbcr420_deep_color_info(connector, hf_scds);
if (cea_db_payload_len(hf_scds) >= 11 && hf_scds[11]) {
drm_parse_dsc_info(hdmi_dsc, hf_scds);
dsc_support = true;
}
drm_dbg_kms(connector->dev,
"[CONNECTOR:%d:%s] HF-VSDB: max TMDS clock: %d KHz, HDMI 2.1 support: %s, DSC 1.2 support: %s\n",
connector->base.id, connector->name,
max_tmds_clock, str_yes_no(max_frl_rate), str_yes_no(dsc_support));
}
static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
const u8 *hdmi)
{
struct drm_display_info *info = &connector->display_info;
unsigned int dc_bpc = 0;
/* HDMI supports at least 8 bpc */
info->bpc = 8;
if (cea_db_payload_len(hdmi) < 6)
return;
if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
dc_bpc = 10;
info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_30;
drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 30.\n",
connector->base.id, connector->name);
}
if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
dc_bpc = 12;
info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_36;
drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 36.\n",
connector->base.id, connector->name);
}
if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
dc_bpc = 16;
info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_48;
drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 48.\n",
connector->base.id, connector->name);
}
if (dc_bpc == 0) {
drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] No deep color support on this HDMI sink.\n",
connector->base.id, connector->name);
return;
}
drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Assigning HDMI sink color depth as %d bpc.\n",
connector->base.id, connector->name, dc_bpc);
info->bpc = dc_bpc;
/* YCRCB444 is optional according to spec. */
if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
info->edid_hdmi_ycbcr444_dc_modes = info->edid_hdmi_rgb444_dc_modes;
drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does YCRCB444 in deep color.\n",
connector->base.id, connector->name);
}
/*
* Spec says that if any deep color mode is supported at all,
* then deep color 36 bit must be supported.
*/
if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink should do DC_36, but does not!\n",
connector->base.id, connector->name);
}
}
/* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
static void
drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
{
struct drm_display_info *info = &connector->display_info;
u8 len = cea_db_payload_len(db);
info->is_hdmi = true;
if (len >= 6)
info->dvi_dual = db[6] & 1;
if (len >= 7)
info->max_tmds_clock = db[7] * 5000;
/*
* Try to infer whether the sink supports HDMI infoframes.
*
* HDMI infoframe support was first added in HDMI 1.4. Assume the sink
* supports infoframes if HDMI_Video_present is set.
*/
if (len >= 8 && db[8] & BIT(5))
info->has_hdmi_infoframe = true;
drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI: DVI dual %d, max TMDS clock %d kHz\n",
connector->base.id, connector->name,
info->dvi_dual, info->max_tmds_clock);
drm_parse_hdmi_deep_color_info(connector, db);
}
/*
* See EDID extension for head-mounted and specialized monitors, specified at:
* https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-monitors-edid-extension
*/
static void drm_parse_microsoft_vsdb(struct drm_connector *connector,
const u8 *db)
{
struct drm_display_info *info = &connector->display_info;
u8 version = db[4];
bool desktop_usage = db[5] & BIT(6);
/* Version 1 and 2 for HMDs, version 3 flags desktop usage explicitly */
if (version == 1 || version == 2 || (version == 3 && !desktop_usage))
info->non_desktop = true;
drm_dbg_kms(connector->dev,
"[CONNECTOR:%d:%s] HMD or specialized display VSDB version %u: 0x%02x\n",
connector->base.id, connector->name, version, db[5]);
}
static void drm_parse_cea_ext(struct drm_connector *connector,
const struct drm_edid *drm_edid)
{
struct drm_display_info *info = &connector->display_info;
struct drm_edid_iter edid_iter;
const struct cea_db *db;
struct cea_db_iter iter;
const u8 *edid_ext;
u64 y420cmdb_map = 0;
drm_edid_iter_begin(drm_edid, &edid_iter);
drm_edid_iter_for_each(edid_ext, &edid_iter) {
if (edid_ext[0] != CEA_EXT)
continue;
if (!info->cea_rev)
info->cea_rev = edid_ext[1];
if (info->cea_rev != edid_ext[1])
drm_dbg_kms(connector->dev,
"[CONNECTOR:%d:%s] CEA extension version mismatch %u != %u\n",
connector->base.id, connector->name,
info->cea_rev, edid_ext[1]);
/* The existence of a CTA extension should imply RGB support */
info->color_formats = DRM_COLOR_FORMAT_RGB444;
if (edid_ext[3] & EDID_CEA_YCRCB444)
info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
if (edid_ext[3] & EDID_CEA_YCRCB422)
info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
if (edid_ext[3] & EDID_BASIC_AUDIO)
info->has_audio = true;
}
drm_edid_iter_end(&edid_iter);
cea_db_iter_edid_begin(drm_edid, &iter);
cea_db_iter_for_each(db, &iter) {
/* FIXME: convert parsers to use struct cea_db */
const u8 *data = (const u8 *)db;
if (cea_db_is_hdmi_vsdb(db))
drm_parse_hdmi_vsdb_video(connector, data);
else if (cea_db_is_hdmi_forum_vsdb(db) ||
cea_db_is_hdmi_forum_scdb(db))
drm_parse_hdmi_forum_scds(connector, data);
else if (cea_db_is_microsoft_vsdb(db))
drm_parse_microsoft_vsdb(connector, data);
else if (cea_db_is_y420cmdb(db))
parse_cta_y420cmdb(connector, db, &y420cmdb_map);
else if (cea_db_is_y420vdb(db))
parse_cta_y420vdb(connector, db);
else if (cea_db_is_vcdb(db))
drm_parse_vcdb(connector, data);
else if (cea_db_is_hdmi_hdr_metadata_block(db))
drm_parse_hdr_metadata_block(connector, data);
else if (cea_db_tag(db) == CTA_DB_VIDEO)
parse_cta_vdb(connector, db);
else if (cea_db_tag(db) == CTA_DB_AUDIO)
info->has_audio = true;
}
cea_db_iter_end(&iter);
if (y420cmdb_map)
update_cta_y420cmdb(connector, y420cmdb_map);
}
static
void get_monitor_range(const struct detailed_timing *timing, void *c)
{
struct detailed_mode_closure *closure = c;
struct drm_display_info *info = &closure->connector->display_info;
struct drm_monitor_range_info *monitor_range = &info->monitor_range;
const struct detailed_non_pixel *data = &timing->data.other_data;
const struct detailed_data_monitor_range *range = &data->data.range;
const struct edid *edid = closure->drm_edid->edid;
if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
return;
/*
* These limits are used to determine the VRR refresh
* rate range. Only the "range limits only" variant
* of the range descriptor seems to guarantee that
* any and all timings are accepted by the sink, as
* opposed to just timings conforming to the indicated
* formula (GTF/GTF2/CVT). Thus other variants of the
* range descriptor are not accepted here.
*/
if (range->flags != DRM_EDID_RANGE_LIMITS_ONLY_FLAG)
return;
monitor_range->min_vfreq = range->min_vfreq;
monitor_range->max_vfreq = range->max_vfreq;
if (edid->revision >= 4) {
if (data->pad2 & DRM_EDID_RANGE_OFFSET_MIN_VFREQ)
monitor_range->min_vfreq += 255;
if (data->pad2 & DRM_EDID_RANGE_OFFSET_MAX_VFREQ)
monitor_range->max_vfreq += 255;
}
}
static void drm_get_monitor_range(struct drm_connector *connector,
const struct drm_edid *drm_edid)
{
const struct drm_display_info *info = &connector->display_info;
struct detailed_mode_closure closure = {
.connector = connector,
.drm_edid = drm_edid,
};
if (drm_edid->edid->revision < 4)
return;
if (!(drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ))
return;
drm_for_each_detailed_block(drm_edid, get_monitor_range, &closure);
drm_dbg_kms(connector->dev,
"[CONNECTOR:%d:%s] Supported Monitor Refresh rate range is %d Hz - %d Hz\n",
connector->base.id, connector->name,
info->monitor_range.min_vfreq, info->monitor_range.max_vfreq);
}
static void drm_parse_vesa_mso_data(struct drm_connector *connector,
const struct displayid_block *block)
{
struct displayid_vesa_vendor_specific_block *vesa =
(struct displayid_vesa_vendor_specific_block *)block;
struct drm_display_info *info = &connector->display_info;
if (block->num_bytes < 3) {
drm_dbg_kms(connector->dev,
"[CONNECTOR:%d:%s] Unexpected vendor block size %u\n",
connector->base.id, connector->name, block->num_bytes);
return;
}
if (oui(vesa->oui[0], vesa->oui[1], vesa->oui[2]) != VESA_IEEE_OUI)
return;
if (sizeof(*vesa) != sizeof(*block) + block->num_bytes) {
drm_dbg_kms(connector->dev,
"[CONNECTOR:%d:%s] Unexpected VESA vendor block size\n",
connector->base.id, connector->name);
return;
}
switch (FIELD_GET(DISPLAYID_VESA_MSO_MODE, vesa->mso)) {
default:
drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Reserved MSO mode value\n",
connector->base.id, connector->name);
fallthrough;
case 0:
info->mso_stream_count = 0;
break;
case 1:
info->mso_stream_count = 2; /* 2 or 4 links */
break;
case 2:
info->mso_stream_count = 4; /* 4 links */
break;
}
if (!info->mso_stream_count) {
info->mso_pixel_overlap = 0;
return;
}
info->mso_pixel_overlap = FIELD_GET(DISPLAYID_VESA_MSO_OVERLAP, vesa->mso);
if (info->mso_pixel_overlap > 8) {
drm_dbg_kms(connector->dev,
"[CONNECTOR:%d:%s] Reserved MSO pixel overlap value %u\n",
connector->base.id, connector->name,
info->mso_pixel_overlap);
info->mso_pixel_overlap = 8;
}
drm_dbg_kms(connector->dev,
"[CONNECTOR:%d:%s] MSO stream count %u, pixel overlap %u\n",
connector->base.id, connector->name,
info->mso_stream_count, info->mso_pixel_overlap);
}
static void drm_update_mso(struct drm_connector *connector,
const struct drm_edid *drm_edid)
{
const struct displayid_block *block;
struct displayid_iter iter;
displayid_iter_edid_begin(drm_edid, &iter);
displayid_iter_for_each(block, &iter) {
if (block->tag == DATA_BLOCK_2_VENDOR_SPECIFIC)
drm_parse_vesa_mso_data(connector, block);
}
displayid_iter_end(&iter);
}
/* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
* all of the values which would have been set from EDID
*/
static void drm_reset_display_info(struct drm_connector *connector)
{
struct drm_display_info *info = &connector->display_info;
info->width_mm = 0;
info->height_mm = 0;
info->bpc = 0;
info->color_formats = 0;
info->cea_rev = 0;
info->max_tmds_clock = 0;
info->dvi_dual = false;
info->is_hdmi = false;
info->has_audio = false;
info->has_hdmi_infoframe = false;
info->rgb_quant_range_selectable = false;
memset(&info->hdmi, 0, sizeof(info->hdmi));
info->edid_hdmi_rgb444_dc_modes = 0;
info->edid_hdmi_ycbcr444_dc_modes = 0;
info->non_desktop = 0;
memset(&info->monitor_range, 0, sizeof(info->monitor_range));
memset(&info->luminance_range, 0, sizeof(info->luminance_range));
info->mso_stream_count = 0;
info->mso_pixel_overlap = 0;
info->max_dsc_bpp = 0;
kfree(info->vics);
info->vics = NULL;
info->vics_len = 0;
info->quirks = 0;
}
static void update_displayid_info(struct drm_connector *connector,
const struct drm_edid *drm_edid)
{
struct drm_display_info *info = &connector->display_info;
const struct displayid_block *block;
struct displayid_iter iter;
displayid_iter_edid_begin(drm_edid, &iter);
displayid_iter_for_each(block, &iter) {
if (displayid_version(&iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
(displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_VR ||
displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_AR))
info->non_desktop = true;
/*
* We're only interested in the base section here, no need to
* iterate further.
*/
break;
}
displayid_iter_end(&iter);
}
static void update_display_info(struct drm_connector *connector,
const struct drm_edid *drm_edid)
{
struct drm_display_info *info = &connector->display_info;
const struct edid *edid;
drm_reset_display_info(connector);
clear_eld(connector);
if (!drm_edid)
return;
edid = drm_edid->edid;
info->quirks = edid_get_quirks(drm_edid);
info->width_mm = edid->width_cm * 10;
info->height_mm = edid->height_cm * 10;
drm_get_monitor_range(connector, drm_edid);
if (edid->revision < 3)
goto out;
if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
goto out;
info->color_formats |= DRM_COLOR_FORMAT_RGB444;
drm_parse_cea_ext(connector, drm_edid);
update_displayid_info(connector, drm_edid);
/*
* Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
*
* For such displays, the DFP spec 1.0, section 3.10 "EDID support"
* tells us to assume 8 bpc color depth if the EDID doesn't have
* extensions which tell otherwise.
*/
if (info->bpc == 0 && edid->revision == 3 &&
edid->input & DRM_EDID_DIGITAL_DFP_1_X) {
info->bpc = 8;
drm_dbg_kms(connector->dev,
"[CONNECTOR:%d:%s] Assigning DFP sink color depth as %d bpc.\n",
connector->base.id, connector->name, info->bpc);
}
/* Only defined for 1.4 with digital displays */
if (edid->revision < 4)
goto out;
switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
case DRM_EDID_DIGITAL_DEPTH_6:
info->bpc = 6;
break;
case DRM_EDID_DIGITAL_DEPTH_8:
info->bpc = 8;
break;
case DRM_EDID_DIGITAL_DEPTH_10:
info->bpc = 10;
break;
case DRM_EDID_DIGITAL_DEPTH_12:
info->bpc = 12;
break;
case DRM_EDID_DIGITAL_DEPTH_14:
info->bpc = 14;
break;
case DRM_EDID_DIGITAL_DEPTH_16:
info->bpc = 16;
break;
case DRM_EDID_DIGITAL_DEPTH_UNDEF:
default:
info->bpc = 0;
break;
}
drm_dbg_kms(connector->dev,
"[CONNECTOR:%d:%s] Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
connector->base.id, connector->name, info->bpc);
if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
drm_update_mso(connector, drm_edid);
out:
if (info->quirks & EDID_QUIRK_NON_DESKTOP) {
drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Non-desktop display%s\n",
connector->base.id, connector->name,
info->non_desktop ? " (redundant quirk)" : "");
info->non_desktop = true;
}
if (info->quirks & EDID_QUIRK_CAP_DSC_15BPP)
info->max_dsc_bpp = 15;
if (info->quirks & EDID_QUIRK_FORCE_6BPC)
info->bpc = 6;
if (info->quirks & EDID_QUIRK_FORCE_8BPC)
info->bpc = 8;
if (info->quirks & EDID_QUIRK_FORCE_10BPC)
info->bpc = 10;
if (info->quirks & EDID_QUIRK_FORCE_12BPC)
info->bpc = 12;
/* Depends on info->cea_rev set by drm_parse_cea_ext() above */
drm_edid_to_eld(connector, drm_edid);
}
static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
struct displayid_detailed_timings_1 *timings,
bool type_7)
{
struct drm_display_mode *mode;
unsigned pixel_clock = (timings->pixel_clock[0] |
(timings->pixel_clock[1] << 8) |
(timings->pixel_clock[2] << 16)) + 1;
unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
mode = drm_mode_create(dev);
if (!mode)
return NULL;
/* resolution is kHz for type VII, and 10 kHz for type I */
mode->clock = type_7 ? pixel_clock : pixel_clock * 10;
mode->hdisplay = hactive;
mode->hsync_start = mode->hdisplay + hsync;
mode->hsync_end = mode->hsync_start + hsync_width;
mode->htotal = mode->hdisplay + hblank;
mode->vdisplay = vactive;
mode->vsync_start = mode->vdisplay + vsync;
mode->vsync_end = mode->vsync_start + vsync_width;
mode->vtotal = mode->vdisplay + vblank;
mode->flags = 0;
mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
mode->type = DRM_MODE_TYPE_DRIVER;
if (timings->flags & 0x80)
mode->type |= DRM_MODE_TYPE_PREFERRED;
drm_mode_set_name(mode);
return mode;
}
static int add_displayid_detailed_1_modes(struct drm_connector *connector,
const struct displayid_block *block)
{
struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
int i;
int num_timings;
struct drm_display_mode *newmode;
int num_modes = 0;
bool type_7 = block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING;
/* blocks must be multiple of 20 bytes length */
if (block->num_bytes % 20)
return 0;
num_timings = block->num_bytes / 20;
for (i = 0; i < num_timings; i++) {
struct displayid_detailed_timings_1 *timings = &det->timings[i];
newmode = drm_mode_displayid_detailed(connector->dev, timings, type_7);
if (!newmode)
continue;
drm_mode_probed_add(connector, newmode);
num_modes++;
}
return num_modes;
}
static int add_displayid_detailed_modes(struct drm_connector *connector,
const struct drm_edid *drm_edid)
{
const struct displayid_block *block;
struct displayid_iter iter;
int num_modes = 0;
displayid_iter_edid_begin(drm_edid, &iter);
displayid_iter_for_each(block, &iter) {
if (block->tag == DATA_BLOCK_TYPE_1_DETAILED_TIMING ||
block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING)
num_modes += add_displayid_detailed_1_modes(connector, block);
}
displayid_iter_end(&iter);
return num_modes;
}
static int _drm_edid_connector_add_modes(struct drm_connector *connector,
const struct drm_edid *drm_edid)
{
const struct drm_display_info *info = &connector->display_info;
int num_modes = 0;
if (!drm_edid)
return 0;
/*
* EDID spec says modes should be preferred in this order:
* - preferred detailed mode
* - other detailed modes from base block
* - detailed modes from extension blocks
* - CVT 3-byte code modes
* - standard timing codes
* - established timing codes
* - modes inferred from GTF or CVT range information
*
* We get this pretty much right.
*
* XXX order for additional mode types in extension blocks?
*/
num_modes += add_detailed_modes(connector, drm_edid);
num_modes += add_cvt_modes(connector, drm_edid);
num_modes += add_standard_modes(connector, drm_edid);
num_modes += add_established_modes(connector, drm_edid);
num_modes += add_cea_modes(connector, drm_edid);
num_modes += add_alternate_cea_modes(connector, drm_edid);
num_modes += add_displayid_detailed_modes(connector, drm_edid);
if (drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ)
num_modes += add_inferred_modes(connector, drm_edid);
if (info->quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
edid_fixup_preferred(connector);
return num_modes;
}
static void _drm_update_tile_info(struct drm_connector *connector,
const struct drm_edid *drm_edid);
static int _drm_edid_connector_property_update(struct drm_connector *connector,
const struct drm_edid *drm_edid)
{
struct drm_device *dev = connector->dev;
int ret;
if (connector->edid_blob_ptr) {
const struct edid *old_edid = connector->edid_blob_ptr->data;
if (old_edid) {
if (!drm_edid_are_equal(drm_edid ? drm_edid->edid : NULL, old_edid)) {
connector->epoch_counter++;
drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID changed, epoch counter %llu\n",
connector->base.id, connector->name,
connector->epoch_counter);
}
}
}
ret = drm_property_replace_global_blob(dev,
&connector->edid_blob_ptr,
drm_edid ? drm_edid->size : 0,
drm_edid ? drm_edid->edid : NULL,
&connector->base,
dev->mode_config.edid_property);
if (ret) {
drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID property update failed (%d)\n",
connector->base.id, connector->name, ret);
goto out;
}
ret = drm_object_property_set_value(&connector->base,
dev->mode_config.non_desktop_property,
connector->display_info.non_desktop);
if (ret) {
drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Non-desktop property update failed (%d)\n",
connector->base.id, connector->name, ret);
goto out;
}
ret = drm_connector_set_tile_property(connector);
if (ret) {
drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Tile property update failed (%d)\n",
connector->base.id, connector->name, ret);
goto out;
}
out:
return ret;
}
/**
* drm_edid_connector_update - Update connector information from EDID
* @connector: Connector
* @drm_edid: EDID
*
* Update the connector display info, ELD, HDR metadata, relevant properties,
* etc. from the passed in EDID.
*
* If EDID is NULL, reset the information.
*
* Must be called before calling drm_edid_connector_add_modes().
*
* Return: 0 on success, negative error on errors.
*/
int drm_edid_connector_update(struct drm_connector *connector,
const struct drm_edid *drm_edid)
{
update_display_info(connector, drm_edid);
_drm_update_tile_info(connector, drm_edid);
return _drm_edid_connector_property_update(connector, drm_edid);
}
EXPORT_SYMBOL(drm_edid_connector_update);
/**
* drm_edid_connector_add_modes - Update probed modes from the EDID property
* @connector: Connector
*
* Add the modes from the previously updated EDID property to the connector
* probed modes list.
*
* drm_edid_connector_update() must have been called before this to update the
* EDID property.
*
* Return: The number of modes added, or 0 if we couldn't find any.
*/
int drm_edid_connector_add_modes(struct drm_connector *connector)
{
const struct drm_edid *drm_edid = NULL;
int count;
if (connector->edid_blob_ptr)
drm_edid = drm_edid_alloc(connector->edid_blob_ptr->data,
connector->edid_blob_ptr->length);
count = _drm_edid_connector_add_modes(connector, drm_edid);
drm_edid_free(drm_edid);
return count;
}
EXPORT_SYMBOL(drm_edid_connector_add_modes);
/**
* drm_connector_update_edid_property - update the edid property of a connector
* @connector: drm connector
* @edid: new value of the edid property
*
* This function creates a new blob modeset object and assigns its id to the
* connector's edid property.
* Since we also parse tile information from EDID's displayID block, we also
* set the connector's tile property here. See drm_connector_set_tile_property()
* for more details.
*
* This function is deprecated. Use drm_edid_connector_update() instead.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_connector_update_edid_property(struct drm_connector *connector,
const struct edid *edid)
{
struct drm_edid drm_edid;
return drm_edid_connector_update(connector, drm_edid_legacy_init(&drm_edid, edid));
}
EXPORT_SYMBOL(drm_connector_update_edid_property);
/**
* drm_add_edid_modes - add modes from EDID data, if available
* @connector: connector we're probing
* @edid: EDID data
*
* Add the specified modes to the connector's mode list. Also fills out the
* &drm_display_info structure and ELD in @connector with any information which
* can be derived from the edid.
*
* This function is deprecated. Use drm_edid_connector_add_modes() instead.
*
* Return: The number of modes added or 0 if we couldn't find any.
*/
int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
{
struct drm_edid _drm_edid;
const struct drm_edid *drm_edid;
if (edid && !drm_edid_is_valid(edid)) {
drm_warn(connector->dev, "[CONNECTOR:%d:%s] EDID invalid.\n",
connector->base.id, connector->name);
edid = NULL;
}
drm_edid = drm_edid_legacy_init(&_drm_edid, edid);
update_display_info(connector, drm_edid);
return _drm_edid_connector_add_modes(connector, drm_edid);
}
EXPORT_SYMBOL(drm_add_edid_modes);
/**
* drm_add_modes_noedid - add modes for the connectors without EDID
* @connector: connector we're probing
* @hdisplay: the horizontal display limit
* @vdisplay: the vertical display limit
*
* Add the specified modes to the connector's mode list. Only when the
* hdisplay/vdisplay is not beyond the given limit, it will be added.
*
* Return: The number of modes added or 0 if we couldn't find any.
*/
int drm_add_modes_noedid(struct drm_connector *connector,
int hdisplay, int vdisplay)
{
int i, count, num_modes = 0;
struct drm_display_mode *mode;
struct drm_device *dev = connector->dev;
count = ARRAY_SIZE(drm_dmt_modes);
if (hdisplay < 0)
hdisplay = 0;
if (vdisplay < 0)
vdisplay = 0;
for (i = 0; i < count; i++) {
const struct drm_display_mode *ptr = &drm_dmt_modes[i];
if (hdisplay && vdisplay) {
/*
* Only when two are valid, they will be used to check
* whether the mode should be added to the mode list of
* the connector.
*/
if (ptr->hdisplay > hdisplay ||
ptr->vdisplay > vdisplay)
continue;
}
if (drm_mode_vrefresh(ptr) > 61)
continue;
mode = drm_mode_duplicate(dev, ptr);
if (mode) {
drm_mode_probed_add(connector, mode);
num_modes++;
}
}
return num_modes;
}
EXPORT_SYMBOL(drm_add_modes_noedid);
/**
* drm_set_preferred_mode - Sets the preferred mode of a connector
* @connector: connector whose mode list should be processed
* @hpref: horizontal resolution of preferred mode
* @vpref: vertical resolution of preferred mode
*
* Marks a mode as preferred if it matches the resolution specified by @hpref
* and @vpref.
*/
void drm_set_preferred_mode(struct drm_connector *connector,
int hpref, int vpref)
{
struct drm_display_mode *mode;
list_for_each_entry(mode, &connector->probed_modes, head) {
if (mode->hdisplay == hpref &&
mode->vdisplay == vpref)
mode->type |= DRM_MODE_TYPE_PREFERRED;
}
}
EXPORT_SYMBOL(drm_set_preferred_mode);
static bool is_hdmi2_sink(const struct drm_connector *connector)
{
/*
* FIXME: sil-sii8620 doesn't have a connector around when
* we need one, so we have to be prepared for a NULL connector.
*/
if (!connector)
return true;
return connector->display_info.hdmi.scdc.supported ||
connector->display_info.color_formats & DRM_COLOR_FORMAT_YCBCR420;
}
static u8 drm_mode_hdmi_vic(const struct drm_connector *connector,
const struct drm_display_mode *mode)
{
bool has_hdmi_infoframe = connector ?
connector->display_info.has_hdmi_infoframe : false;
if (!has_hdmi_infoframe)
return 0;
/* No HDMI VIC when signalling 3D video format */
if (mode->flags & DRM_MODE_FLAG_3D_MASK)
return 0;
return drm_match_hdmi_mode(mode);
}
static u8 drm_mode_cea_vic(const struct drm_connector *connector,
const struct drm_display_mode *mode)
{
/*
* HDMI spec says if a mode is found in HDMI 1.4b 4K modes
* we should send its VIC in vendor infoframes, else send the
* VIC in AVI infoframes. Lets check if this mode is present in
* HDMI 1.4b 4K modes
*/
if (drm_mode_hdmi_vic(connector, mode))
return 0;
return drm_match_cea_mode(mode);
}
/*
* Avoid sending VICs defined in HDMI 2.0 in AVI infoframes to sinks that
* conform to HDMI 1.4.
*
* HDMI 1.4 (CTA-861-D) VIC range: [1..64]
* HDMI 2.0 (CTA-861-F) VIC range: [1..107]
*
* If the sink lists the VIC in CTA VDB, assume it's fine, regardless of HDMI
* version.
*/
static u8 vic_for_avi_infoframe(const struct drm_connector *connector, u8 vic)
{
if (!is_hdmi2_sink(connector) && vic > 64 &&
!cta_vdb_has_vic(connector, vic))
return 0;
return vic;
}
/**
* drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
* data from a DRM display mode
* @frame: HDMI AVI infoframe
* @connector: the connector
* @mode: DRM display mode
*
* Return: 0 on success or a negative error code on failure.
*/
int
drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
const struct drm_connector *connector,
const struct drm_display_mode *mode)
{
enum hdmi_picture_aspect picture_aspect;
u8 vic, hdmi_vic;
if (!frame || !mode)
return -EINVAL;
hdmi_avi_infoframe_init(frame);
if (mode->flags & DRM_MODE_FLAG_DBLCLK)
frame->pixel_repeat = 1;
vic = drm_mode_cea_vic(connector, mode);
hdmi_vic = drm_mode_hdmi_vic(connector, mode);
frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
/*
* As some drivers don't support atomic, we can't use connector state.
* So just initialize the frame with default values, just the same way
* as it's done with other properties here.
*/
frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
frame->itc = 0;
/*
* Populate picture aspect ratio from either
* user input (if specified) or from the CEA/HDMI mode lists.
*/
picture_aspect = mode->picture_aspect_ratio;
if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) {
if (vic)
picture_aspect = drm_get_cea_aspect_ratio(vic);
else if (hdmi_vic)
picture_aspect = drm_get_hdmi_aspect_ratio(hdmi_vic);
}
/*
* The infoframe can't convey anything but none, 4:3
* and 16:9, so if the user has asked for anything else
* we can only satisfy it by specifying the right VIC.
*/
if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) {
if (vic) {
if (picture_aspect != drm_get_cea_aspect_ratio(vic))
return -EINVAL;
} else if (hdmi_vic) {
if (picture_aspect != drm_get_hdmi_aspect_ratio(hdmi_vic))
return -EINVAL;
} else {
return -EINVAL;
}
picture_aspect = HDMI_PICTURE_ASPECT_NONE;
}
frame->video_code = vic_for_avi_infoframe(connector, vic);
frame->picture_aspect = picture_aspect;
frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
return 0;
}
EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
/**
* drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
* quantization range information
* @frame: HDMI AVI infoframe
* @connector: the connector
* @mode: DRM display mode
* @rgb_quant_range: RGB quantization range (Q)
*/
void
drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
const struct drm_connector *connector,
const struct drm_display_mode *mode,
enum hdmi_quantization_range rgb_quant_range)
{
const struct drm_display_info *info = &connector->display_info;
/*
* CEA-861:
* "A Source shall not send a non-zero Q value that does not correspond
* to the default RGB Quantization Range for the transmitted Picture
* unless the Sink indicates support for the Q bit in a Video
* Capabilities Data Block."
*
* HDMI 2.0 recommends sending non-zero Q when it does match the
* default RGB quantization range for the mode, even when QS=0.
*/
if (info->rgb_quant_range_selectable ||
rgb_quant_range == drm_default_rgb_quant_range(mode))
frame->quantization_range = rgb_quant_range;
else
frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
/*
* CEA-861-F:
* "When transmitting any RGB colorimetry, the Source should set the
* YQ-field to match the RGB Quantization Range being transmitted
* (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
* set YQ=1) and the Sink shall ignore the YQ-field."
*
* Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
* by non-zero YQ when receiving RGB. There doesn't seem to be any
* good way to tell which version of CEA-861 the sink supports, so
* we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
* on CEA-861-F.
*/
if (!is_hdmi2_sink(connector) ||
rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
frame->ycc_quantization_range =
HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
else
frame->ycc_quantization_range =
HDMI_YCC_QUANTIZATION_RANGE_FULL;
}
EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
static enum hdmi_3d_structure
s3d_structure_from_display_mode(const struct drm_display_mode *mode)
{
u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
switch (layout) {
case DRM_MODE_FLAG_3D_FRAME_PACKING:
return HDMI_3D_STRUCTURE_FRAME_PACKING;
case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
case DRM_MODE_FLAG_3D_L_DEPTH:
return HDMI_3D_STRUCTURE_L_DEPTH;
case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
default:
return HDMI_3D_STRUCTURE_INVALID;
}
}
/**
* drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
* data from a DRM display mode
* @frame: HDMI vendor infoframe
* @connector: the connector
* @mode: DRM display mode
*
* Note that there's is a need to send HDMI vendor infoframes only when using a
* 4k or stereoscopic 3D mode. So when giving any other mode as input this
* function will return -EINVAL, error that can be safely ignored.
*
* Return: 0 on success or a negative error code on failure.
*/
int
drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
const struct drm_connector *connector,
const struct drm_display_mode *mode)
{
/*
* FIXME: sil-sii8620 doesn't have a connector around when
* we need one, so we have to be prepared for a NULL connector.
*/
bool has_hdmi_infoframe = connector ?
connector->display_info.has_hdmi_infoframe : false;
int err;
if (!frame || !mode)
return -EINVAL;
if (!has_hdmi_infoframe)
return -EINVAL;
err = hdmi_vendor_infoframe_init(frame);
if (err < 0)
return err;
/*
* Even if it's not absolutely necessary to send the infoframe
* (ie.vic==0 and s3d_struct==0) we will still send it if we
* know that the sink can handle it. This is based on a
* suggestion in HDMI 2.0 Appendix F. Apparently some sinks
* have trouble realizing that they should switch from 3D to 2D
* mode if the source simply stops sending the infoframe when
* it wants to switch from 3D to 2D.
*/
frame->vic = drm_mode_hdmi_vic(connector, mode);
frame->s3d_struct = s3d_structure_from_display_mode(mode);
return 0;
}
EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
static void drm_parse_tiled_block(struct drm_connector *connector,
const struct displayid_block *block)
{
const struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
u16 w, h;
u8 tile_v_loc, tile_h_loc;
u8 num_v_tile, num_h_tile;
struct drm_tile_group *tg;
w = tile->tile_size[0] | tile->tile_size[1] << 8;
h = tile->tile_size[2] | tile->tile_size[3] << 8;
num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
connector->has_tile = true;
if (tile->tile_cap & 0x80)
connector->tile_is_single_monitor = true;
connector->num_h_tile = num_h_tile + 1;
connector->num_v_tile = num_v_tile + 1;
connector->tile_h_loc = tile_h_loc;
connector->tile_v_loc = tile_v_loc;
connector->tile_h_size = w + 1;
connector->tile_v_size = h + 1;
drm_dbg_kms(connector->dev,
"[CONNECTOR:%d:%s] tile cap 0x%x, size %dx%d, num tiles %dx%d, location %dx%d, vend %c%c%c",
connector->base.id, connector->name,
tile->tile_cap,
connector->tile_h_size, connector->tile_v_size,
connector->num_h_tile, connector->num_v_tile,
connector->tile_h_loc, connector->tile_v_loc,
tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
if (!tg)
tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
if (!tg)
return;
if (connector->tile_group != tg) {
/* if we haven't got a pointer,
take the reference, drop ref to old tile group */
if (connector->tile_group)
drm_mode_put_tile_group(connector->dev, connector->tile_group);
connector->tile_group = tg;
} else {
/* if same tile group, then release the ref we just took. */
drm_mode_put_tile_group(connector->dev, tg);
}
}
static bool displayid_is_tiled_block(const struct displayid_iter *iter,
const struct displayid_block *block)
{
return (displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_12 &&
block->tag == DATA_BLOCK_TILED_DISPLAY) ||
(displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
block->tag == DATA_BLOCK_2_TILED_DISPLAY_TOPOLOGY);
}
static void _drm_update_tile_info(struct drm_connector *connector,
const struct drm_edid *drm_edid)
{
const struct displayid_block *block;
struct displayid_iter iter;
connector->has_tile = false;
displayid_iter_edid_begin(drm_edid, &iter);
displayid_iter_for_each(block, &iter) {
if (displayid_is_tiled_block(&iter, block))
drm_parse_tiled_block(connector, block);
}
displayid_iter_end(&iter);
if (!connector->has_tile && connector->tile_group) {
drm_mode_put_tile_group(connector->dev, connector->tile_group);
connector->tile_group = NULL;
}
}